Datasets:
Tasks:
Text2Text Generation
Formats:
parquet
Languages:
English
Size:
10M - 100M
ArXiv:
Tags:
sentence-fusion
License:
"""TODO(discofuse): Add a description here.""" | |
import csv | |
import os | |
import datasets | |
_URL_ = "https://storage.googleapis.com/gresearch/discofuse/" | |
_CITATION = """\ | |
@InProceedings{GevaEtAl2019, | |
title = {DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion}, | |
author = {Geva, Mor and Malmi, Eric and Szpektor, Idan and Berant, Jonathan}, | |
booktitle = {Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics}, | |
note = {arXiv preprint arXiv:1902.10526}, | |
year = {2019} | |
} | |
""" | |
# TODO(discofuse): | |
_DESCRIPTION = """\ | |
DISCOFUSE is a large scale dataset for discourse-based sentence fusion. | |
""" | |
class DiscofuseConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Discofuse""" | |
def __init__(self, data_url, balanced=False, **kwargs): | |
""" | |
Args: | |
balanced: to specify if we want to load the balanced file or the full file | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(DiscofuseConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) | |
self.balanced = balanced | |
self.data_url = data_url | |
class Discofuse(datasets.GeneratorBasedBuilder): | |
"""TODO(discofuse): Short description of my dataset.""" | |
# TODO(discofuse): Set up version. | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
DiscofuseConfig( | |
name="discofuse-sport", description="sentence fusion", data_url=_URL_ + "discofuse_v1_sports.zip" | |
), | |
DiscofuseConfig( | |
name="discofuse-wikipedia", description="sentence fusion", data_url=_URL_ + "discofuse_v1_wikipedia.zip" | |
), | |
] | |
def _info(self): | |
# TODO(discofuse): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"connective_string": datasets.Value("string"), | |
"discourse_type": datasets.Value("string"), | |
"coherent_second_sentence": datasets.Value("string"), | |
"has_coref_type_pronoun": datasets.Value("float32"), | |
"incoherent_first_sentence": datasets.Value("string"), | |
"incoherent_second_sentence": datasets.Value("string"), | |
"has_coref_type_nominal": datasets.Value("float32"), | |
"coherent_first_sentence": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://github.com/google-research-datasets/discofuse", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(discofuse): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
if self.config.name == "discofuse-sport": | |
dl_dir = dl_manager.download_and_extract(self.config.data_url) | |
data_dir = os.path.join(dl_dir, "discofuse_v1/sports") | |
if self.config.balanced: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")}, | |
), | |
] | |
else: | |
if self.config.name == "discofuse-wikipedia": | |
dl_dir = dl_manager.download_and_extract(self.config.data_url) | |
data_dir = os.path.join(dl_dir, "discofuse_v1/wikipedia") | |
if self.config.balanced: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "train_balanced.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "test_balanced.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "dev_balanced.tsv")}, | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "train.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "test.tsv")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": os.path.join(data_dir, "dev.tsv")}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
# TODO(discofuse): Yields (key, example) tuples from the dataset | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.DictReader(f, delimiter="\t") | |
for id_, row in enumerate(data): | |
co_first_sent = row["coherent_first_sentence"] | |
co_second_sent = row["coherent_second_sentence"] | |
connect_str = row["connective_string"] | |
discourse_type = row["discourse_type"] | |
has_coref_pronoun = row["has_coref_type_pronoun"] | |
has_coref_nominal = row["has_coref_type_nominal"] | |
inco_first_sent = row["incoherent_first_sentence"] | |
inco_second_sent = row["incoherent_second_sentence"] | |
yield id_, { | |
"connective_string": connect_str, | |
"discourse_type": discourse_type, | |
"coherent_second_sentence": co_second_sent, | |
"has_coref_type_pronoun": has_coref_pronoun, | |
"incoherent_first_sentence": inco_first_sent, | |
"incoherent_second_sentence": inco_second_sent, | |
"has_coref_type_nominal": has_coref_nominal, | |
"coherent_first_sentence": co_first_sent, | |
} | |