Datasets:
Tasks:
Text Classification
Sub-tasks:
natural-language-inference
Languages:
Japanese
Size:
10K - 100K
License:
:memo: Update README.md
Browse files
README.md
CHANGED
@@ -21,6 +21,14 @@ license: cc-by-sa-4.0
|
|
21 |
- [Dataset Description](#dataset-description)
|
22 |
- [Dataset Summary](#dataset-summary)
|
23 |
- [Languages](#languages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
- [Annotations](#annotations)
|
25 |
- [Additional Information](#additional-information)
|
26 |
- [Licensing Information](#licensing-information)
|
@@ -41,6 +49,113 @@ The JaNLI (Japanese Adversarial NLI) dataset, inspired by the English HANS datas
|
|
41 |
|
42 |
The language data in JaNLI is in Japanese (BCP-47 [ja-JP](https://www.rfc-editor.org/info/bcp47)).
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
### Annotations
|
45 |
|
46 |
The annotation process for this Japanese NLI dataset involves tagging each pair (P, H) of a premise and hypothesis with a label for structural pattern and linguistic phenomenon.
|
|
|
21 |
- [Dataset Description](#dataset-description)
|
22 |
- [Dataset Summary](#dataset-summary)
|
23 |
- [Languages](#languages)
|
24 |
+
- [Dataset Structure](#dataset-structure)
|
25 |
+
- [Data Instances](#data-instances)
|
26 |
+
- [base](#base)
|
27 |
+
- [original](#original)
|
28 |
+
- [Data Fields](#data-fields)
|
29 |
+
- [base](#base-1)
|
30 |
+
- [original](#original-1)
|
31 |
+
- [Data Splits](#data-splits)
|
32 |
- [Annotations](#annotations)
|
33 |
- [Additional Information](#additional-information)
|
34 |
- [Licensing Information](#licensing-information)
|
|
|
49 |
|
50 |
The language data in JaNLI is in Japanese (BCP-47 [ja-JP](https://www.rfc-editor.org/info/bcp47)).
|
51 |
|
52 |
+
|
53 |
+
|
54 |
+
## Dataset Structure
|
55 |
+
|
56 |
+
|
57 |
+
### Data Instances
|
58 |
+
When loading a specific configuration, users has to append a version dependent suffix:
|
59 |
+
|
60 |
+
```python
|
61 |
+
import datasets as ds
|
62 |
+
|
63 |
+
dataset: ds.DatasetDict = ds.load_dataset("hpprc/janli")
|
64 |
+
print(dataset)
|
65 |
+
# DatasetDict({
|
66 |
+
# train: Dataset({
|
67 |
+
# features: ['id', 'premise', 'hypothesis', 'label', 'heuristics', 'number_of_NPs', 'semtag'],
|
68 |
+
# num_rows: 13680
|
69 |
+
# })
|
70 |
+
# test: Dataset({
|
71 |
+
# features: ['id', 'premise', 'hypothesis', 'label', 'heuristics', 'number_of_NPs', 'semtag'],
|
72 |
+
# num_rows: 720
|
73 |
+
# })
|
74 |
+
# })
|
75 |
+
|
76 |
+
dataset: ds.DatasetDict = ds.load_dataset("hpprc/janli", name="original")
|
77 |
+
print(dataset)
|
78 |
+
# DatasetDict({
|
79 |
+
# train: Dataset({
|
80 |
+
# features: ['id', 'sentence_A_Ja', 'sentence_B_Ja', 'entailment_label_Ja', 'heuristics', 'number_of_NPs', 'semtag'],
|
81 |
+
# num_rows: 13680
|
82 |
+
# })
|
83 |
+
# test: Dataset({
|
84 |
+
# features: ['id', 'sentence_A_Ja', 'sentence_B_Ja', 'entailment_label_Ja', 'heuristics', 'number_of_NPs', 'semtag'],
|
85 |
+
# num_rows: 720
|
86 |
+
# })
|
87 |
+
# })
|
88 |
+
```
|
89 |
+
|
90 |
+
|
91 |
+
#### base
|
92 |
+
|
93 |
+
An example of looks as follows:
|
94 |
+
|
95 |
+
```json
|
96 |
+
{
|
97 |
+
'id': 12,
|
98 |
+
'premise': 'θ₯θ
γγγγγγΌγ«ιΈζγθ¦γ¦γγ',
|
99 |
+
'hypothesis': 'γγγγγΌγ«ιΈζγθ₯θ
γθ¦γ¦γγ',
|
100 |
+
'label': 0,
|
101 |
+
'heuristics': 'overlap-full',
|
102 |
+
'number_of_NPs': 2,
|
103 |
+
'semtag': 'scrambling'
|
104 |
+
}
|
105 |
+
```
|
106 |
+
|
107 |
+
#### original
|
108 |
+
|
109 |
+
An example of looks as follows:
|
110 |
+
|
111 |
+
```json
|
112 |
+
{
|
113 |
+
'id': 12,
|
114 |
+
'sentence_A_Ja': 'θ₯θ
γγγγγγΌγ«ιΈζγθ¦γ¦γγ',
|
115 |
+
'sentence_B_Ja': 'γγγγγΌγ«ιΈζγθ₯θ
γθ¦γ¦γγ',
|
116 |
+
'entailment_label_Ja': 0,
|
117 |
+
'heuristics': 'overlap-full',
|
118 |
+
'number_of_NPs': 2,
|
119 |
+
'semtag': 'scrambling'
|
120 |
+
}
|
121 |
+
```
|
122 |
+
|
123 |
+
### Data Fields
|
124 |
+
|
125 |
+
#### base
|
126 |
+
|
127 |
+
A version adopting the column names of a typical NLI dataset.
|
128 |
+
|
129 |
+
- `id`: The number of the sentence pair.
|
130 |
+
- `premise`: The premise (sentence_A_Ja).
|
131 |
+
- `hypothesis`: The hypothesis (sentence_B_Ja).
|
132 |
+
- `label`: The correct label for this sentence pair (either `entailment` or `non-entailment`); in the setting described in the paper, non-entailment = neutral + contradiction (entailment_label_Ja).
|
133 |
+
- `heuristics`: The heuristics (structural pattern) tag. The tags are: subsequence, constituent, full-overlap, order-subset, and mixed-subset.
|
134 |
+
- `number_of_NPs`: The number of noun phrase in a sentence.
|
135 |
+
- `semtag`: The linguistic phenomena tag.
|
136 |
+
|
137 |
+
#### original
|
138 |
+
|
139 |
+
The original version retaining the unaltered column names.
|
140 |
+
|
141 |
+
- `id`: The number of the sentence pair.
|
142 |
+
- `sentence_A_Ja`: The premise.
|
143 |
+
- `sentence_B_Ja`: The hypothesis.
|
144 |
+
- `entailment_label_Ja`: The correct label for this sentence pair (either `entailment` or `non-entailment`); in the setting described in the paper, non-entailment = neutral + contradiction
|
145 |
+
- `heuristics`: The heuristics (structural pattern) tag. The tags are: subsequence, constituent, full-overlap, order-subset, and mixed-subset.
|
146 |
+
- `number_of_NPs`: The number of noun phrase in a sentence.
|
147 |
+
- `semtag`: The linguistic phenomena tag.
|
148 |
+
|
149 |
+
|
150 |
+
### Data Splits
|
151 |
+
|
152 |
+
| name | train | validation | test |
|
153 |
+
| -------- | -----: | ---------: | ---: |
|
154 |
+
| base | 13,680 | | 720 |
|
155 |
+
| original | 13,680 | | 720 |
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
### Annotations
|
160 |
|
161 |
The annotation process for this Japanese NLI dataset involves tagging each pair (P, H) of a premise and hypothesis with a label for structural pattern and linguistic phenomenon.
|