File size: 7,551 Bytes
b1190f3 6870f13 b1190f3 6870f13 b1190f3 d576d5e 6cd47ab 91f113b 6cd47ab 8843b9c b38ad58 8843b9c b38ad58 8843b9c b1190f3 d576d5e b1190f3 409f41b b1190f3 6cd47ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- code
license:
- c-uda
multilinguality:
- other-programming-languages
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
pretty_name: CodeXGlueCcCodeRefinement
tags:
- debugging
dataset_info:
- config_name: medium
features:
- name: id
dtype: int32
- name: buggy
dtype: string
- name: fixed
dtype: string
splits:
- name: train
num_bytes: 32614834
num_examples: 52364
- name: validation
num_bytes: 4086741
num_examples: 6546
- name: test
num_bytes: 4063673
num_examples: 6545
download_size: 39979724
dataset_size: 40765248
- config_name: small
features:
- name: id
dtype: int32
- name: buggy
dtype: string
- name: fixed
dtype: string
splits:
- name: train
num_bytes: 13006719
num_examples: 46680
- name: validation
num_bytes: 1629250
num_examples: 5835
- name: test
num_bytes: 1619708
num_examples: 5835
download_size: 15555421
dataset_size: 16255677
---
# Dataset Card for "code_x_glue_cc_code_refinement"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement
### Dataset Summary
CodeXGLUE code-refinement dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-refinement
We use the dataset released by this paper(https://arxiv.org/pdf/1812.08693.pdf). The source side is a Java function with bugs and the target side is the refined one. All the function and variable names are normalized. Their dataset contains two subsets ( i.e.small and medium) based on the function length.
### Supported Tasks and Leaderboards
- `text2text-generation-other-debugging`: The dataset can be used to train a model for automatically fixing buggy code.
### Languages
- Java **programming** language
## Dataset Structure
### Data Instances
#### medium
An example of 'train' looks as follows.
```
{
"buggy": "public static TYPE_1 init ( java.lang.String name , java.util.Date date ) { TYPE_1 VAR_1 = new TYPE_1 ( ) ; VAR_1 . METHOD_1 ( name ) ; java.util.Calendar VAR_2 = java.util.Calendar.getInstance ( ) ; VAR_2 . METHOD_2 ( date ) ; VAR_1 . METHOD_3 ( VAR_2 ) ; return VAR_1 ; }\n",
"fixed": "public static TYPE_1 init ( java.lang.String name , java.util.Date date ) { TYPE_1 VAR_1 = new TYPE_1 ( ) ; VAR_1 . METHOD_1 ( name ) ; java.util.Calendar VAR_2 = null ; if ( date != null ) { VAR_2 = java.util.Calendar.getInstance ( ) ; VAR_2 . METHOD_2 ( date ) ; } VAR_1 . METHOD_3 ( VAR_2 ) ; return VAR_1 ; }\n",
"id": 0
}
```
#### small
An example of 'validation' looks as follows.
```
{
"buggy": "public java.util.List < TYPE_1 > METHOD_1 ( ) { java.util.ArrayList < TYPE_1 > VAR_1 = new java.util.ArrayList < TYPE_1 > ( ) ; for ( TYPE_2 VAR_2 : VAR_3 ) { VAR_1 . METHOD_2 ( VAR_2 . METHOD_1 ( ) ) ; } return VAR_1 ; } \n",
"fixed": "public java.util.List < TYPE_1 > METHOD_1 ( ) { return VAR_1 ; } \n",
"id": 0
}
```
### Data Fields
In the following each data field in go is explained for each config. The data fields are the same among all splits.
#### medium, small
|field name| type | description |
|----------|------|--------------------------------|
|id |int32 | Index of the sample |
|buggy |string| The buggy version of the code |
|fixed |string| The correct version of the code|
### Data Splits
| name |train|validation|test|
|------|----:|---------:|---:|
|medium|52364| 6546|6545|
|small |46680| 5835|5835|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Downloaded from GitHub Archive every public GitHub event between March 2011 and October 2017 and used the Google BigQuery APIs.
[More Information Needed]
#### Who are the source language producers?
Software Engineering developers.
### Annotations
#### Annotation process
Automatically annotated by filtering commit messages containing the pattern: ("fix" or "solve") and ("bug" or "issue" or "problem" or "error"). A statistically significant amount of samples (95% confidence level with 5% confidence interval) were manually evaluated by two authors to check if the filtered bug/fix pairs were correct. After all disagreements were settled, authors conclude that 97.6% were true positives.
#### Who are the annotators?
Heuristics and the authors of the paper.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
https://github.com/microsoft, https://github.com/madlag
### Licensing Information
Computational Use of Data Agreement (C-UDA) License.
### Citation Information
```
@article{DBLP:journals/corr/abs-2102-04664,
author = {Shuai Lu and
Daya Guo and
Shuo Ren and
Junjie Huang and
Alexey Svyatkovskiy and
Ambrosio Blanco and
Colin B. Clement and
Dawn Drain and
Daxin Jiang and
Duyu Tang and
Ge Li and
Lidong Zhou and
Linjun Shou and
Long Zhou and
Michele Tufano and
Ming Gong and
Ming Zhou and
Nan Duan and
Neel Sundaresan and
Shao Kun Deng and
Shengyu Fu and
Shujie Liu},
title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding
and Generation},
journal = {CoRR},
volume = {abs/2102.04664},
year = {2021}
}
@article{tufano2019empirical,
title={An empirical study on learning bug-fixing patches in the wild via neural machine translation},
author={Tufano, Michele and Watson, Cody and Bavota, Gabriele and Penta, Massimiliano Di and White, Martin and Poshyvanyk, Denys},
journal={ACM Transactions on Software Engineering and Methodology (TOSEM)},
volume={28},
number={4},
pages={1--29},
year={2019},
publisher={ACM New York, NY, USA}
}
```
### Contributions
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |