sagorsarker commited on
Commit
71e10a2
1 Parent(s): d706d88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -2
README.md CHANGED
@@ -1,13 +1,30 @@
1
  ---
2
  language:
3
  - bn
4
- license: mit
 
 
 
 
5
  task_categories:
6
  - question-answering
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
  ## Data Summary
10
- This is the Bangla translated version of the [OpenBookQA](https://huggingface.co/datasets/allenai/openbookqa) dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. This method enhances the semantic accuracy and expressiveness of the translated content. OpenBookQA focuses on advanced question-answering, requiring multi-step reasoning, additional common and commonsense knowledge, and rich text comprehension, similar to open-book exams.
11
 
12
  ## Data Details
13
  ### Data Instances
@@ -43,3 +60,40 @@ The data fields are the same among all splits.
43
  | validation | 500 |
44
  | test | 497 |
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - bn
4
+ license: unknown
5
+ multilinguality:
6
+ - monolingual
7
+ size_categories:
8
+ - 1K<n<10K
9
  task_categories:
10
  - question-answering
11
+ dataset_info:
12
+ - config_name: additional
13
+ features:
14
+ - name: id
15
+ dtype: string
16
+ - name: question_stem
17
+ dtype: string
18
+ - name: choices
19
+ sequence:
20
+ - name: text
21
+ dtype: string
22
+ - name: label
23
+ dtype: string
24
  ---
25
 
26
  ## Data Summary
27
+ This is the Bangla-translated version of the [OpenBookQA](https://huggingface.co/datasets/allenai/openbookqa) dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. This method enhances the semantic accuracy and expressiveness of the translated content. OpenBookQA focuses on advanced question-answering, requiring multi-step reasoning, additional common and commonsense knowledge, and rich text comprehension, similar to open-book exams.
28
 
29
  ## Data Details
30
  ### Data Instances
 
60
  | validation | 500 |
61
  | test | 497 |
62
 
63
+ ## Dataset Creation
64
+
65
+ ### Curation Rationale
66
+
67
+ ### Source Data
68
+
69
+ #### Initial Data Collection and Normalization
70
+
71
+ #### Who are the source language producers?
72
+
73
+ ### Annotations
74
+
75
+ #### Annotation process
76
+
77
+ #### Who are the annotators?
78
+
79
+ ### Personal and Sensitive Information
80
+
81
+ ## Considerations for Using the Data
82
+
83
+ ### Social Impact of Dataset
84
+
85
+ ### Discussion of Biases
86
+
87
+ ### Other Known Limitations
88
+
89
+ ## Additional Information
90
+
91
+ ### Dataset Curators
92
+
93
+ ### Licensing Information
94
+
95
+
96
+ ## Citation Information
97
+
98
+
99
+ ## Contributions