wikipedia / wikipedia.py
graelo
feat: use ArrowBasedBuilder
dc28465
raw
history blame
8.51 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Wikipedia dataset containing cleaned articles of all languages."""
import datasets
import pyarrow.parquet as pq
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@ONLINE {wikidump,
author = {Wikimedia Foundation},
title = {Wikimedia Downloads},
url = {https://dumps.wikimedia.org}
}
"""
_DESCRIPTION = """\
Wikipedia dataset containing cleaned articles of all languages.
The datasets are built from the Wikipedia dump
(https://dumps.wikimedia.org/) with one split per language. Each example
contains the content of one full Wikipedia article with cleaning to strip
markdown and unwanted sections (references, etc.).
"""
_LICENSE = (
"This work is licensed under the Creative Commons Attribution-ShareAlike "
"3.0 Unported License. To view a copy of this license, visit "
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)
# Source: https://meta.wikimedia.org/wiki/Names_of_Wikimedia_languages (accessed 6/6/2023)
# - Removed because no articles: aa, hz, na.
# - Not processed because too large on a DirectRunner: ceb, en
# - Compared to HF wikipedia 20220301, the following languages are added:
# alt, ami, anp, ary, avk, awa, ban, blk, dag, fat, gcr, guc, gur, guw, hyw,
# kcg, lld, mad, mni, mnw, nia, nqo, pcm, pwn, shi, shn, skr, smn, szy, tay,
# trv
WIKIPEDIA_LANGUAGES = [
# "aa", # no articles
"ab",
"ace",
"ady",
"af",
"ak",
"als",
"alt",
"am",
"ami",
"an",
"ang",
"anp",
"ar",
"arc",
"ary",
"arz",
"as",
"ast",
"atj",
"av",
"avk",
"awa",
"ay",
"az",
"azb",
"ba",
"ban",
"bar",
"bat-smg",
"bcl",
"be",
"be-x-old",
"bg",
"bh",
"bi",
"bjn",
"blk",
"bm",
"bn",
"bo",
"bpy",
"br",
"bs",
"bug",
"bxr",
"ca",
"cbk-zam",
"cdo",
"ce",
# "ceb", # too large for my DirectRunner
"ch",
"cho",
"chr",
"chy",
"ckb",
"co",
"cr",
"crh",
"cs",
"csb",
"cu",
"cv",
"cy",
"da",
"dag",
"de",
"din",
"diq",
"dsb",
"dty",
"dv",
"dz",
"ee",
"el",
"eml",
# "en", # too large for my DirectRunner
"eo",
"es",
"et",
"eu",
"ext",
"fa",
"fat",
"ff",
"fi",
"fiu-vro",
"fj",
"fo",
"fr",
"frp",
"frr",
"fur",
"fy",
"ga",
"gag",
"gan",
"gcr",
"gd",
"gl",
"glk",
"gn",
"gom",
"gor",
"got",
"gu",
"guc",
"gur",
"guw",
"gv",
"ha",
"hak",
"haw",
"he",
"hi",
"hif",
"ho",
"hr",
"hsb",
"ht",
"hu",
"hy",
"hyw",
# "hz", # no articles
"ia",
"id",
"ie",
"ig",
"ii",
"ik",
"ilo",
"inh",
"io",
"is",
"it",
"iu",
"ja",
"jam",
"jbo",
"jv",
"ka",
"kaa",
"kab",
"kbd",
"kbp",
"kcg",
"kg",
"ki",
"kj",
"kk",
"kl",
"km",
"kn",
"ko",
"koi",
"krc",
"ks",
"ksh",
"ku",
"kv",
"kw",
"ky",
"la",
"lad",
"lb",
"lbe",
"lez",
"lfn",
"lg",
"li",
"lij",
"lld",
"lmo",
"ln",
"lo",
"lrc",
"lt",
"ltg",
"lv",
"mad",
"mai",
"map-bms",
"mdf",
"mg",
"mh",
"mhr",
"mi",
"min",
"mk",
"ml",
"mn",
"mni",
"mnw",
"mr",
"mrj",
"ms",
"mt",
"mus",
"mwl",
"my",
"myv",
"mzn",
# "na", # no articles
"nah",
"nap",
"nds",
"nds-nl",
"ne",
"new",
"ng",
"nia",
"nl",
"nn",
"no",
"nov",
"nqo",
"nrm",
"nso",
"nv",
"ny",
"oc",
"olo",
"om",
"or",
"os",
"pa",
"pag",
"pam",
"pap",
"pcd",
"pcm",
"pdc",
"pfl",
"pi",
"pih",
"pl",
"pms",
"pnb",
"pnt",
"ps",
"pt",
"pwn",
"qu",
"rm",
"rmy",
"rn",
"ro",
"roa-rup",
"roa-tara",
"ru",
"rue",
"rw",
"sa",
"sah",
"sat",
"sc",
"scn",
"sco",
"sd",
"se",
"sg",
"sh",
"shi",
"shn",
"si",
"simple",
"sk",
"skr",
"sl",
"sm",
"smn",
"sn",
"so",
"sq",
"sr",
"srn",
"ss",
"st",
"stq",
"su",
"sv",
"sw",
"szl",
"szy",
"ta",
"tay",
"tcy",
"te",
"tet",
"tg",
"th",
"ti",
"tk",
"tl",
"tn",
"to",
"tpi",
"tr",
"trv",
"ts",
"tt",
"tum",
"tw",
"ty",
"tyv",
"udm",
"ug",
"uk",
"ur",
"uz",
"ve",
"vec",
"vep",
"vi",
"vls",
"vo",
"wa",
"war",
"wo",
"wuu",
"xal",
"xh",
"xmf",
"yi",
"yo",
"za",
"zea",
"zh-classical",
"zh-min-nan",
"zh-yue",
"zh",
"zu",
]
_BASE_URL_TMPL = "https://huggingface.co/datasets/graelo/wikipedia/resolve/main/data/{date}/train-{lang}.parquet"
_VERSION = datasets.Version("2.0.0", "")
class WikipediaConfig(datasets.BuilderConfig):
"""BuilderConfig for Wikipedia."""
def __init__(self, language=None, date=None, version=_VERSION, **kwargs):
"""BuilderConfig for Wikipedia.
Args:
language: string, the language code for the Wikipedia dump to use.
date: string, date of the Wikipedia dump in YYYYMMDD format. A list of
available dates can be found at https://dumps.wikimedia.org/enwiki/.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
name=f"{date}.{language}",
description=f"Wikipedia dataset for {language}, parsed from {date} dump.",
version=version,
**kwargs,
)
self.date = date
self.language = language
_DATE = "20230601"
class Wikipedia(datasets.ArrowBasedBuilder):
"""Wikipedia dataset."""
# Use mirror (your.org) to avoid download caps.
BUILDER_CONFIG_CLASS = WikipediaConfig
BUILDER_CONFIGS = [
WikipediaConfig(
language=lang,
date=_DATE,
) # pylint:disable=g-complex-comprehension
for lang in WIKIPEDIA_LANGUAGES
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
# No default supervised_keys.
supervised_keys=None,
homepage="https://dumps.wikimedia.org",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def _base_url(lang):
return _BASE_URL_TMPL.format(lang=lang, date=self.config.date)
lang = self.config.language
file_url = _base_url(lang)
downloaded_files = dl_manager.download_and_extract({"train": file_url})
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
]
def _generate_tables(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
pf = pq.ParquetFile(filepath)
for group_i in range(pf.num_row_groups):
tbl = pf.read_row_group(group_i)
yield group_i, tbl