hotchpotch commited on
Commit
7ba796a
·
verified ·
1 Parent(s): 6c028eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -128,7 +128,7 @@ JAQKET の質問データから、Wikipedia から質問に関連するであろ
128
 
129
  質問文から関連する文章の取得には、Embeddings モデルを用いた文ベクトルの類似度で評価視しています。また一つの Embeddings モデルでは偏りが発生してしまうため、多様性を確保するために 5 種類の Embeddings モデル[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large), [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3), [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base), [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja), [OpenAI/text-embedding-3-small](https://platform.openai.com/docs/guides/embeddings) を利用します。
130
 
131
- また 400 文字以内になるように分割された Wikipedia 文データは、約 560 万文存在します。そのため、現実的な速度で検索が可能になるよう、Embeddings モデルを用いて文ベクトルに変換した後、IVF(Inverted File Index)と量子化(IVFPQ)を使い、高速にベクトル検索が可能な状態にします。なおベクトル検索のライブラリには FAISS を用いており、IVFPQ のパラメータは IVF の nlist に 2048、PQ は Embeddings モデルの埋め込みベクトルの次元数/4(例: e5-large は 1024 次元なので、PQ=4/1024=256)としています。
132
 
133
  これらを使い、質問文各々に最も類似する上位 500 の文章 x 5 種類の Embeddings モデルの結果を得ます。その後、これら 5 つの結果を RRF(Reciprocal Rank Fusion)を用いてランク付けしなおし、スコアが高い上位 100 文を抽出しました。これらの文と、その文が含まれる Wikipedia 記事タイトルを、質問文に紐付けします。
134
 
@@ -194,7 +194,7 @@ JQaRA データセットのライセンスは、"question", "answers" カラム
194
 
195
  ```
196
  @misc{yuichi-tateno-2024-jqara,,
197
- url={https://github.com/hotchpotch/JQaRA},
198
  title={JQaRA: Japanese Question Answering with Retrieval Augmentation - 検索拡張(RAG)評価のための日本語Q&Aデータセット},
199
  author={Yuichi Tateno}
200
  }
 
128
 
129
  質問文から関連する文章の取得には、Embeddings モデルを用いた文ベクトルの類似度で評価視しています。また一つの Embeddings モデルでは偏りが発生してしまうため、多様性を確保するために 5 種類の Embeddings モデル[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large), [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3), [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base), [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja), [OpenAI/text-embedding-3-small](https://platform.openai.com/docs/guides/embeddings) を利用します。
130
 
131
+ また 400 文字以内になるように分割された Wikipedia 文データは、約 560 万文存在します。そのため、現実的な速度で検索が可能になるよう、Embeddings モデルを用いて文ベクトルに変換した後、IVF(Inverted File Index)と量子化(IVFPQ)を使い、高速にベクトル検索が可能な状態にします。なおベクトル検索のライブラリには FAISS を用いており、IVFPQ のパラメータは IVF の nlist に 2048、PQ は Embeddings モデルの埋め込みベクトルの次元数/4(例: e5-large は 1024 次元なので、PQ=1024/4=256)としています。
132
 
133
  これらを使い、質問文各々に最も類似する上位 500 の文章 x 5 種類の Embeddings モデルの結果を得ます。その後、これら 5 つの結果を RRF(Reciprocal Rank Fusion)を用いてランク付けしなおし、スコアが高い上位 100 文を抽出しました。これらの文と、その文が含まれる Wikipedia 記事タイトルを、質問文に紐付けします。
134
 
 
194
 
195
  ```
196
  @misc{yuichi-tateno-2024-jqara,,
197
+ url={https://huggingface.co/datasets/hotchpotch/JQaRA},
198
  title={JQaRA: Japanese Question Answering with Retrieval Augmentation - 検索拡張(RAG)評価のための日本語Q&Aデータセット},
199
  author={Yuichi Tateno}
200
  }