File size: 9,496 Bytes
700e2fa
 
 
 
 
15f3d24
700e2fa
15f3d24
5603585
700e2fa
 
 
 
 
 
 
21f6964
700e2fa
21f6964
a2c86a8
7c82863
 
5d3b2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2c86a8
 
5d3b2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84865dc
 
 
5d3b2b7
 
 
 
 
 
 
 
700e2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8694e3
 
 
 
 
700e2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c82863
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc0-1.0
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
pretty_name: Jigsaw Unintended Bias in Toxicity Classification
tags:
- toxicity-prediction
dataset_info:
  features:
  - name: target
    dtype: float32
  - name: comment_text
    dtype: string
  - name: severe_toxicity
    dtype: float32
  - name: obscene
    dtype: float32
  - name: identity_attack
    dtype: float32
  - name: insult
    dtype: float32
  - name: threat
    dtype: float32
  - name: asian
    dtype: float32
  - name: atheist
    dtype: float32
  - name: bisexual
    dtype: float32
  - name: black
    dtype: float32
  - name: buddhist
    dtype: float32
  - name: christian
    dtype: float32
  - name: female
    dtype: float32
  - name: heterosexual
    dtype: float32
  - name: hindu
    dtype: float32
  - name: homosexual_gay_or_lesbian
    dtype: float32
  - name: intellectual_or_learning_disability
    dtype: float32
  - name: jewish
    dtype: float32
  - name: latino
    dtype: float32
  - name: male
    dtype: float32
  - name: muslim
    dtype: float32
  - name: other_disability
    dtype: float32
  - name: other_gender
    dtype: float32
  - name: other_race_or_ethnicity
    dtype: float32
  - name: other_religion
    dtype: float32
  - name: other_sexual_orientation
    dtype: float32
  - name: physical_disability
    dtype: float32
  - name: psychiatric_or_mental_illness
    dtype: float32
  - name: transgender
    dtype: float32
  - name: white
    dtype: float32
  - name: created_date
    dtype: string
  - name: publication_id
    dtype: int32
  - name: parent_id
    dtype: float32
  - name: article_id
    dtype: int32
  - name: rating
    dtype:
      class_label:
        names:
          '0': rejected
          '1': approved
  - name: funny
    dtype: int32
  - name: wow
    dtype: int32
  - name: sad
    dtype: int32
  - name: likes
    dtype: int32
  - name: disagree
    dtype: int32
  - name: sexual_explicit
    dtype: float32
  - name: identity_annotator_count
    dtype: int32
  - name: toxicity_annotator_count
    dtype: int32
  splits:
  - name: train
    num_bytes: 914264058
    num_examples: 1804874
  - name: test_private_leaderboard
    num_bytes: 49188921
    num_examples: 97320
  - name: test_public_leaderboard
    num_bytes: 49442360
    num_examples: 97320
  download_size: 0
  dataset_size: 1012895339
---

# Dataset Card for Jigsaw Unintended Bias in Toxicity Classification

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
- **Repository:**
- **Paper:**
- **Leaderboard:** https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/leaderboard
- **Point of Contact:**

### Dataset Summary

The Jigsaw Unintended Bias in Toxicity Classification dataset comes from the eponymous Kaggle competition.

Please see the original [data](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data)
 description for more information.

### Supported Tasks and Leaderboards

The main target for this dataset is toxicity prediction. Several toxicity subtypes are also available, so the dataset 
can be used for multi-attribute prediction.

See the original [leaderboard](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/leaderboard)
for reference.

### Languages

English

## Dataset Structure

### Data Instances

A data point consists of an id, a comment, the main target, the other toxicity subtypes as well as identity attributes.

For instance, here's the first train example.
```
{
    "article_id": 2006,
    "asian": NaN,
    "atheist": NaN,
    "bisexual": NaN,
    "black": NaN,
    "buddhist": NaN,
    "christian": NaN,
    "comment_text": "This is so cool. It's like, 'would you want your mother to read this??' Really great idea, well done!",
    "created_date": "2015-09-29 10:50:41.987077+00",
    "disagree": 0,
    "female": NaN,
    "funny": 0,
    "heterosexual": NaN,
    "hindu": NaN,
    "homosexual_gay_or_lesbian": NaN,
    "identity_annotator_count": 0,
    "identity_attack": 0.0,
    "insult": 0.0,
    "intellectual_or_learning_disability": NaN,
    "jewish": NaN,
    "latino": NaN,
    "likes": 0,
    "male": NaN,
    "muslim": NaN,
    "obscene": 0.0,
    "other_disability": NaN,
    "other_gender": NaN,
    "other_race_or_ethnicity": NaN,
    "other_religion": NaN,
    "other_sexual_orientation": NaN,
    "parent_id": NaN,
    "physical_disability": NaN,
    "psychiatric_or_mental_illness": NaN,
    "publication_id": 2,
    "rating": 0,
    "sad": 0,
    "severe_toxicity": 0.0,
    "sexual_explicit": 0.0,
    "target": 0.0,
    "threat": 0.0,
    "toxicity_annotator_count": 4,
    "transgender": NaN,
    "white": NaN,
    "wow": 0
}
```

### Data Fields

- `id`: id of the comment
- `target`: value between 0(non-toxic) and 1(toxic) classifying the comment
- `comment_text`: the text of the comment
- `severe_toxicity`: value between 0(non-severe_toxic) and 1(severe_toxic) classifying the comment
- `obscene`: value between 0(non-obscene) and 1(obscene) classifying the comment
- `identity_attack`: value between 0(non-identity_hate) or 1(identity_hate) classifying the comment
- `insult`: value between 0(non-insult) or 1(insult) classifying the comment
- `threat`: value between 0(non-threat) and 1(threat) classifying the comment
- For a subset of rows, columns containing whether the comment mentions the entities (they may contain NaNs): 
  - `male`
  - `female`
  - `transgender`
  - `other_gender`
  - `heterosexual`
  - `homosexual_gay_or_lesbian`
  - `bisexual`
  - `other_sexual_orientation`
  - `christian`
  - `jewish`
  - `muslim`
  - `hindu`
  - `buddhist`
  - `atheist`
  - `other_religion`
  - `black`
  - `white`
  - `asian`
  - `latino`
  - `other_race_or_ethnicity`
  - `physical_disability`
  - `intellectual_or_learning_disability`
  - `psychiatric_or_mental_illness`
  - `other_disability`
- Other metadata related to the source of the comment, such as creation date, publication id, number of likes,
number of annotators, etc:
  - `created_date`
  - `publication_id`
  - `parent_id`
  - `article_id`
  - `rating`
  - `funny`
  - `wow`
  - `sad`
  - `likes`
  - `disagree`
  - `sexual_explicit`
  - `identity_annotator_count`
  - `toxicity_annotator_count`

### Data Splits

There are four splits:
- train: The train dataset as released during the competition. Contains labels and identity information for a 
subset of rows.
- test: The train dataset as released during the competition. Does not contain labels nor identity information.
- test_private_expanded: The private leaderboard test set, including toxicity labels and subgroups. The competition target was a binarized version of the toxicity column, which can be easily reconstructed using a >=0.5 threshold.
- test_public_expanded: The public leaderboard test set, including toxicity labels and subgroups. The competition target was a binarized version of the toxicity column, which can be easily reconstructed using a >=0.5 threshold.

## Dataset Creation

### Curation Rationale

The dataset was created to help in efforts to identify and curb instances of toxicity online.

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

This dataset is released under CC0, as is the underlying comment text.

### Citation Information

No citation is available for this dataset, though you may link to the [kaggle](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification) competition

### Contributions

Thanks to [@iwontbecreative](https://github.com/iwontbecreative) for adding this dataset.