Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
1K - 10K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataset of 8364 restaurant reviews scrapped from qaym.com in Arabic for sentiment analysis""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import datasets | |
_CITATION = """\ | |
@InProceedings{10.1007/978-3-319-18117-2_2, | |
author="ElSahar, Hady | |
and El-Beltagy, Samhaa R.", | |
editor="Gelbukh, Alexander", | |
title="Building Large Arabic Multi-domain Resources for Sentiment Analysis", | |
booktitle="Computational Linguistics and Intelligent Text Processing", | |
year="2015", | |
publisher="Springer International Publishing", | |
address="Cham", | |
pages="23--34", | |
isbn="978-3-319-18117-2" | |
} | |
""" | |
_DESCRIPTION = """\ | |
Dataset of 8364 restaurant reviews scrapped from qaym.com in Arabic for sentiment analysis | |
""" | |
_HOMEPAGE = "https://github.com/hadyelsahar/large-arabic-sentiment-analysis-resouces" | |
_DOWNLOAD_URL = ( | |
"https://raw.githubusercontent.com/hadyelsahar/large-arabic-sentiment-analysis-resouces/master/datasets/RES1.csv" | |
) | |
class ArResReviews(datasets.GeneratorBasedBuilder): | |
"""Dataset of 8364 restaurant reviews in Arabic for sentiment analysis""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"polarity": datasets.ClassLabel(names=["negative", "positive"]), | |
"text": datasets.Value("string"), | |
"restaurant_id": datasets.Value("string"), | |
"user_id": datasets.Value("string"), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir}), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate arabic restaurant reviews examples.""" | |
with open(filepath, encoding="utf-8") as csv_file: | |
next(csv_file) | |
csv_reader = csv.reader( | |
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True | |
) | |
for id_, row in enumerate(csv_reader): | |
polarity, text, restaurant_id, user_id = row | |
polarity = "negative" if polarity == "-1" else "positive" | |
yield id_, {"polarity": polarity, "text": text, "restaurant_id": restaurant_id, "user_id": user_id} | |