Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 6,342 Bytes
6f249f4 4abc9d0 6f249f4 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 0daa1eb 757c9f7 0daa1eb 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 0daa1eb 4abc9d0 757c9f7 4abc9d0 0daa1eb 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 757c9f7 0daa1eb 4abc9d0 0daa1eb 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 0daa1eb 4abc9d0 757c9f7 4abc9d0 0daa1eb 4abc9d0 757c9f7 4abc9d0 757c9f7 4abc9d0 0daa1eb 4abc9d0 0daa1eb 757c9f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
dataset_info:
features:
- name: sex
dtype: string
- name: subset
dtype: string
- name: id
dtype: string
- name: audio
dtype: audio
- name: transcript
dtype: string
- name: words
list:
- name: end
dtype: float64
- name: start
dtype: float64
- name: word
dtype: string
- name: phonemes
list:
- name: end
dtype: float64
- name: phoneme
dtype: string
- name: start
dtype: float64
splits:
- name: dev_clean
num_bytes: 365310608.879
num_examples: 2703
- name: dev_other
num_bytes: 341143993.784
num_examples: 2864
- name: test_clean
num_bytes: 377535532.98
num_examples: 2620
- name: test_other
num_bytes: 351207892.569557
num_examples: 2938
- name: train_clean_100
num_bytes: 6694747231.610863
num_examples: 28538
- name: train_clean_360
num_bytes: 24163659711.787865
num_examples: 104008
- name: train_other_500
num_bytes: 32945085271.89443
num_examples: 148645
download_size: 62101682957
dataset_size: 65238690243.50571
configs:
- config_name: default
data_files:
- split: dev_clean
path: data/dev_clean-*
- split: dev_other
path: data/dev_other-*
- split: test_clean
path: data/test_clean-*
- split: test_other
path: data/test_other-*
- split: train_clean_100
path: data/train_clean_100-*
- split: train_clean_360
path: data/train_clean_360-*
- split: train_other_500
path: data/train_other_500-*
license: cc-by-4.0
task_categories:
- automatic-speech-recognition
language:
- en
pretty_name: Librispeech Alignments
size_categories:
- 100K<n<1M
---
# Dataset Card for Librispeech Alignments
Librispeech with alignments generated by the [Montreal Forced Aligner](https://montreal-forced-aligner.readthedocs.io/en/latest/). The original alignments in TextGrid format can be found [here](https://zenodo.org/records/2619474)
## Dataset Details
### Dataset Description
Librispeech is a corpus of read English speech, designed for training and evaluating automatic speech recognition (ASR) systems. The dataset contains 1000 hours of 16kHz read English speech derived from audiobooks.
The Montreal Forced Aligner (MFA) was used to generate word and phoneme level alignments for the Librispeech dataset.
- **Curated by:** Vassil Panayotov, Guoguo Chen, Daniel Povey, Sanjeev Khudanpur (for Librispeech)
- **Funded by:** DARPA LORELEI
- **Shared by:** Loren Lugosch (for Alignments)
- **Language(s) (NLP):** English
- **License:** Creative Commons Attribution 4.0 International License
### Dataset Sources
- **Repository:** https://www.openslr.org/12
- **Paper:** https://arxiv.org/abs/1512.02595
- **Alignments:** https://zenodo.org/record/2619474
## Uses
### Direct Use
The Librispeech dataset can be used to train and evaluate ASR systems. The alignments allow for forced alignment techniques.
### Out-of-Scope Use
The dataset only contains read speech, so may not perform as well on spontaneous conversational speech.
## Dataset Structure
The dataset contains 1000 hours of segmented read English speech from audiobooks. There are three train subsets: 100 hours (train-clean-100), 360 hours (train-clean-360) and 500 hours (train-other-500).
The alignments connect the audio to the reference text transcripts on word and phoneme level.
### Data Fields
- sex: M for male, F for female
- subset: dev_clean, dev_other, test_clean, test_other, train_clean_100, train_clean_360, train_other_500
- id: unique id of the data sample. (speaker id)-(chapter-id)-(utterance-id)
- audio: the audio, 16kHz
- transcript: the spoken text of the dataset, normalized and lowercased
- words: a list of words with fields:
- word: the text of the word
- start: the start time in seconds
- end: the end time in seconds
- phonemes: a list of phonemes with fields:
- phoneme: the phoneme spoken
- start: the start time in seconds
- end: the end time in seconds
## Dataset Creation
### Curation Rationale
Librispeech was created to further speech recognition research and to benchmark progress in the field.
### Source Data
#### Data Collection and Processing
The audio and reference texts were sourced from read English audiobooks in the LibriVox project. The data was segmented, filtered and prepared for speech recognition.
#### Who are the source data producers?
The audiobooks are read by volunteers for the LibriVox project. Information about the readers is available in the LibriVox catalog.
### Annotations
#### Annotation process
The Montreal Forced Aligner was used to create word and phoneme level alignments between the audio and reference texts. The aligner is based on Kaldi.
In the process of formatting this into a HuggingFace dataset, words with empty text and phonemes with empty text, silence tokens, or spacing tokens were removed
#### Who are the annotators?
The alignments were generated automatically by the Montreal Forced Aligner and shared by Loren Lugosch. The TextGrid files were parsed and integrated into this dataset by Kim Gilkey.
#### Personal and Sensitive Information
The data contains read speech and transcripts. No personal or sensitive information expected.
## Bias, Risks, and Limitations
The dataset contains only read speech from published books, not natural conversational speech. Performance on other tasks may be reduced.
### Recommendations
Users should understand that the alignments may contain errors and account for this in applications. For example, be wary of <UNK> tokens.
## Citation
**Librispeech:**
```
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={ICASSP},
year={2015},
organization={IEEE}
}
```
**Librispeech Alignments:**
```
Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, and Yoshua Bengio, "Speech Model Pre-training for End-to-End Spoken Language Understanding", Interspeech 2019.
```
**Montreal Forced Aligner:**
```
Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger. "Montreal Forced Aligner: trainable text-speech alignment using Kaldi", Interspeech 2017.
``` |