# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import datasets | |
from datasets.data_files import DataFilesDict | |
from .super_scirep_config import SUPERSCIREPEVAL_CONFIGS | |
# from datasets.packaged_modules.json import json | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2021} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", | |
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", | |
} | |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class SuperSciRep(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = SUPERSCIREPEVAL_CONFIGS | |
def _info(self): | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=self.config.description, | |
# This defines the different columns of the dataset and their types | |
features=datasets.Features(self.config.features), | |
# Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage="", | |
# License for the dataset if available | |
license=self.config.license, | |
# Citation for the dataset | |
citation=self.config.citation, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval" | |
base_url = "https://hhy-tue.s3.eu-central-1.amazonaws.com/data/super_scirep" | |
data_urls = dict() | |
# data_dir = self.config.url if self.config.url else self.config.name | |
data_dir = self.config.name | |
if self.config.is_training: | |
data_urls = {"train": f"{base_url}/{data_dir}/train.jsonl", | |
"val": f"{base_url}/{data_dir}/validation.jsonl"} | |
if "cite_prediction" not in self.config.name: | |
data_urls.update({"test": f"{base_url}/{data_dir}/evaluation.jsonl"}) | |
print(data_urls) | |
downloaded_files = dl_manager.download_and_extract(data_urls) | |
splits = [] | |
if "test" in downloaded_files: | |
splits = [datasets.SplitGenerator( | |
name=datasets.Split("evaluation"), | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["test"], | |
"split": "evaluation" | |
}, | |
), | |
] | |
if "train" in downloaded_files: | |
splits += [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["train"], | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": downloaded_files["val"], | |
"split": "validation", | |
}) | |
] | |
return splits | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
def read_data(data_path): | |
task_data = [] | |
try: | |
task_data = json.load(open(data_path, "r", encoding="utf-8")) | |
except: | |
with open(data_path) as f: | |
task_data = [json.loads(line) for line in f] | |
if type(task_data) == dict: | |
task_data = list(task_data.values()) | |
return task_data | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
# data = read_data(filepath) | |
seen_keys = set() | |
IGNORE = set(["n_key_citations", "session_id", "user_id", "user"]) | |
with open(filepath, encoding="utf-8") as f: | |
for line in f: | |
d = json.loads(line) | |
d = {k: v for k, v in d.items() if k not in IGNORE} | |
key = "doc_id" if self.config.name != "cite_prediction_new" else "corpus_id" | |
if self.config.task_type == "proximity": | |
if "cite_prediction" in self.config.name: | |
if "arxiv_id" in d["query"]: | |
for item in ["query", "pos", "neg"]: | |
del d[item]["arxiv_id"] | |
del d[item]["doi"] | |
if "fos" in d["query"]: | |
del d["query"]["fos"] | |
if "score" in d["pos"]: | |
del d["pos"]["score"] | |
yield str(d["query"][key]) + str(d["pos"][key]) + str(d["neg"][key]), d | |
else: | |
if d["query"][key] not in seen_keys: | |
seen_keys.add(d["query"][key]) | |
yield str(d["query"][key]), d | |
else: | |
if d[key] not in seen_keys: | |
seen_keys.add(d[key]) | |
if self.config.task_type != "search": | |
if "corpus_id" not in d: | |
d["corpus_id"] = None | |
if "scidocs" in self.config.name: | |
if "cited by" not in d: | |
d["cited_by"] = [] | |
if type(d["corpus_id"]) == str: | |
d["corpus_id"] = None | |
yield d[key], d |