Datasets:
Tasks:
Text2Text Generation
Formats:
parquet
Languages:
English
Size:
10M - 100M
ArXiv:
Tags:
sentence-fusion
License:
File size: 9,027 Bytes
800f511 8ca00e4 800f511 cc7a1bf 800f511 2fbf431 800f511 2fbf431 800f511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
"""TODO(discofuse): Add a description here."""
import csv
import os
import datasets
_URL_ = "https://storage.googleapis.com/gresearch/discofuse/"
_CITATION = """\
@InProceedings{GevaEtAl2019,
title = {DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion},
author = {Geva, Mor and Malmi, Eric and Szpektor, Idan and Berant, Jonathan},
booktitle = {Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics},
note = {arXiv preprint arXiv:1902.10526},
year = {2019}
}
"""
# TODO(discofuse):
_DESCRIPTION = """\
DISCOFUSE is a large scale dataset for discourse-based sentence fusion.
"""
class DiscofuseConfig(datasets.BuilderConfig):
"""BuilderConfig for Discofuse"""
def __init__(self, data_url, balanced=False, **kwargs):
"""
Args:
balanced: to specify if we want to load the balanced file or the full file
**kwargs: keyword arguments forwarded to super.
"""
super(DiscofuseConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.balanced = balanced
self.data_url = data_url
class Discofuse(datasets.GeneratorBasedBuilder):
"""TODO(discofuse): Short description of my dataset."""
# TODO(discofuse): Set up version.
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
DiscofuseConfig(
name="discofuse-sport", description="sentence fusion", data_url=_URL_ + "discofuse_v1_sports.zip"
),
DiscofuseConfig(
name="discofuse-wikipedia", description="sentence fusion", data_url=_URL_ + "discofuse_v1_wikipedia.zip"
),
]
def _info(self):
# TODO(discofuse): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"connective_string": datasets.Value("string"),
"discourse_type": datasets.Value("string"),
"coherent_second_sentence": datasets.Value("string"),
"has_coref_type_pronoun": datasets.Value("float32"),
"incoherent_first_sentence": datasets.Value("string"),
"incoherent_second_sentence": datasets.Value("string"),
"has_coref_type_nominal": datasets.Value("float32"),
"coherent_first_sentence": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/google-research-datasets/discofuse",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(discofuse): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
if self.config.name == "discofuse-sport":
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, "discofuse_v1/sports")
if self.config.balanced:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")},
),
]
else:
if self.config.name == "discofuse-wikipedia":
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, "discofuse_v1/wikipedia")
if self.config.balanced:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(discofuse): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
data = csv.DictReader(f, delimiter="\t")
for id_, row in enumerate(data):
co_first_sent = row["coherent_first_sentence"]
co_second_sent = row["coherent_second_sentence"]
connect_str = row["connective_string"]
discourse_type = row["discourse_type"]
has_coref_pronoun = row["has_coref_type_pronoun"]
has_coref_nominal = row["has_coref_type_nominal"]
inco_first_sent = row["incoherent_first_sentence"]
inco_second_sent = row["incoherent_second_sentence"]
yield id_, {
"connective_string": connect_str,
"discourse_type": discourse_type,
"coherent_second_sentence": co_second_sent,
"has_coref_type_pronoun": has_coref_pronoun,
"incoherent_first_sentence": inco_first_sent,
"incoherent_second_sentence": inco_second_sent,
"has_coref_type_nominal": has_coref_nominal,
"coherent_first_sentence": co_first_sent,
}
|