--- dataset_info: - config_name: arabic_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 185002207 dataset_size: 278081216 - config_name: chinese_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 184701435 dataset_size: 278081216 - config_name: dutch_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 185849249 dataset_size: 278081216 - config_name: english_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186370505 dataset_size: 278081216 - config_name: french_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186154601 dataset_size: 278081216 - config_name: german_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 184933921 dataset_size: 278081216 - config_name: hindi_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186289631 dataset_size: 278081216 - config_name: indonesian_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186918156 dataset_size: 278081216 - config_name: italian_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186232117 dataset_size: 278081216 - config_name: japanese_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 183640411 dataset_size: 278081216 - config_name: portuguese_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186472515 dataset_size: 278081216 - config_name: russian_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 184840600 dataset_size: 278081216 - config_name: sentence-transformers-msmarco-hard-negatives-bm25 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 splits: - name: train num_bytes: 213472888 num_examples: 502912 download_size: 176954469 dataset_size: 213472888 - config_name: spanish_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 186573954 dataset_size: 278081216 - config_name: vietnamese_bge-reranker-v2-m3 features: - name: qid dtype: int64 - name: pos sequence: int64 - name: neg sequence: int64 - name: pos.score sequence: float64 - name: neg.score sequence: float64 splits: - name: train num_bytes: 278081216 num_examples: 502912 download_size: 185789847 dataset_size: 278081216 configs: - config_name: arabic_bge-reranker-v2-m3 data_files: - split: train path: arabic_bge-reranker-v2-m3/train-* - config_name: chinese_bge-reranker-v2-m3 data_files: - split: train path: chinese_bge-reranker-v2-m3/train-* - config_name: dutch_bge-reranker-v2-m3 data_files: - split: train path: dutch_bge-reranker-v2-m3/train-* - config_name: english_bge-reranker-v2-m3 data_files: - split: train path: english_bge-reranker-v2-m3/train-* - config_name: french_bge-reranker-v2-m3 data_files: - split: train path: french_bge-reranker-v2-m3/train-* - config_name: german_bge-reranker-v2-m3 data_files: - split: train path: german_bge-reranker-v2-m3/train-* - config_name: hindi_bge-reranker-v2-m3 data_files: - split: train path: hindi_bge-reranker-v2-m3/train-* - config_name: indonesian_bge-reranker-v2-m3 data_files: - split: train path: indonesian_bge-reranker-v2-m3/train-* - config_name: italian_bge-reranker-v2-m3 data_files: - split: train path: italian_bge-reranker-v2-m3/train-* - config_name: japanese_bge-reranker-v2-m3 data_files: - split: train path: japanese_bge-reranker-v2-m3/train-* - config_name: portuguese_bge-reranker-v2-m3 data_files: - split: train path: portuguese_bge-reranker-v2-m3/train-* - config_name: russian_bge-reranker-v2-m3 data_files: - split: train path: russian_bge-reranker-v2-m3/train-* - config_name: sentence-transformers-msmarco-hard-negatives-bm25 data_files: - split: train path: sentence-transformers-msmarco-hard-negatives-bm25/train-* - config_name: spanish_bge-reranker-v2-m3 data_files: - split: train path: spanish_bge-reranker-v2-m3/train-* - config_name: vietnamese_bge-reranker-v2-m3 data_files: - split: train path: vietnamese_bge-reranker-v2-m3/train-* license: apache-2.0 --- # `hotchpotch/mmarco-hard-negatives-reranker-score` This repository contains data from [mMARCO](https://huggingface.co/datasets/unicamp-dl/mmarco) scored using the reranker [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3). ## Languages Covered English, Chinese, French, German, Indonesian, Italian, Portuguese, Russian, Spanish, Arabic, Dutch, Hindi, Japanese, Vietnamese ## Hard Negative Data The hard negative data is derived from [sentence-transformers-msmarco-hard-negatives-bm25](https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives), randomly sampling 32 instances for use. ## License This project adheres to the same license as mMARCO: **Apache License 2.0**. # Example ```python # target languages => ["english", "chinese", "french", "german", "indonesian", "italian", "portuguese", "russian", "spanish", "arabic", "dutch", "hindi", "japanese", "vietnamese"] lang = "spanish" repo_id = "hotchpotch/mmarco-hard-negatives-reranker-score" reranker = "bge-reranker-v2-m3" subset = f"{lang}_{reranker}" mapping = f"mappings/{lang}_joblib.pkl.gz" from datasets import load_dataset import joblib from huggingface_hub import hf_hub_download queries_ds = load_dataset( "unicamp-dl/mmarco", "queries-" + lang, split="train", trust_remote_code=True ) collection_ds = load_dataset( "unicamp-dl/mmarco", "collection-" + lang, split="collection", trust_remote_code=True, ) score_ds = load_dataset(repo_id, subset, split="train") mapping_file = hf_hub_download(repo_type="dataset", repo_id=repo_id, filename=mapping) index_mapping_dict = joblib.load(mapping_file) query_id_dict = index_mapping_dict["query_id_dict"] collection_id_dict = index_mapping_dict["collection_id_dict"] def get_query_text(query_id) -> str: idx = query_id_dict[query_id] return queries_ds[idx]["text"] # type: ignore def get_collection_text(doc_id) -> str: idx = collection_id_dict[doc_id] return collection_ds[idx]["text"] # type: ignore for i in range(5): qid: int = score_ds[i]["qid"] pos: list[int] = score_ds[i]["pos"] pos_score: list[float] = score_ds[i]["pos.score"] neg: list[int] = score_ds[i]["neg"] neg_score: list[float] = score_ds[i]["neg.score"] query = get_query_text(qid) pos_docs = [get_collection_text(doc_id)[0:64] for doc_id in pos] neg_docs = [get_collection_text(doc_id)[0:64] for doc_id in neg] print(f"# Query: {query}") print("## Positive docs:") for doc, score in zip(pos_docs, pos_score): print(f" {doc} ({score})") print("## Negative docs:") for doc, score in list(zip(neg_docs, neg_score))[0:5]: print(f" {doc} ({score})") print("-------") ``` output ``` # Query: ¿Qué son las artes liberales? ## Positive docs: Artes liberales. 1. el curso académico de instrucción en una uni (0.99770385) ## Negative docs: Grandes Ligas. Puede elegir entre una variedad de especializacio (0.69760895) BA = Licenciatura en Artes BS = Licenciatura en Ciencias Creo qu (0.24364243) ¿Qué es una Licenciatura en Artes (B.A.)? Un programa de licenci (0.20641373) ¿Qué significa LCSW? / Human and Social ... / Liberal Arts y ... (0.0140636265) definición de artes liberales Las áreas de aprendizaje que culti (0.9963924) ------- # Query: ¿Cuál es el mecanismo de acción de los fármacos fibrinolíticos o trombolíticos? ## Positive docs: Hematología clínica de BailliÃÆ'¨re. 6 Mecanismo de acción d (0.966347) ## Negative docs: Definición y ejemplos de mecanismos de acción. Más en Trastorno (0.3598139) ¿Qué es losartán y cómo funciona (mecanismo de acción)? ¿Qué mar (0.0031480708) ActivaseÃ⠀ šÃ,® Una propietaria trombolítico, que puede à ¢ (0.83237296) La terapia fibrinolítica, también llamada a veces "terapia tromb (0.92590266) Diazepam Valium Mecanismo de acción Valium Mecanismo de acción E (0.040162582) ------- # Query: ¿Qué es el recuento normal de plataformas? ## Positive docs: 78 seguidores. R. Las plaquetas son glóbulos diminutos que ayuda (0.10105592) ## Negative docs: ¿Qué es la trombocitopenia (recuento bajo de plaquetas)? Las pla (0.047337715) Calificación Más reciente Más antiguo. Mejor respuesta: Nancy: e (0.03179867) 1 Tarifas de solicitud ࢠ€Â⠀ œ $ 80 por una plataform (0.001044386) Conteo sanguíneo de MCV. Mi recuento sanguíneo de MCV está en 98 (0.011115014) ¿Cuáles son los niveles normales de hemograma para una mujer adu (0.015247591) ------- # Query: promedio de costo en dólares explicado ## Positive docs: El promedio del costo en dólares es simplemente un método para c (0.96771675) ## Negative docs: El promedio del costo en dólares es una técnica simple que le pe (0.9859364) Anteriormente en Free from Broke, Glen ha abordado el tema del c (0.89274967) (TMFMathGuy). 19 de noviembre de 2014 a las 2:15 p.m. El promedi (0.98421544) Comprar acciones por valor de $ 2,000 en el primer mes, a $ 14.2 (0.36624968) DEFINICIÓN de 'Valor Promedio'. Una estrategia de inversión que (0.3941427) ------- # Query: alimentos que ayudan a combatir la gota ## Positive docs: Además de seguir una dieta bien balanceada para promover la salu (0.9874721) ## Negative docs: Alimentos para la gota: anacardos y gota. Los anacardos y la got (0.84606963) Alimentos que debe evitar si tiene gota La gota es un tipo de ar (0.016979992) El puerto causa gota. Estos son solo algunos tratamientos natura (0.30850264) 20 alimentos ricos en purina que debe evitar: alterar su dieta p (0.4324828) Alimentos que combaten el cáncer por BÃÆ' © liveau & Gingras (0.010408314) ------- ```