# coding=utf-8 # Copyright 2022 the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import datasets from huggingface_hub import hf_hub_url _INPUT_CSV = "docci.csv" # Update the CSV file name _INPUT_IMAGES = "docci_images" # Update the images directory name _REPO_ID = "yonatanbitton/docci" # Update the repository ID _SUFFIX = 'jpg' class Dataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="docci", version=VERSION, description="Docci dataset"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features({ "image_key": datasets.Value("string"), "description": datasets.Value('string'), "image": datasets.Image(), }), supervised_keys=None, # Update or remove if your dataset is supervised ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # hf_auth_token = dl_manager.download_config.use_auth_token # if hf_auth_token is None: # raise ConnectionError( # "Please set use_auth_token=True or use_auth_token='' to download this dataset" # ) data_dir = dl_manager.download_and_extract({ "examples_csv": hf_hub_url(repo_id=_REPO_ID, repo_type='dataset', filename=_INPUT_CSV), "images_dir": hf_hub_url(repo_id=_REPO_ID, repo_type='dataset', filename=f"{_INPUT_IMAGES}.zip") }) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=data_dir)] def _generate_examples(self, examples_csv, images_dir): """Yields examples.""" df = pd.read_csv(examples_csv) for r_idx, r in df.iterrows(): image_path = os.path.join(images_dir, _INPUT_IMAGES, f"{r['image_key']}.{_SUFFIX}") yield r_idx, { "image_key": r['image_key'], "description": r['description'], "image": image_path }