Datasets:
Tasks:
Text Classification
Sub-tasks:
text-scoring
Languages:
English
Size:
1M<n<10M
Tags:
toxicity-prediction
License:
File size: 7,782 Bytes
700e2fa befb830 700e2fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Jigsaw Unintended Bias in Toxicity Classification dataset"""
import os
import pandas as pd
import datasets
_DESCRIPTION = """\
A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity.
"""
_HOMEPAGE = "https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/"
_LICENSE = "CC0 (both the dataset and underlying text)"
class JigsawUnintendedBias(datasets.GeneratorBasedBuilder):
"""A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity."""
VERSION = datasets.Version("1.1.0")
@property
def manual_download_instructions(self):
return """\
To use jigsaw_unintended_bias you have to download it manually from Kaggle: https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
You can manually download the data from it's homepage or use the Kaggle CLI tool (follow the instructions here: https://www.kaggle.com/docs/api)
Please extract all files in one folder and then load the dataset with:
`datasets.load_dataset('jigsaw_unintended_bias', data_dir='/path/to/extracted/data/')`"""
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{
"target": datasets.Value("float32"),
"comment_text": datasets.Value("string"),
"severe_toxicity": datasets.Value("float32"),
"obscene": datasets.Value("float32"),
"identity_attack": datasets.Value("float32"),
"insult": datasets.Value("float32"),
"threat": datasets.Value("float32"),
"asian": datasets.Value("float32"),
"atheist": datasets.Value("float32"),
"bisexual": datasets.Value("float32"),
"black": datasets.Value("float32"),
"buddhist": datasets.Value("float32"),
"christian": datasets.Value("float32"),
"female": datasets.Value("float32"),
"heterosexual": datasets.Value("float32"),
"hindu": datasets.Value("float32"),
"homosexual_gay_or_lesbian": datasets.Value("float32"),
"intellectual_or_learning_disability": datasets.Value("float32"),
"jewish": datasets.Value("float32"),
"latino": datasets.Value("float32"),
"male": datasets.Value("float32"),
"muslim": datasets.Value("float32"),
"other_disability": datasets.Value("float32"),
"other_gender": datasets.Value("float32"),
"other_race_or_ethnicity": datasets.Value("float32"),
"other_religion": datasets.Value("float32"),
"other_sexual_orientation": datasets.Value("float32"),
"physical_disability": datasets.Value("float32"),
"psychiatric_or_mental_illness": datasets.Value("float32"),
"transgender": datasets.Value("float32"),
"white": datasets.Value("float32"),
"created_date": datasets.Value("string"),
"publication_id": datasets.Value("int32"),
"parent_id": datasets.Value("float"),
"article_id": datasets.Value("int32"),
"rating": datasets.ClassLabel(names=["rejected", "approved"]),
"funny": datasets.Value("int32"),
"wow": datasets.Value("int32"),
"sad": datasets.Value("int32"),
"likes": datasets.Value("int32"),
"disagree": datasets.Value("int32"),
"sexual_explicit": datasets.Value("float"),
"identity_annotator_count": datasets.Value("int32"),
"toxicity_annotator_count": datasets.Value("int32"),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('jigsaw_unintended_bias', data_dir=...)`. Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"path": os.path.join(data_dir, "train.csv"), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split("test_private_leaderboard"),
# These kwargs will be passed to _generate_examples
gen_kwargs={"path": os.path.join(data_dir, "test_private_expanded.csv"), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split("test_public_leaderboard"),
# These kwargs will be passed to _generate_examples
gen_kwargs={"path": os.path.join(data_dir, "test_public_expanded.csv"), "split": "test"},
),
]
def _generate_examples(self, split: str = "train", path: str = None):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
# Avoid loading everything into memory at once
all_data = pd.read_csv(path, chunksize=50000)
for data in all_data:
if split != "train":
data = data.rename(columns={"toxicity": "target"})
for _, row in data.iterrows():
example = row.to_dict()
ex_id = example.pop("id")
yield (ex_id, example)
|