File size: 1,376 Bytes
2913468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cf3c1a
 
 
 
2913468
 
 
 
 
5407b01
3673baa
 
 
10e6d66
5407b01
913d8a0
5407b01
 
 
10e6d66
5407b01
 
 
791c4b2
 
5407b01
 
 
 
791c4b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
dataset_info:
  features:
  - name: model_name
    dtype: string
  - name: dataset_path
    dtype: string
  - name: num_docs_pr
    dtype: int64
  - name: random_seed
    dtype: int64
  - name: queries
    sequence: string
  - name: positives
    sequence:
      sequence: string
  - name: negatives
    sequence:
      sequence: string
  - name: scores
    sequence:
      sequence: float64
  - name: targets
    sequence:
      sequence: float64
  splits:
  - name: test
    num_bytes: 2218701030
    num_examples: 132
  download_size: 1121022682
  dataset_size: 2218701030
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---

# Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism

## Dataset

This dataset provides the evaluation benchmark used in the paper "Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism", accepted at TMLR (September 2024).

## Paper

For more details on this work, you can read the full paper [here](https://arxiv.org/pdf/2402.12997).

**Citation:**

```
@article{gisserot2024towards,
  title={Towards Trustworthy Reranking: A Simple yet Effective Abstention Mechanism},
  author={Gisserot-Boukhlef, Hippolyte and Faysse, Manuel and Malherbe, Emmanuel and Hudelot, C{\'e}line and Colombo, Pierre},
  journal={arXiv preprint arXiv:2402.12997},
  year={2024}
}
```