File size: 7,782 Bytes
700e2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
befb830
700e2fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Jigsaw Unintended Bias in Toxicity Classification dataset"""


import os

import pandas as pd

import datasets


_DESCRIPTION = """\
A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity.
"""

_HOMEPAGE = "https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/"

_LICENSE = "CC0 (both the dataset and underlying text)"


class JigsawUnintendedBias(datasets.GeneratorBasedBuilder):
    """A collection of comments from the defunct Civil Comments platform that have been annotated for their toxicity."""

    VERSION = datasets.Version("1.1.0")

    @property
    def manual_download_instructions(self):
        return """\
            To use jigsaw_unintended_bias you have to download it manually from Kaggle: https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
            You can manually download the data from it's homepage or use the Kaggle CLI tool (follow the instructions here: https://www.kaggle.com/docs/api)
            Please extract all files in one folder and then load the dataset with:
            `datasets.load_dataset('jigsaw_unintended_bias', data_dir='/path/to/extracted/data/')`"""

    def _info(self):

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {
                    "target": datasets.Value("float32"),
                    "comment_text": datasets.Value("string"),
                    "severe_toxicity": datasets.Value("float32"),
                    "obscene": datasets.Value("float32"),
                    "identity_attack": datasets.Value("float32"),
                    "insult": datasets.Value("float32"),
                    "threat": datasets.Value("float32"),
                    "asian": datasets.Value("float32"),
                    "atheist": datasets.Value("float32"),
                    "bisexual": datasets.Value("float32"),
                    "black": datasets.Value("float32"),
                    "buddhist": datasets.Value("float32"),
                    "christian": datasets.Value("float32"),
                    "female": datasets.Value("float32"),
                    "heterosexual": datasets.Value("float32"),
                    "hindu": datasets.Value("float32"),
                    "homosexual_gay_or_lesbian": datasets.Value("float32"),
                    "intellectual_or_learning_disability": datasets.Value("float32"),
                    "jewish": datasets.Value("float32"),
                    "latino": datasets.Value("float32"),
                    "male": datasets.Value("float32"),
                    "muslim": datasets.Value("float32"),
                    "other_disability": datasets.Value("float32"),
                    "other_gender": datasets.Value("float32"),
                    "other_race_or_ethnicity": datasets.Value("float32"),
                    "other_religion": datasets.Value("float32"),
                    "other_sexual_orientation": datasets.Value("float32"),
                    "physical_disability": datasets.Value("float32"),
                    "psychiatric_or_mental_illness": datasets.Value("float32"),
                    "transgender": datasets.Value("float32"),
                    "white": datasets.Value("float32"),
                    "created_date": datasets.Value("string"),
                    "publication_id": datasets.Value("int32"),
                    "parent_id": datasets.Value("float"),
                    "article_id": datasets.Value("int32"),
                    "rating": datasets.ClassLabel(names=["rejected", "approved"]),
                    "funny": datasets.Value("int32"),
                    "wow": datasets.Value("int32"),
                    "sad": datasets.Value("int32"),
                    "likes": datasets.Value("int32"),
                    "disagree": datasets.Value("int32"),
                    "sexual_explicit": datasets.Value("float"),
                    "identity_annotator_count": datasets.Value("int32"),
                    "toxicity_annotator_count": datasets.Value("int32"),
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))

        if not os.path.exists(data_dir):
            raise FileNotFoundError(
                f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('jigsaw_unintended_bias', data_dir=...)`. Manual download instructions: {self.manual_download_instructions}"
            )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"path": os.path.join(data_dir, "train.csv"), "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_private_leaderboard"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"path": os.path.join(data_dir, "test_private_expanded.csv"), "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split("test_public_leaderboard"),
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"path": os.path.join(data_dir, "test_public_expanded.csv"), "split": "test"},
            ),
        ]

    def _generate_examples(self, split: str = "train", path: str = None):
        """Yields examples."""
        # This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
        # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
        # The key is not important, it's more here for legacy reason (legacy from tfds)

        # Avoid loading everything into memory at once
        all_data = pd.read_csv(path, chunksize=50000)

        for data in all_data:
            if split != "train":
                data = data.rename(columns={"toxicity": "target"})

            for _, row in data.iterrows():
                example = row.to_dict()
                ex_id = example.pop("id")
                yield (ex_id, example)