File size: 1,376 Bytes
2913468 3cf3c1a 2913468 5407b01 3673baa 10e6d66 5407b01 913d8a0 5407b01 10e6d66 5407b01 791c4b2 5407b01 791c4b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
dataset_info:
features:
- name: model_name
dtype: string
- name: dataset_path
dtype: string
- name: num_docs_pr
dtype: int64
- name: random_seed
dtype: int64
- name: queries
sequence: string
- name: positives
sequence:
sequence: string
- name: negatives
sequence:
sequence: string
- name: scores
sequence:
sequence: float64
- name: targets
sequence:
sequence: float64
splits:
- name: test
num_bytes: 2218701030
num_examples: 132
download_size: 1121022682
dataset_size: 2218701030
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
# Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism
## Dataset
This dataset provides the evaluation benchmark used in the paper "Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism", accepted at TMLR (September 2024).
## Paper
For more details on this work, you can read the full paper [here](https://arxiv.org/pdf/2402.12997).
**Citation:**
```
@article{gisserot2024towards,
title={Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism},
author={Gisserot-Boukhlef, Hippolyte and Faysse, Manuel and Malherbe, Emmanuel and Hudelot, C{\'e}line and Colombo, Pierre},
journal={arXiv preprint arXiv:2402.12997},
year={2024}
}
``` |