test remove script
Browse files- my_dataset.py +0 -132
my_dataset.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
import LANGUAGES as LANGUAGES
|
2 |
-
import STATS as STATS
|
3 |
-
import datasets as datasets
|
4 |
-
from datasets.utils.py_utils import size_str
|
5 |
-
|
6 |
-
_HOMEPAGE = "homepage-info"
|
7 |
-
_CITATION = "citation-info"
|
8 |
-
_LICENSE = "license-info"
|
9 |
-
_DESCRIPTION = "description-info"
|
10 |
-
|
11 |
-
_PROMPTS_URLS = "....."
|
12 |
-
_DATA_URL = "...."
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"""Configuration class, allows to have multiple configurations if needed"""
|
17 |
-
class ParlaSpeechDatasetConfig(datasets.BuilderConfig):
|
18 |
-
"""BuilderConfig for ParlaSpeech"""
|
19 |
-
|
20 |
-
def __init__(self, name, version, **kwargs):
|
21 |
-
self.language = kwargs.pop("language", None)
|
22 |
-
self.release_date = kwargs.pop("release_date", None)
|
23 |
-
self.num_clips = kwargs.pop("num_clips", None)
|
24 |
-
self.num_speakers = kwargs.pop("num_speakers", None)
|
25 |
-
self.validated_hr = kwargs.pop("validated_hr", None)
|
26 |
-
self.total_hr = kwargs.pop("total_hr", None)
|
27 |
-
self.size_bytes = kwargs.pop("size_bytes", None)
|
28 |
-
self.size_human = size_str(self.size_bytes)
|
29 |
-
description = ( ##Update Description in the final version
|
30 |
-
f"ParlaSpeech is a dataset in {self.language} released on {self.release_date}. "
|
31 |
-
)
|
32 |
-
super(ParlaSpeechDatasetConfig, self).__init__(
|
33 |
-
name=name,
|
34 |
-
version=datasets.Version(version),
|
35 |
-
description=description,
|
36 |
-
**kwargs,
|
37 |
-
)
|
38 |
-
|
39 |
-
|
40 |
-
class ParlaSpeechDataset(datasets.GeneratroBasedBuilder):
|
41 |
-
|
42 |
-
""""
|
43 |
-
### NO TENGO CLARO SI HACE FALTA ESTO ###
|
44 |
-
DEFAULT_CONFIG_NAME = "all"
|
45 |
-
|
46 |
-
BUILDER_CONFIGS = [
|
47 |
-
ParlaSpeechDatasetConfig(
|
48 |
-
name=lang,
|
49 |
-
version=STATS["version"],
|
50 |
-
language=LANGUAGES[lang],
|
51 |
-
release_date=STATS["date"],
|
52 |
-
num_clips=lang_stats["clips"],
|
53 |
-
num_speakers=lang_stats["users"],
|
54 |
-
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
|
55 |
-
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
|
56 |
-
)
|
57 |
-
for lang, lang_stats in STATS["locales"].items()
|
58 |
-
]
|
59 |
-
"""
|
60 |
-
|
61 |
-
""" When the dataset is loaded and .info is called, the info defined here is displayed."""
|
62 |
-
def _info(self):
|
63 |
-
return datasets.DatasetInfo(
|
64 |
-
description=_DESCRIPTION,
|
65 |
-
features=datasets.Features(
|
66 |
-
{
|
67 |
-
#"speaker_id": datasets.Value("string"),
|
68 |
-
"path": datasets.Value("string"),
|
69 |
-
"audio": datasets.Audio(sampling_rate=16_000),
|
70 |
-
"sentence": datasets.Value("string"),
|
71 |
-
}
|
72 |
-
),
|
73 |
-
supervised_keys=None,
|
74 |
-
homepage=_HOMEPAGE,
|
75 |
-
license=_LICENSE,
|
76 |
-
citation=_CITATION,
|
77 |
-
version = self.config.version,
|
78 |
-
)
|
79 |
-
|
80 |
-
" Used to organize the audio files and sentence prompts in each split, once downloaded the dataset."
|
81 |
-
def _split_generators(self, dl_manager):
|
82 |
-
"""Returns SplitGenerators"""
|
83 |
-
prompts_paths = dl_manager.download(_PROMPTS_URLS)
|
84 |
-
archive = dl_manager.download(_DATA_URL)
|
85 |
-
## local_extracted_archives = dl_manager.extract(archive)
|
86 |
-
train_dir = "vivos/train"
|
87 |
-
test_dir = "vivos/test"
|
88 |
-
|
89 |
-
return [
|
90 |
-
datasets.SplitGenerator(
|
91 |
-
name=datasets.Split.TRAIN,
|
92 |
-
gen_kwargs={
|
93 |
-
"prompts_path": prompts_paths["train"],
|
94 |
-
"path_to_clips": train_dir + "/waves",
|
95 |
-
"audio_files": dl_manager.iter_archive(archive),
|
96 |
-
},
|
97 |
-
),
|
98 |
-
datasets.SplitGenerator(
|
99 |
-
name=datasets.Split.TEST,
|
100 |
-
gen_kwargs={
|
101 |
-
"prompts_path": prompts_paths["test"],
|
102 |
-
"path_to_clips": test_dir + "/waves",
|
103 |
-
"audio_files": dl_manager.iter_archive(archive),
|
104 |
-
},
|
105 |
-
),
|
106 |
-
]
|
107 |
-
|
108 |
-
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
109 |
-
"""Yields examples as (key, example) tuples."""
|
110 |
-
examples = {}
|
111 |
-
with open(prompts_path, encoding="utf-8") as f: ##prompts_path -> transcript.tsv
|
112 |
-
for row in f:
|
113 |
-
data = row.strip().split(" ", 1)
|
114 |
-
#speaker_id = data[0].split("_")[0]
|
115 |
-
#audio_path = "/".join([path_to_clips, speaker_id, data[0] + ".wav"])
|
116 |
-
audio_path = "/".join([path_to_clips, "DSPG_137_23122015_9873.69_9888.03.wav"])
|
117 |
-
examples[audio_path] = {
|
118 |
-
#"speaker_id": speaker_id,
|
119 |
-
"path": audio_path,
|
120 |
-
"sentence": data[1],
|
121 |
-
}
|
122 |
-
inside_clips_dir = False
|
123 |
-
id_ = 0
|
124 |
-
for path, f in audio_files:
|
125 |
-
if path.startswith(path_to_clips):
|
126 |
-
inside_clips_dir = True
|
127 |
-
if path in examples:
|
128 |
-
audio = {"path": path, "bytes": f.read()}
|
129 |
-
yield id_, {**examples[path], "audio": audio}
|
130 |
-
id_ += 1
|
131 |
-
elif inside_clips_dir:
|
132 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|