|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Corpus for Knowledge-Enhanced Language Model Pre-training (KELM)""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Data-To-Text Generation involves converting knowledge graph (KG) triples of the form (subject, relation, object) into |
|
a natural language sentence(s). This dataset consists of English KG data converted into paired natural language text. |
|
The generated corpus consists of ∼18M sentences spanning ∼45M triples with ∼1500 distinct relations. |
|
""" |
|
|
|
_CITATION = """\ |
|
@misc{agarwal2020large, |
|
title={Large Scale Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training}, |
|
author={Oshin Agarwal and Heming Ge and Siamak Shakeri and Rami Al-Rfou}, |
|
year={2020}, |
|
eprint={2010.12688}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DOWNLOAD_URL = "https://storage.googleapis.com/gresearch/kelm-corpus/quadruples-{}.tsv" |
|
_WEBPAGE = "https://github.com/google-research-datasets/KELM-corpus" |
|
|
|
|
|
class KELM(datasets.GeneratorBasedBuilder): |
|
"""Corpus for Knowledge-Enhanced Language Model Pre-training (KELM)""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"triple": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
} |
|
), |
|
homepage=_WEBPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_DOWNLOAD_URL.format("train")) |
|
validation_path = dl_manager.download_and_extract(_DOWNLOAD_URL.format("validation")) |
|
test_path = dl_manager.download_and_extract(_DOWNLOAD_URL.format("test")) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, "r", encoding="utf-8") as csv_file: |
|
csv_reader = csv.DictReader(csv_file, delimiter="\t", fieldnames=["triple", "sentence"]) |
|
for irow, row in enumerate(csv_reader): |
|
yield irow, row |
|
|