Commit
·
d35b855
1
Parent(s):
eccb68a
add create script
Browse files- create_dataset.ipynb +538 -0
create_dataset.ipynb
ADDED
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# JACKET V1 のデータセットに wikipedia のコンテキストを追加したデータセットの作成\n",
|
8 |
+
"\n",
|
9 |
+
"- https://sites.google.com/view/project-aio/dataset?authuser=0\n",
|
10 |
+
"\n",
|
11 |
+
"の CC BY-SA 4.0 DEED 該当データをもとに、Wikipedia のコンテキスト追加した HuggingFace Dataset を作成する\n"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 1,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# JAQKET データセットを取得\n",
|
21 |
+
"\n",
|
22 |
+
"from dataclasses import dataclass\n",
|
23 |
+
"import json\n",
|
24 |
+
"import urllib.request\n",
|
25 |
+
"import random\n",
|
26 |
+
"\n",
|
27 |
+
"random.seed(42)\n",
|
28 |
+
"\n",
|
29 |
+
"# https://sites.google.com/view/project-aio/dataset?authuser=0\n",
|
30 |
+
"# 以下のURLのデータは、ライセンスが CC BY-SA 4.0 DEED\n",
|
31 |
+
"\n",
|
32 |
+
"jaqket_urls = [\n",
|
33 |
+
" \"https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_02/aio_01_dev.jsonl\",\n",
|
34 |
+
" \"https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_02/aio_01_test.jsonl\",\n",
|
35 |
+
" \"https://jaqket.s3.ap-northeast-1.amazonaws.com/data/aio_02/aio_01_unused.jsonl\",\n",
|
36 |
+
"]\n",
|
37 |
+
"\n",
|
38 |
+
"\n",
|
39 |
+
"@dataclass\n",
|
40 |
+
"class JaqketQuestion_:\n",
|
41 |
+
" qid: str\n",
|
42 |
+
" question: str\n",
|
43 |
+
" original_question: str\n",
|
44 |
+
" answer_entity: str\n",
|
45 |
+
" answer_candidates: list[str]\n",
|
46 |
+
" answer_candidates_shuffled: list[str]\n",
|
47 |
+
" label: int\n",
|
48 |
+
" original_answer: str | None = None\n",
|
49 |
+
"\n",
|
50 |
+
"\n",
|
51 |
+
"@dataclass\n",
|
52 |
+
"class JaqketQuestion:\n",
|
53 |
+
" qid: str\n",
|
54 |
+
" competition: str\n",
|
55 |
+
" timestamp: str\n",
|
56 |
+
" section: str\n",
|
57 |
+
" number: str\n",
|
58 |
+
" original_question: str\n",
|
59 |
+
" original_answer: str | None\n",
|
60 |
+
" original_additional_info: str | None\n",
|
61 |
+
" question: str\n",
|
62 |
+
" answers: list[str]\n",
|
63 |
+
"\n",
|
64 |
+
"\n",
|
65 |
+
"def load_jaqket(urls: list[str]):\n",
|
66 |
+
" res = []\n",
|
67 |
+
" for url in urls:\n",
|
68 |
+
" with urllib.request.urlopen(url) as f:\n",
|
69 |
+
" # f は 1行ごとに処理\n",
|
70 |
+
" data = [json.loads(line.decode(\"utf-8\")) for line in f]\n",
|
71 |
+
" for d in data:\n",
|
72 |
+
" try:\n",
|
73 |
+
" res.append(JaqketQuestion(**d))\n",
|
74 |
+
" except Exception as e:\n",
|
75 |
+
" # d.keys\n",
|
76 |
+
" print(d.keys())\n",
|
77 |
+
" raise e\n",
|
78 |
+
" return res\n",
|
79 |
+
"\n",
|
80 |
+
"\n",
|
81 |
+
"jacket_data = load_jaqket(jaqket_urls)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": []
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": 2,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [
|
96 |
+
{
|
97 |
+
"data": {
|
98 |
+
"text/plain": [
|
99 |
+
"(4600, 10)"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
"execution_count": 2,
|
103 |
+
"metadata": {},
|
104 |
+
"output_type": "execute_result"
|
105 |
+
}
|
106 |
+
],
|
107 |
+
"source": [
|
108 |
+
"import pandas as pd\n",
|
109 |
+
"\n",
|
110 |
+
"jacket_df = pd.DataFrame(jacket_data)\n",
|
111 |
+
"jacket_df.shape"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 3,
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/html": [
|
122 |
+
"<div>\n",
|
123 |
+
"<style scoped>\n",
|
124 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
125 |
+
" vertical-align: middle;\n",
|
126 |
+
" }\n",
|
127 |
+
"\n",
|
128 |
+
" .dataframe tbody tr th {\n",
|
129 |
+
" vertical-align: top;\n",
|
130 |
+
" }\n",
|
131 |
+
"\n",
|
132 |
+
" .dataframe thead th {\n",
|
133 |
+
" text-align: right;\n",
|
134 |
+
" }\n",
|
135 |
+
"</style>\n",
|
136 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
137 |
+
" <thead>\n",
|
138 |
+
" <tr style=\"text-align: right;\">\n",
|
139 |
+
" <th></th>\n",
|
140 |
+
" <th>qid</th>\n",
|
141 |
+
" <th>competition</th>\n",
|
142 |
+
" <th>timestamp</th>\n",
|
143 |
+
" <th>section</th>\n",
|
144 |
+
" <th>number</th>\n",
|
145 |
+
" <th>original_question</th>\n",
|
146 |
+
" <th>original_answer</th>\n",
|
147 |
+
" <th>original_additional_info</th>\n",
|
148 |
+
" <th>question</th>\n",
|
149 |
+
" <th>answers</th>\n",
|
150 |
+
" <th>answer</th>\n",
|
151 |
+
" </tr>\n",
|
152 |
+
" </thead>\n",
|
153 |
+
" <tbody>\n",
|
154 |
+
" <tr>\n",
|
155 |
+
" <th>0</th>\n",
|
156 |
+
" <td>QA20CAPR-0002</td>\n",
|
157 |
+
" <td>第1回AI王</td>\n",
|
158 |
+
" <td>2019/12/25</td>\n",
|
159 |
+
" <td>開発データ問題 (dev1)</td>\n",
|
160 |
+
" <td>2</td>\n",
|
161 |
+
" <td>明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記...</td>\n",
|
162 |
+
" <td>コックリさん</td>\n",
|
163 |
+
" <td></td>\n",
|
164 |
+
" <td>明治時代に西洋から伝わった「テーブル・ターニング」に起源���持つ占いの一種で、50音表などを記...</td>\n",
|
165 |
+
" <td>[コックリさん]</td>\n",
|
166 |
+
" <td>コックリさん</td>\n",
|
167 |
+
" </tr>\n",
|
168 |
+
" </tbody>\n",
|
169 |
+
"</table>\n",
|
170 |
+
"</div>"
|
171 |
+
],
|
172 |
+
"text/plain": [
|
173 |
+
" qid competition timestamp section number \\\n",
|
174 |
+
"0 QA20CAPR-0002 第1回AI王 2019/12/25 開発データ問題 (dev1) 2 \n",
|
175 |
+
"\n",
|
176 |
+
" original_question original_answer \\\n",
|
177 |
+
"0 明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記... コックリさん \n",
|
178 |
+
"\n",
|
179 |
+
" original_additional_info question \\\n",
|
180 |
+
"0 明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記... \n",
|
181 |
+
"\n",
|
182 |
+
" answers answer \n",
|
183 |
+
"0 [コックリさん] コックリさん "
|
184 |
+
]
|
185 |
+
},
|
186 |
+
"execution_count": 3,
|
187 |
+
"metadata": {},
|
188 |
+
"output_type": "execute_result"
|
189 |
+
}
|
190 |
+
],
|
191 |
+
"source": [
|
192 |
+
"# none は \"\" に変換\n",
|
193 |
+
"jacket_df = jacket_df.fillna(\"\")\n",
|
194 |
+
"# answers の最初の一つを入れる\n",
|
195 |
+
"jacket_df.loc[:, \"answer\"] = jacket_df[\"answers\"].apply(lambda x: x[0])\n",
|
196 |
+
"jacket_df.head(1)"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 4,
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"train_df = jacket_df"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": 5,
|
211 |
+
"metadata": {},
|
212 |
+
"outputs": [
|
213 |
+
{
|
214 |
+
"name": "stderr",
|
215 |
+
"output_type": "stream",
|
216 |
+
"text": [
|
217 |
+
"/home/yu1/miniconda3/envs/llm-sc/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
218 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
219 |
+
]
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"source": [
|
223 |
+
"from datasets.download import DownloadManager\n",
|
224 |
+
"from datasets import load_dataset\n",
|
225 |
+
"from sentence_transformers import SentenceTransformer\n",
|
226 |
+
"import faiss\n",
|
227 |
+
"\n",
|
228 |
+
"# wikipedia 日本語データセットのロード\n",
|
229 |
+
"wikija_dataset = load_dataset(\n",
|
230 |
+
" path=\"singletongue/wikipedia-utils\",\n",
|
231 |
+
" name=\"passages-c400-jawiki-20230403\",\n",
|
232 |
+
" split=\"train\",\n",
|
233 |
+
")\n",
|
234 |
+
"# faiss index のダウンロード\n",
|
235 |
+
"dm = DownloadManager()\n",
|
236 |
+
"index_local_path = dm.download(\n",
|
237 |
+
" f\"https://huggingface.co/datasets/hotchpotch/wikipedia-passages-jawiki-embeddings/resolve/main/faiss_indexes/passages-c400-jawiki-20230403/multilingual-e5-large-query/index_IVF2048_PQ256.faiss\"\n",
|
238 |
+
")\n",
|
239 |
+
"# index_local_path = dm.download(\n",
|
240 |
+
"# f\"https://huggingface.co/datasets/hotchpotch/wikipedia-passages-jawiki-embeddings/resolve/main/faiss_indexes/passages-c400-jawiki-20230403/multilingual-e5-large-passage/index_IVF2048_PQ256.faiss\"\n",
|
241 |
+
"# )\n",
|
242 |
+
"# faiss index のロード\n",
|
243 |
+
"faiss_index = faiss.read_index(index_local_path)\n",
|
244 |
+
"\n",
|
245 |
+
"# embeddings へ変換するモデルのロード\n",
|
246 |
+
"emb_model = SentenceTransformer(\"intfloat/multilingual-e5-large\", device=\"cuda\")\n",
|
247 |
+
"emb_model.max_seq_length = 512"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 6,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"data": {
|
257 |
+
"text/plain": [
|
258 |
+
"(2, 1024)"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
"execution_count": 6,
|
262 |
+
"metadata": {},
|
263 |
+
"output_type": "execute_result"
|
264 |
+
}
|
265 |
+
],
|
266 |
+
"source": [
|
267 |
+
"# embeddings へ変換\n",
|
268 |
+
"def texts_to_embs(model, texts, prefix=\"query: \"):\n",
|
269 |
+
" texts = [prefix + text for text in texts]\n",
|
270 |
+
" return model.encode(texts, normalize_embeddings=True)\n",
|
271 |
+
"\n",
|
272 |
+
"\n",
|
273 |
+
"texts_to_embs(emb_model, [\"こんにちは\", \"こんばんは\"]).shape"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 7,
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [
|
281 |
+
{
|
282 |
+
"data": {
|
283 |
+
"text/plain": [
|
284 |
+
"(3919, 12)"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
"execution_count": 7,
|
288 |
+
"metadata": {},
|
289 |
+
"output_type": "execute_result"
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"source": [
|
293 |
+
"# wikipedia のデータから、RAG検索して Top-N に正解の単語が含まれているデータのみを抽出する\n",
|
294 |
+
"\n",
|
295 |
+
"\n",
|
296 |
+
"def df_correct_answer_add_context(df, top_n=3):\n",
|
297 |
+
" # faiss index で検索して、top-N に正解があれば、その context を追加してそのデータのみを返す\n",
|
298 |
+
" df = df.copy().reset_index(drop=True)\n",
|
299 |
+
" df[\"context\"] = None\n",
|
300 |
+
" texts = df[\"question\"].tolist()\n",
|
301 |
+
" embs = texts_to_embs(emb_model, texts)\n",
|
302 |
+
" scores, indexes = faiss_index.search(embs, top_n)\n",
|
303 |
+
" for pos, (score, index) in enumerate(zip(scores, indexes)):\n",
|
304 |
+
" df_data = df.iloc[pos]\n",
|
305 |
+
" answer = df_data[\"answer\"]\n",
|
306 |
+
" target_texts = []\n",
|
307 |
+
" for s, i in zip(score, index):\n",
|
308 |
+
" data = wikija_dataset[int(i)] # type: ignore\n",
|
309 |
+
" target_texts.append(data[\"title\"] + \" \" + data[\"text\"]) # type: ignore\n",
|
310 |
+
" check_text = str(target_texts)\n",
|
311 |
+
" # 検索結果に対象文字列を含むか\n",
|
312 |
+
" if answer in check_text:\n",
|
313 |
+
" df.at[pos, \"context\"] = target_texts\n",
|
314 |
+
" # top3_text が None でないデータのみ返す\n",
|
315 |
+
" return df[df[\"context\"].notnull()]\n",
|
316 |
+
"\n",
|
317 |
+
"\n",
|
318 |
+
"train_df = df_correct_answer_add_context(train_df, 3)\n",
|
319 |
+
"train_df.shape"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": 8,
|
325 |
+
"metadata": {},
|
326 |
+
"outputs": [
|
327 |
+
{
|
328 |
+
"data": {
|
329 |
+
"text/html": [
|
330 |
+
"<div>\n",
|
331 |
+
"<style scoped>\n",
|
332 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
333 |
+
" vertical-align: middle;\n",
|
334 |
+
" }\n",
|
335 |
+
"\n",
|
336 |
+
" .dataframe tbody tr th {\n",
|
337 |
+
" vertical-align: top;\n",
|
338 |
+
" }\n",
|
339 |
+
"\n",
|
340 |
+
" .dataframe thead th {\n",
|
341 |
+
" text-align: right;\n",
|
342 |
+
" }\n",
|
343 |
+
"</style>\n",
|
344 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
345 |
+
" <thead>\n",
|
346 |
+
" <tr style=\"text-align: right;\">\n",
|
347 |
+
" <th></th>\n",
|
348 |
+
" <th>qid</th>\n",
|
349 |
+
" <th>question</th>\n",
|
350 |
+
" <th>answer</th>\n",
|
351 |
+
" <th>context</th>\n",
|
352 |
+
" <th>answers</th>\n",
|
353 |
+
" <th>competition</th>\n",
|
354 |
+
" <th>timestamp</th>\n",
|
355 |
+
" <th>section</th>\n",
|
356 |
+
" <th>number</th>\n",
|
357 |
+
" <th>original_question</th>\n",
|
358 |
+
" <th>original_answer</th>\n",
|
359 |
+
" <th>original_additional_info</th>\n",
|
360 |
+
" </tr>\n",
|
361 |
+
" </thead>\n",
|
362 |
+
" <tbody>\n",
|
363 |
+
" <tr>\n",
|
364 |
+
" <th>0</th>\n",
|
365 |
+
" <td>QA20CAPR-0002</td>\n",
|
366 |
+
" <td>明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記...</td>\n",
|
367 |
+
" <td>コックリさん</td>\n",
|
368 |
+
" <td>[コックリさん その起源は明確ではないが、レオナルド・ダ・ヴィンチが自著において「テーブル・...</td>\n",
|
369 |
+
" <td>[コックリさん]</td>\n",
|
370 |
+
" <td>第1回AI王</td>\n",
|
371 |
+
" <td>2019/12/25</td>\n",
|
372 |
+
" <td>開発データ問題 (dev1)</td>\n",
|
373 |
+
" <td>2</td>\n",
|
374 |
+
" <td>明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記...</td>\n",
|
375 |
+
" <td>コックリさん</td>\n",
|
376 |
+
" <td></td>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" </tbody>\n",
|
379 |
+
"</table>\n",
|
380 |
+
"</div>"
|
381 |
+
],
|
382 |
+
"text/plain": [
|
383 |
+
" qid question answer \\\n",
|
384 |
+
"0 QA20CAPR-0002 明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記... コックリさん \n",
|
385 |
+
"\n",
|
386 |
+
" context answers competition \\\n",
|
387 |
+
"0 [コックリさん その起源は明確ではないが、レオナルド・ダ・ヴィンチが自著において「テーブル・... [コックリさん] 第1回AI王 \n",
|
388 |
+
"\n",
|
389 |
+
" timestamp section number \\\n",
|
390 |
+
"0 2019/12/25 開発データ問題 (dev1) 2 \n",
|
391 |
+
"\n",
|
392 |
+
" original_question original_answer \\\n",
|
393 |
+
"0 明治時代に西洋から伝わった「テーブル・ターニング」に起源を持つ占いの一種で、50音表などを記... コックリさん \n",
|
394 |
+
"\n",
|
395 |
+
" original_additional_info \n",
|
396 |
+
"0 "
|
397 |
+
]
|
398 |
+
},
|
399 |
+
"execution_count": 8,
|
400 |
+
"metadata": {},
|
401 |
+
"output_type": "execute_result"
|
402 |
+
}
|
403 |
+
],
|
404 |
+
"source": [
|
405 |
+
"# qid, question, answer, context が先頭のカラムに来るように並び替える。過去のカラムも残す\n",
|
406 |
+
"new_columns = [\"qid\", \"question\", \"answer\", \"context\", \"answers\"]\n",
|
407 |
+
"new_columns.extend([c for c in train_df.columns if c not in new_columns])\n",
|
408 |
+
"train_df = train_df[new_columns]\n",
|
409 |
+
"train_df.head(1)"
|
410 |
+
]
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"cell_type": "code",
|
414 |
+
"execution_count": 9,
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [],
|
417 |
+
"source": [
|
418 |
+
"import datasets\n",
|
419 |
+
"\n",
|
420 |
+
"# pandas to dataset\n",
|
421 |
+
"train_dataset = datasets.Dataset.from_pandas(train_df)"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"cell_type": "code",
|
426 |
+
"execution_count": 10,
|
427 |
+
"metadata": {},
|
428 |
+
"outputs": [
|
429 |
+
{
|
430 |
+
"data": {
|
431 |
+
"text/plain": [
|
432 |
+
"Dataset({\n",
|
433 |
+
" features: ['qid', 'question', 'answer', 'context', 'answers', 'competition', 'timestamp', 'section', 'number', 'original_question', 'original_answer', 'original_additional_info', '__index_level_0__'],\n",
|
434 |
+
" num_rows: 3919\n",
|
435 |
+
"})"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
"execution_count": 10,
|
439 |
+
"metadata": {},
|
440 |
+
"output_type": "execute_result"
|
441 |
+
}
|
442 |
+
],
|
443 |
+
"source": [
|
444 |
+
"train_dataset"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 11,
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [
|
452 |
+
{
|
453 |
+
"data": {
|
454 |
+
"text/plain": [
|
455 |
+
"((2939, 12), (980, 12))"
|
456 |
+
]
|
457 |
+
},
|
458 |
+
"execution_count": 11,
|
459 |
+
"metadata": {},
|
460 |
+
"output_type": "execute_result"
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"# 25% を validation にする\n",
|
465 |
+
"valid_df = train_df.sample(frac=0.25, random_state=42)\n",
|
466 |
+
"train_df = train_df.drop(valid_df.index)\n",
|
467 |
+
"train_df = train_df.reset_index(drop=True)\n",
|
468 |
+
"valid_df = valid_df.reset_index(drop=True)\n",
|
469 |
+
"# shape\n",
|
470 |
+
"train_df.shape, valid_df.shape"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": 12,
|
476 |
+
"metadata": {},
|
477 |
+
"outputs": [],
|
478 |
+
"source": [
|
479 |
+
"from datasets import Dataset\n",
|
480 |
+
"\n",
|
481 |
+
"train_ds = Dataset.from_pandas(train_df)\n",
|
482 |
+
"valid_ds = Dataset.from_pandas(valid_df)"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"cell_type": "code",
|
487 |
+
"execution_count": 13,
|
488 |
+
"metadata": {},
|
489 |
+
"outputs": [],
|
490 |
+
"source": [
|
491 |
+
"dataset_hf_path = \"hotchpotch/jaqket_v1_qa_wikija_context\""
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 16,
|
497 |
+
"metadata": {},
|
498 |
+
"outputs": [
|
499 |
+
{
|
500 |
+
"name": "stderr",
|
501 |
+
"output_type": "stream",
|
502 |
+
"text": [
|
503 |
+
"Creating parquet from Arrow format: 100%|██████████| 3/3 [00:00<00:00, 116.44ba/s]\n",
|
504 |
+
"Uploading the dataset shards: 100%|██████████| 1/1 [00:02<00:00, 2.39s/it]\n",
|
505 |
+
"Creating parquet from Arrow format: 100%|██████████| 1/1 [00:00<00:00, 58.50ba/s]\n",
|
506 |
+
"Uploading the dataset shards: 100%|██████████| 1/1 [00:01<00:00, 2.00s/it]\n",
|
507 |
+
"README.md: 100%|██████████| 715/715 [00:00<00:00, 3.93MB/s]\n"
|
508 |
+
]
|
509 |
+
}
|
510 |
+
],
|
511 |
+
"source": [
|
512 |
+
"train_ds.push_to_hub(dataset_hf_path, split=\"train\")\n",
|
513 |
+
"valid_ds.push_to_hub(dataset_hf_path, split=\"validation\")"
|
514 |
+
]
|
515 |
+
}
|
516 |
+
],
|
517 |
+
"metadata": {
|
518 |
+
"kernelspec": {
|
519 |
+
"display_name": "llm-sc",
|
520 |
+
"language": "python",
|
521 |
+
"name": "python3"
|
522 |
+
},
|
523 |
+
"language_info": {
|
524 |
+
"codemirror_mode": {
|
525 |
+
"name": "ipython",
|
526 |
+
"version": 3
|
527 |
+
},
|
528 |
+
"file_extension": ".py",
|
529 |
+
"mimetype": "text/x-python",
|
530 |
+
"name": "python",
|
531 |
+
"nbconvert_exporter": "python",
|
532 |
+
"pygments_lexer": "ipython3",
|
533 |
+
"version": "3.10.12"
|
534 |
+
}
|
535 |
+
},
|
536 |
+
"nbformat": 4,
|
537 |
+
"nbformat_minor": 2
|
538 |
+
}
|