--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer dtype: string - name: id dtype: int64 - name: choices sequence: string - name: ground_truth dtype: string splits: - name: train num_bytes: 43191899.912 num_examples: 2101 - name: validation num_bytes: 6009916.0 num_examples: 300 - name: test num_bytes: 12234557.0 num_examples: 601 download_size: 59201452 dataset_size: 61436372.912 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* license: mit task_categories: - visual-question-answering language: - en size_categories: - 1K" + data["annotat_text"], "answer": data["choices"][MAPPING[data["answer"]]], "id": data["id"], "choices": data["choices"], "ground_truth": data["answer"], } def main(): trainset = Dataset.from_generator(generate_data, gen_kwargs={"data_path": os.path.join("data", "geometry3k", "train")}) valset = Dataset.from_generator(generate_data, gen_kwargs={"data_path": os.path.join("data", "geometry3k", "val")}) testset = Dataset.from_generator(generate_data, gen_kwargs={"data_path": os.path.join("data", "geometry3k", "test")}) dataset = DatasetDict({"train": trainset, "validation": valset, "test": testset}).cast_column("images", Sequence(ImageData())) dataset.push_to_hub("hiyouga/geometry3k") if __name__ == "__main__": main() ```