{"qid":"qasper_title_Query_0","query":"End-to-End Trainable Non-Collaborative Dialog System","answer_pids":["qasper_title_Passage_0"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_1","query":"OpenTapioca: Lightweight Entity Linking for Wikidata","answer_pids":["qasper_title_Passage_1"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_2","query":"Spotting Rumors via Novelty Detection","answer_pids":["qasper_title_Passage_2"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_3","query":"Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves","answer_pids":["qasper_title_Passage_3"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_4","query":"TENER: Adapting Transformer Encoder for Named Entity Recognition","answer_pids":["qasper_title_Passage_4"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_5","query":"Knowledge Authoring and Question Answering with KALM","answer_pids":["qasper_title_Passage_5"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_6","query":"Italian Event Detection Goes Deep Learning","answer_pids":["qasper_title_Passage_6"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_7","query":"Automatically Inferring Gender Associations from Language","answer_pids":["qasper_title_Passage_7"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_8","query":"A Crowd-based Evaluation of Abuse Response Strategies in Conversational Agents","answer_pids":["qasper_title_Passage_8"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_9","query":"A Dataset of German Legal Documents for Named Entity Recognition","answer_pids":["qasper_title_Passage_9"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_10","query":"Character-Level Models versus Morphology in Semantic Role Labeling","answer_pids":["qasper_title_Passage_10"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_11","query":"Look, Read and Enrich - Learning from Scientific Figures and their Captions","answer_pids":["qasper_title_Passage_11"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_12","query":"EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity","answer_pids":["qasper_title_Passage_12"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_13","query":"Multilingual and Multi-Aspect Hate Speech Analysis","answer_pids":["qasper_title_Passage_13"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_14","query":"Semantic Web for Machine Translation: Challenges and Directions","answer_pids":["qasper_title_Passage_14"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_15","query":"Advancing Speech Recognition With No Speech Or With Noisy Speech","answer_pids":["qasper_title_Passage_15"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_16","query":"LadaBERT: Lightweight Adaptation of BERT through Hybrid Model Compression","answer_pids":["qasper_title_Passage_16"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_17","query":"Neural Summarization by Extracting Sentences and Words","answer_pids":["qasper_title_Passage_17"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_18","query":"Improved Representation Learning for Predicting Commonsense Ontologies","answer_pids":["qasper_title_Passage_18"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_19","query":"A system for the 2019 Sentiment, Emotion and Cognitive State Task of DARPAs LORELEI project","answer_pids":["qasper_title_Passage_19"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_20","query":"Classifying Diagrams and Their Parts using Graph Neural Networks: A Comparison of Crowd-Sourced and Expert Annotations","answer_pids":["qasper_title_Passage_20"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_21","query":"Improved and Robust Controversy Detection in General Web Pages Using Semantic Approaches under Large Scale Conditions","answer_pids":["qasper_title_Passage_21"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_22","query":"Neural Language Modeling with Visual Features","answer_pids":["qasper_title_Passage_22"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_23","query":"Can Neural Networks Learn Symbolic Rewriting?","answer_pids":["qasper_title_Passage_23"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_24","query":"Toward Interpretable Topic Discovery via Anchored Correlation Explanation","answer_pids":["qasper_title_Passage_24"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_25","query":"F-Score Driven Max Margin Neural Network for Named Entity Recognition in Chinese Social Media","answer_pids":["qasper_title_Passage_25"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_26","query":"Evaluating the Cross-Lingual Effectiveness of Massively Multilingual Neural Machine Translation","answer_pids":["qasper_title_Passage_26"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_27","query":"XPersona: Evaluating Multilingual Personalized Chatbot","answer_pids":["qasper_title_Passage_27"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_28","query":"A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation","answer_pids":["qasper_title_Passage_28"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_29","query":"Improving Fine-grained Entity Typing with Entity Linking","answer_pids":["qasper_title_Passage_29"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_30","query":"Common-Knowledge Concept Recognition for SEVA","answer_pids":["qasper_title_Passage_30"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_31","query":"Automatic Argumentative-Zoning Using Word2vec","answer_pids":["qasper_title_Passage_31"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_32","query":"Multitask Learning for Blackmarket Tweet Detection","answer_pids":["qasper_title_Passage_32"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_33","query":"Cross-Lingual Natural Language Generation via Pre-Training","answer_pids":["qasper_title_Passage_33"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_34","query":"Hierarchical Neural Story Generation","answer_pids":["qasper_title_Passage_34"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_35","query":"Sentence Modeling via Multiple Word Embeddings and Multi-level Comparison for Semantic Textual Similarity","answer_pids":["qasper_title_Passage_35"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_36","query":"Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining Representations for Cyberbullying Classification","answer_pids":["qasper_title_Passage_36"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_37","query":"Knowledge Amalgam: Generating Jokes and Quotes Together","answer_pids":["qasper_title_Passage_37"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_38","query":"A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization","answer_pids":["qasper_title_Passage_38"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_39","query":"To Tune or Not To Tune? How About the Best of Both Worlds?","answer_pids":["qasper_title_Passage_39"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_40","query":"A Corpus of Adpositional Supersenses for Mandarin Chinese","answer_pids":["qasper_title_Passage_40"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_41","query":"Fake News Detection with Different Models","answer_pids":["qasper_title_Passage_41"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_42","query":"Lexical Bias In Essay Level Prediction","answer_pids":["qasper_title_Passage_42"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_43","query":"LibriVoxDeEn: A Corpus for German-to-English Speech Translation and German Speech Recognition","answer_pids":["qasper_title_Passage_43"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_44","query":"Self-Attention Enhanced Selective Gate with Entity-Aware Embedding for Distantly Supervised Relation Extraction","answer_pids":["qasper_title_Passage_44"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_45","query":"Enhancing Sentence Relation Modeling with Auxiliary Character-level Embedding","answer_pids":["qasper_title_Passage_45"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_46","query":"THUEE system description for NIST 2019 SRE CTS Challenge","answer_pids":["qasper_title_Passage_46"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_47","query":"Combining Thesaurus Knowledge and Probabilistic Topic Models","answer_pids":["qasper_title_Passage_47"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_48","query":"Automated Hate Speech Detection and the Problem of Offensive Language","answer_pids":["qasper_title_Passage_48"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_49","query":"What Would Elsa Do? Freezing Layers During Transformer Fine-Tuning","answer_pids":["qasper_title_Passage_49"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_50","query":"Mitigating Annotation Artifacts in Natural Language Inference Datasets to Improve Cross-dataset Generalization Ability","answer_pids":["qasper_title_Passage_50"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_51","query":"Integrating Crowdsourcing and Active Learning for Classification of Work-Life Events from Tweets","answer_pids":["qasper_title_Passage_51"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_52","query":"Toward a Standardized and More Accurate Indonesian Part-of-Speech Tagging","answer_pids":["qasper_title_Passage_52"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_53","query":"Chinese Embedding via Stroke and Glyph Information: A Dual-channel View","answer_pids":["qasper_title_Passage_53"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_54","query":"Design and implementation of an open source Greek POS Tagger and Entity Recognizer using spaCy","answer_pids":["qasper_title_Passage_54"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_55","query":"Towards Automatic Bot Detection in Twitter for Health-related Tasks","answer_pids":["qasper_title_Passage_55"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_56","query":"Time to Take Emoji Seriously: They Vastly Improve Casual Conversational Models","answer_pids":["qasper_title_Passage_56"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_57","query":"Enhancing PIO Element Detection in Medical Text Using Contextualized Embedding","answer_pids":["qasper_title_Passage_57"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_58","query":"Does BERT agree? Evaluating knowledge of structure dependence through agreement relations","answer_pids":["qasper_title_Passage_58"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_59","query":"BAE: BERT-based Adversarial Examples for Text Classification","answer_pids":["qasper_title_Passage_59"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_60","query":"#SarcasmDetection is soooo general! Towards a Domain-Independent Approach for Detecting Sarcasm","answer_pids":["qasper_title_Passage_60"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_61","query":"Offensive Language Identification in Greek","answer_pids":["qasper_title_Passage_61"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_62","query":"MultiBooked: A Corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification","answer_pids":["qasper_title_Passage_62"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_63","query":"Natural Language Generation for Non-Expert Users","answer_pids":["qasper_title_Passage_63"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_64","query":"Continuous multilinguality with language vectors","answer_pids":["qasper_title_Passage_64"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_65","query":"From narrative descriptions to MedDRA: automagically encoding adverse drug reactions","answer_pids":["qasper_title_Passage_65"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_66","query":"A computational linguistic study of personal recovery in bipolar disorder","answer_pids":["qasper_title_Passage_66"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_67","query":"Generating Major Types of Chinese Classical Poetry in a Uniformed Framework","answer_pids":["qasper_title_Passage_67"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_68","query":"Improved English to Russian Translation by Neural Suffix Prediction","answer_pids":["qasper_title_Passage_68"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_69","query":"Improving Word Representations: A Sub-sampled Unigram Distribution for Negative Sampling","answer_pids":["qasper_title_Passage_69"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_70","query":"KPTimes: A Large-Scale Dataset for Keyphrase Generation on News Documents","answer_pids":["qasper_title_Passage_70"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_71","query":"One Single Deep Bidirectional LSTM Network for Word Sense Disambiguation of Text Data","answer_pids":["qasper_title_Passage_71"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_72","query":"WikiRank: Improving Keyphrase Extraction Based on Background Knowledge","answer_pids":["qasper_title_Passage_72"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_73","query":"Hint-Based Training for Non-Autoregressive Machine Translation","answer_pids":["qasper_title_Passage_73"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_74","query":"A Low Dimensionality Representation for Language Variety Identification","answer_pids":["qasper_title_Passage_74"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_75","query":"Neural Question Answering at BioASQ 5B","answer_pids":["qasper_title_Passage_75"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_76","query":"Event Representation Learning Enhanced with External Commonsense Knowledge","answer_pids":["qasper_title_Passage_76"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_77","query":"A Joint Model for Word Embedding and Word Morphology","answer_pids":["qasper_title_Passage_77"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_78","query":"Attention-Based Convolutional Neural Network for Machine Comprehension","answer_pids":["qasper_title_Passage_78"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_79","query":"Two-stage Training for Chinese Dialect Recognition","answer_pids":["qasper_title_Passage_79"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_80","query":"The CUED's Grammatical Error Correction Systems for BEA-2019","answer_pids":["qasper_title_Passage_80"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_81","query":"Automatically Neutralizing Subjective Bias in Text","answer_pids":["qasper_title_Passage_81"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_82","query":"Sign Language Recognition Analysis using Multimodal Data","answer_pids":["qasper_title_Passage_82"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_83","query":"What do character-level models learn about morphology? The case of dependency parsing","answer_pids":["qasper_title_Passage_83"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_84","query":"A Benchmark Dataset for Learning to Intervene in Online Hate Speech","answer_pids":["qasper_title_Passage_84"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_85","query":"Explicit Sentence Compression for Neural Machine Translation","answer_pids":["qasper_title_Passage_85"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_86","query":"Self-Attention Gazetteer Embeddings for Named-Entity Recognition","answer_pids":["qasper_title_Passage_86"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_87","query":"Phonetic-and-Semantic Embedding of Spoken Words with Applications in Spoken Content Retrieval","answer_pids":["qasper_title_Passage_87"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_88","query":"Legal Question Answering using Ranking SVM and Deep Convolutional Neural Network","answer_pids":["qasper_title_Passage_88"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_89","query":"Analyzing ASR pretraining for low-resource speech-to-text translation","answer_pids":["qasper_title_Passage_89"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_90","query":"Robust Speech Recognition Using Generative Adversarial Networks","answer_pids":["qasper_title_Passage_90"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_91","query":"Identifying Condition-Action Statements in Medical Guidelines Using Domain-Independent Features","answer_pids":["qasper_title_Passage_91"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_92","query":"Why We Need New Evaluation Metrics for NLG","answer_pids":["qasper_title_Passage_92"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_93","query":"Revisiting the Centroid-based Method: A Strong Baseline for Multi-Document Summarization","answer_pids":["qasper_title_Passage_93"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_94","query":"\"With 1 follower I must be AWESOME :P\". Exploring the role of irony markers in irony recognition","answer_pids":["qasper_title_Passage_94"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_95","query":"Polyglot Semantic Role Labeling","answer_pids":["qasper_title_Passage_95"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_96","query":"Dialogue Session Segmentation by Embedding-Enhanced TextTiling","answer_pids":["qasper_title_Passage_96"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_97","query":"Question Generation from a Knowledge Base with Web Exploration","answer_pids":["qasper_title_Passage_97"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_98","query":"Tie-breaker: Using language models to quantify gender bias in sports journalism","answer_pids":["qasper_title_Passage_98"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_99","query":"Translating Neuralese","answer_pids":["qasper_title_Passage_99"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_100","query":"Speech Model Pre-training for End-to-End Spoken Language Understanding","answer_pids":["qasper_title_Passage_100"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_101","query":"BERT in Negotiations: Early Prediction of Buyer-Seller Negotiation Outcomes","answer_pids":["qasper_title_Passage_101"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_102","query":"Political Speech Generation","answer_pids":["qasper_title_Passage_102"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_103","query":"DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter","answer_pids":["qasper_title_Passage_103"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_104","query":"Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data","answer_pids":["qasper_title_Passage_104"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_105","query":"Recognizing Explicit and Implicit Hate Speech Using a Weakly Supervised Two-path Bootstrapping Approach","answer_pids":["qasper_title_Passage_105"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_106","query":"Long-length Legal Document Classification","answer_pids":["qasper_title_Passage_106"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_107","query":"Radical-level Ideograph Encoder for RNN-based Sentiment Analysis of Chinese and Japanese","answer_pids":["qasper_title_Passage_107"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_108","query":"Simple and Effective Noisy Channel Modeling for Neural Machine Translation","answer_pids":["qasper_title_Passage_108"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_109","query":"Zero-Shot Adaptive Transfer for Conversational Language Understanding","answer_pids":["qasper_title_Passage_109"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_110","query":"Sentiment Analysis On Indian Indigenous Languages: A Review On Multilingual Opinion Mining","answer_pids":["qasper_title_Passage_110"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_111","query":"Self-Attention and Ingredient-Attention Based Model for Recipe Retrieval from Image Queries","answer_pids":["qasper_title_Passage_111"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_112","query":"Recognizing Arrow Of Time In The Short Stories","answer_pids":["qasper_title_Passage_112"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_113","query":"Automated email Generation for Targeted Attacks using Natural Language","answer_pids":["qasper_title_Passage_113"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_114","query":"Automatic Section Recognition in Obituaries","answer_pids":["qasper_title_Passage_114"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_115","query":"Improving Unsupervised Word-by-Word Translation with Language Model and Denoising Autoencoder","answer_pids":["qasper_title_Passage_115"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_116","query":"Variational Neural Discourse Relation Recognizer","answer_pids":["qasper_title_Passage_116"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_117","query":"Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset","answer_pids":["qasper_title_Passage_117"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_118","query":"Human-like machine thinking: Language guided imagination","answer_pids":["qasper_title_Passage_118"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_119","query":"GitHub Typo Corpus: A Large-Scale Multilingual Dataset of Misspellings and Grammatical Errors","answer_pids":["qasper_title_Passage_119"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_120","query":"Universal Text Representation from BERT: An Empirical Study","answer_pids":["qasper_title_Passage_120"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_121","query":"A Readable Read: Automatic Assessment of Language Learning Materials based on Linguistic Complexity","answer_pids":["qasper_title_Passage_121"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_122","query":"TexTrolls: Identifying Russian Trolls on Twitter from a Textual Perspective","answer_pids":["qasper_title_Passage_122"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_123","query":"KeyVec: Key-semantics Preserving Document Representations","answer_pids":["qasper_title_Passage_123"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_124","query":"Language Technology Programme for Icelandic 2019-2023","answer_pids":["qasper_title_Passage_124"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_125","query":"Method for Aspect-Based Sentiment Annotation Using Rhetorical Analysis","answer_pids":["qasper_title_Passage_125"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_126","query":"Controversy in Context","answer_pids":["qasper_title_Passage_126"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_127","query":"Neural Joking Machine : Humorous image captioning","answer_pids":["qasper_title_Passage_127"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_128","query":"Adapting general-purpose speech recognition engine output for domain-specific natural language question answering","answer_pids":["qasper_title_Passage_128"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_129","query":"Multilingual and Unsupervised Subword Modeling for Zero-Resource Languages","answer_pids":["qasper_title_Passage_129"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_130","query":"Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model","answer_pids":["qasper_title_Passage_130"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_131","query":"Neural Machine Translation with Imbalanced Classes","answer_pids":["qasper_title_Passage_131"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_132","query":"Remedying BiLSTM-CNN Deficiency in Modeling Cross-Context for NER.","answer_pids":["qasper_title_Passage_132"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_133","query":"Episodic Memory in Lifelong Language Learning","answer_pids":["qasper_title_Passage_133"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_134","query":"Gender Prediction from Tweets: Improving Neural Representations with Hand-Crafted Features","answer_pids":["qasper_title_Passage_134"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_135","query":"Efficient Dynamic WFST Decoding for Personalized Language Models","answer_pids":["qasper_title_Passage_135"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_136","query":"Author Profiling for Hate Speech Detection","answer_pids":["qasper_title_Passage_136"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_137","query":"Predicting Human Activities from User-Generated Content","answer_pids":["qasper_title_Passage_137"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_138","query":"Interpreting the Syntactic and Social Elements of the Tweet Representations via Elementary Property Prediction Tasks","answer_pids":["qasper_title_Passage_138"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_139","query":"Correcting Length Bias in Neural Machine Translation","answer_pids":["qasper_title_Passage_139"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_140","query":"Predicting Audience's Laughter Using Convolutional Neural Network","answer_pids":["qasper_title_Passage_140"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_141","query":"Augmenting End-to-End Dialog Systems with Commonsense Knowledge","answer_pids":["qasper_title_Passage_141"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_142","query":"HotelRec: a Novel Very Large-Scale Hotel Recommendation Dataset","answer_pids":["qasper_title_Passage_142"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_143","query":"Character n-gram Embeddings to Improve RNN Language Models","answer_pids":["qasper_title_Passage_143"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_144","query":"SWDE : A Sub-Word And Document Embedding Based Engine for Clickbait Detection","answer_pids":["qasper_title_Passage_144"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_145","query":"Reducing Gender Bias in Abusive Language Detection","answer_pids":["qasper_title_Passage_145"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_146","query":"Hungarian Layer: Logics Empowered Neural Architecture","answer_pids":["qasper_title_Passage_146"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_147","query":"Informative and Controllable Opinion Summarization","answer_pids":["qasper_title_Passage_147"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_148","query":"Using Statistical and Semantic Models for Multi-Document Summarization","answer_pids":["qasper_title_Passage_148"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_149","query":"Incremental Improvement of a Question Answering System by Re-ranking Answer Candidates using Machine Learning","answer_pids":["qasper_title_Passage_149"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_150","query":"Expeditious Generation of Knowledge Graph Embeddings","answer_pids":["qasper_title_Passage_150"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_151","query":"The Rapidly Changing Landscape of Conversational Agents","answer_pids":["qasper_title_Passage_151"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_152","query":"A Lost Croatian Cybernetic Machine Translation Program","answer_pids":["qasper_title_Passage_152"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_153","query":"Sentence Simplification with Memory-Augmented Neural Networks","answer_pids":["qasper_title_Passage_153"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_154","query":"An Interactive Machine Translation Framework for Modernizing Historical Documents","answer_pids":["qasper_title_Passage_154"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_155","query":"Clinical Information Extraction via Convolutional Neural Network","answer_pids":["qasper_title_Passage_155"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_156","query":"A Question Answering Approach to Emotion Cause Extraction","answer_pids":["qasper_title_Passage_156"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_157","query":"On the State of the Art of Evaluation in Neural Language Models","answer_pids":["qasper_title_Passage_157"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_158","query":"Machine Translation of Restaurant Reviews: New Corpus for Domain Adaptation and Robustness","answer_pids":["qasper_title_Passage_158"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_159","query":"Automatic Detection of Cyberbullying in Social Media Text","answer_pids":["qasper_title_Passage_159"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_160","query":"Understanding the Radical Mind: Identifying Signals to Detect Extremist Content on Twitter","answer_pids":["qasper_title_Passage_160"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_161","query":"Hotel2vec: Learning Attribute-Aware Hotel Embeddings with Self-Supervision","answer_pids":["qasper_title_Passage_161"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_162","query":"A Fine-Grained Sentiment Dataset for Norwegian","answer_pids":["qasper_title_Passage_162"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_163","query":"Editing-Based SQL Query Generation for Cross-Domain Context-Dependent Questions","answer_pids":["qasper_title_Passage_163"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_164","query":"ACUTE-EVAL: Improved Dialogue Evaluation with Optimized Questions and Multi-turn Comparisons","answer_pids":["qasper_title_Passage_164"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_165","query":"Unsupervised Domain Clusters in Pretrained Language Models","answer_pids":["qasper_title_Passage_165"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_166","query":"Different Absorption from the Same Sharing: Sifted Multi-task Learning for Fake News Detection","answer_pids":["qasper_title_Passage_166"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_167","query":"On NMT Search Errors and Model Errors: Cat Got Your Tongue?","answer_pids":["qasper_title_Passage_167"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_168","query":"Meta-Learning for Low-resource Natural Language Generation in Task-oriented Dialogue Systems","answer_pids":["qasper_title_Passage_168"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_169","query":"Unsupervised Question Answering for Fact-Checking","answer_pids":["qasper_title_Passage_169"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_170","query":"Toward Unsupervised Text Content Manipulation","answer_pids":["qasper_title_Passage_170"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_171","query":"Senti17 at SemEval-2017 Task 4: Ten Convolutional Neural Network Voters for Tweet Polarity Classification","answer_pids":["qasper_title_Passage_171"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_172","query":"ManiGAN: Text-Guided Image Manipulation","answer_pids":["qasper_title_Passage_172"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_173","query":"Dual Memory Network Model for Biased Product Review Classification","answer_pids":["qasper_title_Passage_173"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_174","query":"Alternative Weighting Schemes for ELMo Embeddings","answer_pids":["qasper_title_Passage_174"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_175","query":"Generating Clues for Gender based Occupation De-biasing in Text","answer_pids":["qasper_title_Passage_175"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_176","query":"Prototype-to-Style: Dialogue Generation with Style-Aware Editing on Retrieval Memory","answer_pids":["qasper_title_Passage_176"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_177","query":"Relative contributions of Shakespeare and Fletcher in Henry VIII: An Analysis Based on Most Frequent Words and Most Frequent Rhythmic Patterns","answer_pids":["qasper_title_Passage_177"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_178","query":"A Short Review of Ethical Challenges in Clinical Natural Language Processing","answer_pids":["qasper_title_Passage_178"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_179","query":"Outline Generation: Understanding the Inherent Content Structure of Documents","answer_pids":["qasper_title_Passage_179"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_180","query":"Affect-LM: A Neural Language Model for Customizable Affective Text Generation","answer_pids":["qasper_title_Passage_180"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_181","query":"Experiments in Detecting Persuasion Techniques in the News","answer_pids":["qasper_title_Passage_181"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_182","query":"Duluth at SemEval-2017 Task 6: Language Models in Humor Detection","answer_pids":["qasper_title_Passage_182"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_183","query":"Towards Understanding Gender Bias in Relation Extraction","answer_pids":["qasper_title_Passage_183"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_184","query":"A Richly Annotated Corpus for Different Tasks in Automated Fact-Checking","answer_pids":["qasper_title_Passage_184"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_185","query":"Efficient Transfer Learning Schemes for Personalized Language Modeling using Recurrent Neural Network","answer_pids":["qasper_title_Passage_185"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_186","query":"EiTAKA at SemEval-2018 Task 1: An Ensemble of N-Channels ConvNet and XGboost Regressors for Emotion Analysis of Tweets","answer_pids":["qasper_title_Passage_186"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_187","query":"Categorization in the Wild: Generalizing Cognitive Models to Naturalistic Data across Languages","answer_pids":["qasper_title_Passage_187"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_188","query":"Subword ELMo","answer_pids":["qasper_title_Passage_188"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_189","query":"Detecting Offensive Language in Tweets Using Deep Learning","answer_pids":["qasper_title_Passage_189"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_190","query":"Towards Better Understanding of Spontaneous Conversations: Overcoming Automatic Speech Recognition Errors With Intent Recognition","answer_pids":["qasper_title_Passage_190"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_191","query":"Morfessor EM+Prune: Improved Subword Segmentation with Expectation Maximization and Pruning","answer_pids":["qasper_title_Passage_191"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_192","query":"Polylingual Wordnet","answer_pids":["qasper_title_Passage_192"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_193","query":"Interview: A Large-Scale Open-Source Corpus of Media Dialog","answer_pids":["qasper_title_Passage_193"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_194","query":"MetaLDA: a Topic Model that Efficiently Incorporates Meta information","answer_pids":["qasper_title_Passage_194"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_195","query":"Twitter Job\/Employment Corpus: A Dataset of Job-Related Discourse Built with Humans in the Loop","answer_pids":["qasper_title_Passage_195"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_196","query":"PAMPO: using pattern matching and pos-tagging for effective Named Entities recognition in Portuguese","answer_pids":["qasper_title_Passage_196"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_197","query":"Predicting the Role of Political Trolls in Social Media","answer_pids":["qasper_title_Passage_197"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_198","query":"Text Understanding with the Attention Sum Reader Network","answer_pids":["qasper_title_Passage_198"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_199","query":"Modeling German Verb Argument Structures: LSTMs vs. Humans","answer_pids":["qasper_title_Passage_199"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_200","query":"Mapping Languages and Demographics with Georeferenced Corpora","answer_pids":["qasper_title_Passage_200"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_201","query":"Fine-tune BERT for Extractive Summarization","answer_pids":["qasper_title_Passage_201"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_202","query":"Content-Based Table Retrieval for Web Queries","answer_pids":["qasper_title_Passage_202"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_203","query":"Query-bag Matching with Mutual Coverage for Information-seeking Conversations in E-commerce","answer_pids":["qasper_title_Passage_203"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_204","query":"A survey of cross-lingual features for zero-shot cross-lingual semantic parsing","answer_pids":["qasper_title_Passage_204"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_205","query":"Building a robust sentiment lexicon with (almost) no resource","answer_pids":["qasper_title_Passage_205"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_206","query":"SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization","answer_pids":["qasper_title_Passage_206"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_207","query":"Generating Black-Box Adversarial Examples for Text Classifiers Using a Deep Reinforced Model","answer_pids":["qasper_title_Passage_207"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_208","query":"How multilingual is Multilingual BERT?","answer_pids":["qasper_title_Passage_208"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_209","query":"And the Winner is ...: Bayesian Twitter-based Prediction on 2016 U.S. Presidential Election","answer_pids":["qasper_title_Passage_209"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_210","query":"Iterative Multi-document Neural Attention for Multiple Answer Prediction","answer_pids":["qasper_title_Passage_210"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_211","query":"What to do about non-standard (or non-canonical) language in NLP","answer_pids":["qasper_title_Passage_211"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_212","query":"Tweet2Vec: Learning Tweet Embeddings Using Character-level CNN-LSTM Encoder-Decoder","answer_pids":["qasper_title_Passage_212"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_213","query":"Learning Scripts as Hidden Markov Models","answer_pids":["qasper_title_Passage_213"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_214","query":"Deep Learning for Hate Speech Detection in Tweets","answer_pids":["qasper_title_Passage_214"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_215","query":"The Social Dynamics of Language Change in Online Networks","answer_pids":["qasper_title_Passage_215"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_216","query":"Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling","answer_pids":["qasper_title_Passage_216"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_217","query":"Recommendation Chart of Domains for Cross-Domain Sentiment Analysis:Findings of A 20 Domain Study","answer_pids":["qasper_title_Passage_217"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_218","query":"NRC-Canada at SMM4H Shared Task: Classifying Tweets Mentioning Adverse Drug Reactions and Medication Intake","answer_pids":["qasper_title_Passage_218"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_219","query":"Transforming Wikipedia into Augmented Data for Query-Focused Summarization","answer_pids":["qasper_title_Passage_219"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_220","query":"Read, Highlight and Summarize: A Hierarchical Neural Semantic Encoder-based Approach","answer_pids":["qasper_title_Passage_220"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_221","query":"Reinforced Multi-task Approach for Multi-hop Question Generation","answer_pids":["qasper_title_Passage_221"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_222","query":"Sequence Labeling Parsing by Learning Across Representations","answer_pids":["qasper_title_Passage_222"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_223","query":"Optimizing Differentiable Relaxations of Coreference Evaluation Metrics","answer_pids":["qasper_title_Passage_223"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_224","query":"Transfer Learning for Low-Resource Neural Machine Translation","answer_pids":["qasper_title_Passage_224"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_225","query":"Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering","answer_pids":["qasper_title_Passage_225"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_226","query":"SubGram: Extending Skip-gram Word Representation with Substrings","answer_pids":["qasper_title_Passage_226"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_227","query":"Plain English Summarization of Contracts","answer_pids":["qasper_title_Passage_227"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_228","query":"Bayesian Models for Unit Discovery on a Very Low Resource Language","answer_pids":["qasper_title_Passage_228"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_229","query":"It's All in the Name: Mitigating Gender Bias with Name-Based Counterfactual Data Substitution","answer_pids":["qasper_title_Passage_229"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_230","query":"Semantic Mask for Transformer based End-to-End Speech Recognition","answer_pids":["qasper_title_Passage_230"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_231","query":"Sentiment Analysis of Czech Texts: An Algorithmic Survey","answer_pids":["qasper_title_Passage_231"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_232","query":"Phrase Table as Recommendation Memory for Neural Machine Translation","answer_pids":["qasper_title_Passage_232"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_233","query":"Semantic Product Search","answer_pids":["qasper_title_Passage_233"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_234","query":"Unsupervised Identification of Study Descriptors in Toxicology Research: An Experimental Study","answer_pids":["qasper_title_Passage_234"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_235","query":"Applying Cyclical Learning Rate to Neural Machine Translation","answer_pids":["qasper_title_Passage_235"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_236","query":"Clotho: An Audio Captioning Dataset","answer_pids":["qasper_title_Passage_236"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_237","query":"Evaluating Multimodal Representations on Sentence Similarity: vSTS, Visual Semantic Textual Similarity Dataset","answer_pids":["qasper_title_Passage_237"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_238","query":"Application of Pre-training Models in Named Entity Recognition","answer_pids":["qasper_title_Passage_238"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_239","query":"Utilizing BERT Intermediate Layers for Aspect Based Sentiment Analysis and Natural Language Inference","answer_pids":["qasper_title_Passage_239"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_240","query":"Semantic Enrichment of Nigerian Pidgin English for Contextual Sentiment Classification","answer_pids":["qasper_title_Passage_240"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_241","query":"GWU NLP Lab at SemEval-2019 Task 3: EmoContext: Effective Contextual Information in Models for Emotion Detection in Sentence-level in a Multigenre Corpus","answer_pids":["qasper_title_Passage_241"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_242","query":"Unfolding and Shrinking Neural Machine Translation Ensembles","answer_pids":["qasper_title_Passage_242"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_243","query":"Location, Occupation, and Semantics based Socioeconomic Status Inference on Twitter","answer_pids":["qasper_title_Passage_243"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_244","query":"Acquiring Annotated Data with Cross-lingual Explicitation for Implicit Discourse Relation Classification","answer_pids":["qasper_title_Passage_244"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_245","query":"Information Extraction with Character-level Neural Networks and Free Noisy Supervision","answer_pids":["qasper_title_Passage_245"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_246","query":"Socioeconomic Dependencies of Linguistic Patterns in Twitter: A Multivariate Analysis","answer_pids":["qasper_title_Passage_246"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_247","query":"HoME: a Household Multimodal Environment","answer_pids":["qasper_title_Passage_247"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_248","query":"Extrapolation in NLP","answer_pids":["qasper_title_Passage_248"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_249","query":"Learning variable length units for SMT between related languages via Byte Pair Encoding","answer_pids":["qasper_title_Passage_249"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_250","query":"Identifying Nuances in Fake News vs. Satire: Using Semantic and Linguistic Cues","answer_pids":["qasper_title_Passage_250"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_251","query":"Recurrent Neural Network Grammars","answer_pids":["qasper_title_Passage_251"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_252","query":"BERT-Based Multi-Head Selection for Joint Entity-Relation Extraction","answer_pids":["qasper_title_Passage_252"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_253","query":"Assessing Gender Bias in Machine Translation -- A Case Study with Google Translate","answer_pids":["qasper_title_Passage_253"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_254","query":"Multi-task Learning for Low-resource Second Language Acquisition Modeling","answer_pids":["qasper_title_Passage_254"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_255","query":"WorldTree: A Corpus of Explanation Graphs for Elementary Science Questions supporting Multi-Hop Inference","answer_pids":["qasper_title_Passage_255"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_256","query":"Neural network approach to classifying alarming student responses to online assessment","answer_pids":["qasper_title_Passage_256"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_257","query":"Multimodal Attribute Extraction","answer_pids":["qasper_title_Passage_257"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_258","query":"Reinforcing an Image Caption Generator Using Off-Line Human Feedback","answer_pids":["qasper_title_Passage_258"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_259","query":"Morphology-based Entity and Relational Entity Extraction Framework for Arabic","answer_pids":["qasper_title_Passage_259"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_260","query":"Building a Massive Corpus for Named Entity Recognition Using Free Open Data Sources","answer_pids":["qasper_title_Passage_260"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_261","query":"Data-driven Approach for Quality Evaluation on Knowledge Sharing Platform","answer_pids":["qasper_title_Passage_261"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_262","query":"Contextual Encoding for Translation Quality Estimation","answer_pids":["qasper_title_Passage_262"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_263","query":"Named Entity Recognition in Twitter using Images and Text","answer_pids":["qasper_title_Passage_263"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_264","query":"A Transformer-based approach to Irony and Sarcasm detection","answer_pids":["qasper_title_Passage_264"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_265","query":"r\/Fakeddit: A New Multimodal Benchmark Dataset for Fine-grained Fake News Detection","answer_pids":["qasper_title_Passage_265"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_266","query":"Improved Abusive Comment Moderation with User Embeddings","answer_pids":["qasper_title_Passage_266"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_267","query":"Bridging the Gap: Incorporating a Semantic Similarity Measure for Effectively Mapping PubMed Queries to Documents","answer_pids":["qasper_title_Passage_267"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_268","query":"Amobee at SemEval-2017 Task 4: Deep Learning System for Sentiment Detection on Twitter","answer_pids":["qasper_title_Passage_268"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_269","query":"Abstractive Summarization with Combination of Pre-trained Sequence-to-Sequence and Saliency Models","answer_pids":["qasper_title_Passage_269"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_270","query":"Multimodal Intelligence: Representation Learning, Information Fusion, and Applications","answer_pids":["qasper_title_Passage_270"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_271","query":"SNDCNN: Self-normalizing deep CNNs with scaled exponential linear units for speech recognition","answer_pids":["qasper_title_Passage_271"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_272","query":"Pseudo Labeling and Negative Feedback Learning for Large-scale Multi-label Domain Classification","answer_pids":["qasper_title_Passage_272"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_273","query":"Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives","answer_pids":["qasper_title_Passage_273"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_274","query":"Visual Question Answering using Deep Learning: A Survey and Performance Analysis","answer_pids":["qasper_title_Passage_274"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_275","query":"Improving Few-shot Text Classification via Pretrained Language Representations.","answer_pids":["qasper_title_Passage_275"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_276","query":"Self-Attention with Relative Position Representations","answer_pids":["qasper_title_Passage_276"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_277","query":"Sentiment Analysis of Code-Mixed Indian Languages: An Overview of SAIL_Code-Mixed Shared Task @ICON-2017","answer_pids":["qasper_title_Passage_277"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_278","query":"A Holistic Natural Language Generation Framework for the Semantic Web","answer_pids":["qasper_title_Passage_278"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_279","query":"Multi-class Multilingual Classification of Wikipedia Articles Using Extended Named Entity Tag Set","answer_pids":["qasper_title_Passage_279"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_280","query":"And That's A Fact: Distinguishing Factual and Emotional Argumentation in Online Dialogue","answer_pids":["qasper_title_Passage_280"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_281","query":"A Focus on Neural Machine Translation for African Languages","answer_pids":["qasper_title_Passage_281"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_282","query":"Generating Texts with Integer Linear Programming","answer_pids":["qasper_title_Passage_282"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_283","query":"Learning from Dialogue after Deployment: Feed Yourself, Chatbot!","answer_pids":["qasper_title_Passage_283"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_284","query":"Meta Multi-Task Learning for Sequence Modeling","answer_pids":["qasper_title_Passage_284"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_285","query":"Prediction Uncertainty Estimation for Hate Speech Classification","answer_pids":["qasper_title_Passage_285"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_286","query":"A Generalized Recurrent Neural Architecture for Text Classification with Multi-Task Learning","answer_pids":["qasper_title_Passage_286"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_287","query":"GameWikiSum: a Novel Large Multi-Document Summarization Dataset","answer_pids":["qasper_title_Passage_287"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_288","query":"Spoken Conversational Search for General Knowledge","answer_pids":["qasper_title_Passage_288"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_289","query":"Hard but Robust, Easy but Sensitive: How Encoder and Decoder Perform in Neural Machine Translation","answer_pids":["qasper_title_Passage_289"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_290","query":"Fine-tuning BERT for Joint Entity and Relation Extraction in Chinese Medical Text","answer_pids":["qasper_title_Passage_290"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_291","query":"Tackling Online Abuse: A Survey of Automated Abuse Detection Methods","answer_pids":["qasper_title_Passage_291"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_292","query":"Lancaster A at SemEval-2017 Task 5: Evaluation metrics matter: predicting sentiment from financial news headlines","answer_pids":["qasper_title_Passage_292"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_293","query":"Reducing Gender Bias in Neural Machine Translation as a Domain Adaptation Problem","answer_pids":["qasper_title_Passage_293"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_294","query":"Learning Distributed Representations of Sentences from Unlabelled Data","answer_pids":["qasper_title_Passage_294"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_295","query":"Shallow Discourse Parsing with Maximum Entropy Model","answer_pids":["qasper_title_Passage_295"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_296","query":"Exploring Domain Shift in Extractive Text Summarization","answer_pids":["qasper_title_Passage_296"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_297","query":"Multilingual is not enough: BERT for Finnish","answer_pids":["qasper_title_Passage_297"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_298","query":"A Surrogate-based Generic Classifier for Chinese TV Series Reviews","answer_pids":["qasper_title_Passage_298"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_299","query":"A Causality-Guided Prediction of the TED Talk Ratings from the Speech-Transcripts using Neural Networks","answer_pids":["qasper_title_Passage_299"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_300","query":"Emotional Neural Language Generation Grounded in Situational Contexts","answer_pids":["qasper_title_Passage_300"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_301","query":"Verb Pattern: A Probabilistic Semantic Representation on Verbs","answer_pids":["qasper_title_Passage_301"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_302","query":"Enhanced Twitter Sentiment Classification Using Contextual Information","answer_pids":["qasper_title_Passage_302"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_303","query":"Efficient Calculation of Bigram Frequencies in a Corpus of Short Texts","answer_pids":["qasper_title_Passage_303"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_304","query":"autoNLP: NLP Feature Recommendations for Text Analytics Applications","answer_pids":["qasper_title_Passage_304"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_305","query":"A Simple Joint Model for Improved Contextual Neural Lemmatization","answer_pids":["qasper_title_Passage_305"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_306","query":"Pathological speech detection using x-vector embeddings","answer_pids":["qasper_title_Passage_306"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_307","query":"Universal Dependencies for Learner English","answer_pids":["qasper_title_Passage_307"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_308","query":"Rethinking Attribute Representation and Injection for Sentiment Classification","answer_pids":["qasper_title_Passage_308"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_309","query":"Improving Zero-shot Translation with Language-Independent Constraints","answer_pids":["qasper_title_Passage_309"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_310","query":"Neural Machine Translation for Low Resource Languages using Bilingual Lexicon Induced from Comparable Corpora","answer_pids":["qasper_title_Passage_310"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_311","query":"Nematus: a Toolkit for Neural Machine Translation","answer_pids":["qasper_title_Passage_311"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_312","query":"One Model to Learn Both: Zero Pronoun Prediction and Translation","answer_pids":["qasper_title_Passage_312"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_313","query":"Translating Questions into Answers using DBPedia n-triples","answer_pids":["qasper_title_Passage_313"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_314","query":"UIT-ViIC: A Dataset for the First Evaluation on Vietnamese Image Captioning","answer_pids":["qasper_title_Passage_314"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_315","query":"Dual Co-Matching Network for Multi-choice Reading Comprehension","answer_pids":["qasper_title_Passage_315"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_316","query":"Who's to say what's funny? A computer using Language Models and Deep Learning, That's Who!","answer_pids":["qasper_title_Passage_316"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_317","query":"Sequential Neural Networks as Automata","answer_pids":["qasper_title_Passage_317"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_318","query":"Memory-Augmented Recurrent Networks for Dialogue Coherence","answer_pids":["qasper_title_Passage_318"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_319","query":"\"Wait, I'm Still Talking!\"Predicting the Dialogue Interaction Behavior Using Imagine-Then-Arbitrate Model","answer_pids":["qasper_title_Passage_319"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_320","query":"Creating a Real-Time, Reproducible Event Dataset","answer_pids":["qasper_title_Passage_320"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_321","query":"On the Computational Power of RNNs","answer_pids":["qasper_title_Passage_321"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_322","query":"TwistBytes -- Hierarchical Classification at GermEval 2019: walking the fine line (of recall and precision)","answer_pids":["qasper_title_Passage_322"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_323","query":"An Investigation into the Effectiveness of Enhancement in ASR Training and Test for Chime-5 Dinner Party Transcription","answer_pids":["qasper_title_Passage_323"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_324","query":"A Corpus for Multilingual Document Classification in Eight Languages","answer_pids":["qasper_title_Passage_324"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_325","query":"\"i have a feeling trump will win..................\": Forecasting Winners and Losers from User Predictions on Twitter","answer_pids":["qasper_title_Passage_325"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_326","query":"Topic-Specific Sentiment Analysis Can Help Identify Political Ideology","answer_pids":["qasper_title_Passage_326"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_327","query":"AC-BLSTM: Asymmetric Convolutional Bidirectional LSTM Networks for Text Classification","answer_pids":["qasper_title_Passage_327"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_328","query":"Factors Influencing the Surprising Instability of Word Embeddings","answer_pids":["qasper_title_Passage_328"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_329","query":"Selecting Artificially-Generated Sentences for Fine-Tuning Neural Machine Translation","answer_pids":["qasper_title_Passage_329"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_330","query":"Linguistic Input Features Improve Neural Machine Translation","answer_pids":["qasper_title_Passage_330"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_331","query":"What can we learn from Semantic Tagging?","answer_pids":["qasper_title_Passage_331"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_332","query":"Learning to Select Bi-Aspect Information for Document-Scale Text Content Manipulation","answer_pids":["qasper_title_Passage_332"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_333","query":"The Power of Communities: A Text Classification Model with Automated Labeling Process Using Network Community Detection","answer_pids":["qasper_title_Passage_333"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_334","query":"On the Unintended Social Bias of Training Language Generation Models with Data from Local Media","answer_pids":["qasper_title_Passage_334"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_335","query":"CAp 2017 challenge: Twitter Named Entity Recognition","answer_pids":["qasper_title_Passage_335"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_336","query":"Forget Me Not: Reducing Catastrophic Forgetting for Domain Adaptation in Reading Comprehension","answer_pids":["qasper_title_Passage_336"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_337","query":"Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation","answer_pids":["qasper_title_Passage_337"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_338","query":"Adversarial Training for Aspect-Based Sentiment Analysis with BERT","answer_pids":["qasper_title_Passage_338"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_339","query":"Two are Better than One: An Ensemble of Retrieval- and Generation-Based Dialog Systems","answer_pids":["qasper_title_Passage_339"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_340","query":"Reverse-Engineering Satire, or\"Paper on Computational Humor Accepted Despite Making Serious Advances\"","answer_pids":["qasper_title_Passage_340"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_341","query":"Improving Yor\\`ub\\'a Diacritic Restoration","answer_pids":["qasper_title_Passage_341"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_342","query":"Fixed-Size Ordinally Forgetting Encoding Based Word Sense Disambiguation","answer_pids":["qasper_title_Passage_342"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_343","query":"Gated Recurrent Neural Tensor Network","answer_pids":["qasper_title_Passage_343"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_344","query":"360{\\deg} Stance Detection","answer_pids":["qasper_title_Passage_344"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_345","query":"Similarity measure for Public Persons","answer_pids":["qasper_title_Passage_345"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_346","query":"Addressee and Response Selection in Multi-Party Conversations with Speaker Interaction RNNs","answer_pids":["qasper_title_Passage_346"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_347","query":"Don't Forget the Long Tail! A Comprehensive Analysis of Morphological Generalization in Bilingual Lexicon Induction","answer_pids":["qasper_title_Passage_347"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_348","query":"Neuro-symbolic Architectures for Context Understanding","answer_pids":["qasper_title_Passage_348"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_349","query":"Digital Stylometry: Linking Profiles Across Social Networks","answer_pids":["qasper_title_Passage_349"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_350","query":"SentiBubbles: Topic Modeling and Sentiment Visualization of Entity-centric Tweets","answer_pids":["qasper_title_Passage_350"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_351","query":"Scaling in Words on Twitter","answer_pids":["qasper_title_Passage_351"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_352","query":"Tweet Acts: A Speech Act Classifier for Twitter","answer_pids":["qasper_title_Passage_352"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_353","query":"Transcribing Lyrics From Commercial Song Audio: The First Step Towards Singing Content Processing","answer_pids":["qasper_title_Passage_353"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_354","query":"Enhance word representation for out-of-vocabulary on Ubuntu dialogue corpus","answer_pids":["qasper_title_Passage_354"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_355","query":"Do Sentence Interactions Matter? Leveraging Sentence Level Representations for Fake News Classification","answer_pids":["qasper_title_Passage_355"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_356","query":"Exploiting Token and Path-based Representations of Code for Identifying Security-Relevant Commits","answer_pids":["qasper_title_Passage_356"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_357","query":"SEPT: Improving Scientific Named Entity Recognition with Span Representation","answer_pids":["qasper_title_Passage_357"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_358","query":"Identifying Visible Actions in Lifestyle Vlogs","answer_pids":["qasper_title_Passage_358"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_359","query":"A corpus of precise natural textual entailment problems","answer_pids":["qasper_title_Passage_359"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_360","query":"Response Generation by Context-aware Prototype Editing","answer_pids":["qasper_title_Passage_360"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_361","query":"Assessing the Benchmarking Capacity of Machine Reading Comprehension Datasets","answer_pids":["qasper_title_Passage_361"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_362","query":"Explicit Sparse Transformer: Concentrated Attention Through Explicit Selection","answer_pids":["qasper_title_Passage_362"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_363","query":"Scalable Neural Dialogue State Tracking","answer_pids":["qasper_title_Passage_363"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_364","query":"ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning","answer_pids":["qasper_title_Passage_364"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_365","query":"A hybrid text normalization system using multi-head self-attention for mandarin","answer_pids":["qasper_title_Passage_365"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_366","query":"To What Extent are Name Variants Used as Named Entities in Turkish Tweets?","answer_pids":["qasper_title_Passage_366"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_367","query":"Sequence-Level Knowledge Distillation","answer_pids":["qasper_title_Passage_367"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_368","query":"Question Answering on Freebase via Relation Extraction and Textual Evidence","answer_pids":["qasper_title_Passage_368"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_369","query":"Fine-grained Entity Typing through Increased Discourse Context and Adaptive Classification Thresholds","answer_pids":["qasper_title_Passage_369"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_370","query":"Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning","answer_pids":["qasper_title_Passage_370"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_371","query":"Controllable Sentence Simplification","answer_pids":["qasper_title_Passage_371"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_372","query":"Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson's Disease from Speech in Three Different Languages","answer_pids":["qasper_title_Passage_372"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_373","query":"Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity","answer_pids":["qasper_title_Passage_373"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_374","query":"Patient Knowledge Distillation for BERT Model Compression","answer_pids":["qasper_title_Passage_374"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_375","query":"Insertion-Deletion Transformer","answer_pids":["qasper_title_Passage_375"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_376","query":"An Annotated Corpus for Machine Reading of Instructions in Wet Lab Protocols","answer_pids":["qasper_title_Passage_376"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_377","query":"Towards better decoding and language model integration in sequence to sequence models","answer_pids":["qasper_title_Passage_377"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_378","query":"On Layer Normalization in the Transformer Architecture","answer_pids":["qasper_title_Passage_378"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_379","query":"DuTongChuan: Context-aware Translation Model for Simultaneous Interpreting","answer_pids":["qasper_title_Passage_379"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_380","query":"How to Ask Better Questions? A Large-Scale Multi-Domain Dataset for Rewriting Ill-Formed Questions","answer_pids":["qasper_title_Passage_380"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_381","query":"Towards Supervised and Unsupervised Neural Machine Translation Baselines for Nigerian Pidgin","answer_pids":["qasper_title_Passage_381"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_382","query":"A Context-Aware Approach for Detecting Check-Worthy Claims in Political Debates","answer_pids":["qasper_title_Passage_382"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_383","query":"Multi-Module System for Open Domain Chinese Question Answering over Knowledge Base","answer_pids":["qasper_title_Passage_383"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_384","query":"Nonsymbolic Text Representation","answer_pids":["qasper_title_Passage_384"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_385","query":"Auditing ImageNet: Towards a Model-driven Framework for Annotating Demographic Attributes of Large-Scale Image Datasets","answer_pids":["qasper_title_Passage_385"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_386","query":"Enhanced Neural Machine Translation by Learning from Draft","answer_pids":["qasper_title_Passage_386"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_387","query":"YEDDA: A Lightweight Collaborative Text Span Annotation Tool","answer_pids":["qasper_title_Passage_387"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_388","query":"Extracting Linguistic Resources from the Web for Concept-to-Text Generation","answer_pids":["qasper_title_Passage_388"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_389","query":"Dynamic Fusion Networks for Machine Reading Comprehension","answer_pids":["qasper_title_Passage_389"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_390","query":"It was the training data pruning too!","answer_pids":["qasper_title_Passage_390"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_391","query":"Binary Paragraph Vectors","answer_pids":["qasper_title_Passage_391"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_392","query":"IAM at CLEF eHealth 2018: Concept Annotation and Coding in French Death Certificates","answer_pids":["qasper_title_Passage_392"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_393","query":"Measuring Issue Ownership using Word Embeddings","answer_pids":["qasper_title_Passage_393"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_394","query":"Multilingual Twitter Sentiment Classification: The Role of Human Annotators","answer_pids":["qasper_title_Passage_394"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_395","query":"Real-World Conversational AI for Hotel Bookings","answer_pids":["qasper_title_Passage_395"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_396","query":"Improved Document Modelling with a Neural Discourse Parser","answer_pids":["qasper_title_Passage_396"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_397","query":"Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding","answer_pids":["qasper_title_Passage_397"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_398","query":"Women, politics and Twitter: Using machine learning to change the discourse","answer_pids":["qasper_title_Passage_398"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_399","query":"Deepening Hidden Representations from Pre-trained Language Models for Natural Language Understanding","answer_pids":["qasper_title_Passage_399"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_400","query":"A Study on Neural Network Language Modeling","answer_pids":["qasper_title_Passage_400"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_401","query":"Revisiting the Importance of Encoding Logic Rules in Sentiment Classification","answer_pids":["qasper_title_Passage_401"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_402","query":"BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model","answer_pids":["qasper_title_Passage_402"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_403","query":"Advances in Online Audio-Visual Meeting Transcription","answer_pids":["qasper_title_Passage_403"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_404","query":"Incorporating External Knowledge to Answer Open-Domain Visual Questions with Dynamic Memory Networks","answer_pids":["qasper_title_Passage_404"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_405","query":"Abusive Language Detection in Online Conversations by Combining Content-and Graph-based Features","answer_pids":["qasper_title_Passage_405"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_406","query":"Overton: A Data System for Monitoring and Improving Machine-Learned Products","answer_pids":["qasper_title_Passage_406"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_407","query":"Represent, Aggregate, and Constrain: A Novel Architecture for Machine Reading from Noisy Sources","answer_pids":["qasper_title_Passage_407"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_408","query":"Incorporating Word and Subword Units in Unsupervised Machine Translation Using Language Model Rescoring","answer_pids":["qasper_title_Passage_408"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_409","query":"QuaRTz: An Open-Domain Dataset of Qualitative Relationship Questions","answer_pids":["qasper_title_Passage_409"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_410","query":"The Medical Scribe: Corpus Development and Model Performance Analyses","answer_pids":["qasper_title_Passage_410"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_411","query":"Iterative Policy Learning in End-to-End Trainable Task-Oriented Neural Dialog Models","answer_pids":["qasper_title_Passage_411"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_412","query":"Personalized Taste and Cuisine Preference Modeling via Images","answer_pids":["qasper_title_Passage_412"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_413","query":"Regressing Word and Sentence Embeddings for Regularization of Neural Machine Translation","answer_pids":["qasper_title_Passage_413"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_414","query":"Automatic Extraction of Personality from Text: Challenges and Opportunities","answer_pids":["qasper_title_Passage_414"],"dataset":"qasper_title"} | |
{"qid":"qasper_title_Query_415","query":"How to evaluate sentiment classifiers for Twitter time-ordered data?","answer_pids":["qasper_title_Passage_415"],"dataset":"qasper_title"} | |