Datasets:

Modalities:
Audio
Libraries:
Datasets
File size: 7,811 Bytes
e8eaad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import pandas as pd
import re
from collections import defaultdict

def analyze_fif_paths(root_dir="split_fifs"):
    """
    Extract .fif file paths using regex and provide detailed analysis including emotion types.
    """
    # Define emotion mapping with corrected IDs
    emotion_mapping = {
        # Neutral (ID: 0)
        'neutralVideo': {'id': 0, 'emotion': 'neutral'},
        
        # Excited (ID: 1)
        'ratatChaseScene': {'id': 1, 'emotion': 'excited'},
        'Kenmiles': {'id': 1, 'emotion': 'excited'},
        'NBA': {'id': 1, 'emotion': 'excited'},
        
        # Happy (ID: 2)
        'scooby': {'id': 2, 'emotion': 'happy'},

	# Happy (ID: 3)
        'motivationalAuthor': {'id': 3, 'emotion': 'motivated'},
        
        # Relaxed (ID: 4)
        'waterfall': {'id': 4, 'emotion': 'relaxed'},
        'asmr': {'id': 4, 'emotion': 'relaxed'},
        'meditation': {'id': 4, 'emotion': 'relaxed'},
        
        # Sad (ID: 5)
        'saddogs': {'id': 5, 'emotion': 'sad'},
        'sadbaby': {'id': 5, 'emotion': 'sad'},
        'ChampDeath': {'id': 5, 'emotion': 'sad'},
        'sadBaby1': {'id': 5, 'emotion': 'sad'},
        
        # Horror (ID: 6)
        'conjuring': {'id': 6, 'emotion': 'horror'},
        
        # Angry (ID: 7)
        'angrydogs': {'id': 7, 'emotion': 'angry'},
        'thepiano': {'id': 7, 'emotion': 'angry'},
        
        # Disgusted (ID: 8)
        'trainspotting': {'id': 8, 'emotion': 'disgusted'},
        
        # Utility files (no emotion)
        'label': {'id': -1, 'emotion': 'utility'},
        'rating': {'id': -1, 'emotion': 'utility'},
        'navon': {'id': -1, 'emotion': 'utility'}
    }
    
    # Dictionary to store analysis data
    analysis = {
        'total_files': 0,
        'directory_counts': defaultdict(int),
        'subject_counts': defaultdict(int),
        'epoch_counts': defaultdict(int),
        'video_type_counts': defaultdict(int),
        'emotion_counts': defaultdict(int),
        'emotion_id_counts': defaultdict(int)
    }
    
    # List to store file paths
    file_data = []
    
    # Regex pattern for .fif files
    pattern = r'(\d+|Zacker)-mapped_epoch_(\d+)_(\w+)raw_interval_(\d+)\.raw\.fif$'
    
    # Walk through the directory
    for dirpath, dirnames, filenames in os.walk(root_dir):
        for filename in filenames:
            match = re.match(pattern, filename)
            if match:
                full_path = os.path.join(dirpath, filename)
                
                # Extract components from filename
                subject_id = match.group(1)
                epoch_num = match.group(2)
                video_type = match.group(3)
                
                # Get emotion data if video type is in mapping
                emotion_info = emotion_mapping.get(video_type, {'id': -1, 'emotion': 'unknown'})
                emotion_id = emotion_info['id']
                emotion = emotion_info['emotion']
                
                # Update counts
                analysis['total_files'] += 1
                analysis['directory_counts'][dirpath] += 1
                analysis['subject_counts'][subject_id] += 1
                analysis['epoch_counts'][epoch_num] += 1
                analysis['video_type_counts'][video_type] += 1
                if emotion != 'utility':  # Only count actual emotions
                    analysis['emotion_counts'][emotion] += 1
                    analysis['emotion_id_counts'][emotion_id] += 1
                
                # Add to file data
                file_data.append({
                    'file_path': full_path,
                    'subject_id': subject_id,
                    'epoch': int(epoch_num),
                    'video_type': video_type,
                    'emotion_id': emotion_id,
                    'emotion': emotion
                })
    
    # Create DataFrame
    df = pd.DataFrame(file_data)
    
    # Sort the DataFrame
    df = df.sort_values(['subject_id', 'epoch', 'file_path'])
    
    # Save the full analysis to CSV
    output_file = 'fif_file_analysis4.csv'
    df.to_csv(output_file, index=False)
    
    # Create a filtered DataFrame with only emotion-related files
    emotion_df = df[df['emotion_id'] >= 0].copy()
    emotion_output_file = 'emotion_files.csv'
    emotion_df.to_csv(emotion_output_file, index=False)
    
    # Print the analysis
    print_analysis(analysis, df)
    
    return df, analysis

def print_analysis(analysis, df):
    """Print detailed analysis of the .fif files."""
    
    print("\n" + "="*50)
    print("FIF FILES ANALYSIS REPORT")
    print("="*50)
    
    # Overall Statistics
    print("\n1. OVERALL STATISTICS")
    print("-"*30)
    print(f"Total .fif files found: {analysis['total_files']}")
    print(f"Number of subjects: {len(analysis['subject_counts'])}")
    print(f"Number of directories: {len(analysis['directory_counts'])}")
    
    # Subject Breakdown
    print("\n2. FILES PER SUBJECT")
    print("-"*30)
    for subject, count in sorted(analysis['subject_counts'].items()):
        print(f"Subject {subject}: {count} files")
    
    # Directory Breakdown
    print("\n3. FILES PER DIRECTORY")
    print("-"*30)
    for directory, count in sorted(analysis['directory_counts'].items()):
        rel_path = os.path.relpath(directory, "splif_fifs")
        print(f"{rel_path}: {count} files")
    
    # Emotion Analysis
    print("\n4. FILES PER EMOTION")
    print("-"*30)
    # Define the exact order of emotions with their IDs
    ordered_emotions = [
        (0, 'neutral'),
        (1, 'excited'),
        (2, 'happy'),
        (3, 'relaxed'),
        (4, 'sad'),
        (5, 'horror'),
        (6, 'angry'),
        (7, 'disgusted')
    ]
    
    for emotion_id, emotion_name in ordered_emotions:
        if emotion_id in analysis['emotion_id_counts']:
            count = analysis['emotion_id_counts'][emotion_id]
            print(f"Emotion ID {emotion_id} {emotion_name}: {count} files")
    
    # Print utility files separately
    utility_count = len(df[df['emotion'] == 'utility'])
    if utility_count > 0:
        print(f"\nUtility files (rating/label/navon): {utility_count} files")
    
    # Video Type Analysis
    print("\n5. FILES PER VIDEO TYPE")
    print("-"*30)
    for video_type, count in sorted(analysis['video_type_counts'].items()):
        print(f"{video_type}: {count} files")
    
    # Epoch Analysis
    print("\n6. FILES PER EPOCH")
    print("-"*30)
    for epoch, count in sorted(analysis['epoch_counts'].items(), key=lambda x: int(x[0])):
        print(f"Epoch {epoch}: {count} files")
    
    # CSV File Information
    print("\n7. CSV FILE OUTPUTS")
    print("-"*30)
    print("1. Full analysis file: fif_file_analysis.csv")
    print("2. Emotion-only file: emotion_files.csv")
    print("\nColumns:")
    for col in df.columns:
        print(f"- {col}")

    # Additional Statistics
    print("\n8. ADDITIONAL STATISTICS")
    print("-"*30)
    if analysis['total_files'] > 0:
        avg_files_per_dir = analysis['total_files'] / len(analysis['directory_counts'])
        avg_files_per_subject = analysis['total_files'] / len(analysis['subject_counts'])
        print(f"Average files per directory: {avg_files_per_dir:.2f}")
        print(f"Average files per subject: {avg_files_per_subject:.2f}")
        
        # Calculate percentages of emotion files
        emotion_files = sum(analysis['emotion_id_counts'].values())
        utility_files = utility_count
        print(f"\nEmotion files: {emotion_files} ({(emotion_files/analysis['total_files']*100):.1f}%)")
        print(f"Utility files: {utility_files} ({(utility_files/analysis['total_files']*100):.1f}%)")

if __name__ == "__main__":
    # Run analysis
    df, analysis = analyze_fif_paths()