haoningwu commited on
Commit
d4d099b
·
1 Parent(s): 451443e

upload radiopaedia data

Browse files
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities
2
+ This repository contains the curated MedGen-1M dataset proposed in MRGen: https://arxiv.org/abs/2412.04106/.
3
+
4
+ ## Some Information
5
+ [Project Page](https://haoningwu3639.github.io/MRGen/) $\cdot$ [Paper](https://arxiv.org/abs/2412.04106/) $\cdot$ [Dataset](https://huggingface.co/datasets/haoningwu/MedGen-1M) $\cdot$ [Checkpoints](https://huggingface.co/haoningwu/MRGen)
6
+
7
+ ## Dataset
8
+ Please check out [MedGen-1M](https://huggingface.co/datasets/haoningwu/MedGen-1M) to download our curated dataset, including two parts: `radiopaedia_data` and `conditional_dataset`.
9
+
10
+ For the conditional dataset, we have directly provided our processed data, including the raw image, mask annotations, and text descriptions.
11
+
12
+ As described in our paper, considering the data privacy concerns of [Radiopaedia](radiopaedia.org), we only release the JSON files of this part here.
13
+ For each case, the format is represented as `./radiopaedia/{patient_id}/{case_id}/{volume_id}/{slice_id}.jpeg`, for example, `./radiopaedia/2564/1/MRI_4/1.jpeg`.
14
+ This format allows you to locate the corresponding original volume through the `link` provided in our json files.
15
+ After obtaining official authorization from Radiopaedia, you may download the data corresponding to the JSON file on your own.
16
+ Alternatively, you can send the authorization via email to us (`[email protected]` or `[email protected]`) to obtain the download link for the image data in our MedGen-1M.
17
+
18
+ ## Citation
19
+ If you use this dataset for your research or project, please cite:
20
+
21
+ @misc{wu2024mrgen,
22
+ author = {Wu, Haoning and Zhao, Ziheng and Zhang, Ya and Xie, Weidi and Wang, Yanfeng},
23
+ title = {MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities},
24
+ journal = {arXiv preprint arXiv:2412.04106},
25
+ year = {2024},
26
+ }
27
+
28
+ ## Contact
29
+ If you have any questions, please feel free to contact [email protected] or [email protected].
radiopaedia/README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Radiopaedia Data of MedGen-1M
2
+
3
+ As described in our paper, considering the data privacy concerns of [Radiopaedia](radiopaedia.org),
4
+ we only release the JSON files of the curated data.
5
+ For each case, the format is represented as `./radiopaedia/{patient_id}/{case_id}/{volume_id}/{slice_id}`,
6
+ for example,
7
+ `./radiopaedia/2564/1/MRI_4/1.jpeg`.
8
+ This format allows you to locate the corresponding original volume through the `link` provided in our json files.
9
+ After obtaining official authorization from Radiopaedia, you may download the data corresponding to the JSON file on your own.
10
+ Alternatively, you can send the authorization via email to us (`[email protected]` or `[email protected]`) to obtain the download link for the image data in our MedGen-1M.
radiopaedia_abdomen_mri_image_annotated.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32823ac22a63f50000da06acdc0d635b1b6be883a7469cf860524e8b6f36e981
3
+ size 210556135