File size: 2,853 Bytes
6cda309
16bbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cda309
16bbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
task_ids:
- multi-label-image-classification
pretty_name: mars-multi-label-classification
---

# mars-multi-label-classification

A Mars image multi-label classification dataset for planetary science research.

## Dataset Metadata

* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International)
* **Version:** 1.0
* **Date Published:** 2025-05-10
* **Cite As:** TBD

## Classes

This dataset uses multi-label classification, meaning each image can have multiple class labels.

The dataset contains the following classes:

- **rah** (0): Rock Abrasion Tool (RAT) Hole
- **cla** (1): Clasts
- **dur** (2): Dunes/Ripples
- **soi** (3): Soil
- **roc** (4): Rock Outcrops
- **clr** (5): Close-up Rock
- **rab** (6): Rock Abrasion Tool (RAT) Brushed Target
- **div** (7): Distant Vista
- **rod** (8): Rover Deck
- **bso** (9): Bright Soil
- **flr** (10): Float Rocks
- **art** (11): Artifacts
- **pct** (12): Pancam Calibration Target
- **arh** (13): Arm Hardware
- **rrf** (14): Rock (Round Features)
- **sph** (15): Spherules
- **ohw** (16): Other Hardware
- **ast** (17): Astronomy
- **nbs** (18): Nearby Surface
- **rmi** (19): Rocks (Misc)
- **rtr** (20): Rover Tracks
- **sky** (21): Sky
- **rpa** (22): Rover Parts
- **rlf** (23): Rock (Linear Features)
- **sot** (24): Soil Trench
## Statistics

- **train**: 1762 images
- **val**: 443 images
- **test**: 739 images

## Format

Each example in the dataset has the following format:

```
{
  'image': Image(...),  # PIL image
  'labels': List[int],  # Multi-hot encoded binary vector (1 if class is present, 0 otherwise)
  'feature_names': List[str],  # List of feature names (class short codes)
}
```

## Usage

```python
from datasets import load_dataset

dataset = load_dataset("gremlin97/mars-multi-label-classification")

# Access an example
example = dataset['train'][0]
image = example['image']  # PIL image
labels = example['labels']  # Multi-hot encoded binary vector

# Example of how to find which classes are present in an image
present_classes = [i for i, is_present in enumerate(labels) if is_present == 1]
print(f"Classes present in this image: {present_classes}")
```

## Multi-label Classification

In multi-label classification, each image can belong to multiple classes simultaneously. The labels are represented as a binary vector where a 1 indicates the presence of a class and a 0 indicates its absence.

Unlike single-label classification where each image has exactly one class, multi-label classification allows modeling scenarios where multiple features can be present in the same image, which is often the case with Mars imagery.