repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
tkaitchuck/nupic
external/linux64/lib/python2.6/site-packages/matplotlib/rcsetup.py
69
23344
""" The rcsetup module contains the default values and the validation code for customization using matplotlib's rc settings. Each rc setting is assigned a default value and a function used to validate any attempted changes to that setting. The default values and validation functions are defined in the rcsetup module, and are used to construct the rcParams global object which stores the settings and is referenced throughout matplotlib. These default values should be consistent with the default matplotlibrc file that actually reflects the values given here. Any additions or deletions to the parameter set listed here should also be visited to the :file:`matplotlibrc.template` in matplotlib's root source directory. """ import os import warnings from matplotlib.fontconfig_pattern import parse_fontconfig_pattern from matplotlib.colors import is_color_like #interactive_bk = ['gtk', 'gtkagg', 'gtkcairo', 'fltkagg', 'qtagg', 'qt4agg', # 'tkagg', 'wx', 'wxagg', 'cocoaagg'] # The capitalized forms are needed for ipython at present; this may # change for later versions. interactive_bk = ['GTK', 'GTKAgg', 'GTKCairo', 'FltkAgg', 'MacOSX', 'QtAgg', 'Qt4Agg', 'TkAgg', 'WX', 'WXAgg', 'CocoaAgg'] non_interactive_bk = ['agg', 'cairo', 'emf', 'gdk', 'pdf', 'ps', 'svg', 'template'] all_backends = interactive_bk + non_interactive_bk class ValidateInStrings: def __init__(self, key, valid, ignorecase=False): 'valid is a list of legal strings' self.key = key self.ignorecase = ignorecase def func(s): if ignorecase: return s.lower() else: return s self.valid = dict([(func(k),k) for k in valid]) def __call__(self, s): if self.ignorecase: s = s.lower() if s in self.valid: return self.valid[s] raise ValueError('Unrecognized %s string "%s": valid strings are %s' % (self.key, s, self.valid.values())) def validate_path_exists(s): 'If s is a path, return s, else False' if os.path.exists(s): return s else: raise RuntimeError('"%s" should be a path but it does not exist'%s) def validate_bool(b): 'Convert b to a boolean or raise' if type(b) is str: b = b.lower() if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_bool_maybe_none(b): 'Convert b to a boolean or raise' if type(b) is str: b = b.lower() if b=='none': return None if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_float(s): 'convert s to float or raise' try: return float(s) except ValueError: raise ValueError('Could not convert "%s" to float' % s) def validate_int(s): 'convert s to int or raise' try: return int(s) except ValueError: raise ValueError('Could not convert "%s" to int' % s) def validate_fonttype(s): 'confirm that this is a Postscript of PDF font type that we know how to convert to' fonttypes = { 'type3': 3, 'truetype': 42 } try: fonttype = validate_int(s) except ValueError: if s.lower() in fonttypes.keys(): return fonttypes[s.lower()] raise ValueError('Supported Postscript/PDF font types are %s' % fonttypes.keys()) else: if fonttype not in fonttypes.values(): raise ValueError('Supported Postscript/PDF font types are %s' % fonttypes.values()) return fonttype #validate_backend = ValidateInStrings('backend', all_backends, ignorecase=True) _validate_standard_backends = ValidateInStrings('backend', all_backends, ignorecase=True) def validate_backend(s): if s.startswith('module://'): return s else: return _validate_standard_backends(s) validate_numerix = ValidateInStrings('numerix',[ 'Numeric','numarray','numpy', ], ignorecase=True) validate_toolbar = ValidateInStrings('toolbar',[ 'None','classic','toolbar2', ], ignorecase=True) def validate_autolayout(v): if v: warnings.warn("figure.autolayout is not currently supported") class validate_nseq_float: def __init__(self, n): self.n = n def __call__(self, s): 'return a seq of n floats or raise' if type(s) is str: ss = s.split(',') if len(ss) != self.n: raise ValueError('You must supply exactly %d comma separated values'%self.n) try: return [float(val) for val in ss] except ValueError: raise ValueError('Could not convert all entries to floats') else: assert type(s) in (list,tuple) if len(s) != self.n: raise ValueError('You must supply exactly %d values'%self.n) return [float(val) for val in s] class validate_nseq_int: def __init__(self, n): self.n = n def __call__(self, s): 'return a seq of n ints or raise' if type(s) is str: ss = s.split(',') if len(ss) != self.n: raise ValueError('You must supply exactly %d comma separated values'%self.n) try: return [int(val) for val in ss] except ValueError: raise ValueError('Could not convert all entries to ints') else: assert type(s) in (list,tuple) if len(s) != self.n: raise ValueError('You must supply exactly %d values'%self.n) return [int(val) for val in s] def validate_color(s): 'return a valid color arg' if s.lower() == 'none': return 'None' if is_color_like(s): return s stmp = '#' + s if is_color_like(stmp): return stmp # If it is still valid, it must be a tuple. colorarg = s msg = '' if s.find(',')>=0: # get rid of grouping symbols stmp = ''.join([ c for c in s if c.isdigit() or c=='.' or c==',']) vals = stmp.split(',') if len(vals)!=3: msg = '\nColor tuples must be length 3' else: try: colorarg = [float(val) for val in vals] except ValueError: msg = '\nCould not convert all entries to floats' if not msg and is_color_like(colorarg): return colorarg raise ValueError('%s does not look like a color arg%s'%(s, msg)) def validate_stringlist(s): 'return a list' if type(s) is str: return [ v.strip() for v in s.split(',') ] else: assert type(s) in [list,tuple] return [ str(v) for v in s ] validate_orientation = ValidateInStrings('orientation',[ 'landscape', 'portrait', ]) def validate_aspect(s): if s in ('auto', 'equal'): return s try: return float(s) except ValueError: raise ValueError('not a valid aspect specification') def validate_fontsize(s): if type(s) is str: s = s.lower() if s in ['xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'smaller', 'larger']: return s try: return float(s) except ValueError: raise ValueError('not a valid font size') def validate_font_properties(s): parse_fontconfig_pattern(s) return s validate_fontset = ValidateInStrings('fontset', ['cm', 'stix', 'stixsans', 'custom']) validate_verbose = ValidateInStrings('verbose',[ 'silent', 'helpful', 'debug', 'debug-annoying', ]) validate_cairo_format = ValidateInStrings('cairo_format', ['png', 'ps', 'pdf', 'svg'], ignorecase=True) validate_ps_papersize = ValidateInStrings('ps_papersize',[ 'auto', 'letter', 'legal', 'ledger', 'a0', 'a1', 'a2','a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'b10', ], ignorecase=True) def validate_ps_distiller(s): if type(s) is str: s = s.lower() if s in ('none',None): return None elif s in ('false', False): return False elif s in ('ghostscript', 'xpdf'): return s else: raise ValueError('matplotlibrc ps.usedistiller must either be none, ghostscript or xpdf') validate_joinstyle = ValidateInStrings('joinstyle',['miter', 'round', 'bevel'], ignorecase=True) validate_capstyle = ValidateInStrings('capstyle',['butt', 'round', 'projecting'], ignorecase=True) validate_negative_linestyle = ValidateInStrings('negative_linestyle',['solid', 'dashed'], ignorecase=True) def validate_negative_linestyle_legacy(s): try: res = validate_negative_linestyle(s) return res except ValueError: dashes = validate_nseq_float(2)(s) warnings.warn("Deprecated negative_linestyle specification; use 'solid' or 'dashed'") return (0, dashes) # (offset, (solid, blank)) validate_legend_loc = ValidateInStrings('legend_loc',[ 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center', ], ignorecase=True) class ValidateInterval: """ Value must be in interval """ def __init__(self, vmin, vmax, closedmin=True, closedmax=True): self.vmin = vmin self.vmax = vmax self.cmin = closedmin self.cmax = closedmax def __call__(self, s): try: s = float(s) except: raise RuntimeError('Value must be a float; found "%s"'%s) if self.cmin and s<self.vmin: raise RuntimeError('Value must be >= %f; found "%f"'%(self.vmin, s)) elif not self.cmin and s<=self.vmin: raise RuntimeError('Value must be > %f; found "%f"'%(self.vmin, s)) if self.cmax and s>self.vmax: raise RuntimeError('Value must be <= %f; found "%f"'%(self.vmax, s)) elif not self.cmax and s>=self.vmax: raise RuntimeError('Value must be < %f; found "%f"'%(self.vmax, s)) return s # a map from key -> value, converter defaultParams = { 'backend' : ['Agg', validate_backend], # agg is certainly present 'backend_fallback' : [True, validate_bool], # agg is certainly present 'numerix' : ['numpy', validate_numerix], 'maskedarray' : [False, validate_bool], 'toolbar' : ['toolbar2', validate_toolbar], 'datapath' : [None, validate_path_exists], # handled by _get_data_path_cached 'units' : [False, validate_bool], 'interactive' : [False, validate_bool], 'timezone' : ['UTC', str], # the verbosity setting 'verbose.level' : ['silent', validate_verbose], 'verbose.fileo' : ['sys.stdout', str], # line props 'lines.linewidth' : [1.0, validate_float], # line width in points 'lines.linestyle' : ['-', str], # solid line 'lines.color' : ['b', validate_color], # blue 'lines.marker' : ['None', str], # black 'lines.markeredgewidth' : [0.5, validate_float], 'lines.markersize' : [6, validate_float], # markersize, in points 'lines.antialiased' : [True, validate_bool], # antialised (no jaggies) 'lines.dash_joinstyle' : ['miter', validate_joinstyle], 'lines.solid_joinstyle' : ['miter', validate_joinstyle], 'lines.dash_capstyle' : ['butt', validate_capstyle], 'lines.solid_capstyle' : ['projecting', validate_capstyle], # patch props 'patch.linewidth' : [1.0, validate_float], # line width in points 'patch.edgecolor' : ['k', validate_color], # black 'patch.facecolor' : ['b', validate_color], # blue 'patch.antialiased' : [True, validate_bool], # antialised (no jaggies) # font props 'font.family' : ['sans-serif', str], # used by text object 'font.style' : ['normal', str], # 'font.variant' : ['normal', str], # 'font.stretch' : ['normal', str], # 'font.weight' : ['normal', str], # 'font.size' : [12.0, validate_float], # 'font.serif' : [['Bitstream Vera Serif', 'DejaVu Serif', 'New Century Schoolbook', 'Century Schoolbook L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L','Times New Roman', 'Times','Palatino','Charter','serif'], validate_stringlist], 'font.sans-serif' : [['Bitstream Vera Sans', 'DejaVu Sans', 'Lucida Grande', 'Verdana', 'Geneva', 'Lucid', 'Arial', 'Helvetica', 'Avant Garde', 'sans-serif'], validate_stringlist], 'font.cursive' : [['Apple Chancery','Textile','Zapf Chancery', 'Sand','cursive'], validate_stringlist], 'font.fantasy' : [['Comic Sans MS','Chicago','Charcoal','Impact' 'Western','fantasy'], validate_stringlist], 'font.monospace' : [['Bitstream Vera Sans Mono', 'DejaVu Sans Mono', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier','Fixed', 'Terminal','monospace'], validate_stringlist], # text props 'text.color' : ['k', validate_color], # black 'text.usetex' : [False, validate_bool], 'text.latex.unicode' : [False, validate_bool], 'text.latex.preamble' : [[''], validate_stringlist], 'text.dvipnghack' : [None, validate_bool_maybe_none], 'text.fontstyle' : ['normal', str], 'text.fontangle' : ['normal', str], 'text.fontvariant' : ['normal', str], 'text.fontweight' : ['normal', str], 'text.fontsize' : ['medium', validate_fontsize], 'mathtext.cal' : ['cursive', validate_font_properties], 'mathtext.rm' : ['serif', validate_font_properties], 'mathtext.tt' : ['monospace', validate_font_properties], 'mathtext.it' : ['serif:italic', validate_font_properties], 'mathtext.bf' : ['serif:bold', validate_font_properties], 'mathtext.sf' : ['sans\-serif', validate_font_properties], 'mathtext.fontset' : ['cm', validate_fontset], 'mathtext.fallback_to_cm' : [True, validate_bool], 'image.aspect' : ['equal', validate_aspect], # equal, auto, a number 'image.interpolation' : ['bilinear', str], 'image.cmap' : ['jet', str], # one of gray, jet, etc 'image.lut' : [256, validate_int], # lookup table 'image.origin' : ['upper', str], # lookup table 'image.resample' : [False, validate_bool], 'contour.negative_linestyle' : ['dashed', validate_negative_linestyle_legacy], # axes props 'axes.axisbelow' : [False, validate_bool], 'axes.hold' : [True, validate_bool], 'axes.facecolor' : ['w', validate_color], # background color; white 'axes.edgecolor' : ['k', validate_color], # edge color; black 'axes.linewidth' : [1.0, validate_float], # edge linewidth 'axes.titlesize' : ['large', validate_fontsize], # fontsize of the axes title 'axes.grid' : [False, validate_bool], # display grid or not 'axes.labelsize' : ['medium', validate_fontsize], # fontsize of the x any y labels 'axes.labelcolor' : ['k', validate_color], # color of axis label 'axes.formatter.limits' : [[-7, 7], validate_nseq_int(2)], # use scientific notation if log10 # of the axis range is smaller than the # first or larger than the second 'axes.unicode_minus' : [True, validate_bool], 'polaraxes.grid' : [True, validate_bool], # display polar grid or not #legend properties 'legend.fancybox' : [False,validate_bool], 'legend.loc' : ['upper right',validate_legend_loc], # at some point, this should be changed to 'best' 'legend.isaxes' : [True,validate_bool], # this option is internally ignored - it never served any useful purpose 'legend.numpoints' : [2, validate_int], # the number of points in the legend line 'legend.fontsize' : ['large', validate_fontsize], 'legend.pad' : [0, validate_float], # was 0.2, deprecated; the fractional whitespace inside the legend border 'legend.borderpad' : [0.4, validate_float], # units are fontsize 'legend.markerscale' : [1.0, validate_float], # the relative size of legend markers vs. original # the following dimensions are in axes coords 'legend.labelsep' : [0.010, validate_float], # the vertical space between the legend entries 'legend.handlelen' : [0.05, validate_float], # the length of the legend lines 'legend.handletextsep' : [0.02, validate_float], # the space between the legend line and legend text 'legend.axespad' : [0.02, validate_float], # the border between the axes and legend edge 'legend.shadow' : [False, validate_bool], 'legend.labelspacing' : [0.5, validate_float], # the vertical space between the legend entries 'legend.handlelength' : [2., validate_float], # the length of the legend lines 'legend.handletextpad' : [.8, validate_float], # the space between the legend line and legend text 'legend.borderaxespad' : [0.5, validate_float], # the border between the axes and legend edge 'legend.columnspacing' : [2., validate_float], # the border between the axes and legend edge 'legend.markerscale' : [1.0, validate_float], # the relative size of legend markers vs. original # the following dimensions are in axes coords 'legend.labelsep' : [0.010, validate_float], # the vertical space between the legend entries 'legend.handlelen' : [0.05, validate_float], # the length of the legend lines 'legend.handletextsep' : [0.02, validate_float], # the space between the legend line and legend text 'legend.axespad' : [0.5, validate_float], # the border between the axes and legend edge 'legend.shadow' : [False, validate_bool], # tick properties 'xtick.major.size' : [4, validate_float], # major xtick size in points 'xtick.minor.size' : [2, validate_float], # minor xtick size in points 'xtick.major.pad' : [4, validate_float], # distance to label in points 'xtick.minor.pad' : [4, validate_float], # distance to label in points 'xtick.color' : ['k', validate_color], # color of the xtick labels 'xtick.labelsize' : ['medium', validate_fontsize], # fontsize of the xtick labels 'xtick.direction' : ['in', str], # direction of xticks 'ytick.major.size' : [4, validate_float], # major ytick size in points 'ytick.minor.size' : [2, validate_float], # minor ytick size in points 'ytick.major.pad' : [4, validate_float], # distance to label in points 'ytick.minor.pad' : [4, validate_float], # distance to label in points 'ytick.color' : ['k', validate_color], # color of the ytick labels 'ytick.labelsize' : ['medium', validate_fontsize], # fontsize of the ytick labels 'ytick.direction' : ['in', str], # direction of yticks 'grid.color' : ['k', validate_color], # grid color 'grid.linestyle' : [':', str], # dotted 'grid.linewidth' : [0.5, validate_float], # in points # figure props # figure size in inches: width by height 'figure.figsize' : [ [8.0,6.0], validate_nseq_float(2)], 'figure.dpi' : [ 80, validate_float], # DPI 'figure.facecolor' : [ '0.75', validate_color], # facecolor; scalar gray 'figure.edgecolor' : [ 'w', validate_color], # edgecolor; white 'figure.autolayout' : [ False, validate_autolayout], 'figure.subplot.left' : [0.125, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.right' : [0.9, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.bottom' : [0.1, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.top' : [0.9, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.wspace' : [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], 'figure.subplot.hspace' : [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], 'savefig.dpi' : [100, validate_float], # DPI 'savefig.facecolor' : ['w', validate_color], # facecolor; white 'savefig.edgecolor' : ['w', validate_color], # edgecolor; white 'savefig.orientation' : ['portrait', validate_orientation], # edgecolor; white 'cairo.format' : ['png', validate_cairo_format], 'tk.window_focus' : [False, validate_bool], # Maintain shell focus for TkAgg 'tk.pythoninspect' : [False, validate_bool], # Set PYTHONINSPECT 'ps.papersize' : ['letter', validate_ps_papersize], # Set the papersize/type 'ps.useafm' : [False, validate_bool], # Set PYTHONINSPECT 'ps.usedistiller' : [False, validate_ps_distiller], # use ghostscript or xpdf to distill ps output 'ps.distiller.res' : [6000, validate_int], # dpi 'ps.fonttype' : [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) 'pdf.compression' : [6, validate_int], # compression level from 0 to 9; 0 to disable 'pdf.inheritcolor' : [False, validate_bool], # ignore any color-setting commands from the frontend 'pdf.use14corefonts' : [False, validate_bool], # use only the 14 PDF core fonts # embedded in every PDF viewing application 'pdf.fonttype' : [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) 'svg.image_inline' : [True, validate_bool], # write raster image data directly into the svg file 'svg.image_noscale' : [False, validate_bool], # suppress scaling of raster data embedded in SVG 'svg.embed_char_paths' : [True, validate_bool], # True to save all characters as paths in the SVG 'docstring.hardcopy' : [False, validate_bool], # set this when you want to generate hardcopy docstring 'plugins.directory' : ['.matplotlib_plugins', str], # where plugin directory is locate 'path.simplify' : [False, validate_bool], 'agg.path.chunksize' : [0, validate_int] # 0 to disable chunking; # recommend about 20000 to # enable. Experimental. } if __name__ == '__main__': rc = defaultParams rc['datapath'][0] = '/' for key in rc: if not rc[key][1](rc[key][0]) == rc[key][0]: print "%s: %s != %s"%(key, rc[key][1](rc[key][0]), rc[key][0])
gpl-3.0
aneic/aneic-scripts
130219_01_mfm_sigma_1.0_a_1.001_1_cv_5/analysis_mfm_cv.py
1
5981
import pandas as pd import numpy as np import pickle import gzip from glob import glob from collections import defaultdict import sys sys.path.append('./aneic-core/src') import aneic.mfm as mfm # oracle grouping as specified by amy oracle = \ [['BM118218_C20', 'BM118250_C19', 'BM118252_C18', 'BM118219_C16', 'BM118251_C17', 'BM118158_C15', 'BM118159_C12'], ['BM8015', 'BM8007', '59.107.107_Met'], ['BM9760', 'BM7995', 'BM10447', '65.924Bost'], ['BM126667_S176', 'BM118234_S172', 'BM118233_S173', 'BM126666_S175', 'BM118238_S174', 'BM126963_S192', 'BM118237_S193', 'BM118198_S197', 'BM118228_U6_plLXXI', 'BM118217_T5', 'BM118236_S212_Fig1full', 'BM118236_S212_Fig2frg', 'BM1 18230_S181', 'BM118193_S198', 'BM118203_S190', 'BM118202_S194', 'BM118181_S182', 'BM118229_U7', 'BM118231_S213_fig1', 'BM118197_S207_fig1', 'BM118197_S207_fig2', 'BM126675_S206_fig1Dark', 'BM126675_S206_fig2Light', 'BM126676_S209a-b'] ] # run options opts = { # run series 'series' : '130219_01', # prefix for saving file 'outdir' : 'results', # dataset to load from 'data' : './aneic-core/data/levantine_corpus_gansell.csv', # any strings to match to empty field 'na_values' : ['', ' '], } if __name__ == '__main__': # load data data = pd.read_csv('./%s' %(opts['data']), index_col=0, na_values=opts['na_values']) site = mfm.convert_indicator(pd.DataFrame(data['Site'], columns=['Site'])) data = data.drop(['Site'], axis=1) # split real and cat feats cat = mfm.convert_indicator(data[data.columns[data.dtypes == np.object]]) real = data[data.columns[data.dtypes == np.float64]] # number of examples N = data.shape[0] # run results best = defaultdict(lambda: defaultdict(lambda: {})) site_counts = defaultdict(lambda: defaultdict(lambda: {})) L = defaultdict(lambda: defaultdict(lambda: 0.0)) Lh = defaultdict(lambda: defaultdict(lambda: 0.0)) l = defaultdict(lambda: defaultdict(lambda: 0.0)) lh = defaultdict(lambda: defaultdict(lambda: 0.0)) kl_g = defaultdict(lambda: defaultdict(lambda: 0.0)) d_g = defaultdict(lambda: defaultdict(lambda: 0.0)) e_g = defaultdict(lambda: defaultdict(lambda: 0.0)) for f in glob('results/*best*.pk.gz'): K = np.int(f.split('_')[2][1:]) a = np.float(f.split('_')[3][1:]) fold = np.int(f.split('_')[4][4:]) best[a][K][fold] = pickle.load(gzip.open(f)) L[a][K] += best[a][K][fold]['L'][-1] Lh[a][K] += best[a][K][fold]['L_test'] # log joint of held out data u = best[a][K][fold]['u'] theta = best[a][K][fold]['theta'] real = best[a][K][fold]['real'] cat = best[a][K][fold]['cat'] l[a][K] += best[a][K][fold]['L'][-1] \ - mfm._log_pq(theta['mu'], theta['l'], theta['rho'], theta['pi'], u['a'], u['b']).sum() lh[a][K] += best[a][K][fold]['L_test'] \ - mfm._log_pq(theta['mu'], theta['l'], theta['rho'], theta['pi'], u['a'], u['b']).sum() # agreement with oracle gamma = best[a][K][fold]['gamma'] flat = lambda iterable: [i for it in iterable for i in it] o_index = pd.Index([o for o in flat(oracle) if o in gamma.index]) o_z = np.array([z for z,o_clust in enumerate(oracle) for o in o_clust if o in gamma.index]) o_gamma = pd.DataFrame((o_z[:,None]==np.arange(len(oracle))[None,:]).astype('i'), index=o_index) kl_g[a][K] += mfm.kl_gamma(gamma, o_gamma, eps=1) d_g[a][K] += mfm.d_gamma(gamma, o_gamma) e_g[a][K] += mfm.err_gamma(gamma, o_gamma) # correlation of sites with clustering site_counts[a][K][fold] = pd.concat([(gamma[k].T * site.T).sum(1) for k in gamma], axis=1) c_NA = defaultdict(lambda: defaultdict(lambda: 0.0)) c_AK = defaultdict(lambda: defaultdict(lambda: 0.0)) c_KN = defaultdict(lambda: defaultdict(lambda: 0.0)) for a in site_counts: for k in site_counts[a]: S = site.shape[1] s_counts = np.zeros((S,S,2)) for f in site_counts[a][k]: # s_c[s,k] = number of observations at site s in state k s_c = np.array(site_counts[a][k][f]) # p(z=k | l=s) pk_s = mfm.norm(s_c + 1e-6, 1).T # p(z1=k,z2=l | l1=s, l2=t) pkl_st = pk_s[:,None,:,None] * pk_s[None,:,None,:] # pi_st = sum_k p(z1=k, z2=k | l1=s, l2=t) pi_st = np.sum([pkl_st[l,l,:,:] for l in range(s_c.shape[1])], 0) # pi_st[:,:,1] = 1 - sum_k p(z1=k, z2=k | l1=s, l2=t) s_counts[:,:,0] += pi_st s_counts[:,:,1] += 1 - pi_st s_corr = pd.DataFrame(mfm.norm(s_counts, 2)[:,:,0], index=site.columns.levels[1], columns=site.columns.levels[1]) c_AK[a][k] = s_corr.ix['ArslanTash', 'Khorsabad'] c_KN[a][k] = s_corr.ix['Khorsabad', 'Nimrud'] c_NA[a][k] = s_corr.ix['Nimrud', 'ArslanTash'] # L = pd.DataFrame(L) # Lh = pd.DataFrame(Lh) # lh = pd.DataFrame(lh) # l = pd.DataFrame(l) # kl_g = pd.DataFrame(kl_g) # for var in ['d_g', 'e_g', 'c_AK', 'c_KN', 'c_NA']: # locals()[var] = pd.DataFrame(locals()[var]) / 5 # L = pd.concat([pd.DataFrame(L[a], index=L[a], columns=[a]) # for a in L], axis=1).reindex(columns=sorted(L)) # Lh = pd.concat([pd.DataFrame(Lh[s], index=Lh[a], columns=[a]) # for a in Lh], axis=1).reindex(columns=sorted(Lh)) # a = pd.concat([pd.DataFrame([best[a][k][0]['u']['a'] # for k in best[s]], index=best[a], columns=[a]) # for a in best], axis=1).reindex(columns=sorted(best))
mit
ntucllab/libact
examples/plot.py
1
3390
#!/usr/bin/env python3 """ The script helps guide the users to quickly understand how to use libact by going through a simple active learning task with clear descriptions. """ import copy import os import numpy as np import matplotlib.pyplot as plt try: from sklearn.model_selection import train_test_split except ImportError: from sklearn.cross_validation import train_test_split # libact classes from libact.base.dataset import Dataset, import_libsvm_sparse from libact.models import LogisticRegression from libact.query_strategies import RandomSampling, UncertaintySampling from libact.labelers import IdealLabeler def run(trn_ds, tst_ds, lbr, model, qs, quota): E_in, E_out = [], [] for _ in range(quota): # Standard usage of libact objects ask_id = qs.make_query() lb = lbr.label(trn_ds.data[ask_id][0]) trn_ds.update(ask_id, lb) model.train(trn_ds) E_in = np.append(E_in, 1 - model.score(trn_ds)) E_out = np.append(E_out, 1 - model.score(tst_ds)) return E_in, E_out def split_train_test(dataset_filepath, test_size, n_labeled): X, y = import_libsvm_sparse(dataset_filepath).format_sklearn() X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=test_size) trn_ds = Dataset(X_train, np.concatenate( [y_train[:n_labeled], [None] * (len(y_train) - n_labeled)])) tst_ds = Dataset(X_test, y_test) fully_labeled_trn_ds = Dataset(X_train, y_train) return trn_ds, tst_ds, y_train, fully_labeled_trn_ds def main(): # Specifiy the parameters here: # path to your binary classification dataset dataset_filepath = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'diabetes.txt') test_size = 0.33 # the percentage of samples in the dataset that will be # randomly selected and assigned to the test set n_labeled = 10 # number of samples that are initially labeled # Load dataset trn_ds, tst_ds, y_train, fully_labeled_trn_ds = \ split_train_test(dataset_filepath, test_size, n_labeled) trn_ds2 = copy.deepcopy(trn_ds) lbr = IdealLabeler(fully_labeled_trn_ds) quota = len(y_train) - n_labeled # number of samples to query # Comparing UncertaintySampling strategy with RandomSampling. # model is the base learner, e.g. LogisticRegression, SVM ... etc. qs = UncertaintySampling(trn_ds, method='lc', model=LogisticRegression()) model = LogisticRegression() E_in_1, E_out_1 = run(trn_ds, tst_ds, lbr, model, qs, quota) qs2 = RandomSampling(trn_ds2) model = LogisticRegression() E_in_2, E_out_2 = run(trn_ds2, tst_ds, lbr, model, qs2, quota) # Plot the learning curve of UncertaintySampling to RandomSampling # The x-axis is the number of queries, and the y-axis is the corresponding # error rate. query_num = np.arange(1, quota + 1) plt.plot(query_num, E_in_1, 'b', label='qs Ein') plt.plot(query_num, E_in_2, 'r', label='random Ein') plt.plot(query_num, E_out_1, 'g', label='qs Eout') plt.plot(query_num, E_out_2, 'k', label='random Eout') plt.xlabel('Number of Queries') plt.ylabel('Error') plt.title('Experiment Result') plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), fancybox=True, shadow=True, ncol=5) plt.show() if __name__ == '__main__': main()
bsd-2-clause
AlexRobson/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
osvaldshpengler/BuildingMachineLearningSystemsWithPython
ch06/03_clean.py
22
5972
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # # This script tries to improve the classifier by cleaning the tweets a bit # import time start_time = time.time() import re import numpy as np from sklearn.metrics import precision_recall_curve, roc_curve, auc from sklearn.cross_validation import ShuffleSplit from sklearn.pipeline import Pipeline from utils import plot_pr from utils import load_sanders_data from utils import tweak_labels from utils import log_false_positives from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from utils import load_sent_word_net sent_word_net = load_sent_word_net() phase = "03" emo_repl = { # positive emoticons "&lt;3": " good ", ":d": " good ", # :D in lower case ":dd": " good ", # :DD in lower case "8)": " good ", ":-)": " good ", ":)": " good ", ";)": " good ", "(-:": " good ", "(:": " good ", # negative emoticons: ":/": " bad ", ":&gt;": " sad ", ":')": " sad ", ":-(": " bad ", ":(": " bad ", ":S": " bad ", ":-S": " bad ", } emo_repl_order = [k for (k_len, k) in reversed( sorted([(len(k), k) for k in list(emo_repl.keys())]))] re_repl = { r"\br\b": "are", r"\bu\b": "you", r"\bhaha\b": "ha", r"\bhahaha\b": "ha", r"\bdon't\b": "do not", r"\bdoesn't\b": "does not", r"\bdidn't\b": "did not", r"\bhasn't\b": "has not", r"\bhaven't\b": "have not", r"\bhadn't\b": "had not", r"\bwon't\b": "will not", r"\bwouldn't\b": "would not", r"\bcan't\b": "can not", r"\bcannot\b": "can not", } def create_ngram_model(params=None): def preprocessor(tweet): global emoticons_replaced tweet = tweet.lower() for k in emo_repl_order: tweet = tweet.replace(k, emo_repl[k]) for r, repl in re_repl.items(): tweet = re.sub(r, repl, tweet) return tweet tfidf_ngrams = TfidfVectorizer(preprocessor=preprocessor, analyzer="word") clf = MultinomialNB() pipeline = Pipeline([('tfidf', tfidf_ngrams), ('clf', clf)]) if params: pipeline.set_params(**params) return pipeline def train_model(clf, X, Y, name="NB ngram", plot=False): # create it again for plotting cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, random_state=0) train_errors = [] test_errors = [] scores = [] pr_scores = [] precisions, recalls, thresholds = [], [], [] clfs = [] # just to later get the median for train, test in cv: X_train, y_train = X[train], Y[train] X_test, y_test = X[test], Y[test] clf.fit(X_train, y_train) clfs.append(clf) train_score = clf.score(X_train, y_train) test_score = clf.score(X_test, y_test) train_errors.append(1 - train_score) test_errors.append(1 - test_score) scores.append(test_score) proba = clf.predict_proba(X_test) fpr, tpr, roc_thresholds = roc_curve(y_test, proba[:, 1]) precision, recall, pr_thresholds = precision_recall_curve( y_test, proba[:, 1]) pr_scores.append(auc(recall, precision)) precisions.append(precision) recalls.append(recall) thresholds.append(pr_thresholds) if plot: scores_to_sort = pr_scores median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2] plot_pr(pr_scores[median], name, phase, precisions[median], recalls[median], label=name) log_false_positives(clfs[median], X_test, y_test, name) summary = (np.mean(scores), np.std(scores), np.mean(pr_scores), np.std(pr_scores)) print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary) return np.mean(train_errors), np.mean(test_errors) def print_incorrect(clf, X, Y): Y_hat = clf.predict(X) wrong_idx = Y_hat != Y X_wrong = X[wrong_idx] Y_wrong = Y[wrong_idx] Y_hat_wrong = Y_hat[wrong_idx] for idx in range(len(X_wrong)): print("clf.predict('%s')=%i instead of %i" % (X_wrong[idx], Y_hat_wrong[idx], Y_wrong[idx])) def get_best_model(): best_params = dict(tfidf__ngram_range=(1, 2), tfidf__min_df=1, tfidf__stop_words=None, tfidf__smooth_idf=False, tfidf__use_idf=False, tfidf__sublinear_tf=True, tfidf__binary=False, clf__alpha=0.01, ) best_clf = create_ngram_model(best_params) return best_clf if __name__ == "__main__": X_orig, Y_orig = load_sanders_data() classes = np.unique(Y_orig) for c in classes: print("#%s: %i" % (c, sum(Y_orig == c))) print("== Pos vs. neg ==") pos_neg = np.logical_or(Y_orig == "positive", Y_orig == "negative") X = X_orig[pos_neg] Y = Y_orig[pos_neg] Y = tweak_labels(Y, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs neg", plot=True) print("== Pos/neg vs. irrelevant/neutral ==") X = X_orig Y = tweak_labels(Y_orig, ["positive", "negative"]) # best_clf = grid_search_model(create_union_model, X, Y, name="sent vs # rest", plot=True) train_model(get_best_model(), X, Y, name="pos+neg vs rest", plot=True) print("== Pos vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["positive"]) train_model(get_best_model(), X, Y, name="pos vs rest", plot=True) print("== Neg vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["negative"]) train_model(get_best_model(), X, Y, name="neg vs rest", plot=True) print("time spent:", time.time() - start_time)
mit
jorge2703/scikit-learn
examples/ensemble/plot_forest_importances_faces.py
403
1519
""" ================================================= Pixel importances with a parallel forest of trees ================================================= This example shows the use of forests of trees to evaluate the importance of the pixels in an image classification task (faces). The hotter the pixel, the more important. The code below also illustrates how the construction and the computation of the predictions can be parallelized within multiple jobs. """ print(__doc__) from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesClassifier # Number of cores to use to perform parallel fitting of the forest model n_jobs = 1 # Load the faces dataset data = fetch_olivetti_faces() X = data.images.reshape((len(data.images), -1)) y = data.target mask = y < 5 # Limit to 5 classes X = X[mask] y = y[mask] # Build a forest and compute the pixel importances print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs) t0 = time() forest = ExtraTreesClassifier(n_estimators=1000, max_features=128, n_jobs=n_jobs, random_state=0) forest.fit(X, y) print("done in %0.3fs" % (time() - t0)) importances = forest.feature_importances_ importances = importances.reshape(data.images[0].shape) # Plot pixel importances plt.matshow(importances, cmap=plt.cm.hot) plt.title("Pixel importances with forests of trees") plt.show()
bsd-3-clause
rexshihaoren/scikit-learn
examples/svm/plot_custom_kernel.py
115
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(x, y): """ We create a custom kernel: (2 0) k(x, y) = x ( ) y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(x, M), y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
SciTools/iris
lib/iris/tests/unit/plot/test_outline.py
5
2482
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """Unit tests for the `iris.plot.outline` function.""" # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import numpy as np from iris.tests.stock import simple_2d from iris.tests.unit.plot import TestGraphicStringCoord, MixinCoords if tests.MPL_AVAILABLE: import iris.plot as iplt @tests.skip_plot class TestStringCoordPlot(TestGraphicStringCoord): def test_yaxis_labels(self): iplt.outline(self.cube, coords=("bar", "str_coord")) self.assertBoundsTickLabels("yaxis") def test_xaxis_labels(self): iplt.outline(self.cube, coords=("str_coord", "bar")) self.assertBoundsTickLabels("xaxis") def test_xaxis_labels_with_axes(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim(0, 3) iplt.outline(self.cube, coords=("str_coord", "bar"), axes=ax) plt.close(fig) self.assertPointsTickLabels("xaxis", ax) def test_yaxis_labels_with_axes(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) ax.set_ylim(0, 3) iplt.outline(self.cube, axes=ax, coords=("bar", "str_coord")) plt.close(fig) self.assertPointsTickLabels("yaxis", ax) def test_geoaxes_exception(self): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) self.assertRaises(TypeError, iplt.outline, self.lat_lon_cube, axes=ax) plt.close(fig) @tests.skip_plot class TestCoords(tests.IrisTest, MixinCoords): def setUp(self): # We have a 2d cube with dimensionality (bar: 3; foo: 4) self.cube = simple_2d(with_bounds=True) coord = self.cube.coord("foo") self.foo = coord.contiguous_bounds() self.foo_index = np.arange(coord.points.size + 1) coord = self.cube.coord("bar") self.bar = coord.contiguous_bounds() self.bar_index = np.arange(coord.points.size + 1) self.data = self.cube.data self.dataT = self.data.T self.mpl_patch = self.patch("matplotlib.pyplot.pcolormesh") self.draw_func = iplt.outline if __name__ == "__main__": tests.main()
lgpl-3.0
etkirsch/scikit-learn
examples/applications/plot_tomography_l1_reconstruction.py
204
5442
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x] center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36. x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return res - ndimage.binary_erosion(res) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
maxlikely/scikit-learn
examples/svm/plot_svm_kernels.py
4
1930
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly seperable. """ print(__doc__) # Code source: Gael Varoqueux # License: BSD import numpy as np import pylab as pl from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane pl.figure(fignum, figsize=(4, 3)) pl.clf() pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) pl.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=pl.cm.Paired) pl.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) pl.figure(fignum, figsize=(4, 3)) pl.pcolormesh(XX, YY, Z > 0, cmap=pl.cm.Paired) pl.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) pl.xlim(x_min, x_max) pl.ylim(y_min, y_max) pl.xticks(()) pl.yticks(()) fignum = fignum + 1 pl.show()
bsd-3-clause
newville/scikit-image
doc/examples/plot_edge_filter.py
14
2258
""" ============== Edge operators ============== Edge operators are used in image processing within edge detection algorithms. They are discrete differentiation operators, computing an approximation of the gradient of the image intensity function. """ import numpy as np import matplotlib.pyplot as plt from skimage.data import camera from skimage.filters import roberts, sobel, scharr image = camera() edge_roberts = roberts(image) edge_sobel = sobel(image) fig, (ax0, ax1) = plt.subplots(ncols=2) ax0.imshow(edge_roberts, cmap=plt.cm.gray) ax0.set_title('Roberts Edge Detection') ax0.axis('off') ax1.imshow(edge_sobel, cmap=plt.cm.gray) ax1.set_title('Sobel Edge Detection') ax1.axis('off') plt.tight_layout() """ .. image:: PLOT2RST.current_figure Different operators compute different finite-difference approximations of the gradient. For example, the Scharr filter results in a better rotational variance than other filters such as the Sobel filter [1]_ [2]_. The difference between the two filters is illustrated below on an image that is the discretization of a rotation-invariant continuous function. The discrepancy between the two filters is stronger for regions of the image where the direction of the gradient is close to diagonal, and for regions with high spatial frequencies. .. [1] http://en.wikipedia.org/wiki/Sobel_operator#Alternative_operators .. [2] B. Jaehne, H. Scharr, and S. Koerkel. Principles of filter design. In Handbook of Computer Vision and Applications. Academic Press, 1999. """ x, y = np.ogrid[:100, :100] # Rotation-invariant image with different spatial frequencies img = np.exp(1j * np.hypot(x, y)**1.3 / 20.).real edge_sobel = sobel(img) edge_scharr = scharr(img) fig, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2) ax0.imshow(edge_sobel, cmap=plt.cm.gray) ax0.set_title('Sobel Edge Detection') ax0.axis('off') ax1.imshow(edge_scharr, cmap=plt.cm.gray) ax1.set_title('Scharr Edge Detection') ax1.axis('off') ax2.imshow(img, cmap=plt.cm.gray) ax2.set_title('Original image') ax2.axis('off') ax3.imshow(edge_scharr - edge_sobel, cmap=plt.cm.jet) ax3.set_title('difference (Scharr - Sobel)') ax3.axis('off') plt.tight_layout() plt.show() """ .. image:: PLOT2RST.current_figure """
bsd-3-clause
ashhher3/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
calhewitt/lucid-utils
lucid_utils/frameplot.py
2
1871
import matplotlib as mpl import os if not "DISPLAY" in os.environ: # Make MPL Work if no display is available mpl.use('Agg') from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.backends.backend_agg import FigureCanvasAgg def get_image(frame, colourmode = "BW", normalise=False): fig = plt.figure(frameon=False, figsize=(256,256), dpi=1) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) cmap = cm.hot cmap.set_under("#82bcff") vm = np.max(frame) if (np.count_nonzero(frame) > 0) else 2 ax.imshow(frame, vmin = 1, vmax=vm, cmap = cmap, interpolation='none') canvas = plt.get_current_fig_manager().canvas agg = canvas.switch_backends(FigureCanvasAgg) agg.draw() s = agg.tostring_rgb() l, b, w, h = agg.figure.bbox.bounds w, h = int(w), int(h) X = np.fromstring(s, np.uint8) X.shape = h, w, 3 plt.close() try: im = Image.fromstring("RGB", (w, h), s) except Exception: im = Image.frombytes("RGB", (w, h), s) return im def show_frame(frame): if not "DISPLAY" in os.environ: raise Exception("No display available") fig, ax = plt.subplots() cmap = cm.hot cmap.set_under("#82bcff") vm = np.max(frame) if (np.count_nonzero(frame) > 0) else 2 cax = ax.imshow(frame, vmin = 1, vmax=vm, cmap = cmap, interpolation='none') fig.colorbar(cax) plt.show() def fig_frame(frame): fig, ax = plt.subplots() cmap = cm.hot cmap.set_under("#82bcff") vm = np.max(frame) if (np.count_nonzero(frame) > 0) else 2 cax = ax.imshow(frame, vmin = 1, vmax=vm, cmap = cmap, interpolation='none') fig.colorbar(cax) return fig def show_blob(blob): xs, ys = zip(*blob) sizex, sizey = max(xs) - min(xs), max(ys) - min(ys) toshow = np.zeros((sizex+3,sizey+3)) for i in range(len(xs)): toshow[1 + xs[i] - min(xs)][1 + ys[i] - min(ys)] = 1 show_frame(toshow)
mit
arboreus/exercises
nn_test_part4.py
1
10249
#%% Clear variable list def clearall(): """clear all globals""" for uniquevar in [var for var in globals().copy() if var[0] != "_" and var != 'clearall']: del globals()[uniquevar] clearall() #%% # Python imports import numpy as np # Matrix and vector computation package import matplotlib.pyplot as plt # Plotting library from matplotlib.colors import colorConverter, ListedColormap # some plotting functions from mpl_toolkits.mplot3d import Axes3D # 3D plots from matplotlib import cm # Colormaps import seaborn as sns # Allow matplotlib to plot inside this notebook #%matplotlib inline # Set the seed of the numpy random number generator so that the tutorial is reproducable np.random.seed(seed=1) #%% # Define and generate the samples nb_of_samples_per_class = 50 # The number of sample in each class # Generate blue samples blue_mean = [0,0] # The mean of the blue class blue_std_dev = 0.3 # standard deviation of blue class x_blue = np.random.randn(nb_of_samples_per_class, 2) * blue_std_dev + blue_mean # Generate red samples as circle around blue samples red_radius_mean = 1.3 # mean of the radius red_radius_std_dev = 0.2 # standard deviation of the radius red_rand_radius = np.random.randn(nb_of_samples_per_class) * red_radius_std_dev + red_radius_mean red_rand_angle = 2 * np.pi * np.random.rand(nb_of_samples_per_class); x_red = np.asmatrix([red_rand_radius * np.cos(red_rand_angle), red_rand_radius * np.sin(red_rand_angle)]).T # Define target vectors for blue and red t_blue_vector = np.asarray([1, 0]) t_red_vector = np.asarray([0, 1]) # Define the full target matrix for each class t_blue = np.tile(t_blue_vector, (nb_of_samples_per_class, 1)) t_red = np.tile(t_red_vector, (nb_of_samples_per_class, 1)) # Merge samples in set of input variables x, and corresponding set of # output variables t X = np.vstack((x_blue, x_red)) T = np.vstack((t_blue, t_red)) # Plot both classes on the x1, x2 plane plt.plot(x_red[:,0], x_red[:,1], 'ro', label='class red') plt.plot(x_blue[:,0], x_blue[:,1], 'bo', label='class blue') plt.grid() plt.legend(loc=2) plt.xlabel('$x_1$', fontsize=15) plt.ylabel('$x_2$', fontsize=15) plt.axis([-2, 2, -2, 2]) plt.title('red vs blue classes in the input space') plt.show() #%% # Define the logistic function def logistic(z): return 1 / (1 + np.exp(-z)) # Define the softmax function def softmax(z): return np.exp(z) / np.sum(np.exp(z), axis=1) # Function to compute the hidden activations def hidden_activations(X, Wh, bh): return logistic(X * Wh + bh) # Define output layer feedforward def output_activations(H, Wo, bo): return softmax(H * Wo + bo) # Define the neural network function def nn(X, Wh, bh, Wo, bo): return output_activations(hidden_activations(X, Wh, bh), Wo, bo) # Define the neural network prediction function that only returns # 1 or 0 depending on the predicted class def nn_predict(X, Wh, bh, Wo, bo): return np.around(nn(X, Wh, bh, Wo, bo)) # Define the cost function def cost(Y, T): return - np.multiply(T, np.log(Y)).sum() # Define the error function at the output def error_output(Y, T): return Y - T # Define the gradient function for the weight parameters at the output layer def gradient_weight_out(H, Eo): return H.T * Eo # Define the gradient function for the bias parameters at the output layer def gradient_bias_out(Eo): return np.sum(Eo, axis=0) # Define the error function at the hidden layer def error_hidden(H, Wo, Eo): # H * (1-H) * (E . Wo^T) return np.multiply(np.multiply(H,(1 - H)), Eo.dot(Wo.T)) # Define the gradient function for the weight parameters at the hidden layer def gradient_weight_hidden(X, Eh): return X.T * Eh # Define the gradient function for the bias parameters at the output layer def gradient_bias_hidden(Eh): return np.sum(Eh, axis=0) #%% # Initialize weights and biases init_var = 1 # Initialize hidden layer parameters bh = np.random.randn(1, 3) * init_var Wh = np.random.randn(2, 3) * init_var # Initialize output layer parameters bo = np.random.randn(1, 2) * init_var Wo = np.random.randn(3, 2) * init_var # Compute the gradients by backpropagation # Compute the activations of the layers H = hidden_activations(X, Wh, bh) Y = output_activations(H, Wo, bo) # Compute the gradients of the output layer Eo = error_output(Y, T) JWo = gradient_weight_out(H, Eo) Jbo = gradient_bias_out(Eo) # Compute the gradients of the hidden layer Eh = error_hidden(H, Wo, Eo) JWh = gradient_weight_hidden(X, Eh) Jbh = gradient_bias_hidden(Eh) # Combine all parameter matrices in a list params = [Wh, bh, Wo, bo] # Combine all parameter gradients in a list grad_params = [JWh, Jbh, JWo, Jbo] # Set the small change to compute the numerical gradient eps = 0.0001 # Check each parameter matrix for p_idx in range(len(params)): # Check each parameter in each parameter matrix for row in range(params[p_idx].shape[0]): for col in range(params[p_idx].shape[1]): # Copy the parameter matrix and change the current parameter slightly p_matrix_min = params[p_idx].copy() p_matrix_min[row,col] -= eps p_matrix_plus = params[p_idx].copy() p_matrix_plus[row,col] += eps # Copy the parameter list, and change the updated parameter matrix params_min = params[:] params_min[p_idx] = p_matrix_min params_plus = params[:] params_plus[p_idx] = p_matrix_plus # Compute the numerical gradient grad_num = (cost(nn(X, *params_plus), T)-cost(nn(X, *params_min), T))/(2*eps) print('backprop gradient: {:.6f} ; numerical gradient {:.6f}'.format(grad_params[p_idx][row,col], grad_num)) # Raise error if the numerical grade is not close to the backprop gradient if not np.isclose(grad_num, grad_params[p_idx][row,col]): raise ValueError('Numerical gradient is not close to the backpropagation gradient!') #%% # Define the update function to update the network parameters over 1 iteration def backprop_gradients(X, T, Wh, bh, Wo, bo): # Compute the output of the network # Compute the activations of the layers H = hidden_activations(X, Wh, bh) Y = output_activations(H, Wo, bo) # Compute the gradients of the output layer Eo = error_output(Y, T) JWo = gradient_weight_out(H, Eo) Jbo = gradient_bias_out(Eo) # Compute the gradients of the hidden layer Eh = error_hidden(H, Wo, Eo) JWh = gradient_weight_hidden(X, Eh) Jbh = gradient_bias_hidden(Eh) return [JWh, Jbh, JWo, Jbo] def update_velocity(X, T, ls_of_params, Vs, momentum_term, learning_rate): # ls_of_params = [Wh, bh, Wo, bo] # Js = [JWh, Jbh, JWo, Jbo] Js = backprop_gradients(X, T, *ls_of_params) return [momentum_term * V - learning_rate * J for V,J in zip(Vs, Js)] def update_params(ls_of_params, Vs): # ls_of_params = [Wh, bh, Wo, bo] # Vs = [VWh, Vbh, VWo, Vbo] return [P + V for P,V in zip(ls_of_params, Vs)] # Run backpropagation # Initialize weights and biases init_var = 0.1 # Initialize hidden layer parameters bh = np.random.randn(1, 3) * init_var Wh = np.random.randn(2, 3) * init_var # Initialize output layer parameters bo = np.random.randn(1, 2) * init_var Wo = np.random.randn(3, 2) * init_var # Parameters are already initilized randomly with the gradient checking # Set the learning rate learning_rate = 0.02 momentum_term = 0.9 # define the velocities Vs = [VWh, Vbh, VWo, Vbo] Vs = [np.zeros_like(M) for M in [Wh, bh, Wo, bo]] # Start the gradient descent updates and plot the iterations nb_of_iterations = 300 # number of gradient descent updates lr_update = learning_rate / nb_of_iterations # learning rate update rule ls_costs = [] # list of cost over the iterations for i in range(nb_of_iterations): # Add the current cost to the cost list current_cost = cost(nn(X, Wh, bh, Wo, bo), T) ls_costs.append(current_cost) Vs = update_velocity(X, T, [Wh, bh, Wo, bo], Vs, momentum_term, learning_rate) Wh, bh, Wo, bo = update_params([Wh, bh, Wo, bo], Vs) # Add the final cost to the cost list ls_costs.append(cost(nn(X, Wh, bh, Wo, bo), T)) # Plot the cost over the iterations plt.plot(ls_costs, 'b-') plt.xlabel('iteration') plt.ylabel('$\\xi$', fontsize=15) plt.title('Decrease of cost over backprop iteration') plt.grid() plt.show() #%% # Plot the resulting decision boundary # Generate a grid over the input space to plot the color of the # classification at that grid point nb_of_xs = 200 xs1 = np.linspace(-2, 2, num=nb_of_xs) xs2 = np.linspace(-2, 2, num=nb_of_xs) xx, yy = np.meshgrid(xs1, xs2) # create the grid # Initialize and fill the classification plane classification_plane = np.zeros((nb_of_xs, nb_of_xs)) for i in range(nb_of_xs): for j in range(nb_of_xs): pred = nn_predict(np.asmatrix([xx[i,j], yy[i,j]]), Wh, bh, Wo, bo) classification_plane[i,j] = pred[0,0] # Create a color map to show the classification colors of each grid point cmap = ListedColormap([ colorConverter.to_rgba('r', alpha=0.30), colorConverter.to_rgba('b', alpha=0.30)]) # Plot the classification plane with decision boundary and input samples plt.contourf(xx, yy, classification_plane, cmap=cmap) # Plot both classes on the x1, x2 plane plt.plot(x_red[:,0], x_red[:,1], 'ro', label='class red') plt.plot(x_blue[:,0], x_blue[:,1], 'bo', label='class blue') plt.grid() plt.legend(loc=2) plt.xlabel('$x_1$', fontsize=15) plt.ylabel('$x_2$', fontsize=15) plt.axis([-2, 2, -2, 2]) plt.title('red vs blue classification boundary') plt.show() #%% # Define the projections of the blue and red classes H_blue = hidden_activations(x_blue, Wh, bh) H_red = hidden_activations(x_red, Wh, bh) # Plot the error surface fig = plt.figure() ax = Axes3D(fig) ax.plot(np.ravel(H_blue[:,0]), np.ravel(H_blue[:,1]), np.ravel(H_blue[:,2]), 'bo') ax.plot(np.ravel(H_red[:,0]), np.ravel(H_red[:,1]), np.ravel(H_red[:,2]), 'ro') ax.set_xlabel('$h_1$', fontsize=15) ax.set_ylabel('$h_2$', fontsize=15) ax.set_zlabel('$h_3$', fontsize=15) ax.view_init(elev=10, azim=-40) plt.title('Projection of the input X onto the hidden layer H') plt.grid() plt.show()
mit
phdowling/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
alekz112/statsmodels
statsmodels/datasets/grunfeld/data.py
24
2794
"""Grunfeld (1950) Investment Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = __doc__ SOURCE = """This is the Grunfeld (1950) Investment Data. The source for the data was the original 11-firm data set from Grunfeld's Ph.D. thesis recreated by Kleiber and Zeileis (2008) "The Grunfeld Data at 50". The data can be found here. http://statmath.wu-wien.ac.at/~zeileis/grunfeld/ For a note on the many versions of the Grunfeld data circulating see: http://www.stanford.edu/~clint/bench/grunfeld.htm """ DESCRSHORT = """Grunfeld (1950) Investment Data for 11 U.S. Firms.""" DESCRLONG = DESCRSHORT NOTE = """:: Number of observations - 220 (20 years for 11 firms) Number of variables - 5 Variables name definitions:: invest - Gross investment in 1947 dollars value - Market value as of Dec. 31 in 1947 dollars capital - Stock of plant and equipment in 1947 dollars firm - General Motors, US Steel, General Electric, Chrysler, Atlantic Refining, IBM, Union Oil, Westinghouse, Goodyear, Diamond Match, American Steel year - 1935 - 1954 Note that raw_data has firm expanded to dummy variables, since it is a string categorical variable. """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Loads the Grunfeld data and returns a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- raw_data has the firm variable expanded to dummy variables for each firm (ie., there is no reference dummy) """ from statsmodels.tools import categorical data = _get_data() raw_data = categorical(data, col='firm', drop=True) ds = du.process_recarray(data, endog_idx=0, stack=False) ds.raw_data = raw_data return ds def load_pandas(): """ Loads the Grunfeld data and returns a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. Notes ----- raw_data has the firm variable expanded to dummy variables for each firm (ie., there is no reference dummy) """ from pandas import DataFrame from statsmodels.tools import categorical data = _get_data() raw_data = categorical(data, col='firm', drop=True) ds = du.process_recarray_pandas(data, endog_idx=0) ds.raw_data = DataFrame(raw_data) return ds def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/grunfeld.csv','rb'), delimiter=",", names=True, dtype="f8,f8,f8,a17,f8") return data
bsd-3-clause
OspreyX/trading-with-python
lib/backtest.py
74
7381
#------------------------------------------------------------------------------- # Name: backtest # Purpose: perform routine backtesting tasks. # This module should be useable as a stand-alone library outide of the TWP package. # # Author: Jev Kuznetsov # # Created: 03/07/2014 # Copyright: (c) Jev Kuznetsov 2013 # Licence: BSD #------------------------------------------------------------------------------- import pandas as pd import matplotlib.pyplot as plt import sys import numpy as np def tradeBracket(price,entryBar,upper=None, lower=None, timeout=None): ''' trade a bracket on price series, return price delta and exit bar # Input ------ price : numpy array of price values entryBar: entry bar number, *determines entry price* upper : high stop lower : low stop timeout : max number of periods to hold Returns exit price and number of bars held ''' assert isinstance(price, np.ndarray) , 'price must be a numpy array' # create list of exit indices and add max trade duration. Exits are relative to entry bar if timeout: # set trade length to timeout or series length exits = [min(timeout,len(price)-entryBar-1)] else: exits = [len(price)-entryBar-1] p = price[entryBar:entryBar+exits[0]+1] # subseries of price # extend exits list with conditional exits # check upper bracket if upper: assert upper>p[0] , 'Upper bracket must be higher than entry price ' idx = np.where(p>upper)[0] # find where price is higher than the upper bracket if idx.any(): exits.append(idx[0]) # append first occurence # same for lower bracket if lower: assert lower<p[0] , 'Lower bracket must be lower than entry price ' idx = np.where(p<lower)[0] if idx.any(): exits.append(idx[0]) exitBar = min(exits) # choose first exit return p[exitBar], exitBar class Backtest(object): """ Backtest class, simple vectorized one. Works with pandas objects. """ def __init__(self,price, signal, signalType='capital',initialCash = 0, roundShares=True): """ Arguments: *price* Series with instrument price. *signal* Series with capital to invest (long+,short-) or number of shares. *sitnalType* capital to bet or number of shares 'capital' mode is default. *initialCash* starting cash. *roundShares* round off number of shares to integers """ #TODO: add auto rebalancing # check for correct input assert signalType in ['capital','shares'], "Wrong signal type provided, must be 'capital' or 'shares'" #save internal settings to a dict self.settings = {'signalType':signalType} # first thing to do is to clean up the signal, removing nans and duplicate entries or exits self.signal = signal.ffill().fillna(0) # now find dates with a trade tradeIdx = self.signal.diff().fillna(0) !=0 # days with trades are set to True if signalType == 'shares': self.trades = self.signal[tradeIdx] # selected rows where tradeDir changes value. trades are in Shares elif signalType =='capital': self.trades = (self.signal[tradeIdx]/price[tradeIdx]) if roundShares: self.trades = self.trades.round() # now create internal data structure self.data = pd.DataFrame(index=price.index , columns = ['price','shares','value','cash','pnl']) self.data['price'] = price self.data['shares'] = self.trades.reindex(self.data.index).ffill().fillna(0) self.data['value'] = self.data['shares'] * self.data['price'] delta = self.data['shares'].diff() # shares bought sold self.data['cash'] = (-delta*self.data['price']).fillna(0).cumsum()+initialCash self.data['pnl'] = self.data['cash']+self.data['value']-initialCash @property def sharpe(self): ''' return annualized sharpe ratio of the pnl ''' pnl = (self.data['pnl'].diff()).shift(-1)[self.data['shares']!=0] # use only days with position. return sharpe(pnl) # need the diff here as sharpe works on daily returns. @property def pnl(self): '''easy access to pnl data column ''' return self.data['pnl'] def plotTrades(self): """ visualise trades on the price chart long entry : green triangle up short entry : red triangle down exit : black circle """ l = ['price'] p = self.data['price'] p.plot(style='x-') # ---plot markers # this works, but I rather prefer colored markers for each day of position rather than entry-exit signals # indices = {'g^': self.trades[self.trades > 0].index , # 'ko':self.trades[self.trades == 0].index, # 'rv':self.trades[self.trades < 0].index} # # # for style, idx in indices.iteritems(): # if len(idx) > 0: # p[idx].plot(style=style) # --- plot trades #colored line for long positions idx = (self.data['shares'] > 0) | (self.data['shares'] > 0).shift(1) if idx.any(): p[idx].plot(style='go') l.append('long') #colored line for short positions idx = (self.data['shares'] < 0) | (self.data['shares'] < 0).shift(1) if idx.any(): p[idx].plot(style='ro') l.append('short') plt.xlim([p.index[0],p.index[-1]]) # show full axis plt.legend(l,loc='best') plt.title('trades') class ProgressBar: def __init__(self, iterations): self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) def animate(self, iteration): print '\r',self, sys.stdout.flush() self.update_iteration(iteration + 1) def update_iteration(self, elapsed_iter): self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0) self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations) def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = '%d%%' % percent_done self.prog_bar = self.prog_bar[0:pct_place] + \ (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std()
bsd-3-clause
aflaxman/scikit-learn
sklearn/cluster/setup.py
79
1855
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.pyx'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.pyx'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means_elkan', sources=['_k_means_elkan.pyx'], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means', libraries=cblas_libs, sources=['_k_means.pyx'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop( 'extra_compile_args', []), **blas_info ) config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
vicky2135/lucious
oscar/lib/python2.7/site-packages/IPython/testing/iptest.py
7
16347
# -*- coding: utf-8 -*- """IPython Test Suite Runner. This module provides a main entry point to a user script to test IPython itself from the command line. There are two ways of running this script: 1. With the syntax `iptest all`. This runs our entire test suite by calling this script (with different arguments) recursively. This causes modules and package to be tested in different processes, using nose or trial where appropriate. 2. With the regular nose syntax, like `iptest -vvs IPython`. In this form the script simply calls nose, but with special command line flags and plugins loaded. """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from __future__ import print_function import glob from io import BytesIO import os import os.path as path import sys from threading import Thread, Lock, Event import warnings import nose.plugins.builtin from nose.plugins.xunit import Xunit from nose import SkipTest from nose.core import TestProgram from nose.plugins import Plugin from nose.util import safe_str from IPython import version_info from IPython.utils.py3compat import bytes_to_str from IPython.utils.importstring import import_item from IPython.testing.plugin.ipdoctest import IPythonDoctest from IPython.external.decorators import KnownFailure, knownfailureif pjoin = path.join # Enable printing all warnings raise by IPython's modules warnings.filterwarnings('ignore', message='.*Matplotlib is building the font cache.*', category=UserWarning, module='.*') if sys.version_info > (3,0): warnings.filterwarnings('error', message='.*', category=ResourceWarning, module='.*') warnings.filterwarnings('error', message=".*{'config': True}.*", category=DeprecationWarning, module='IPy.*') warnings.filterwarnings('default', message='.*', category=Warning, module='IPy.*') warnings.filterwarnings('error', message='.*apply_wrapper.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*make_label_dec', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*decorated_dummy.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*skip_file_no_x11.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*onlyif_any_cmd_exists.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*disable_gui.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*ExceptionColors global is deprecated.*', category=DeprecationWarning, module='.*') if version_info < (6,): # nose.tools renames all things from `camelCase` to `snake_case` which raise an # warning with the runner they also import from standard import library. (as of Dec 2015) # Ignore, let's revisit that in a couple of years for IPython 6. warnings.filterwarnings('ignore', message='.*Please use assertEqual instead', category=Warning, module='IPython.*') # ------------------------------------------------------------------------------ # Monkeypatch Xunit to count known failures as skipped. # ------------------------------------------------------------------------------ def monkeypatch_xunit(): try: knownfailureif(True)(lambda: None)() except Exception as e: KnownFailureTest = type(e) def addError(self, test, err, capt=None): if issubclass(err[0], KnownFailureTest): err = (SkipTest,) + err[1:] return self.orig_addError(test, err, capt) Xunit.orig_addError = Xunit.addError Xunit.addError = addError #----------------------------------------------------------------------------- # Check which dependencies are installed and greater than minimum version. #----------------------------------------------------------------------------- def extract_version(mod): return mod.__version__ def test_for(item, min_version=None, callback=extract_version): """Test to see if item is importable, and optionally check against a minimum version. If min_version is given, the default behavior is to check against the `__version__` attribute of the item, but specifying `callback` allows you to extract the value you are interested in. e.g:: In [1]: import sys In [2]: from IPython.testing.iptest import test_for In [3]: test_for('sys', (2,6), callback=lambda sys: sys.version_info) Out[3]: True """ try: check = import_item(item) except (ImportError, RuntimeError): # GTK reports Runtime error if it can't be initialized even if it's # importable. return False else: if min_version: if callback: # extra processing step to get version to compare check = callback(check) return check >= min_version else: return True # Global dict where we can store information on what we have and what we don't # have available at test run time have = {'matplotlib': test_for('matplotlib'), 'pygments': test_for('pygments'), 'sqlite3': test_for('sqlite3')} #----------------------------------------------------------------------------- # Test suite definitions #----------------------------------------------------------------------------- test_group_names = ['core', 'extensions', 'lib', 'terminal', 'testing', 'utils', ] class TestSection(object): def __init__(self, name, includes): self.name = name self.includes = includes self.excludes = [] self.dependencies = [] self.enabled = True def exclude(self, module): if not module.startswith('IPython'): module = self.includes[0] + "." + module self.excludes.append(module.replace('.', os.sep)) def requires(self, *packages): self.dependencies.extend(packages) @property def will_run(self): return self.enabled and all(have[p] for p in self.dependencies) # Name -> (include, exclude, dependencies_met) test_sections = {n:TestSection(n, ['IPython.%s' % n]) for n in test_group_names} # Exclusions and dependencies # --------------------------- # core: sec = test_sections['core'] if not have['sqlite3']: sec.exclude('tests.test_history') sec.exclude('history') if not have['matplotlib']: sec.exclude('pylabtools'), sec.exclude('tests.test_pylabtools') # lib: sec = test_sections['lib'] sec.exclude('kernel') if not have['pygments']: sec.exclude('tests.test_lexers') # We do this unconditionally, so that the test suite doesn't import # gtk, changing the default encoding and masking some unicode bugs. sec.exclude('inputhookgtk') # We also do this unconditionally, because wx can interfere with Unix signals. # There are currently no tests for it anyway. sec.exclude('inputhookwx') # Testing inputhook will need a lot of thought, to figure out # how to have tests that don't lock up with the gui event # loops in the picture sec.exclude('inputhook') # testing: sec = test_sections['testing'] # These have to be skipped on win32 because they use echo, rm, cd, etc. # See ticket https://github.com/ipython/ipython/issues/87 if sys.platform == 'win32': sec.exclude('plugin.test_exampleip') sec.exclude('plugin.dtexample') # don't run jupyter_console tests found via shim test_sections['terminal'].exclude('console') # extensions: sec = test_sections['extensions'] # This is deprecated in favour of rpy2 sec.exclude('rmagic') # autoreload does some strange stuff, so move it to its own test section sec.exclude('autoreload') sec.exclude('tests.test_autoreload') test_sections['autoreload'] = TestSection('autoreload', ['IPython.extensions.autoreload', 'IPython.extensions.tests.test_autoreload']) test_group_names.append('autoreload') #----------------------------------------------------------------------------- # Functions and classes #----------------------------------------------------------------------------- def check_exclusions_exist(): from IPython.paths import get_ipython_package_dir from warnings import warn parent = os.path.dirname(get_ipython_package_dir()) for sec in test_sections: for pattern in sec.exclusions: fullpath = pjoin(parent, pattern) if not os.path.exists(fullpath) and not glob.glob(fullpath + '.*'): warn("Excluding nonexistent file: %r" % pattern) class ExclusionPlugin(Plugin): """A nose plugin to effect our exclusions of files and directories. """ name = 'exclusions' score = 3000 # Should come before any other plugins def __init__(self, exclude_patterns=None): """ Parameters ---------- exclude_patterns : sequence of strings, optional Filenames containing these patterns (as raw strings, not as regular expressions) are excluded from the tests. """ self.exclude_patterns = exclude_patterns or [] super(ExclusionPlugin, self).__init__() def options(self, parser, env=os.environ): Plugin.options(self, parser, env) def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. self.enabled = True def wantFile(self, filename): """Return whether the given filename should be scanned for tests. """ if any(pat in filename for pat in self.exclude_patterns): return False return None def wantDirectory(self, directory): """Return whether the given directory should be scanned for tests. """ if any(pat in directory for pat in self.exclude_patterns): return False return None class StreamCapturer(Thread): daemon = True # Don't hang if main thread crashes started = False def __init__(self, echo=False): super(StreamCapturer, self).__init__() self.echo = echo self.streams = [] self.buffer = BytesIO() self.readfd, self.writefd = os.pipe() self.buffer_lock = Lock() self.stop = Event() def run(self): self.started = True while not self.stop.is_set(): chunk = os.read(self.readfd, 1024) with self.buffer_lock: self.buffer.write(chunk) if self.echo: sys.stdout.write(bytes_to_str(chunk)) os.close(self.readfd) os.close(self.writefd) def reset_buffer(self): with self.buffer_lock: self.buffer.truncate(0) self.buffer.seek(0) def get_buffer(self): with self.buffer_lock: return self.buffer.getvalue() def ensure_started(self): if not self.started: self.start() def halt(self): """Safely stop the thread.""" if not self.started: return self.stop.set() os.write(self.writefd, b'\0') # Ensure we're not locked in a read() self.join() class SubprocessStreamCapturePlugin(Plugin): name='subprocstreams' def __init__(self): Plugin.__init__(self) self.stream_capturer = StreamCapturer() self.destination = os.environ.get('IPTEST_SUBPROC_STREAMS', 'capture') # This is ugly, but distant parts of the test machinery need to be able # to redirect streams, so we make the object globally accessible. nose.iptest_stdstreams_fileno = self.get_write_fileno def get_write_fileno(self): if self.destination == 'capture': self.stream_capturer.ensure_started() return self.stream_capturer.writefd elif self.destination == 'discard': return os.open(os.devnull, os.O_WRONLY) else: return sys.__stdout__.fileno() def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. if self.destination == 'capture': self.enabled = True def startTest(self, test): # Reset log capture self.stream_capturer.reset_buffer() def formatFailure(self, test, err): # Show output ec, ev, tb = err captured = self.stream_capturer.get_buffer().decode('utf-8', 'replace') if captured.strip(): ev = safe_str(ev) out = [ev, '>> begin captured subprocess output <<', captured, '>> end captured subprocess output <<'] return ec, '\n'.join(out), tb return err formatError = formatFailure def finalize(self, result): self.stream_capturer.halt() def run_iptest(): """Run the IPython test suite using nose. This function is called when this script is **not** called with the form `iptest all`. It simply calls nose with appropriate command line flags and accepts all of the standard nose arguments. """ # Apply our monkeypatch to Xunit if '--with-xunit' in sys.argv and not hasattr(Xunit, 'orig_addError'): monkeypatch_xunit() arg1 = sys.argv[1] if arg1 in test_sections: section = test_sections[arg1] sys.argv[1:2] = section.includes elif arg1.startswith('IPython.') and arg1[8:] in test_sections: section = test_sections[arg1[8:]] sys.argv[1:2] = section.includes else: section = TestSection(arg1, includes=[arg1]) argv = sys.argv + [ '--detailed-errors', # extra info in tracebacks # We add --exe because of setuptools' imbecility (it # blindly does chmod +x on ALL files). Nose does the # right thing and it tries to avoid executables, # setuptools unfortunately forces our hand here. This # has been discussed on the distutils list and the # setuptools devs refuse to fix this problem! '--exe', ] if '-a' not in argv and '-A' not in argv: argv = argv + ['-a', '!crash'] if nose.__version__ >= '0.11': # I don't fully understand why we need this one, but depending on what # directory the test suite is run from, if we don't give it, 0 tests # get run. Specifically, if the test suite is run from the source dir # with an argument (like 'iptest.py IPython.core', 0 tests are run, # even if the same call done in this directory works fine). It appears # that if the requested package is in the current dir, nose bails early # by default. Since it's otherwise harmless, leave it in by default # for nose >= 0.11, though unfortunately nose 0.10 doesn't support it. argv.append('--traverse-namespace') plugins = [ ExclusionPlugin(section.excludes), KnownFailure(), SubprocessStreamCapturePlugin() ] # we still have some vestigial doctests in core if (section.name.startswith(('core', 'IPython.core'))): plugins.append(IPythonDoctest()) argv.extend([ '--with-ipdoctest', '--ipdoctest-tests', '--ipdoctest-extension=txt', ]) # Use working directory set by parent process (see iptestcontroller) if 'IPTEST_WORKING_DIR' in os.environ: os.chdir(os.environ['IPTEST_WORKING_DIR']) # We need a global ipython running in this process, but the special # in-process group spawns its own IPython kernels, so for *that* group we # must avoid also opening the global one (otherwise there's a conflict of # singletons). Ultimately the solution to this problem is to refactor our # assumptions about what needs to be a singleton and what doesn't (app # objects should, individual shells shouldn't). But for now, this # workaround allows the test suite for the inprocess module to complete. if 'kernel.inprocess' not in section.name: from IPython.testing import globalipapp globalipapp.start_ipython() # Now nose can run TestProgram(argv=argv, addplugins=plugins) if __name__ == '__main__': run_iptest()
bsd-3-clause
mdegis/machine-learning
003 - Decision Tree/exercise/main.py
1
1468
from PIL import Image import sys sys.path.append("../../tools") from class_vis import prettyPicture from prep_terrain_data import makeTerrainData from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import copy import numpy as np import pylab as pl features_train, labels_train, features_test, labels_test = makeTerrainData() clf = DecisionTreeClassifier(min_samples_split=50) # now your job is to fit the classifier # using the training features/labels, and to # make a set of predictions on the test data clf.fit(features_train, labels_train) # store your predictions in a list named pred pred = clf.predict(features_test) prettyPicture(clf, features_test, labels_test, f_name="dec_tree.png") Image.open('dec_tree.png').show() acc = accuracy_score(pred, labels_test) print "Decision Tree accuracy: %r" % acc """ clf = DecisionTreeClassifier(min_samples_split=2) clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc_min_samples_split_2 = accuracy_score(pred, labels_test) clf = DecisionTreeClassifier(min_samples_split=50) clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc_min_samples_split_50 = accuracy_score(pred, labels_test) def submit_accuracies(): return {"acc_min_samples_split_2":round(acc_min_samples_split_2,3), "acc_min_samples_split_50":round(acc_min_samples_split_50,3)} submit_accuracies() """
gpl-3.0
pygeo/pycmbs
pycmbs/benchmarking/report.py
1
9277
# -*- coding: utf-8 -*- """ This file is part of pyCMBS. (c) 2012- Alexander Loew For COPYING and LICENSE details, please refer to the LICENSE file """ import os import sys from matplotlib import pylab as pl class Report(object): """ A class to generate latex based report """ def __init__(self, filename, title, author, format='png', outdir='./', dpi=300, logofile='Phytonlogo5.pdf', usehyperlinks=True, autocompile=True): """ constructor for Latex report class filename : str name of output file title : str name of author format : str output format for figures (e.g. png, pdf) outdir : str output directory to write report and images to dpi : int specify dots per inch for graphic output logofile : str name of file for logo on first page if None or file not existing, then nothing will be plotted usehyperlinks : bool use hyperlinks for table of contents author : str Author of the document autocompile : bool ensure automatic PDF creation when report is closed """ ext = '' if filename[:-4] != '.tex': ext = '.tex' self.filename = outdir + filename + ext self.format = format self.title = title self.author = author self.outdir = outdir # needs to be before open() self.logofile = logofile self.usehyperlinks = usehyperlinks self.open() self.figure_counter = 0 self.dpi = dpi self.autocompile = autocompile def open(self, landscape=False): """ open report """ if not os.path.exists(self.outdir): os.makedirs(self.outdir) if os.path.exists(self.filename): os.remove(self.filename) self.landscape = landscape self.file = open(self.filename, 'w') self._write_header() def close(self): """ close report """ self._write_footer() self.file.close() if self.autocompile: print 'Compiling REPORT ...' self.compile() def _write_header(self): """ write document header """ if self.landscape: landscape = 'landscape' else: landscape = '' self.write('\documentclass[' + landscape + ']{article}') self.write('\usepackage{fancyhdr}') self.write('\usepackage{graphicx}') self.write('\usepackage{multirow}') self.write('\usepackage{multicol}') #facilitates handling of floating environments self.write('\usepackage{placeins}') self.write('\usepackage{tabularx}') #self.write('\usepackage{todonotes}') self.write('\pagestyle{fancy}') self.write('\fancyhf{}') # writes section header self.write('\lhead{\nouppercase{\leftmark}}') self.write('\lfoot{\today}') self.write('\rfoot{\thepage}') if self.usehyperlinks: self.write('\usepackage{hyperref}') self.write('\hypersetup{colorlinks,citecolor=black,\ filecolor=black,linkcolor=black,urlcolor=black}') self.write('\\begin{document}') self.write('\\title{' + self.title.replace('_', ' ') + '}') self.write('\\author{' + self.author + '}') self.write('\maketitle') if self.logofile is not None: # logo for report if os.path.exists(self.logofile): self._write_single_figure(self.logofile, None) self.write('\\newpage') self.write('\\tableofcontents') self.write('\\newpage') self._write_separator() def _write_single_figure(self, figpath, caption): #/// LOGO /// self._write_separator() self.write('\\begin{figure}[!htp]') self.write(' \centering') self.write(' \includegraphics[width=4cm]{' + figpath + '} ') if caption is not None: self.write(' \caption{' + caption.replace('_', '-').replace('#', '-') + '}') self.write('\\end{figure}') self._write_separator() def _write_footer(self): """ write document footer """ self._write_separator() self.write('\end{document}') def _write_separator(self): """ write line with comments (useful to structure document sections) """ self.write('') self.write('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') self.write('') def figure(self, f, caption='', width='\\textwidth', height='\\textheight,keepaspectratio', bbox_inches='tight'): """ add a figure string to the report Parameters ---------- f : figure figure that will be incuded into the report caption : str caption for the figure to be put in the report width : str width as string like in latext e.g. width='12cm' bbox_inches : str option for savefig """ if f is None: return self.figure_counter += 1 figname = 'fig_' + str(self.figure_counter).zfill(5) + '.' + self.format self._include_figure(figname, caption=caption, width=width, height=height) print('Saving figure %s' % self.outdir + figname) f.savefig(self.outdir + figname, bbox_inches=bbox_inches, dpi=self.dpi) def _include_figure(self, figname, caption='', width='\\textwidth', height='\\textheight,keepaspectratio'): """ include figure in latex file """ self._write_separator() self.write('\\begin{figure}[htp]') self.write(' \centering') self.write(' \includegraphics[width=' + width + ', height=' + height + ']{' + figname + '} ') if len(caption) > 0: self.write(' \caption{' + caption.replace('_', '-').replace('#', '-') + '}') self.write(' \label{fig:' + str(self.figure_counter) + '}') self.write('\\end{figure}') self._write_separator() def section(self, s): """ write section header s : str title of section """ self.clearpage() self.write('\section{' + s.replace('_', ' ') + '}') def subsection(self, s): """ write subsection header s : str title of subsection """ #self.write('\clearpage') self.barrier() self.write('\subsection{' + s.replace('_', ' ') + '}') def subsubsection(self, s): """ write subsection header Parameters ---------- s : str title of subsection """ self.barrier() self.write('\subsubsection{' + s.replace('_', ' ') + '}') def capture_figures(self): """ captures all figures that are plotted and store them in the report """ print 'Capturing figures and writing to report ...' for i in pl.get_fignums(): f = pl.figure(i) self.figure(f) self.newpage() def newpage(self): """ create a new page """ self.clearpage() self.write('\\newpage') def clearpage(self): """ create a new page as an alternative, one could also use the placeins package http://tug.ctan.org/tex-archive/info/l2picfaq/german/l2picfaq.pdf \usepackage{placeins} ... \FloatBarrier This ensures that all Figures/tables before the breakpoint are put to paper WITHOUT generating a new page. It is thus the opposite to \clearpage """ self.write('\clearpage') def barrier(self): self.write('\FloatBarrier') def write(self, s): """ write a string to the file Parameters ---------- s : str string to be written to the file """ self.file.write(s.replace('\f', '\\f').replace('\n', '\\n') .replace('\t', '\\t') .replace('\r', '\\r') + '\n') def open_table(self): """ opens a table """ self.write('\\begin{table}[htp]') self.write(' \centering') def close_table(self, caption='Put a figure caption here'): """ closes a table """ self.write(' \caption{' + caption.replace('_', '-').replace('#', '-') + '}') self.write('\end{table}') def input(self, filename): """ write an input statement """ self.write('\\input{' + filename + '}') if not os.path.exists(filename): print('WARNING: output file used in report not yet existing!') def compile(self): """ compile latex document """ curdir = os.getcwd() pdfdir = os.path.dirname(self.filename) texfile = os.path.basename(self.filename) os.chdir(pdfdir) # compile report twice os.system('pdflatex ' + texfile) os.system('pdflatex ' + texfile) os.chdir(curdir)
mit
rgommers/statsmodels
statsmodels/sandbox/nonparametric/tests/ex_gam_am_new.py
34
2606
# -*- coding: utf-8 -*- """Example for gam.AdditiveModel and PolynomialSmoother This example was written as a test case. The data generating process is chosen so the parameters are well identified and estimated. Created on Fri Nov 04 13:45:43 2011 Author: Josef Perktold """ from __future__ import print_function from statsmodels.compat.python import lrange, zip import time import numpy as np #import matplotlib.pyplot as plt from numpy.testing import assert_almost_equal from scipy import stats from statsmodels.sandbox.gam import AdditiveModel from statsmodels.sandbox.gam import Model as GAM #? from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.regression.linear_model import OLS, WLS np.random.seed(8765993) #seed is chosen for nice result, not randomly #other seeds are pretty off in the prediction #DGP: simple polynomial order = 3 sigma_noise = 0.5 nobs = 1000 #1000 #with 1000, OLS and Additivemodel aggree in params at 2 decimals lb, ub = -3.5, 4#2.5 x1 = np.linspace(lb, ub, nobs) x2 = np.sin(2*x1) x = np.column_stack((x1/x1.max()*2, x2)) exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1) idx = lrange((order+1)*2) del idx[order+1] exog_reduced = exog[:,idx] #remove duplicate constant y_true = exog.sum(1) / 2. z = y_true #alias check d = x y = y_true + sigma_noise * np.random.randn(nobs) example = 1 if example == 1: m = AdditiveModel(d) m.fit(y) y_pred = m.results.predict(d) for ss in m.smoothers: print(ss.params) res_ols = OLS(y, exog_reduced).fit() print(res_ols.params) #assert_almost_equal(y_pred, res_ols.fittedvalues, 3) if example > 0: import matplotlib.pyplot as plt plt.figure() plt.plot(exog) y_pred = m.results.mu# + m.results.alpha #m.results.predict(d) plt.figure() plt.subplot(2,2,1) plt.plot(y, '.', alpha=0.25) plt.plot(y_true, 'k-', label='true') plt.plot(res_ols.fittedvalues, 'g-', label='OLS', lw=2, alpha=-.7) plt.plot(y_pred, 'r-', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel') counter = 2 for ii, xx in zip(['z', 'x1', 'x2'], [z, x[:,0], x[:,1]]): sortidx = np.argsort(xx) #plt.figure() plt.subplot(2, 2, counter) plt.plot(xx[sortidx], y[sortidx], '.', alpha=0.25) plt.plot(xx[sortidx], y_true[sortidx], 'k.', label='true', lw=2) plt.plot(xx[sortidx], y_pred[sortidx], 'r.', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel ' + ii) counter += 1 plt.show()
bsd-3-clause
tedunderwood/genre
munging/Evaluate.py
1
17658
# Evaluate page predictions # EvaluatePagePredicts.py import os, sys import numpy as np import pandas as pd from scipy.stats.stats import pearsonr import SonicScrewdriver as utils import MetadataCascades as cascades import Coalescer from math import log import statsmodels.api as sm import pickle import ConfusionMatrix def pairtreelabel(htid): ''' Given a clean htid, returns a dirty one that will match the metadata table.''' if '+' in htid or '=' in htid: htid = htid.replace('+',':') htid = htid.replace('=','/') return htid # genretranslations = {'subsc' : 'front', 'argum': 'non', 'pref': 'non', 'aut': 'bio', 'bio': 'bio', # 'toc': 'front', 'title': 'front', 'bookp': 'front', # 'bibli': 'back', 'gloss': 'back', 'epi': 'fic', 'errat': 'non', 'notes': 'non', 'ora': 'non', # 'let': 'non', 'trv': 'non', 'lyr': 'poe', 'nar': 'poe', 'vdr': 'dra', 'pdr': 'dra', # 'clo': 'dra', 'impri': 'front', 'libra': 'back', 'index': 'back'} genretranslations = {'subsc' : 'front', 'argum': 'non', 'pref': 'non', 'aut': 'bio', 'bio': 'bio', 'toc': 'front', 'title': 'front', 'bookp': 'front', 'bibli': 'back', 'gloss': 'back', 'epi': 'fic', 'errat': 'non', 'notes': 'non', 'ora': 'non', 'let': 'bio', 'trv': 'non', 'lyr': 'poe', 'nar': 'poe', 'vdr': 'dra', 'pdr': 'dra', 'clo': 'dra', 'impri': 'front', 'libra': 'back', 'index': 'back'} user = input("Which directory of predictions? ") predictdir = "/Volumes/TARDIS/output/" + user groundtruthdir = "/Users/tunder/Dropbox/pagedata/newfeatures/genremaps/" # else: # groundtruthdir = "/Users/tunder/Dropbox/pagedata/mixedtraining/genremaps/" predictfiles = os.listdir(predictdir) thefictiondir = input("Fiction dir? ") if thefictiondir != "n": thefictiondir = "/Volumes/TARDIS/output/" + thefictiondir thepoedir = input("Poetry dir? ") if thepoedir != "n": thepoedir = "/Volumes/TARDIS/output/" + thepoedir user = input("Count words (y/n)? ") if user == "y": countwords = True else: countwords = False # user = input("Separate index (y/n)? ") # if user == "y": # genretranslations["index"] = "index" # genretranslations["gloss"] = "index" # genretranslations["bibli"] = "index" user = input("Bibli == ads? ") if user == "y": genretranslations['bibli'] = 'ads' user = input("Old ground truth? ") if user == "n": groundtruthdir = "/Users/tunder/Dropbox/pagedata/thirdfeatures/genremaps/" elif user == "fourth": groundtruthdir = "/Users/tunder/Dropbox/pagedata/fourthfeatures/genremaps/" elif user == "fifth": groundtruthdir = "/Users/tunder/Dropbox/pagedata/fifthfeatures/genremaps/" elif user == "sixth": groundtruthdir = "/Users/tunder/Dropbox/pagedata/sixthfeatures/genremaps/" elif user == "seventh": groundtruthdir = "/Users/tunder/Dropbox/pagedata/seventhfeatures/genremaps/" elif user == "8": groundtruthdir = "/Users/tunder/Dropbox/pagedata/eighthfeatures/genremaps/" elif user == "newtest": groundtruthdir = "/Users/tunder/Dropbox/pagedata/nt/genremaps/" elif user == "20c": groundtruthdir = "/Users/tunder/Dropbox/pagedata/to1923features/genremaps/" groundtruthfiles = os.listdir(groundtruthdir) tocoalesce = input("Coalesce? ") if tocoalesce == "y": tocoalesce = True else: tocoalesce = False if countwords: filewordcounts = dict() if groundtruthdir == "/Users/tunder/Dropbox/pagedata/thirdfeatures/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/thirdfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/fourthfeatures/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/fourthfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/fifthfeatures/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/fifthfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/sixthfeatures/genremaps/": wordcountpath= "/Users/tunder/Dropbox/pagedata/sixthfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/seventhfeatures/genremaps/": wordcountpath= "/Users/tunder/Dropbox/pagedata/seventhfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/nt/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/nt/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/eighthfeatures/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/eighthfeatures/pagelevelwordcounts.tsv" elif groundtruthdir == "/Users/tunder/Dropbox/pagedata/to1923features/genremaps/": wordcountpath = "/Users/tunder/Dropbox/pagedata/to1923features/pagelevelwordcounts.tsv" else: wordcountpath = "/Users/tunder/Dropbox/pagedata/pagelevelwordcounts.tsv" with open(wordcountpath, mode="r", encoding="utf-8") as f: filelines = f.readlines() for line in filelines[1:]: line = line.rstrip() fields = line.split('\t') htid = fields[0] pagenum = int(fields[1]) count = int(fields[2]) if htid in filewordcounts: filewordcounts[htid].append((pagenum, count)) else: filewordcounts[htid] = [(pagenum, count)] for key, value in filewordcounts.items(): value.sort() # This just makes sure tuples are sorted in pagenum order. else: filewordcounts = dict() # The base list here is produced by predictfiles # because obvs we don't care about ground truth # that we can't map to a prediction. # Our goal in the next loop is to produce such a mapping. matchedfilenames = dict() for filename in predictfiles: if ".predict" not in filename: continue htid = filename[0:-8] groundtruthversion = htid + ".map" if groundtruthversion not in groundtruthfiles: print("Missing " + htid) else: matchedfilenames[filename] = groundtruthversion # We have identified filenames. Now define functions. def genresareequal(truegenre, predictedgenre): arethesame = ["bio", "trv", "aut", "non"] alsothesame = ["back", "index", "front", "ads"] if truegenre == predictedgenre: return True elif truegenre in arethesame and predictedgenre in arethesame: return True elif truegenre in alsothesame and predictedgenre in alsothesame: return True else: return False def compare_two_lists(truelist, predicted, wordsperpage, whethertocountwords): global genretranslations if len(truelist) != len(predicted): print(len(truelist)) print(truelist[len(truelist) -2]) print(truelist[len(truelist) -1]) print(len(predicted)) sys.exit() errorsbygenre = dict() correctbygenre = dict() accurate = 0 inaccurate = 0 totaltruegenre = dict() for index, truegenre in enumerate(truelist): if truegenre in genretranslations: truegenre = genretranslations[truegenre] if whethertocountwords: increment = wordsperpage[index] else: increment = 1 utils.addtodict(truegenre, increment, totaltruegenre) predictedgenre = predicted[index] if genresareequal(truegenre, predictedgenre): utils.addtodict(truegenre, increment, correctbygenre) accurate += increment else: utils.addtodict((truegenre, predictedgenre), increment, errorsbygenre) inaccurate += increment return totaltruegenre, correctbygenre, errorsbygenre, accurate, inaccurate def add_dictionary(masterdict, dicttoadd): for key, value in dicttoadd.items(): if key in masterdict: masterdict[key] += value else: masterdict[key] = value return masterdict def evaluate_filelist(matchedfilenames, excludedhtidlist): global predictdir, groundtruthdir, filewordcounts smoothederrors = dict() unsmoothederrors = dict() smoothedcorrect = dict() unsmoothedcorrect = dict() coalescederrors = dict() coalescedcorrect = dict() totalgt = dict() roughaccurate = 0 roughnotaccurate = 0 smoothaccurate = 0 smoothnotaccurate = 0 coalescedaccurate = 0 coalescednotaccurate = 0 # The correct dictionaries pair a genre code (in the original) to a number of times it was correctly # identified # The error dictionaries map a tuple of (correct code, error code) to a number of times it occurred. truesequences = dict() predictedsequences = dict() accuracies = dict() metadatatable = dict() symptoms = ["weakconfirmation", "weakdenial", "strongconfirmation", "strongdenial", "modelagrees", "modeldisagrees"] for symptom in symptoms: metadatatable[symptom] = dict() metadatatable["numberofchunks"] = dict() # metadatatable["fictonon"] = dict() # metadatatable["bio"] = dict() for pfile, gtfile in matchedfilenames.items(): htid = gtfile[0:-4] if htid in excludedhtidlist: continue # The predictionfile has three columns, of which the second # is an unsmoothed prediction and the third is smoothed smoothlist = list() roughlist = list() detailedprobabilities = list() pfilepath = os.path.join(predictdir, pfile) with open(pfilepath,encoding = "utf-8") as f: filelines = f.readlines() for line in filelines: line = line.rstrip() fields = line.split('\t') roughlist.append(fields[1]) smoothlist.append(fields[2]) if len(fields) > 5: detailedprobabilities.append("\t".join(fields[5:])) # The prediction file has this format: # pagenumber roughgenre smoothgenre many ... detailed predictions # fields 3 and 4 will be predictions for dummy genres "begin" and "end" correctlist = list() gtfilepath = os.path.join(groundtruthdir, gtfile) with open(gtfilepath,encoding = "utf-8") as f: filelines = f.readlines() for line in filelines: line = line.rstrip() fields = line.split('\t') correctlist.append(fields[1]) assert len(correctlist) == len(roughlist) if countwords: tuplelist = filewordcounts[htid] wordsperpage = [x[1] for x in tuplelist] else: wordsperpage = list() # Experiment. oldgenre = "" transitioncount = 0 biocount = 0 for agenre in roughlist: if agenre == "bio": biocount += 1 if oldgenre == "fic" and (agenre == "non" or agenre =="bio"): transitioncount += 1 oldgenre = agenre fictionfilepath = os.path.join(thefictiondir, pfile) poetryfilepath = os.path.join(thepoedir, pfile) mainmodel = cascades.read_probabilities(detailedprobabilities) mostlydrapoe, probablybiography, probablyfiction, notdrama, notfiction = cascades.choose_cascade(htid, smoothlist) # This function returns three boolean values which will help us choose a specialized model # to correct current predictions. This scheme is called "cascading classification," thus # we are "choosing a cascade." #defensive copy adjustedlist = [x for x in smoothlist] if notdrama: adjustedlist = cascades.otherthandrama(adjustedlist, mainmodel) if notfiction: adjustedlist = cascades.otherthanfiction(adjustedlist, mainmodel) if thepoedir != "n" and thefictiondir != "n": numberoftrues = sum([mostlydrapoe, probablybiography, probablyfiction]) if numberoftrues == 1: if mostlydrapoe and thepoedir != "n": adjustedlist, mainmodel = cascades.drapoe_cascade(adjustedlist, mainmodel, poetryfilepath) elif probablybiography: adjustedlist = cascades.biography_cascade(adjustedlist) elif probablyfiction and thefictiondir != "n": adjustedlist, mainmodel = cascades.fiction_cascade(adjustedlist, mainmodel, fictionfilepath) if len(smoothlist) != len(adjustedlist): print("Already vitiated.") print(len(smoothlist), smoothlist[len(smoothlist) -1]) print(len(adjustedlist), adjustedlist[len(adjustedlist) -1]) print(notfiction,notdrama,mostlydrapoe,probablybiography,probablyfiction) if tocoalesce: coalescedlist, numberofdistinctsequences = Coalescer.coalesce(adjustedlist) # This function simplifies our prediction by looking for cases where a small # number of pages in genre X are surrounded by larger numbers of pages in # genre Y. This is often an error, and in cases where it's not technically # an error it's a scale of variation we usually want to ignore. However, # we will also record detailed probabilities for users who *don't* want to # ignore these else: coalescedlist = adjustedlist dummy, numberofdistinctsequences = Coalescer.coalesce(adjustedlist) if len(smoothlist) != len(coalescedlist): print('vitiated now') metadataconfirmation = cascades.metadata_check(htid, coalescedlist) # Now that we have adjusted for key, value in metadataconfirmation.items(): metadatatable[key][htid] = value metadatatable["numberofchunks"][htid] = log(numberofdistinctsequences + 1) # metadatatable["fictonon"][htid] = transitioncount # metadatatable["bio"][htid] = biocount / len(roughlist) # This is significant. We don't want to overpenalize long books, but there is # a correlation between the number of predicted genre shifts and inaccuracy. # So we take the log. totaltruegenre, correctbygenre, errorsbygenre, accurate, inaccurate = compare_two_lists(correctlist, smoothlist, wordsperpage, countwords) add_dictionary(smoothederrors, errorsbygenre) add_dictionary(smoothedcorrect, correctbygenre) add_dictionary(totalgt, totaltruegenre) # Only do this for one comparison smoothaccurate += accurate smoothnotaccurate += inaccurate if ("index", "non") in errorsbygenre: if errorsbygenre[("index", "non")] > 2: print("Index fail: " + htid + " " + str(errorsbygenre[("index", "non")])) totaltruegenre, correctbygenre, errorsbygenre, accurate, inaccurate = compare_two_lists(correctlist, roughlist, wordsperpage, countwords) add_dictionary(unsmoothederrors, errorsbygenre) add_dictionary(unsmoothedcorrect, correctbygenre) roughaccurate += accurate roughnotaccurate += inaccurate totaltruegenre, correctbygenre, errorsbygenre, accurate, inaccurate = compare_two_lists(correctlist, coalescedlist, wordsperpage, countwords) add_dictionary(coalescederrors, errorsbygenre) add_dictionary(coalescedcorrect, correctbygenre) coalescedaccurate += accurate coalescednotaccurate += inaccurate truesequences[gtfile] = correctlist predictedsequences[gtfile] = coalescedlist thisaccuracy = accurate / (accurate + inaccurate) accuracies[htid] = thisaccuracy # Now we need to interpret the dictionaries. for genre, count in totalgt.items(): print() print(genre.upper() + " : " + str(count)) if count < 1: continue print() print("SMOOTHED PREDICTION, " + str(count) + " | " + genre) print("Correctly identified: " + str(smoothedcorrect.get(genre, 0) / count)) print("Errors: ") for key, errorcount in smoothederrors.items(): gt, predict = key if gt == genre: print(predict + ": " + str(errorcount) + " " + str (errorcount/count)) print() print("COALESCED PREDICTION, " + str(count) + " | " + genre) print("Correctly identified: " + str(coalescedcorrect.get(genre, 0) / count)) print("Errors: ") for key, errorcount in coalescederrors.items(): gt, smoothed = key if gt == genre: print(smoothed + ": " + str(errorcount) + " " + str (errorcount/count)) roughaccuracy = roughaccurate / (roughaccurate + roughnotaccurate) smoothaccuracy = smoothaccurate / (smoothaccurate + smoothnotaccurate) coalaccuracy = coalescedaccurate / (coalescedaccurate + coalescednotaccurate) confusion = ConfusionMatrix.confusion_matrix(coalescedcorrect, coalescederrors) return metadatatable, accuracies, roughaccuracy, smoothaccuracy, coalaccuracy metadatatable, accuracies, roughaccuracy, smoothaccuracy, coalaccuracy = evaluate_filelist(matchedfilenames, list()) print() print("ROUGH MICROACCURACY:") print(roughaccuracy) print("SMOOTHED MICROACCURACY:") print(smoothaccuracy) print("COALESCED MICROACCURACY:") print(coalaccuracy) with open("/Users/tunder/Dropbox/pagedata/interrater/ActualAccuracies.tsv", mode = "w", encoding="utf-8") as f: f.write("htid\taccuracy\n") for key, value in accuracies.items(): outline = key + "\t" + str(value) + "\n" f.write(outline) metadatapath = os.path.join(predictdir, "predictionMetadata.tsv") rowindices, columns, metadata = utils.readtsv(metadatapath) metadatatable['maxprob']= metadata['maxprob'] metadatatable['gap'] = metadata['gap'] metadatatable['accuracy'] = accuracies data = pd.DataFrame(metadatatable, dtype = "float") data['intercept'] = 1.0 train_cols = data.columns[1:] logit = sm.Logit(data['accuracy'], data[train_cols]) result = logit.fit() print(result.summary()) predictions = result.predict(data[train_cols]) print(pearsonr(data['accuracy'], predictions)) # print("Checking logitpredict.") # import LogisticPredict # homegrown = LogisticPredict.logitpredict(result.params, data[train_cols]) # print(pearsonr(predictions, homegrown)) # user = input("Dump model to pickle file? (y/n) ") # if user == "y": # with open("/Volumes/TARDIS/output/models/PredictAccuracy.p", mode = "w+b") as picklefile: # pickle.dump(result, picklefile, protocol = 3) user = input("Dump model parameters to file? (y/n) ") if user == "y": result.params.to_csv("/Volumes/TARDIS/output/models/ConfidenceModelParameters.csv") print("Saved to /Volumes/TARDIS/output/models/ConfidenceModelParameters.csv") idstoexclude = [x for x in data.index[predictions < .9]] metadatatable, newaccuracies, roughaccuracy, smoothaccuracy, coalaccuracy = evaluate_filelist(matchedfilenames, idstoexclude) print() print("ROUGH MICROACCURACY:") print(roughaccuracy) print("SMOOTHED MICROACCURACY:") print(smoothaccuracy) print("COALESCED MICROACCURACY:") print(coalaccuracy) user = input("Continue? ") for filename, accuracy in accuracies.items(): print(accuracy, filename) truesequence = truesequences[filename] predictedsequence = predictedsequences[filename] for index, truegenre in enumerate(truesequence): print(truegenre + ' \t ' + predictedsequence[index]) user = input("Continue? ")
mit
fraserphysics/F_UNCLE
F_UNCLE/Utils/test/test_Experiment.py
1
6345
#!/usr/bin/pyton """ test_Experiment Tests of the Experiment abstract class Authors ------- - Stephen Andrews (SA) - Andrew M. Fraiser (AMF) Revisions --------- 0 -> Initial class creation (03-16-2016) ToDo ---- None """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # ========================= # Python Standard Libraries # ========================= import unittest import sys import os import copy import warnings import time # ========================= # Python Packages # ========================= import numpy as np from numpy.linalg import inv import numpy.testing as npt import matplotlib.pyplot as plt from scipy.interpolate import InterpolatedUnivariateSpline as IUSpline # ========================= # Custom Packages # ========================= from ..Struc import Struc from ..PhysicsModel import PhysicsModel from .test_PhysicsModel import SimpleModel from .test_Simulation import SimpleSimulation from ..Simulation import Simulation from ..Experiment import Experiment, GaussianExperiment class SimpleExperiment(GaussianExperiment): """This creates a set of synthetic experimental data. It follows the same functional form as the SimpleModel and SimpleSimulation but introduces a time shift """ def _get_data(self, *args, **kwargs): """Generates some synthetic data Independent variable spans form 1 to 11 Dependent variable is :math:`3 (xx-1)^2 + xx -1` This allows us to test the trigger as well """ xx = np.linspace(0, 10, 5) yy = (4 * (xx))**2 + 2 * (xx) return xx + 1, yy, None def simple_trigger(self, x, y): """Rather than test the trigger funciton, this returns the known offset """ return x[0] def get_splines(self, x_data, y_data, var_data=0): """Overloads the base spline generateion which cannot deal with the smooth experiment """ return IUSpline(x_data, y_data), None class TestSimpleExperiment(unittest.TestCase): """Exercises the functionality of Expeiment using simple classes """ def setUp(self): """Creates a SimpleSimulation """ self.models = {'simp': SimpleModel([2, 1])} self.simSimp = SimpleSimulation() def test_init(self): """Tests that the base experiment can be instantiated """ exp = SimpleExperiment() self.assertIsInstance(exp, GaussianExperiment) def test_shape(self): """Tests that the correct shape of the data is returned """ exp = SimpleExperiment() self.assertEqual(5, exp.shape()) def test_sigma(self): """Tests that the correct covariance matrix is generated """ exp = SimpleExperiment(exp_var=0.01) true_sigma = np.diag((exp.data[1] * 0.01)**2) npt.assert_array_almost_equal(true_sigma, exp.get_sigma()) def test_align(self): """Test of the align function """ exp = SimpleExperiment() # Generate some simulation data sim_data = self.simSimp(self.models) stored_data = copy.deepcopy(sim_data) # Align the simulation data with the experiment aligned_data = exp.align(sim_data) # self.plot('aligned', exp, aligned_data) self.assertEqual(aligned_data[2]['tau'], 1) npt.assert_array_equal(aligned_data[0], exp.data[0]) def test_compare(self): """Tests that the experiment can be compared to aligned simulation data """ exp = SimpleExperiment() # Generate some simulation data sim_data = self.simSimp(self.models) stored_data = copy.deepcopy(sim_data) sim_data = exp.align(sim_data) epsilon = exp.compare(sim_data) npt.assert_array_almost_equal((4**2 - 2**2) * (exp.data[0]-1)**2 + (2-1) * (exp.data[0]-1), epsilon) def test_pq(self): """Tests that the experiment can generate the p and q matrix """ exp = SimpleExperiment() # Generate some simulation data sim_data = self.simSimp(self.models) # Align the data so that it is evaluated at the same time steps as # the experiment aligned_data = exp.align(sim_data) # Get the sensitivity matrix sens_matrix = self.simSimp.get_sens(self.models, ['simp'], aligned_data) # Get the error between the sim and experiment epsilon = exp.compare(sim_data) p_mat, q_vec = exp.get_pq(self.models, ['simp'], sim_data, sens_matrix, scale=False) sigma_mat = exp.get_sigma() p_mat_hat = np.dot(np.dot(sens_matrix.T, np.linalg.inv(sigma_mat)), sens_matrix) npt.assert_array_equal(p_mat, p_mat_hat, err_msg="P matrix calculated incorrectly") q_vec_hat = -np.dot(np.dot(epsilon, np.linalg.inv(sigma_mat)), sens_matrix) npt.assert_array_equal(q_vec, q_vec_hat, err_msg="q vector calculated incorrectly") def test_log_like(self): """Tests the log likelyhood of the experiment given simulation data """ exp = SimpleExperiment() # Generate some simulation data sim_data = self.simSimp(self.models) # Align the data so that it is evaluated at the same time steps as # the experiment aligned_data = exp.align(sim_data) epsilon = exp.compare(sim_data) sigma_mat = exp.get_sigma() log_like_hat = -0.5 * np.dot(epsilon, np.dot(np.linalg.inv(sigma_mat), epsilon)) log_like = exp.get_log_like(sim_data) self.assertEqual(log_like_hat, log_like) def plot(self, name, exp, simdata): """Plots a comparisson """ fig = plt.figure() ax1 = fig.gca() ax1.plot(exp.data[0], exp.data[1], 'o', label='Experiment') ax1.plot(simdata[0], simdata[1][0], '-', label='Simulation') fig.savefig(name + '.pdf')
gpl-2.0
MohammedWasim/scikit-learn
sklearn/decomposition/truncated_svd.py
199
7744
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, as_float_array, check_random_state from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : array, shape (n_components, n_features) explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. explained_variance_ : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = check_array(X) return np.dot(X, self.components_)
bsd-3-clause
nelson-liu/scikit-learn
examples/model_selection/grid_search_text_feature_extraction.py
99
4163
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <[email protected]> # Peter Prettenhofer <[email protected]> # Mathieu Blondel <[email protected]> # License: BSD 3 clause from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
wgm2111/wgm-kaggle
poker/random_forest.py
1
2618
#!/usr/bin/env python # Author: William G.K. Martin (wgm2111@cu where cu=columbia.edu) # copyright (c) 2011 # liscence: BSD style """ This rewrite uses pandas to read data more elegantly. """ import numpy as np from pandas import read_csv from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.cross_validation import cross_val_score from basic_imports import test_card_array_true # Read in the training set # -- ftrain = 'train.csv' train_data_frame = read_csv(ftrain) # data frame ftest = 'test.csv' test_data_frame = read_csv(ftest) fsample_submission = "sampleSubmission.csv" sample_submission = read_csv(fsample_submission) fsubmission = "my_submission.csv" # Make arrays out of the data Xtrain = train_data_frame.as_matrix( ['S1', 'C1', 'S2', 'C2','S3', 'C3','S4', 'C4','S5', 'C5']) y = train_data_frame.as_matrix(['hand']).reshape(-1) # read in the test set # -- Xtest = test_data_frame.as_matrix( ['S1', 'C1', 'S2', 'C2','S3', 'C3','S4', 'C4','S5', 'C5']) # Read the sample submission # permutations # -- perm_array = np.eye(10, k=-2, dtype='int') + np.eye(10, k=8, dtype='int') old = Xtrain Xperms = [Xtrain,] yperms = [y,] for i in range(4): new = np.dot(old, perm_array) Xperms.append(new) yperms.append(y) old = new Xperms = np.concatenate(Xperms) yperms = np.concatenate(yperms) # Transform the problem def imbed52(X): "Imbed hands into a 52 dimensional space" N = X.shape[0] Icard = 13*(X[:, ::2]-1) + X[:, 1::2]-1 Icard = Icard + 52 * np.arange(N).reshape(N, 1) Xcard = np.zeros((N, 52), dtype='int') Xcard.flat[Icard] +=1 return Xcard Xcard = imbed52(Xperms) Xcard_test = imbed52(Xtest) # RAndom Forest classifier rfc = RandomForestClassifier() # print("Random Forest CV score: {0}".format(cross_val_score(rfc, Xperms, yperms))) rfc52 = RandomForestClassifier() N = Xtrain.shape[0] rfc52.fit(Xcard[:N], yperms[:N]) print("Random Forest CV score: {0}".format(cross_val_score(rfc52, Xcard, yperms))) ytest = rfc52.predict(Xcard_test) # Nperms = 5 * Xtrain.shape[0] # Xperms = sp.zeros((Nperms, 10)) # yperms = sp.zeros((Nperms,)) # old=Xtrain # for i in range(4): # new = sp.dot(old, perm_array)) # Xperms[i * Xtrain.shape[0], :] = new # yperms[i * Xtrain.shape[0], :] = y # old = new # for i in range(4): # Xperms.append(sp.dot()) # Xperms.append(sp.dot()) # Xbig = sp.array([ # sp.dot(X)]) # for i in range(5): # perm_array = np.concatenate([ # ]) # make an alternative form of the data
bsd-3-clause
mluessi/dronin
python/ins/pyins.py
11
12810
from sympy import symbols, lambdify, sqrt from sympy import MatrixSymbol, Matrix from numpy import cos, sin, power from sympy.matrices import * from quaternions import * import numpy # this is the set of (currently) recommend INS settings. modified from # https://raw.githubusercontent.com/wiki/TauLabs/TauLabs/files/htfpv-sparky-nav_20130527.uav default_mag_var = numpy.array([10.0, 10.0, 100.0]) default_gyro_var = numpy.array([1e-5, 1e-5, 1e-4]) default_accel_var = numpy.array([0.01, 0.01, 0.01]) default_baro_var = 0.1 default_gps_var=numpy.array([1e-3,1e-2,10]) class PyINS: GRAV = 9.805 MAG_HEADING = True # use the compass for heading only def __init__(self): """ Creates the PyINS class and prepares the equations. Important variables are * X - the vector of state variables * Xd - the vector of state derivatives for state and inputs * Y - the vector of outputs for current state value """ # Create state variable Px, Py, Pz = symbols('Px Py Pz') Vx, Vy, Vz = symbols('Vx Vy Vz') q0, q1, q2, q3 = symbols('q0 q1 q2 q3') wbx, wby, wbz = symbols('wbx wby wbz') abz = symbols('abz') # Helper variables P = Matrix([Px, Py, Pz]) V = Matrix([Vx, Vy, Vz]) q = Matrix([q0, q1, q2, q3]) wb = Matrix([wbx, wby, wbz]) X = Matrix([Px, Py, Pz, Vx, Vy, Vz, q0, q1, q2, q3, wbx, wby, wbz, abz]) # strap down equation matrix Q = Matrix([[-q1, -q2, -q3],[q0, -q3, q2],[q3, q0, -q1],[-q2, q1, q0]]) # Inputs to system wx, wy, wz = symbols('wx, wy, wz') ax, ay, az = symbols('ax, ay, az') U = [wx, wy, wz, ax, ay, az] # Noise inputs nwx, nwy, nwz = symbols('nwx, nwy, nwz') # gyro noise nax, nay, naz = symbols('nax, nay, naz') # accel noise nwbx, nwby, nwbz = symbols('nwbx, nwby, nwbz') # gyro bias drift nabz = symbols('nabz') # z-accel bias drift n = [nwx, nwy, nwz, nax, nay, naz, nwbx, nwby, nwbz, nabz] # State equations Rbe = Matrix([[(q0*q0+q1*q1-q2*q2-q3*q3), 2*(q1*q2+q0*q3), 2*(q1*q3-q0*q2)], [2*(q1*q2-q0*q3), (q0*q0-q1*q1+q2*q2-q3*q3), 2*(q2*q3+q0*q1)], [2*(q1*q3+q0*q2), 2*(q2*q3-q0*q1), (q0*q0-q1*q1-q2*q2+q3*q3)]]) Reb = Rbe.T atrue = Matrix([ax-nax,ay-nay,az-naz-abz]) Pd = V Vd = (Reb * atrue) + Matrix([0,0,self.GRAV]) qd = Q/2 * Matrix([wx-nwx-wbx,wy-nwy-wby,wz-nwz-wbz]) # measured - noise - bias wbd = Matrix([nwbx, nwby, nwbz]) abd = nabz # combine all the derivatives. Xd = Matrix([Pd[0], Pd[1], Pd[2], Vd[0], Vd[1], Vd[2], qd[0], qd[1], qd[2], qd[3], wbd[0], wbd[1], wbd[2], abd]) Xd_nn = Xd.subs(nwbx,0).subs(nwby,0).subs(nwbz,0).subs(nwx,0).subs(nwy,0).subs(nwz,0).subs(nabz,0) # version without noise inputs # Compute jacobians of state equations. wrt = [Px, Py, Pz, Vx, Vy, Vz, q0, q1, q2, q3, wbx, wby, wbz, abz, wx, wy, wz] Xdl = lambdify(wrt,Xd_nn) F = Xd_nn.jacobian(X) G = Xd.jacobian(n) # Output equations. #Be = MatrixSymbol('Be',3,1) # mag near home location Be = Matrix([400, 0, 1600]) if self.MAG_HEADING: # Project the mag vector to the body frame by only the rotational component k1 = sqrt(power(q0**2 + q1**2 - q2**2 - q3**2,2) + power(q0*q3*2 + q1*q2*2,2)) Rbh = Matrix([[(q0**2 + q1**2 - q2**2 - q3**2)/k1, (2*q0*q3 + 2*q1*q2)/k1 , 0], [-(2*q0*q3 + 2*q1*q2)/k1 , (q0**2 + q1**2 - q2**2 - q3**2)/k1 , 0], [0,0,1]]); Bb = Rbh * Matrix(Be); # predicted mag in body frame else: Bb = Rbe * Matrix(Be); # predicted mag in body frame Y = Matrix([P, V, Bb, Matrix([-Pz])]) # predicted outputs H = Y.jacobian(X) # Store the useful functions. self.X = X # vector of state variables self.Xd = Xd # vector of derivatives in state space as a function of state and inputs self.Y = Y # vector of functions that predict the output for the current state space output self.U = U # vector of inputs self.noise = n # Functions to linearize derivatives around current point. self.F = F self.G = G self.H = H # These are populated in the prepare method self.r_X = numpy.matrix([0,0,0,0,0,0,1.0,0,0,0,0,0,0,0]).T self.r_P = [] self.Q = [] self.R = [] self.l_Xd = [] self.l_F = [] self.l_G = [] self.l_H = [] self.l_Y = [] # state format used by common code self.state = numpy.zeros((16)) self.state[0:14] = self.r_X[0:14].T self.state[-1] = self.r_X[-1] def prepare(self): """ Prepare to run data through the PyINS Initializes the state variables and covariance. Compiles equations to run faster. * self.R is the measurement noise (pos, vel, mag, baro) * self.Q is the process noise (gyro, accel, gyro bias, accel bias) """ Q = [default_gyro_var[0], default_gyro_var[1], default_gyro_var[2], default_accel_var[0], default_accel_var[1], default_accel_var[2], 5e-7, 5e-7, 2e-6, 5e-4] R = [default_gps_var[0], default_gps_var[0], default_gps_var[2], default_gps_var[1], default_gps_var[1], default_gps_var[2], default_mag_var[0], default_mag_var[1], default_mag_var[2], default_baro_var] self.r_X = numpy.matrix([0,0,0,0,0,0,1.0,0,0,0,0,0,0,0]).T self.r_P = numpy.diagflat([25,25,25, 5,5,5, 1e-5,1e-5,1e-5,1e-5, 1e-9,1e-9,1e-9, 1e-7]) self.R = numpy.diagflat(R) self.Q = numpy.diagflat(Q) # the noise inputs to the system are not used in the prediction (or assume their mean of zero) Xd = self.Xd for i in self.noise: Xd = Xd.subs(i,0) if True: from sympy.utilities.autowrap import ufuncify self.l_Xd = lambdify([self.X, self.U],Xd, "numpy") # Jacobian of state derivatives as a function of state and input self.l_F = lambdify([self.X, self.U],Xd.jacobian(self.X), "numpy") # Jacobian of state derivatives with process noise as a function of state # note this uses the original Xd with noise terms still included self.l_G = lambdify([self.X], self.Xd.jacobian(self.noise), "numpy") # Jacobian of ouputs versus state self.l_H = lambdify([self.X], self.Y.jacobian(self.X), "numpy") # Functional form to predict outputs self.l_Y = lambdify([self.X], self.Y, "numpy") else: self.l_Xd = lambdify([self.X, self.U],Xd) # Jacobian of state derivatives as a function of state and input self.l_F = lambdify([self.X, self.U],Xd.jacobian(self.X)) # Jacobian of state derivatives with process noise as a function of state # note this uses the original Xd with noise terms still included self.l_G = lambdify([self.X], self.Xd.jacobian(self.noise)) # Jacobian of ouputs versus state self.l_H = lambdify([self.X], self.Y.jacobian(self.X)) # Functional form to predict outputs self.l_Y = lambdify([self.X], self.Y) def normalize(self): """ Make sure the quaternion state stays normalized """ q = self.r_X[6:10,0] qnew = numpy.zeros((4,1)) qn = sqrt(q[0]**2 + q[1]**2 + q[2]**2 + q[3]**2) for i in range(4): qnew[i] = q[i] / qn self.r_X[6:10] = qnew def suppress_bias(self): self.r_X[10:] = 0 self.r_P[10:,:] = zeros(4,14) self.r_P[:,10:] = zeros(14,4) def configure(self, mag_var=None, gyro_var=None, accel_var=None, baro_var=None, gps_var=None): """ configure the INS parameters """ Q = [default_gyro_var[0], default_gyro_var[1], default_gyro_var[2], default_accel_var[0], default_accel_var[1], default_accel_var[2], 5e-7, 5e-7, 2e-6, 5e-4] R = [default_gps_var[0], default_gps_var[0], default_gps_var[2], default_gps_var[1], default_gps_var[1], default_gps_var[2], default_mag_var[0], default_mag_var[1], default_mag_var[2], default_baro_var] if mag_var is not None: self.R[6,6] = mag_var[0] self.R[7,7] = mag_var[1] self.R[8,8] = mag_var[2] if gyro_var is not None: self.Q[0,0] = gyro_var[0] self.Q[1,1] = gyro_var[1] self.Q[2,2] = gyro_var[2] if accel_var is not None: self.Q[3,3] = accel_var[0] self.Q[4,4] = accel_var[1] self.Q[5,5] = accel_var[2] if baro_var is not None: self.R[9,9] = baro_var if gps_var is not None: self.R[0,0] = gps_var[0] self.R[1,1] = gps_var[0] self.R[3,3] = gps_var[1] self.R[4,4] = gps_var[1] self.R[2,2] = gps_var[2] self.R[5,5] = gps_var[2] def predict(self, gyros, accels, dT = 1.0/666.0): """ Perform the prediction step """ U = numpy.concatenate((gyros, accels)) # fourth-order runga kuta state prediction k1 = self.l_Xd(self.r_X.tolist(), U) k2 = self.l_Xd((self.r_X + 0.5*dT*k1).tolist(), U) k3 = self.l_Xd((self.r_X + 0.5*dT*k2).tolist(), U) k4 = self.l_Xd((self.r_X + dT*k3).tolist() , U) d = (k1 + 2*k2 + 2*k3 + k4) / 6 f = self.l_F(self.r_X.tolist(), U) g = self.l_G(self.r_X.T.tolist()) self.r_X = self.r_X + dT * d P = self.r_P #self.r_P = P + dT * (numpy.f*P + P*f.T) + (dT**2) * g * diag(self.Q) * g.T #self.r_P = (eye(NUMX)+F*T)*Pplus*(eye(NUMX)+F*T)' + T^2*G*diag(Q)*G' I = numpy.matrix(numpy.identity(14)) self.r_P = (I + f * dT) * P * (I + f * dT).T + (dT**2) * g * diag(self.Q) * g.T self.normalize() self.state[0:14] = self.r_X[0:14].T self.state[-1] = self.r_X[-1] def correction(self, pos=None, vel=None, mag=None, baro=None): """ Perform the INS correction based on the provided corrections """ P = self.r_P Y = self.l_Y([self.r_X.tolist()]) H = self.l_H([self.r_X.tolist()]) idx = [] Z = [] if pos is not None: idx.extend((0,1)) Z.extend([[pos[0]]]) Z.extend([[pos[1]]]) if vel is not None: idx.extend((3,4,5)) Z.extend([[vel[0]]]) Z.extend([[vel[1]]]) Z.extend([[vel[2]]]) if mag is not None: if self.MAG_HEADING: # Remove the influence of attitude q0,q1,q2,q3 = self.r_X[6:10] k1 = power( (q0*q1*2.0 + q2*q3*2.0)**2 + (q0*q0-q1*q1-q2*q2+q3*q3)**2, -0.5) k2 = sqrt(1.0 - (q0*q2*2.0 - q1*q3*2.0)**2) Rbh = numpy.zeros((3,3)) Rbh[0,0] = k2 Rbh[0,2] = q0*q2*-2.0+q1*q3*2.0 Rbh[1,0] = k1*(q0*q1*2.0+q2*q3*2.0)*(q0*q2*2.0-q1*q3*2.0) Rbh[1,1] = k1*(q0*q0-q1*q1-q2*q2+q3*q3) Rbh[1,2] = k1*sqrt(-power(q0*q2*2.0-q1*q3*2.0, 2.0)+1.0)*(q0*q1*2.0+q2*q3*2.0) Rbh[2,0] = k1*(q0*q2*2.0-q1*q3*2.0)*(q0*q0-q1*q1-q2*q2+q3*q3) Rbh[2,1] = -k1*(q0*q1*2.0+q2*q3*2.0) Rbh[2,2] = k1*k2*(q0*q0-q1*q1-q2*q2+q3*q3) print "Here: " + `Rbh.shape` + " " + `mag.shape` print `Rbh.dot(mag).shape` mag = Rbh.dot(mag) Z.extend([[mag[0]],[mag[1]]]) else: # Use full mag shape Z.extend(mag[0:2]) idx.extend((6,7)) if baro is not None: idx.append(9) Z.append(baro) # construct appropriately sized predictions based on provided inputs # this method of creating a matrix from a list is really ugly and # sensitive to how the elements are formatted in the list to create # the correct shape of the matrix Z = numpy.matrix(Z) Y = Y[idx] H = H[idx,:] R = self.R[idx,:][:,idx] # calculate Kalman gain matrix # K = P*H.T/(H*P*H.T + R); A = numpy.matrix(P*H.T) B = numpy.matrix(H*P*H.T + R) K = numpy.linalg.lstsq(B, A.T)[0].T self.normalize() self.r_X = self.r_X + K*(Z-Y) self.r_P = P - K*H*P; self.state[0:14] = self.r_X[0:14].T self.state[-1] = self.r_X[-1] def test(): """ test the INS with simulated data """ from numpy import cos, sin import matplotlib.pyplot as plt fig, ax = plt.subplots(2,2) ins = PyINS() ins.prepare() dT = 1.0 / 666.0 STEPS = 100000 history = numpy.zeros((STEPS,14)) times = numpy.zeros((STEPS,1)) ins.r_X[6:10] = numpy.matrix([1/sqrt(2),0,0,1/sqrt(2)]).T for k in range(STEPS): ROLL = 0.5 YAW = 0.5 ins.predict([0,0,YAW], [0,PyINS.GRAV*sin(ROLL),-PyINS.GRAV*cos(ROLL) - 0.1], dT=0.0015) history[k,:] = ins.r_X.T times[k] = k * dT angle = numpy.pi/3 + YAW * dT * k # radians height = 1.0 * k * dT if True and k % 60 == 59: ins.correction(pos=[[10],[5],[-height]]) if True and k % 60 == 59: ins.correction(vel=[[0],[0],[0]]) if k % 20 == 8: ins.correction(baro=[height]) if True and k % 20 == 15: ins.correction(mag=[[400 * cos(angle)], [-400 * sin(angle)], [1600]]) ins.normalize() if k < 200: ins.suppress_bias() if k % 50 == 0: print `k` + " Att: " + `quat_rpy_display(ins.r_X[6:10])` + " norm: " + `Matrix(ins.r_X[6:10]).norm()` ax[0][0].cla() ax[0][0].plot(times[0:k:4],history[0:k:4,0:3]) ax[0][1].cla() ax[0][1].plot(times[0:k:4],history[0:k:4,3:6]) ax[1][0].cla() ax[1][0].plot(times[0:k:4],history[0:k:4,6:10]) ax[1][1].cla() ax[1][1].plot(times[0:k:4],history[0:k:4,10:]) #print `ins.r_P` #ax[0][2].imshow(ins.r_P) plt.draw() fig.show() if __name__ =='__main__': test()
gpl-3.0
saketkc/statsmodels
statsmodels/examples/ex_generic_mle_tdist.py
29
39735
# -*- coding: utf-8 -*- """ Created on Wed Jul 28 08:28:04 2010 Author: josef-pktd """ from __future__ import print_function from statsmodels.compat.python import zip import numpy as np from scipy import stats, special, optimize import statsmodels.api as sm from statsmodels.base.model import GenericLikelihoodModel #redefine some shortcuts np_log = np.log np_pi = np.pi sps_gamln = special.gammaln def maxabs(arr1, arr2): return np.max(np.abs(arr1 - arr2)) def maxabsrel(arr1, arr2): return np.max(np.abs(arr2 / arr1 - 1)) #global store_params = [] class MyT(GenericLikelihoodModel): '''Maximum Likelihood Estimation of Linear Model with t-distributed errors This is an example for generic MLE which has the same statistical model as discretemod.Poisson. Except for defining the negative log-likelihood method, all methods and results are generic. Gradients and Hessian and all resulting statistics are based on numerical differentiation. ''' def loglike(self, params): return -self.nloglikeobs(params).sum(0) # copied from discretemod.Poisson def nloglikeobs(self, params): """ Loglikelihood of Poisson model Parameters ---------- params : array-like The parameters of the model. Returns ------- The log likelihood of the model evaluated at `params` Notes -------- .. math :: \\ln L=\\sum_{i=1}^{n}\\left[-\\lambda_{i}+y_{i}x_{i}^{\\prime}\\beta-\\ln y_{i}!\\right] """ #print len(params), store_params.append(params) if not self.fixed_params is None: #print 'using fixed' params = self.expandparams(params) beta = params[:-2] df = params[-2] scale = params[-1] loc = np.dot(self.exog, beta) endog = self.endog x = (endog - loc)/scale #next part is stats.t._logpdf lPx = sps_gamln((df+1)/2) - sps_gamln(df/2.) lPx -= 0.5*np_log(df*np_pi) + (df+1)/2.*np_log(1+(x**2)/df) lPx -= np_log(scale) # correction for scale return -lPx #Example: np.random.seed(98765678) nobs = 1000 nvars = 6 df = 5 rvs = np.random.randn(nobs, nvars-1) data_exog = sm.add_constant(rvs, prepend=False) xbeta = 0.9 + 0.1*rvs.sum(1) data_endog = xbeta + 0.1*np.random.standard_t(df, size=nobs) print(data_endog.var()) res_ols = sm.OLS(data_endog, data_exog).fit() print(res_ols.scale) print(np.sqrt(res_ols.scale)) print(res_ols.params) kurt = stats.kurtosis(res_ols.resid) df_fromkurt = 6./kurt + 4 print(stats.t.stats(df_fromkurt, moments='mvsk')) print(stats.t.stats(df, moments='mvsk')) modp = MyT(data_endog, data_exog) start_value = 0.1*np.ones(data_exog.shape[1]+2) #start_value = np.zeros(data_exog.shape[1]+2) #start_value[:nvars] = sm.OLS(data_endog, data_exog).fit().params start_value[:nvars] = res_ols.params start_value[-2] = df_fromkurt #10 start_value[-1] = np.sqrt(res_ols.scale) #0.5 modp.start_params = start_value #adding fixed parameters fixdf = np.nan * np.zeros(modp.start_params.shape) fixdf[-2] = 100 fixone = 0 if fixone: modp.fixed_params = fixdf modp.fixed_paramsmask = np.isnan(fixdf) modp.start_params = modp.start_params[modp.fixed_paramsmask] else: modp.fixed_params = None modp.fixed_paramsmask = None resp = modp.fit(start_params = modp.start_params, disp=1, method='nm')#'newton') #resp = modp.fit(start_params = modp.start_params, disp=1, method='newton') print('\nestimation results t-dist') print(resp.params) print(resp.bse) resp2 = modp.fit(start_params = resp.params, method='Newton') print('using Newton') print(resp2.params) print(resp2.bse) from statsmodels.tools.numdiff import approx_fprime, approx_hess hb=-approx_hess(modp.start_params, modp.loglike, epsilon=-1e-4) tmp = modp.loglike(modp.start_params) print(tmp.shape) #np.linalg.eigh(np.linalg.inv(hb))[0] pp=np.array(store_params) print(pp.min(0)) print(pp.max(0)) ##################### Example: Pareto # estimating scale doesn't work yet, a bug somewhere ? # fit_ks works well, but no bse or other result statistics yet #import for kstest based estimation #should be replace import statsmodels.sandbox.distributions.sppatch class MyPareto(GenericLikelihoodModel): '''Maximum Likelihood Estimation pareto distribution first version: iid case, with constant parameters ''' #copied from stats.distribution def pdf(self, x, b): return b * x**(-b-1) def loglike(self, params): return -self.nloglikeobs(params).sum(0) def nloglikeobs(self, params): #print params.shape if not self.fixed_params is None: #print 'using fixed' params = self.expandparams(params) b = params[0] loc = params[1] scale = params[2] #loc = np.dot(self.exog, beta) endog = self.endog x = (endog - loc)/scale logpdf = np_log(b) - (b+1.)*np_log(x) #use np_log(1 + x) for Pareto II logpdf -= np.log(scale) #lb = loc + scale #logpdf[endog<lb] = -inf #import pdb; pdb.set_trace() logpdf[x<1] = -10000 #-np.inf return -logpdf def fit_ks(self): '''fit Pareto with nested optimization originally published on stackoverflow this doesn't trim lower values during ks optimization ''' rvs = self.endog rvsmin = rvs.min() fixdf = np.nan * np.ones(3) self.fixed_params = fixdf self.fixed_paramsmask = np.isnan(fixdf) def pareto_ks(loc, rvs): #start_scale = rvs.min() - loc # not used yet #est = self.fit_fr(rvs, 1., frozen=[np.nan, loc, np.nan]) self.fixed_params[1] = loc est = self.fit(start_params=self.start_params[self.fixed_paramsmask]).params #est = self.fit(start_params=self.start_params, method='nm').params args = (est[0], loc, est[1]) return stats.kstest(rvs,'pareto',args)[0] locest = optimize.fmin(pareto_ks, rvsmin - 1.5, (rvs,)) est = stats.pareto.fit_fr(rvs, 0., frozen=[np.nan, locest, np.nan]) args = (est[0], locest[0], est[1]) return args def fit_ks1_trim(self): '''fit Pareto with nested optimization originally published on stackoverflow ''' self.nobs = self.endog.shape[0] rvs = np.sort(self.endog) rvsmin = rvs.min() def pareto_ks(loc, rvs): #start_scale = rvs.min() - loc # not used yet est = stats.pareto.fit_fr(rvs, frozen=[np.nan, loc, np.nan]) args = (est[0], loc, est[1]) return stats.kstest(rvs,'pareto',args)[0] #locest = optimize.fmin(pareto_ks, rvsmin*0.7, (rvs,)) maxind = min(np.floor(self.nobs*0.95).astype(int), self.nobs-10) res = [] for trimidx in range(self.nobs//2, maxind): xmin = loc = rvs[trimidx] res.append([trimidx, pareto_ks(loc-1e-10, rvs[trimidx:])]) res = np.array(res) bestidx = res[np.argmin(res[:,1]),0].astype(int) print(bestidx) locest = rvs[bestidx] est = stats.pareto.fit_fr(rvs[bestidx:], 1., frozen=[np.nan, locest, np.nan]) args = (est[0], locest, est[1]) return args def fit_ks1(self): '''fit Pareto with nested optimization originally published on stackoverflow ''' rvs = self.endog rvsmin = rvs.min() def pareto_ks(loc, rvs): #start_scale = rvs.min() - loc # not used yet est = stats.pareto.fit_fr(rvs, 1., frozen=[np.nan, loc, np.nan]) args = (est[0], loc, est[1]) return stats.kstest(rvs,'pareto',args)[0] #locest = optimize.fmin(pareto_ks, rvsmin*0.7, (rvs,)) locest = optimize.fmin(pareto_ks, rvsmin - 1.5, (rvs,)) est = stats.pareto.fit_fr(rvs, 1., frozen=[np.nan, locest, np.nan]) args = (est[0], locest[0], est[1]) return args #y = stats.pareto.rvs(1, loc=10, scale=2, size=nobs) y = stats.pareto.rvs(1, loc=0, scale=2, size=nobs) par_start_params = np.array([1., 9., 2.]) mod_par = MyPareto(y) mod_par.start_params = np.array([1., 10., 2.]) mod_par.start_params = np.array([1., -9., 2.]) mod_par.fixed_params = None fixdf = np.nan * np.ones(mod_par.start_params.shape) fixdf[1] = 9.9 #fixdf[2] = 2. fixone = 0 if fixone: mod_par.fixed_params = fixdf mod_par.fixed_paramsmask = np.isnan(fixdf) mod_par.start_params = mod_par.start_params[mod_par.fixed_paramsmask] mod_par.df_model = 2 mod_par.df_resid = mod_par.endog.shape[0] - mod_par.df_model mod_par.data.xnames = ['shape', 'scale'] else: mod_par.fixed_params = None mod_par.fixed_paramsmask = None mod_par.df_model = 3 mod_par.df_resid = mod_par.endog.shape[0] - mod_par.df_model mod_par.data.xnames = ['shape', 'loc', 'scale'] res_par = mod_par.fit(start_params=mod_par.start_params, method='nm', maxfun=10000, maxiter=5000) #res_par2 = mod_par.fit(start_params=res_par.params, method='newton', maxfun=10000, maxiter=5000) res_parks = mod_par.fit_ks1() print(res_par.params) #print res_par2.params print(res_parks) print(res_par.params[1:].sum(), sum(res_parks[1:]), mod_par.endog.min()) #start new model, so we don't get two result instances with the same model instance mod_par = MyPareto(y) mod_par.fixed_params = fixdf mod_par.fixed_paramsmask = np.isnan(fixdf) mod_par.df_model = mod_par.fixed_paramsmask.sum() mod_par.df_resid = mod_par.endog.shape[0] - mod_par.df_model #mod_par.data.xnames = np.array(['shape', 'loc', 'scale'])[mod_par.fixed_paramsmask].tolist() # works also mod_par.data.xnames = [name for (name, incl) in zip(['shape', 'loc', 'scale'], mod_par.fixed_paramsmask) if incl] res_par3 = mod_par.start_params = par_start_params[mod_par.fixed_paramsmask] res5 = mod_par.fit(start_params=mod_par.start_params) ##res_parks2 = mod_par.fit_ks() ## ##res_parkst = mod_par.fit_ks1_trim() ##print res_parkst print(res5.summary()) print(res5.t_test([[1,0]])) ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' 0.0686702747648 0.0164150896481 0.128121386381 [ 0.10370428 0.09921315 0.09676723 0.10457413 0.10201618 0.89964496] (array(0.0), array(1.4552599885729831), array(0.0), array(2.5072143354058238)) (array(0.0), array(1.6666666666666667), array(0.0), array(6.0)) repr(start_params) array([ 0.10370428, 0.09921315, 0.09676723, 0.10457413, 0.10201618, 0.89964496, 6.39309417, 0.12812139]) Optimization terminated successfully. Current function value: -679.951339 Iterations: 398 Function evaluations: 609 estimation results t-dist [ 0.10400826 0.10111893 0.09725133 0.10507788 0.10086163 0.8996041 4.72131318 0.09825355] [ 0.00365493 0.00356149 0.00349329 0.00362333 0.003732 0.00362716 0.7232824 0.00388829] repr(start_params) array([ 0.10400826, 0.10111893, 0.09725133, 0.10507788, 0.10086163, 0.8996041 , 4.72131318, 0.09825355]) Optimization terminated successfully. Current function value: -679.950443 Iterations 3 using Newton [ 0.10395383 0.10106762 0.09720665 0.10503384 0.10080599 0.89954546 4.70918964 0.09815885] [ 0.00365299 0.00355968 0.00349147 0.00362166 0.00373015 0.00362533 0.72014031 0.00388434] () [ 0.09992709 0.09786601 0.09387356 0.10229919 0.09756623 0.85466272 4.60459182 0.09661986] [ 0.11308292 0.10828401 0.1028508 0.11268895 0.10934726 0.94462721 7.15412655 0.13452746] repr(start_params) array([ 1., 2.]) Warning: Maximum number of function evaluations has been exceeded. >>> res_par.params array([ 7.42705803e+152, 2.17339053e+153]) >>> mod_par.loglike(mod_p.start_params) Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'mod_p' is not defined >>> mod_par.loglike(mod_par.start_params) -1085.1993430947232 >>> np.log(mod_par.pdf(mod_par.start_params)) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: pdf() takes exactly 3 arguments (2 given) >>> np.log(mod_par.pdf(*mod_par.start_params)) 0.69314718055994529 >>> mod_par.loglike(*mod_par.start_params) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: loglike() takes exactly 2 arguments (3 given) >>> mod_par.loglike(mod_par.start_params) -1085.1993430947232 >>> np.log(stats.pareto.pdf(y[0],*mod_par.start_params)) -4.6414308627431353 >>> mod_par.loglike(mod_par.start_params) -1085.1993430947232 >>> mod_par.nloglikeobs(mod_par.start_params)[0] 0.29377232943845044 >>> mod_par.start_params array([ 1., 2.]) >>> np.log(stats.pareto.pdf(y[0],1,9.5,2)) -1.2806918394368461 >>> mod_par.fixed_params= None >>> mod_par.nloglikeobs(np.array([1., 10., 2.]))[0] 0.087533156771285828 >>> y[0] 12.182956907488885 >>> mod_para.endog[0] Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'mod_para' is not defined >>> mod_par.endog[0] 12.182956907488885 >>> np.log(stats.pareto.pdf(y[0],1,10,2)) -0.86821349410251702 >>> np.log(stats.pareto.pdf(y[0],1.,10.,2.)) -0.86821349410251702 >>> stats.pareto.pdf(y[0],1.,10.,2.) 0.41970067762301644 >>> mod_par.loglikeobs(np.array([1., 10., 2.]))[0] -0.087533156771285828 >>> ''' ''' >>> mod_par.nloglikeobs(np.array([1., 10., 2.]))[0] 0.86821349410251691 >>> np.log(stats.pareto.pdf(y,1.,10.,2.)).sum() -2627.9403758026938 ''' #''' #C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; # please delete it from your matplotlibrc file # warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' #0.0686702747648 #0.0164150896481 #0.128121386381 #[ 0.10370428 0.09921315 0.09676723 0.10457413 0.10201618 0.89964496] #(array(0.0), array(1.4552599885729827), array(0.0), array(2.5072143354058203)) #(array(0.0), array(1.6666666666666667), array(0.0), array(6.0)) #repr(start_params) array([ 0.10370428, 0.09921315, 0.09676723, 0.10457413, 0.10201618, # 0.89964496, 6.39309417, 0.12812139]) #Optimization terminated successfully. # Current function value: -679.951339 # Iterations: 398 # Function evaluations: 609 # #estimation results t-dist #[ 0.10400826 0.10111893 0.09725133 0.10507788 0.10086163 0.8996041 # 4.72131318 0.09825355] #[ 0.00365493 0.00356149 0.00349329 0.00362333 0.003732 0.00362716 # 0.72325227 0.00388822] #repr(start_params) array([ 0.10400826, 0.10111893, 0.09725133, 0.10507788, 0.10086163, # 0.8996041 , 4.72131318, 0.09825355]) #Optimization terminated successfully. # Current function value: -679.950443 # Iterations 3 #using Newton #[ 0.10395383 0.10106762 0.09720665 0.10503384 0.10080599 0.89954546 # 4.70918964 0.09815885] #[ 0.00365299 0.00355968 0.00349147 0.00362166 0.00373015 0.00362533 # 0.72014669 0.00388436] #() #[ 0.09992709 0.09786601 0.09387356 0.10229919 0.09756623 0.85466272 # 4.60459182 0.09661986] #[ 0.11308292 0.10828401 0.1028508 0.11268895 0.10934726 0.94462721 # 7.15412655 0.13452746] #repr(start_params) array([ 1., 2.]) #Warning: Maximum number of function evaluations has been exceeded. #repr(start_params) array([ 3.06504406e+302, 3.29325579e+303]) #Traceback (most recent call last): # File "C:\Josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\examples\ex_generic_mle_tdist.py", line 222, in <module> # res_par2 = mod_par.fit(start_params=res_par.params, method='newton', maxfun=10000, maxiter=5000) # File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 547, in fit # disp=disp, callback=callback, **kwargs) # File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 262, in fit # newparams = oldparams - np.dot(np.linalg.inv(H), # File "C:\Programs\Python25\lib\site-packages\numpy\linalg\linalg.py", line 423, in inv # return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) # File "C:\Programs\Python25\lib\site-packages\numpy\linalg\linalg.py", line 306, in solve # raise LinAlgError, 'Singular matrix' #numpy.linalg.linalg.LinAlgError: Singular matrix # #>>> mod_par.fixed_params #array([ NaN, 10., NaN]) #>>> mod_par.start_params #array([ 1., 2.]) #>>> np.source(stats.pareto.fit_fr) #In file: c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\sandbox\stats\distributions_patch.py # #def fit_fr(self, data, *args, **kwds): # '''estimate distribution parameters by MLE taking some parameters as fixed # # Parameters # ---------- # data : array, 1d # data for which the distribution parameters are estimated, # args : list ? check # starting values for optimization # kwds : # # - 'frozen' : array_like # values for frozen distribution parameters and, for elements with # np.nan, the corresponding parameter will be estimated # # Returns # ------- # argest : array # estimated parameters # # # Examples # -------- # generate random sample # >>> np.random.seed(12345) # >>> x = stats.gamma.rvs(2.5, loc=0, scale=1.2, size=200) # # estimate all parameters # >>> stats.gamma.fit(x) # array([ 2.0243194 , 0.20395655, 1.44411371]) # >>> stats.gamma.fit_fr(x, frozen=[np.nan, np.nan, np.nan]) # array([ 2.0243194 , 0.20395655, 1.44411371]) # # keep loc fixed, estimate shape and scale parameters # >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, np.nan]) # array([ 2.45603985, 1.27333105]) # # keep loc and scale fixed, estimate shape parameter # >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, 1.0]) # array([ 3.00048828]) # >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, 1.2]) # array([ 2.57792969]) # # estimate only scale parameter for fixed shape and loc # >>> stats.gamma.fit_fr(x, frozen=[2.5, 0.0, np.nan]) # array([ 1.25087891]) # # Notes # ----- # self is an instance of a distribution class. This can be attached to # scipy.stats.distributions.rv_continuous # # *Todo* # # * check if docstring is correct # * more input checking, args is list ? might also apply to current fit method # # ''' # loc0, scale0 = map(kwds.get, ['loc', 'scale'],[0.0, 1.0]) # Narg = len(args) # # if Narg == 0 and hasattr(self, '_fitstart'): # x0 = self._fitstart(data) # elif Narg > self.numargs: # raise ValueError("Too many input arguments.") # else: # args += (1.0,)*(self.numargs-Narg) # # location and scale are at the end # x0 = args + (loc0, scale0) # # if 'frozen' in kwds: # frmask = np.array(kwds['frozen']) # if len(frmask) != self.numargs+2: # raise ValueError("Incorrect number of frozen arguments.") # else: # # keep starting values for not frozen parameters # x0 = np.array(x0)[np.isnan(frmask)] # else: # frmask = None # # #print x0 # #print frmask # return optimize.fmin(self.nnlf_fr, x0, # args=(np.ravel(data), frmask), disp=0) # #>>> stats.pareto.fit_fr(y, 1., frozen=[np.nan, loc, np.nan]) #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #NameError: name 'loc' is not defined # #>>> stats.pareto.fit_fr(y, 1., frozen=[np.nan, 10., np.nan]) #array([ 1.0346268 , 2.00184808]) #>>> stats.pareto.fit_fr(y, (1.,2), frozen=[np.nan, 10., np.nan]) #Traceback (most recent call last): # File "<stdin>", line 1, in <module> # File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\sandbox\stats\distributions_patch.py", line 273, in fit_fr # x0 = np.array(x0)[np.isnan(frmask)] #ValueError: setting an array element with a sequence. # #>>> stats.pareto.fit_fr(y, [1.,2], frozen=[np.nan, 10., np.nan]) #Traceback (most recent call last): # File "<stdin>", line 1, in <module> # File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\sandbox\stats\distributions_patch.py", line 273, in fit_fr # x0 = np.array(x0)[np.isnan(frmask)] #ValueError: setting an array element with a sequence. # #>>> stats.pareto.fit_fr(y, frozen=[np.nan, 10., np.nan]) #array([ 1.03463526, 2.00184809]) #>>> stats.pareto.pdf(y, 1.03463526, 10, 2.00184809).sum() #173.33947284555239 #>>> mod_par(1.03463526, 10, 2.00184809) #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #TypeError: 'MyPareto' object is not callable # #>>> mod_par.loglike(1.03463526, 10, 2.00184809) #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #TypeError: loglike() takes exactly 2 arguments (4 given) # #>>> mod_par.loglike((1.03463526, 10, 2.00184809)) #-962.21623668859741 #>>> np.log(stats.pareto.pdf(y, 1.03463526, 10, 2.00184809)).sum() #-inf #>>> np.log(stats.pareto.pdf(y, 1.03463526, 9, 2.00184809)).sum() #-3074.5947476137271 #>>> np.log(stats.pareto.pdf(y, 1.03463526, 10., 2.00184809)).sum() #-inf #>>> np.log(stats.pareto.pdf(y, 1.03463526, 9.9, 2.00184809)).sum() #-2677.3867091635661 #>>> y.min() #12.001848089426717 #>>> np.log(stats.pareto.pdf(y, 1.03463526, loc=9.9, scale=2.00184809)).sum() #-2677.3867091635661 #>>> np.log(stats.pareto.pdf(y, 1.03463526, loc=10., scale=2.00184809)).sum() #-inf #>>> stats.pareto.logpdf(y, 1.03463526, loc=10., scale=2.00184809).sum() #-inf #>>> stats.pareto.logpdf(y, 1.03463526, loc=9.99, scale=2.00184809).sum() #-2631.6120098202355 #>>> mod_par.loglike((1.03463526, 9.99, 2.00184809)) #-963.2513896113644 #>>> maxabs(y, mod_par.endog) #0.0 #>>> np.source(stats.pareto.logpdf) #In file: C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6579.win32\Programs\Python25\Lib\site-packages\scipy\stats\distributions.py # # def logpdf(self, x, *args, **kwds): # """ # Log of the probability density function at x of the given RV. # # This uses more numerically accurate calculation if available. # # Parameters # ---------- # x : array-like # quantiles # arg1, arg2, arg3,... : array-like # The shape parameter(s) for the distribution (see docstring of the # instance object for more information) # loc : array-like, optional # location parameter (default=0) # scale : array-like, optional # scale parameter (default=1) # # Returns # ------- # logpdf : array-like # Log of the probability density function evaluated at x # # """ # loc,scale=map(kwds.get,['loc','scale']) # args, loc, scale = self._fix_loc_scale(args, loc, scale) # x,loc,scale = map(arr,(x,loc,scale)) # args = tuple(lmap(arr,args)) # x = arr((x-loc)*1.0/scale) # cond0 = self._argcheck(*args) & (scale > 0) # cond1 = (scale > 0) & (x >= self.a) & (x <= self.b) # cond = cond0 & cond1 # output = empty(shape(cond),'d') # output.fill(NINF) # putmask(output,(1-cond0)*array(cond1,bool),self.badvalue) # goodargs = argsreduce(cond, *((x,)+args+(scale,))) # scale, goodargs = goodargs[-1], goodargs[:-1] # place(output,cond,self._logpdf(*goodargs) - log(scale)) # if output.ndim == 0: # return output[()] # return output # #>>> np.source(stats.pareto._logpdf) #In file: C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6579.win32\Programs\Python25\Lib\site-packages\scipy\stats\distributions.py # # def _logpdf(self, x, *args): # return log(self._pdf(x, *args)) # #>>> np.source(stats.pareto._pdf) #In file: C:\Josef\_progs\Subversion\scipy-trunk_after\trunk\dist\scipy-0.9.0.dev6579.win32\Programs\Python25\Lib\site-packages\scipy\stats\distributions.py # # def _pdf(self, x, b): # return b * x**(-b-1) # #>>> stats.pareto.a #1.0 #>>> (1-loc)/scale #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #NameError: name 'loc' is not defined # #>>> b, loc, scale = (1.03463526, 9.99, 2.00184809) #>>> (1-loc)/scale #-4.4908502522786327 #>>> (x-loc)/scale == 1 #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #NameError: name 'x' is not defined # #>>> (lb-loc)/scale == 1 #Traceback (most recent call last): # File "<stdin>", line 1, in <module> #NameError: name 'lb' is not defined # #>>> lb = scale + loc #>>> lb #11.991848090000001 #>>> (lb-loc)/scale == 1 #False #>>> (lb-loc)/scale #1.0000000000000004 #>>> #''' ''' repr(start_params) array([ 1., 10., 2.]) Optimization terminated successfully. Current function value: 2626.436870 Iterations: 102 Function evaluations: 210 Optimization terminated successfully. Current function value: 0.016555 Iterations: 16 Function evaluations: 35 [ 1.03482659 10.00737039 1.9944777 ] (1.0596088578825995, 9.9043376069230007, 2.0975104813987118) >>> 9.9043376069230007 + 2.0975104813987118 12.001848088321712 >>> y.min() 12.001848089426717 ''' ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' 0.0686702747648 0.0164150896481 0.128121386381 [ 0.10370428 0.09921315 0.09676723 0.10457413 0.10201618 0.89964496] (array(0.0), array(1.4552599885729829), array(0.0), array(2.5072143354058221)) (array(0.0), array(1.6666666666666667), array(0.0), array(6.0)) repr(start_params) array([ 0.10370428, 0.09921315, 0.09676723, 0.10457413, 0.10201618, 0.89964496, 6.39309417, 0.12812139]) Optimization terminated successfully. Current function value: -679.951339 Iterations: 398 Function evaluations: 609 estimation results t-dist [ 0.10400826 0.10111893 0.09725133 0.10507788 0.10086163 0.8996041 4.72131318 0.09825355] [ 0.00365493 0.00356149 0.00349329 0.00362333 0.003732 0.00362716 0.72329352 0.00388832] repr(start_params) array([ 0.10400826, 0.10111893, 0.09725133, 0.10507788, 0.10086163, 0.8996041 , 4.72131318, 0.09825355]) Optimization terminated successfully. Current function value: -679.950443 Iterations 3 using Newton [ 0.10395383 0.10106762 0.09720665 0.10503384 0.10080599 0.89954546 4.70918964 0.09815885] [ 0.00365299 0.00355968 0.00349147 0.00362166 0.00373015 0.00362533 0.7201488 0.00388437] () [ 0.09992709 0.09786601 0.09387356 0.10229919 0.09756623 0.85466272 4.60459182 0.09661986] [ 0.11308292 0.10828401 0.1028508 0.11268895 0.10934726 0.94462721 7.15412655 0.13452746] repr(start_params) array([ 1., 9., 2.]) Optimization terminated successfully. Current function value: 2636.129089 Iterations: 147 Function evaluations: 279 Optimization terminated successfully. Current function value: 0.016555 Iterations: 16 Function evaluations: 35 [ 0.84856418 10.2197801 1.78206799] (1.0596088578825995, 9.9043376069230007, 2.0975104813987118) 12.0018480891 12.0018480883 12.0018480894 repr(start_params) array([ 1., 2.]) Warning: Desired error not necessarily achieveddue to precision loss Current function value: 2643.549907 Iterations: 2 Function evaluations: 13 Gradient evaluations: 12 >>> res_parks2 = mod_par.fit_ks() repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2642.465273 Iterations: 92 Function evaluations: 172 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2636.639863 Iterations: 73 Function evaluations: 136 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2631.568778 Iterations: 75 Function evaluations: 133 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2627.821044 Iterations: 75 Function evaluations: 135 repr(start_params) array([ 1., 2.]) Warning: Maximum number of function evaluations has been exceeded. repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2631.568778 Iterations: 75 Function evaluations: 133 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.431596 Iterations: 58 Function evaluations: 109 repr(start_params) array([ 1., 2.]) Warning: Maximum number of function evaluations has been exceeded. repr(start_params) array([ 1., 2.]) Warning: Maximum number of function evaluations has been exceeded. repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.737426 Iterations: 60 Function evaluations: 109 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2627.821044 Iterations: 75 Function evaluations: 135 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.471666 Iterations: 48 Function evaluations: 94 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2627.196314 Iterations: 66 Function evaluations: 119 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.578538 Iterations: 56 Function evaluations: 103 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.471666 Iterations: 48 Function evaluations: 94 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.651702 Iterations: 67 Function evaluations: 122 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.737426 Iterations: 60 Function evaluations: 109 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.613505 Iterations: 73 Function evaluations: 141 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.578538 Iterations: 56 Function evaluations: 103 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.632218 Iterations: 64 Function evaluations: 119 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.651702 Iterations: 67 Function evaluations: 122 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.622789 Iterations: 63 Function evaluations: 114 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.613505 Iterations: 73 Function evaluations: 141 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.627465 Iterations: 59 Function evaluations: 109 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.632218 Iterations: 64 Function evaluations: 119 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.625104 Iterations: 59 Function evaluations: 108 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.629829 Iterations: 66 Function evaluations: 118 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.632218 Iterations: 64 Function evaluations: 119 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.632218 Iterations: 64 Function evaluations: 119 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.628642 Iterations: 67 Function evaluations: 122 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.631023 Iterations: 68 Function evaluations: 129 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.630430 Iterations: 57 Function evaluations: 108 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.629598 Iterations: 60 Function evaluations: 112 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.630430 Iterations: 57 Function evaluations: 108 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.630130 Iterations: 65 Function evaluations: 122 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.629536 Iterations: 62 Function evaluations: 111 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.630130 Iterations: 65 Function evaluations: 122 repr(start_params) array([ 1., 2.]) Optimization terminated successfully. Current function value: 2626.629984 Iterations: 67 Function evaluations: 123 Optimization terminated successfully. Current function value: 0.016560 Iterations: 18 Function evaluations: 38 >>> res_parks2 (1.0592352626264809, 9.9051580457572399, 2.0966900385041591) >>> res_parks (1.0596088578825995, 9.9043376069230007, 2.0975104813987118) >>> res_par.params array([ 0.84856418, 10.2197801 , 1.78206799]) >>> np.sqrt(np.diag(mod_par.hessian(res_par.params))) array([ NaN, NaN, NaN]) >>> mod_par.hessian(res_par.params ... ) array([[ NaN, NaN, NaN], [ NaN, NaN, NaN], [ NaN, NaN, NaN]]) >>> mod_par.hessian(res_parks) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 533, in hessian return approx_hess(params, self.loglike)[0] #need options for hess (epsilon) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\sandbox\regression\numdiff.py", line 118, in approx_hess xh = x + h TypeError: can only concatenate tuple (not "float") to tuple >>> mod_par.hessian(np.array(res_parks)) array([[ NaN, NaN, NaN], [ NaN, NaN, NaN], [ NaN, NaN, NaN]]) >>> mod_par.fixed_params array([ NaN, 9.90510677, NaN]) >>> mod_par.fixed_params=None >>> mod_par.hessian(np.array(res_parks)) array([[-890.48553491, NaN, NaN], [ NaN, NaN, NaN], [ NaN, NaN, NaN]]) >>> mod_par.loglike(np.array(res_parks)) -2626.6322080820569 >>> mod_par.bsejac Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\decorators.py", line 85, in __get__ _cachedval = self.fget(obj) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 592, in bsejac return np.sqrt(np.diag(self.covjac)) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\decorators.py", line 85, in __get__ _cachedval = self.fget(obj) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 574, in covjac jacv = self.jacv File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\decorators.py", line 85, in __get__ _cachedval = self.fget(obj) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 557, in jacv return self.jac(self._results.params) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 530, in jac return approx_fprime1(params, self.loglikeobs, **kwds) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\sandbox\regression\numdiff.py", line 80, in approx_fprime1 f0 = f(*((xk,)+args)) File "c:\josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\model.py", line 522, in loglikeobs return -self.nloglikeobs(params) File "C:\Josef\eclipsegworkspace\statsmodels-josef-experimental-gsoc\scikits\statsmodels\examples\ex_generic_mle_tdist.py", line 184, in nloglikeobs scale = params[2] IndexError: index out of bounds >>> hasattr(self, 'start_params') Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'self' is not defined >>> hasattr(mod_par, 'start_params') True >>> mod_par.start_params array([ 1., 2.]) >>> stats.pareto.stats(1., 9., 2., moments='mvsk') (array(1.#INF), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(1., 8., 2., moments='mvsk') (array(1.#INF), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(1., 8., 1., moments='mvsk') (array(1.#INF), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(1., moments='mvsk') (array(1.#INF), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(0.5., moments='mvsk') File "<stdin>", line 1 stats.pareto.stats(0.5., moments='mvsk') ^ SyntaxError: invalid syntax >>> stats.pareto.stats(0.5, moments='mvsk') (array(1.#INF), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(2, moments='mvsk') (array(2.0), array(1.#INF), array(1.#QNAN), array(1.#QNAN)) >>> stats.pareto.stats(10, moments='mvsk') (array(1.1111111111111112), array(0.015432098765432098), array(2.8110568859997356), array(14.828571428571429)) >>> stats.pareto.rvs(10, size=10) array([ 1.07716265, 1.18977526, 1.07093 , 1.05157081, 1.15991232, 1.31015589, 1.06675107, 1.08082475, 1.19501243, 1.34967158]) >>> r = stats.pareto.rvs(10, size=1000) >>> plt Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'plt' is not defined >>> import matplotlib.pyplot as plt >>> plt.hist(r) (array([962, 32, 3, 2, 0, 0, 0, 0, 0, 1]), array([ 1.00013046, 1.3968991 , 1.79366773, 2.19043637, 2.587205 , 2.98397364, 3.38074227, 3.77751091, 4.17427955, 4.57104818, 4.96781682]), <a list of 10 Patch objects>) >>> plt.show() '''
bsd-3-clause
quheng/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
fako/datascope
src/future_fashion/management/commands/match_image_colors.py
1
6593
import os import shutil import logging import json import numpy as np from sklearn.metrics.pairwise import cosine_similarity from colorz import order_by_hue from django.core.files.storage import default_storage from core.management.commands import CommunityCommand from core.utils.configuration import DecodeConfigAction from sources.models import ImageDownload from future_fashion.colors import (extract_dominant_colors, get_vector_from_colors, get_colors_frame, get_colors_individual) log = logging.getLogger("datascope") class Command(CommunityCommand): """ Example: ./manage.py match_image_colors ClothingDataCommunity -i ~/Downloads/fairy-tale.jpg -a tagged_kleding """ def add_arguments(self, parser): parser.add_argument('community', type=str, nargs="?", default=self.community_model) parser.add_argument('-a', '--args', type=str, nargs="*", default="") parser.add_argument('-c', '--config', type=str, action=DecodeConfigAction, nargs="?", default={}) parser.add_argument('-i', '--image', type=str) parser.add_argument('-n', '--number-colors', type=int, default=3) parser.add_argument('-s', '--similarity', action='store_true') def handle_inventory_matches(self, matches, destination): for ix, match_info in enumerate(matches): similarity, match = match_info name, ext = os.path.splitext(match["path"]) shutil.copy2( match["path"], os.path.join(destination, str(ix) + "-" + str(round(similarity, ndigits=3)) + ext) ) def handle_data_matches(self, matches, destination): for ix, match_info in enumerate(matches): similarity, match = match_info uri = ImageDownload.uri_from_url(match["image"]) try: download = ImageDownload.objects.get(uri=uri) except ImageDownload.DoesNotExist: continue if not download.success: continue name, ext = os.path.splitext(download.body) shutil.copy2( os.path.join(default_storage.location, download.body), os.path.join(destination, str(ix) + "-" + str(round(similarity, ndigits=3)) + ext) ) def get_similarity_matches(self, colors, content, num_colors): colors = order_by_hue(colors) vector = get_vector_from_colors(colors) colors_frame = get_colors_frame(content, num_colors=num_colors, by_hue=True) log.info("Color frame shape: {}".format(colors_frame.shape)) similarity = cosine_similarity(colors_frame, np.array(vector).reshape(1, -1)).flatten() # Find indices for ten most similar objects and sort by most similar indices = np.argsort(similarity)[-10:] matches = [(similarity[ix], content[ix],) for ix in indices] matches.reverse() return matches def get_prominent_matches(self, colors, content, num_colors): vector = get_vector_from_colors(colors) colors_frame = get_colors_frame(content, num_colors=num_colors) log.info("Color frame shape: {}".format(colors_frame.shape)) for num in range(0, num_colors): color_vector = vector[num:num+3] color_columns = colors_frame.columns[num:num+3] color_similarity = cosine_similarity(colors_frame.loc[:,color_columns], np.array(color_vector).reshape(1, -1)).flatten() indices = np.argsort(color_similarity) cut_ix = next((num for num, ix in enumerate(indices[::-1]) if color_similarity[ix] < 0.99), None) if cut_ix is None: log.info("Terminating match at color: {}".format(num)) break colors_frame = colors_frame.iloc[indices[-1 * cut_ix:]] else: log.info("Taking all {} colors into account".format(num_colors)) indices = list(colors_frame.index.values) matches = [(prio, content[ix],) for prio, ix in enumerate(indices)] matches.reverse() return matches def handle_community(self, community, *args, **options): # Read from options num_colors = options["number_colors"] image = options["image"] similarity = options["similarity"] # Get colors from input file main_colors, balance = extract_dominant_colors(image, num=num_colors) # Get colors from community data # This loads all data into memory content = list(community.kernel.content) if similarity: matches = self.get_similarity_matches(main_colors, content, num_colors) else: matches = self.get_prominent_matches(main_colors, content, num_colors) # Create directory for input and copy matches there basename = os.path.basename(image) name, ext = os.path.splitext(basename) dest = os.path.join(default_storage.location, community.get_name(), "colorz", name) if not os.path.exists(dest): os.makedirs(dest, exist_ok=True) shutil.copy2(image, os.path.join(dest, basename)) color_data = { "input": { "colors": [ "#{0:02x}{1:02x}{2:02x}".format(color[0], color[1], color[2]) for color in main_colors ], "links": [ "http://www.color-hex.com/color/{0:02x}{1:02x}{2:02x}".format(color[0], color[1], color[2]) for color in main_colors ] }, "output": [ { "similarity": round(similarity, ndigits=3), "colors": [ "#{0:02x}{1:02x}{2:02x}".format(color[0], color[1], color[2]) for color in get_colors_individual(match, num_colors=num_colors, space="rgb") ], "links": [ "http://www.color-hex.com/color/{0:02x}{1:02x}{2:02x}".format(color[0], color[1], color[2]) for color in get_colors_individual(match, num_colors=num_colors, space="rgb") ] } for similarity, match in matches ] } with open(os.path.join(dest, "colors.js"), "w") as jf: json.dump(color_data, jf, indent=4) if community.get_name() == "fashion_data": self.handle_data_matches(matches, dest) else: self.handle_inventory_matches(matches, dest)
gpl-3.0
CopyChat/Plotting
Python/climate_change/swio_changes_pr_rcp85.py
1
11377
#!/usr/bin/env python ######################################## #Globale Karte fuer tests # from Rabea Amther ######################################## # http://gfesuite.noaa.gov/developer/netCDFPythonInterface.html import math import numpy as np import pylab as pl import Scientific.IO.NetCDF as IO import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick import matplotlib.lines as lines from matplotlib.colors import LinearSegmentedColormap import textwrap pl.close('all') ########################## for CMIP5 charactors DIR='/Users/tang/climate/CMIP5/monthly/pr/' VARIABLE='pr' PRODUCT='Amon' ENSEMBLE='r1i1p1' #AbsTemp=273.15 AbsTemp=0 RefTemp=0.0000001 # RefTemp, initialise , could be any value CRUmean=8.148 #1900-2100 land TargetModel=[\ #'CanESM2',\ #'BCC-CSM1.1',\ #'CCSM4',\ #'CNRM-CM5',\ #'CSIRO-Mk3.6.0',\ #'EC-EARTH',\ #'GFDL-ESM2G',\ #'GFDL-ESM2M',\ #'GISS-E2-H',\ #'GISS-E2-R',\ #'HadGEM2-CC',\ 'HadGEM2-ES',\ #'INM-CM4',\ #'IPSL-CM5A-LR',\ #'IPSL-CM5A-MR',\ #'MIROC-ESM-CHEM',\ #'MIROC-ESM',\ #'MIROC5',\ #'MPI-ESM-LR',\ #'MRI-CGCM3',\ 'NorESM1-M',\ ] COLORtar=['darkred','blue','deeppink','orange',\ 'orangered','yellow','gold','brown','chocolate',\ 'green','yellowgreen','aqua','olive','teal',\ 'blue','purple','darkmagenta','fuchsia','indigo',\ 'dimgray','black','navy'] COLORall=['darkred','darkblue','darkgreen','deeppink',\ 'red','blue','green','pink','gold',\ 'lime','lightcyan','orchid','yellow','lightsalmon',\ 'brown','khaki','aquamarine','yellowgreen','blueviolet',\ 'snow','skyblue','slateblue','orangered','dimgray',\ 'chocolate','teal','mediumvioletred','gray','cadetblue',\ 'mediumorchid','bisque','tomato','hotpink','firebrick',\ 'Chartreuse','purple','goldenrod',\ 'black','orangered','cyan','magenta'] linestyles=['_', '_', '_', '-', '-',\ '-', '--','--','--', '--',\ '_', '_','_','_',\ '_', '_','_','_',\ '_', '-', '--', ':','_', '-', '--', ':','_', '-', '--', ':','_', '-', '--', ':'] #================================================ CMIP5 models # for rcp8.5 # ls -l | awk '{printf "999%s998,\\\n",$NF}' | sort -n modelist2=[\ 'ACCESS1-0',\ 'ACCESS1-3',\ 'BNU-ESM',\ 'CCSM4',\ 'CESM1-BGC',\ 'CESM1-CAM5',\ 'CMCC-CM',\ 'CMCC-CMS',\ 'CNRM-CM5',\ 'CSIRO-Mk3-6-0',\ 'CanESM2',\ 'EC-EARTH',\ 'FIO-ESM',\ 'GFDL-CM3',\ 'GFDL-ESM2G',\ 'GFDL-ESM2M',\ 'GISS-E2-R',\ 'HadGEM2-AO',\ 'HadGEM2-CC',\ 'HadGEM2-ES',\ 'IPSL-CM5A-LR',\ 'IPSL-CM5A-MR',\ 'IPSL-CM5B-LR',\ 'MIROC-ESM-CHEM',\ 'MIROC-ESM',\ 'MIROC5',\ 'MPI-ESM-LR',\ 'MPI-ESM-MR',\ 'MRI-CGCM3',\ 'NorESM1-M',\ 'NorESM1-ME',\ 'bcc-csm1-1-m',\ 'bcc-csm1-1',\ 'inmcm4',\ ] print "===============================================" #=================================================== define the Plot: fig1=plt.figure(figsize=(16,9)) ax = fig1.add_subplot(111) plt.xlabel('Year',fontsize=16) #plt.ylabel('SWIO Surface Downwelling Solar Radiation Change (W/m2)',fontsize=16) #plt.ylabel('SWIO Changes ($^\circ$C)',fontsize=16) plt.ylabel('SWIO precipitation Changes (mm/day)',fontsize=16) #plt.title("SWIO Surface Tempereture Changes simulated by CMIP5 models",fontsize=18) plt.title("SWIO Precipitation Changes simulated by CMIP5 models",fontsize=18) #plt.title('Global Surface Downwelling Solar Radiation Changes simulated by CMIP5 models (W/m2)',fontsize=18) # vertical range ylim yrange plt.ylim(-0.5,0.5) plt.xlim(1961,2099) plt.grid() plt.xticks(np.arange(1960, 2090+10, 20)) plt.tick_params(axis='both', which='major', labelsize=14) plt.tick_params(axis='both', which='minor', labelsize=14) #=================================================== 3 windows plt.axvspan(1996, 2005, alpha=0.3, color='red') plt.axvspan(2046, 2055, alpha=0.3, color='red') plt.axvspan(2090, 2099, alpha=0.3, color='red') #=================================================== 3 windows plt.axvline(x=2005,linewidth=2, color='gray') plt.axhline(y=0,linewidth=2, color='gray') #plt.plot(x,y,color="blue",linewidth=4) ########################## for historical ########################## for historical print "========== for rcp85 ===============" EXPERIMENT='historical-rcp85' PRODUCT='Amon' ENSEMBLE='r1i1p1' TIME='196101-209912' filetag="swiomean" YEAR=range(1961,2100) Nmonth=1668 SumTemp=np.zeros(Nmonth/12) K=0 for Model in modelist2: #define the K-th model input file: K=K+1 # for average infile1=DIR+'rcp8.5'+'/'+Model+'/'\ +VARIABLE+'_'+PRODUCT+'_'+Model+'_'+EXPERIMENT+'_'+ENSEMBLE+'_'+TIME+'.'+filetag+'.nc' #an example: tas_Amon_CanESM2_historical-rcp85_r1i1p1_200601-210012.globalmean.nc & \ #this file was copied locally for tests in this book print('the file is == ' +infile1) #open input files infile=IO.NetCDFFile(infile1,'r') # read the variable tas TAS=infile.variables[VARIABLE][:,:,:].copy() print 'the variable tas ===============: ' print TAS # to change units to mm/day TAS=TAS*86400 # calculate the annual mean temp: TEMP=range(0,Nmonth,12) for j in range(0,Nmonth,12): TEMP[j/12]=np.mean(TAS[j:j+11][:][:])-AbsTemp print " temp ======================== absolut" print TEMP # reference temp: mean of 1996-2005 RefTemp=np.mean(TEMP[len(TEMP)-94-10+1:len(TEMP)-94]) if Model=='HadGEM2-ES': HadRefTemp=RefTemp if Model=='GFDL-ESM2M': GFDLRefTemp=RefTemp if K==1: ArrRefTemp=[RefTemp] else: ArrRefTemp=ArrRefTemp+[RefTemp] print 'ArrRefTemp ========== ',ArrRefTemp TEMP=[t-RefTemp for t in TEMP] print " temp ======================== relative to mean of 1986-2005" print TEMP ##quit() # for std # get array of temp K*TimeStep if K==1: ArrTemp=[TEMP] else: ArrTemp=ArrTemp+[TEMP] SumTemp=SumTemp+TEMP print SumTemp #=================================================== to plot print "======== to plot ==========" print len(TEMP) print 'NO. of year:',len(YEAR) #quit() #plot only target models if Model in TargetModel: plt.plot(YEAR,TEMP,\ label=Model,\ #linestyles[TargetModel.index(Model)],\ color=COLORtar[TargetModel.index(Model)],\ linewidth=2) #if Model=='CanESM2': #plt.plot(YEAR,TEMP,color="red",linewidth=1) #if Model=='MPI-ESM-LR': #plt.plot(YEAR,TEMP,color="blue",linewidth=1) #if Model=='MPI-ESM-MR': #plt.plot(YEAR,TEMP,color="green",linewidth=1) #=================================================== for ensemble mean AveTemp=[e/K for e in SumTemp] ArrTemp=list(np.array(ArrTemp)) print 'shape of ArrTemp:',np.shape(ArrTemp) StdTemp=np.std(np.array(ArrTemp),axis=0) print 'shape of StdTemp:',np.shape(StdTemp) print "ArrTemp ========================:" print ArrTemp print "StdTemp ========================:" print StdTemp # 5-95% range ( +-1.64 STD) StdTemp1=[AveTemp[i]+StdTemp[i]*1.64 for i in range(0,len(StdTemp))] StdTemp2=[AveTemp[i]-StdTemp[i]*1.64 for i in range(0,len(StdTemp))] print "Model number for historical is :",K print "models for historical:";print modelist2 plt.plot(YEAR,AveTemp,label='ensemble mean',color="black",linewidth=4) plt.plot(YEAR,StdTemp1,color="black",linewidth=0.1) plt.plot(YEAR,StdTemp2,color="black",linewidth=0.1) plt.fill_between(YEAR,StdTemp1,StdTemp2,color='black',alpha=0.3) # draw NO. of model used: plt.text(2015,2,str(K)+' models',size=16,rotation=0., ha="center",va="center", #bbox = dict(boxstyle="round", #ec=(1., 0.5, 0.5), #fc=(1., 0.8, 0.8), ) #=================================================== put downscaling data: # for Had Had_dir1="/Users/tang/climate/Modeling/333/Had.G71E0001/output/pprcmdata/monthly/" Had_dir2="/Users/tang/climate/Modeling/333/Had.G71E0001/output.RCP85.2044-2055/pprcmdata/monthly/" Had_dir3="/Users/tang/climate/Modeling/333/Had.G71E0001/output.RCP85.2088-2100/pprcmdata/monthly/" infile1=Had_dir1+'Had_hist.SRF.all.year.fldmean.1996-2005.nc' infile2=Had_dir2+'Had_rcp85.SRF.all.year.fldmean.2046-2055.nc' infile3=Had_dir3+'Had_rcp85.SRF.all.year.fldmean.2090-2099.nc' YEAR1=range(1996,2006) YEAR2=range(2046,2056) YEAR3=range(2090,2100) #open input files infile01=IO.NetCDFFile(infile1,'r') infile02=IO.NetCDFFile(infile2,'r') infile03=IO.NetCDFFile(infile3,'r') print infile01.variables.keys() print infile02.variables.keys() print infile03.variables.keys() # read the variable tas TAS1=infile01.variables[VARIABLE][:].copy() TAS2=infile02.variables[VARIABLE][:].copy() TAS3=infile03.variables[VARIABLE][:].copy() #print 'the variable tas ===============: ' #print TAS # calculate the annual mean temp: TEMP1=range(0,9) TEMP2=range(0,9) TEMP3=range(0,9) TEMP1=TAS1[:,0,0]*86400 - AbsTemp - HadRefTemp TEMP2=TAS2[:,0,0]*86400 - AbsTemp - HadRefTemp TEMP3=TAS3[:,0,0]*86400 - AbsTemp - HadRefTemp #print " temp ======================== absolut" #print TEMP plt.plot(YEAR1,TEMP1,color="blue",linewidth=4) plt.plot(YEAR2,TEMP2,color="blue",linewidth=4) plt.plot(YEAR3,TEMP3,color="blue",linewidth=4) #=================================================== # for GFDL GFDL_dir1="/Users/tang/climate/Modeling/333/GFDL.G71E0001/output/pprcmdata/monthly/" GFDL_dir2="/Users/tang/climate/Modeling/333/GFDL.G71E0001/output.RCP85.2044-2055/pprcmdata/monthly/" GFDL_dir3="/Users/tang/climate/Modeling/333/GFDL.G71E0001/output.RCP85.2088-2100/pprcmdata/monthly/" infile1=GFDL_dir1+'GFDL_hist.SRF.all.year.fldmean.1996-2005.nc' infile2=GFDL_dir2+'GFDL_rcp85.SRF.all.year.fldmean.2046-2055.nc' infile3=GFDL_dir3+'GFDL_rcp85.SRF.all.year.fldmean.2090-2099.nc' YEAR1=range(1996,2006) YEAR2=range(2046,2055) YEAR3=range(2090,2100) #open input files infile01=IO.NetCDFFile(infile1,'r') infile02=IO.NetCDFFile(infile2,'r') infile03=IO.NetCDFFile(infile3,'r') print infile01.variables.keys() print infile02.variables.keys() print infile03.variables.keys() # read the variable tas TAS1=infile01.variables[VARIABLE][:].copy() TAS2=infile02.variables[VARIABLE][:].copy() TAS3=infile03.variables[VARIABLE][:].copy() #print 'the variable tas ===============: ' #print TAS print AbsTemp # calculate the annual mean temp: TEMP1=range(0,9) TEMP2=range(0,9) TEMP3=range(0,9) TEMP1=TAS1[:,0,0]*86400 - AbsTemp - GFDLRefTemp TEMP2=TAS2[:,0,0]*86400 - AbsTemp - GFDLRefTemp TEMP3=TAS3[:,0,0]*86400 - AbsTemp - GFDLRefTemp #print " temp ======================== absolut" #print TEMP plt.plot(YEAR1,TEMP1,color="darkred",linewidth=4) print len(YEAR2) print len(TEMP2) plt.plot(YEAR2,TEMP2,color="darkred",linewidth=4) plt.plot(YEAR3,TEMP3,color="darkred",linewidth=4) print "===============================================" print TEMP1 print TEMP2 print TEMP3 print GFDLRefTemp plt.legend(loc=2) plt.show() quit()
gpl-3.0
f3r/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
22
1848
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() s = 50 plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s, label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="c", s=s, label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="orange", s=s, label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
silky/sms-tools
software/models_interface/stochasticModel_function.py
2
2017
# function to call the main analysis/synthesis functions in software/models/stochasticModel.py import numpy as np import matplotlib.pyplot as plt import os, sys from scipy.signal import get_window sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import stochasticModel as STM def main(inputFile='../../sounds/ocean.wav', H=256, N=512, stocf=.1): """ inputFile: input sound file (monophonic with sampling rate of 44100) H: hop size, N: fft size stocf: decimation factor used for the stochastic approximation (bigger than 0, maximum 1) """ # read input sound (fs, x) = UF.wavread(inputFile) # compute stochastic model stocEnv = STM.stochasticModelAnal(x, H, N, stocf) # synthesize sound from stochastic model y = STM.stochasticModelSynth(stocEnv, H, N) outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_stochasticModel.wav' # write output sound UF.wavwrite(y, fs, outputFile) # create figure to plot plt.figure(figsize=(12, 9)) # plot the input sound plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot stochastic representation plt.subplot(3,1,2) numFrames = int(stocEnv[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(stocf*(N/2+1))*float(fs)/(stocf*N) plt.pcolormesh(frmTime, binFreq, np.transpose(stocEnv)) plt.autoscale(tight=True) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.title('stochastic approximation') # plot the output sound plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.tight_layout() plt.show(block=False) if __name__ == "__main__": main()
agpl-3.0
kmiddleton/ThinkStats2
code/hinc_soln.py
67
4296
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import hinc import thinkplot import thinkstats2 """This file contains a solution to an exercise in Think Stats: The distributions of wealth and income are sometimes modeled using lognormal and Pareto distributions. To see which is better, let's look at some data. The Current Population Survey (CPS) is joint effort of the Bureau of Labor Statistics and the Census Bureau to study income and related variables. Data collected in 2013 is available from http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm. I downloaded hinc06.xls, which is an Excel spreadsheet with information about household income, and converted it to hinc06.csv, a CSV file you will find in the repository for this book. You will also find hinc.py, which reads the CSV file. Extract the distribution of incomes from this dataset. Are any of the analytic distributions in this chapter a good model of the data? A solution to this exercise is in hinc_soln.py. My solution generates three figures: 1) The CDF of income on a linear scale. 2) The CCDF on a log-log scale along with a Pareto model intended to match the tail behavior. 3) The CDF on a log-x scale along with a lognormal model chose to match the median and inter-quartile range. My conclusions based on these figures are: 1) The Pareto model is probably a reasonable choice for the top 10-20% of incomes. 2) The lognormal model captures the shape of the distribution better, but the data deviate substantially from the model. With different choices for sigma, you could match the upper or lower tail, but not both at the same time. In summary I would say that neither model captures the whole distribution, so you might have to 1) look for another analytic model, 2) choose one that captures the part of the distribution that is most relevent, or 3) avoid using an analytic model altogether. """ class SmoothCdf(thinkstats2.Cdf): """Represents a CDF based on calculated quantiles. """ def Render(self): """Because this CDF was not computed from a sample, it should not be rendered as a step function. """ return self.xs, self.ps def Prob(self, x): """Compute CDF(x), interpolating between known values. """ return np.interp(x, self.xs, self.ps) def Value(self, p): """Compute inverse CDF(x), interpolating between probabilities. """ return np.interp(p, self.ps, self.xs) def MakeFigures(df): """Plots the CDF of income in several forms. """ xs, ps = df.income.values, df.ps.values cdf = SmoothCdf(xs, ps, label='data') cdf_log = SmoothCdf(np.log10(xs), ps, label='data') # linear plot thinkplot.Cdf(cdf) thinkplot.Save(root='hinc_linear', xlabel='household income', ylabel='CDF') # pareto plot # for the model I chose parameters by hand to fit the tail xs, ys = thinkstats2.RenderParetoCdf(xmin=55000, alpha=2.5, low=0, high=250000) thinkplot.Plot(xs, 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf, complement=True) thinkplot.Save(root='hinc_pareto', xlabel='log10 household income', ylabel='CCDF', xscale='log', yscale='log') # lognormal plot # for the model I estimate mu and sigma using # percentile-based statistics median = cdf_log.Percentile(50) iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25) std = iqr / 1.349 # choose std to match the upper tail std = 0.35 print(median, std) xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Save(root='hinc_normal', xlabel='log10 household income', ylabel='CDF') def main(): df = hinc.ReadData() MakeFigures(df) if __name__ == "__main__": main()
gpl-3.0
glennq/scikit-learn
sklearn/model_selection/tests/test_validation.py
3
32928
"""Test the validation module""" from __future__ import division import sys import warnings import tempfile import os from time import sleep import numpy as np from scipy.sparse import coo_matrix, csr_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.model_selection import permutation_test_score from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import learning_curve from sklearn.model_selection import validation_curve from sklearn.model_selection._validation import _check_is_permutation from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_iris from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.linear_model import Ridge, LogisticRegression from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.base import BaseEstimator from sklearn.multiclass import OneVsRestClassifier from sklearn.utils import shuffle from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.model_selection.tests.test_split import MockClassifier try: WindowsError except NameError: WindowsError = None class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset # XXX: use 2D array, since 1D X is being detected as a single sample in # check_consistent_length X = np.ones((10, 2)) X_sparse = coo_matrix(X) y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) # The number of samples per class needs to be > n_splits, # for StratifiedKFold(n_splits=3) y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3]) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cross_val_score(clf, X, y2) assert_array_equal(scores, clf.score(X, y2)) # test with multioutput y multioutput_y = np.column_stack([y2, y2[::-1]]) scores = cross_val_score(clf, X_sparse, multioutput_y) assert_array_equal(scores, clf.score(X_sparse, multioutput_y)) scores = cross_val_score(clf, X_sparse, y2) assert_array_equal(scores, clf.score(X_sparse, y2)) # test with multioutput y scores = cross_val_score(clf, X_sparse, multioutput_y) assert_array_equal(scores, clf.score(X_sparse, multioutput_y)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cross_val_score(clf, X.tolist(), y2.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cross_val_score(clf, X, y2.tolist()) assert_raises(ValueError, cross_val_score, clf, X, y2, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cross_val_score(clf, X_3d, y2) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cross_val_score, clf, X_3d, y2) def test_cross_val_score_predict_groups(): # Check if ValueError (when groups is None) propagates to cross_val_score # and cross_val_predict # And also check if groups is correctly passed to the cv object X, y = make_classification(n_samples=20, n_classes=2, random_state=0) clf = SVC(kernel="linear") group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: assert_raise_message(ValueError, "The groups parameter should not be None", cross_val_score, estimator=clf, X=X, y=y, cv=cv) assert_raise_message(ValueError, "The groups parameter should not be None", cross_val_predict, estimator=clf, X=X, y=y, cv=cv) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series # 3 fold cross val is used so we need atleast 3 samples per class X_df, y_ser = InputFeatureType(X), TargetType(y2) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target kfold = KFold(5) scores_indices = cross_val_score(svm, X, y, cv=kfold) kfold = KFold(5) cv_masks = [] for train, test in kfold.split(X, y): mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cross_val_score, BrokenEstimator(), X) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative neg_mse_scores = cross_val_score(reg, X, y, cv=5, scoring="neg_mean_squared_error") expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, scores, pvalue = permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_group, _, pvalue_group = permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", groups=np.ones(y.size), random_state=0) assert_true(score_group == score) assert_true(pvalue_group == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = StratifiedKFold(2) score_group, _, pvalue_group = permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", groups=np.ones(y.size), random_state=0) assert_true(score_group == score) assert_true(pvalue_group == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) permutation_test_score(p, X, y, cv=5) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cross_val_score(p, X, y, cv=5) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = KFold() est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv.split(X, y): est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = LeaveOneOut() preds = cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) class BadCV(): def split(self, X, y=None, groups=None): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cross_val_predict, est, X, y, cv=BadCV()) def test_cross_val_predict_input_types(): iris = load_iris() X, y = iris.data, iris.target X_sparse = coo_matrix(X) multioutput_y = np.column_stack([y, y[::-1]]) clf = Ridge(fit_intercept=False, random_state=0) # 3 fold cv is used --> atleast 3 samples per class # Smoke test predictions = cross_val_predict(clf, X, y) assert_equal(predictions.shape, (150,)) # test with multioutput y predictions = cross_val_predict(clf, X_sparse, multioutput_y) assert_equal(predictions.shape, (150, 2)) predictions = cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (150,)) # test with multioutput y predictions = cross_val_predict(clf, X_sparse, multioutput_y) assert_array_equal(predictions.shape, (150, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (150,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y2) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cross_val_predict(clf, X_df, y_ser) def test_cross_val_score_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) for shuffle_train in [False, True]: with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10), shuffle=shuffle_train) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) for shuffle_train in [False, True]: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10), shuffle=shuffle_train) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n_splits=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_with_shuffle(): # Following test case was designed this way to verify the code # changes made in pull request: #7506. X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [11, 12], [13, 14], [15, 16], [17, 18], [19, 20], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16], [17, 18]]) y = np.array([1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 4]) groups = np.array([1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4, 4]) # Splits on these groups fail without shuffle as the first iteration # of the learning curve doesn't contain label 4 in the training set. estimator = PassiveAggressiveClassifier(shuffle=False) cv = GroupKFold(n_splits=2) train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve( estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3), groups=groups, shuffle=True, random_state=2) assert_array_almost_equal(train_scores_batch.mean(axis=1), np.array([0.75, 0.3, 0.36111111])) assert_array_almost_equal(test_scores_batch.mean(axis=1), np.array([0.36111111, 0.25, 0.25])) assert_raises(ValueError, learning_curve, estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3), groups=groups) train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve( estimator, X, y, cv=cv, n_jobs=1, train_sizes=np.linspace(0.3, 1.0, 3), groups=groups, shuffle=True, random_state=2, exploit_incremental_learning=True) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range) def test_check_is_permutation(): rng = np.random.RandomState(0) p = np.arange(100) rng.shuffle(p) assert_true(_check_is_permutation(p, 100)) assert_false(_check_is_permutation(np.delete(p, 23), 100)) p[0] = 23 assert_false(_check_is_permutation(p, 100)) # Check if the additional duplicate indices are caught assert_false(_check_is_permutation(np.hstack((p, 0)), 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cross_val_predict(classif, X, y, cv=10) preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds) def test_cross_val_predict_with_method(): iris = load_iris() X, y = iris.data, iris.target X, y = shuffle(X, y, random_state=0) classes = len(set(y)) kfold = KFold(len(iris.target)) methods = ['decision_function', 'predict_proba', 'predict_log_proba'] for method in methods: est = LogisticRegression() predictions = cross_val_predict(est, X, y, method=method) assert_equal(len(predictions), len(y)) expected_predictions = np.zeros([len(y), classes]) func = getattr(est, method) # Naive loop (should be same as cross_val_predict): for train, test in kfold.split(X, y): est.fit(X[train], y[train]) expected_predictions[test] = func(X[test]) predictions = cross_val_predict(est, X, y, method=method, cv=kfold) assert_array_almost_equal(expected_predictions, predictions) def test_score_memmap(): # Ensure a scalar score of memmap type is accepted iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() tf = tempfile.NamedTemporaryFile(mode='wb', delete=False) tf.write(b'Hello world!!!!!') tf.close() scores = np.memmap(tf.name, dtype=np.float64) score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64) try: cross_val_score(clf, X, y, scoring=lambda est, X, y: score) # non-scalar should still fail assert_raises(ValueError, cross_val_score, clf, X, y, scoring=lambda est, X, y: scores) finally: # Best effort to release the mmap file handles before deleting the # backing file under Windows scores, score = None, None for _ in range(3): try: os.unlink(tf.name) break except WindowsError: sleep(1.)
bsd-3-clause
VirusTotal/msticpy
tests/test_cmd_line.py
1
2043
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import os import pandas as pd from pytest import raises from msticpy.common.exceptions import MsticpyException from msticpy.nbtools.entityschema import Host from msticpy.sectools import cmd_line as cl _test_data_folders = [ d for d, _, _ in os.walk(os.getcwd()) if d.endswith("/tests/testdata") ] if len(_test_data_folders) == 1: _TEST_DATA = _test_data_folders[0] else: _TEST_DATA = "./tests/testdata" def test_risky_cmd_line(): input_file = os.path.join(_TEST_DATA, "sudo_data.csv") input_df = pd.read_csv(input_file) output = cl.risky_cmd_line(events=input_df, log_type="Syslog") assert len(output) >= 1 # nosec assert type(output) == dict # nosec assert output["2019-07-05T18:19:52.873Z"] == "/bin/bash" # nosec with raises(MsticpyException): cl.risky_cmd_line(events=input_df, log_type="Syslog", cmd_field="Test") def test_cmd_speed(): input_file = os.path.join(_TEST_DATA, "sudo_data_speed.csv") input_df = pd.read_csv(input_file, parse_dates=["TimeGenerated"]) output = cl.cmd_speed(cmd_events=input_df, cmd_field="Command") assert len(output) >= 1 # nosec assert type(output[0]) == dict # nosec with raises(MsticpyException): output = cl.cmd_speed(cmd_events=input_df, cmd_field="Test") def test_syslog_risky_actions(): input_file = os.path.join(_TEST_DATA, "syslog_data.csv") input_df = pd.read_csv(input_file) risky_stuff = os.path.join(_TEST_DATA, "risky_stuff_custom.json") output = cl.risky_cmd_line( events=input_df, log_type="Syslog", cmd_field="SyslogMessage", detection_rules=risky_stuff, ) assert len(output) >= 1 # nosec assert type(output) == dict # nosec
mit
datapythonista/pandas
pandas/tests/series/methods/test_astype.py
2
19480
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series(["2010-01-04 00:00:00-05:00"]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see GH#9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series(["1 days"]) tm.assert_series_equal(ser, expected) def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize( "data, dtype", [ (["x", "y", "z"], "string"), pytest.param( ["x", "y", "z"], "arrow_string", marks=td.skip_if_no("pyarrow", min_version="1.0.0"), ), (["x", "y", "z"], "category"), (3 * [Timestamp("2020-01-01", tz="UTC")], None), (3 * [Interval(0, 1)], None), ], ) @pytest.mark.parametrize("errors", ["raise", "ignore"]) def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): # https://github.com/pandas-dev/pandas/issues/35471 from pandas.core.arrays.string_arrow import ArrowStringDtype # noqa: F401 ser = Series(data, dtype=dtype) if errors == "ignore": expected = ser result = ser.astype(float, errors="ignore") tm.assert_series_equal(result, expected) else: msg = "(Cannot cast)|(could not convert)" with pytest.raises((ValueError, TypeError), match=msg): ser.astype(float, errors=errors) @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) def test_astype_from_float_to_str(self, dtype): # https://github.com/pandas-dev/pandas/issues/36451 s = Series([0.1], dtype=dtype) result = s.astype(str) expected = Series(["0.1"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, string_value", [ (None, "None"), (np.nan, "nan"), (NA, "<NA>"), ], ) def test_astype_to_str_preserves_na(self, value, string_value): # https://github.com/pandas-dev/pandas/issues/36904 s = Series(["a", "b", value], dtype=object) result = s.astype(str) expected = Series(["a", "b", string_value], dtype=object) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_unicode(self): # see GH#7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode()])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_astype_bytes(self): # GH#39474 result = Series(["foo", "bar", "baz"]).astype(bytes) assert result.dtypes == np.dtype("S3") class TestAstypeString: @pytest.mark.parametrize( "data, dtype", [ ([True, NA], "boolean"), (["A", NA], "category"), (["2020-10-10", "2020-10-10"], "datetime64[ns]"), (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), ( ["2012-01-01 00:00:00-05:00", NaT], "datetime64[ns, US/Eastern]", ), ([1, None], "UInt16"), (["1/1/2021", "2/1/2021"], "period[M]"), (["1/1/2021", "2/1/2021", NaT], "period[M]"), (["1 Day", "59 Days", NaT], "timedelta64[ns]"), # currently no way to parse IntervalArray from a list of strings ], ) def test_astype_string_to_extension_dtype_roundtrip(self, data, dtype, request): if dtype == "boolean" or ( dtype in ("period[M]", "datetime64[ns]", "timedelta64[ns]") and NaT in data ): mark = pytest.mark.xfail( reason="TODO StringArray.astype() with missing values #GH40566" ) request.node.add_marker(mark) # GH-40351 s = Series(data, dtype=dtype) tm.assert_series_equal(s, s.astype("string").astype(dtype)) class TestAstypeCategorical: def test_astype_categorical_to_other(self): cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) expected = ser tm.assert_series_equal(ser.astype("category"), expected) tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): ser.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) tm.assert_series_equal(cat.astype("str"), exp) s2 = Series(Categorical(["1", "2", "3", "4"])) exp2 = Series([1, 2, 3, 4]).astype("int") tm.assert_series_equal(s2.astype("int"), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(ser.values), name="value_group") cmp(ser.astype("object"), expected) cmp(ser.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(ser), np.array(ser.values)) tm.assert_series_equal(ser.astype("category"), ser) tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) roundtrip_expected = ser.cat.set_categories( ser.cat.categories.sort_values() ).cat.remove_unused_categories() result = ser.astype("object").astype("category") tm.assert_series_equal(result, roundtrip_expected) result = ser.astype("object").astype(CategoricalDtype()) tm.assert_series_equal(result, roundtrip_expected) def test_astype_categorical_invalid_conversions(self): # invalid conversion (these are NOT a dtype) cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) msg = ( "dtype '<class 'pandas.core.arrays.categorical.Categorical'>' " "not understood" ) with pytest.raises(TypeError, match=msg): ser.astype(Categorical) with pytest.raises(TypeError, match=msg): ser.astype("object").astype(Categorical) def test_astype_categoricaldtype(self): s = Series(["a", "b", "a"]) result = s.astype(CategoricalDtype(["a", "b"], ordered=True)) expected = Series(Categorical(["a", "b", "a"], ordered=True)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b"], ordered=False)) expected = Series(Categorical(["a", "b", "a"], ordered=False)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) expected = Series( Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) ) tm.assert_series_equal(result, expected) tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("series_ordered", [True, False]) def test_astype_categorical_to_categorical( self, name, dtype_ordered, series_ordered ): # GH#10696, GH#18593 s_data = list("abcaacbab") s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) s = Series(s_data, dtype=s_dtype, name=name) # unspecified categories dtype = CategoricalDtype(ordered=dtype_ordered) result = s.astype(dtype) exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) expected = Series(s_data, name=name, dtype=exp_dtype) tm.assert_series_equal(result, expected) # different categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = s.astype(dtype) expected = Series(s_data, name=name, dtype=dtype) tm.assert_series_equal(result, expected) if dtype_ordered is False: # not specifying ordered, so only test once expected = s result = s.astype("category") tm.assert_series_equal(result, expected) def test_astype_bool_missing_to_categorical(self): # GH-19182 s = Series([True, False, np.nan]) assert s.dtypes == np.object_ result = s.astype(CategoricalDtype(categories=[True, False])) expected = Series(Categorical([True, False, np.nan], categories=[True, False])) tm.assert_series_equal(result, expected) def test_astype_categories_raises(self): # deprecated GH#17636, removed in GH#27141 s = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): s.astype("category", categories=["a", "b"], ordered=True) @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) def test_astype_from_categorical(self, items): ser = Series(items) exp = Series(Categorical(items)) res = ser.astype("category") tm.assert_series_equal(res, exp) def test_astype_from_categorical_with_keywords(self): # with keywords lst = ["a", "b", "c", "a"] ser = Series(lst) exp = Series(Categorical(lst, ordered=True)) res = ser.astype(CategoricalDtype(None, ordered=True)) tm.assert_series_equal(res, exp) exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) res = ser.astype(CategoricalDtype(list("abcdef"), ordered=True)) tm.assert_series_equal(res, exp)
bsd-3-clause
Linaf/Convae-Destin
scripts/convae_destin_7.py
3
18178
"""Stacked fixed noise dConvAE test""" """ + Using GCN with ZCA whitened data + Nesterov momentum with constant value=0.9 + Decreading noise levels initialized within range (0.5,0.9) and then decreased + variable learning rate """ import sys sys.path.append("..") import numpy as np import matplotlib.pyplot as plt import cPickle as pickle import time import theano import theano.tensor as T import scae_destin.datasets as ds from scae_destin.fflayers import ReLULayer from scae_destin.fflayers import SoftmaxLayer from scae_destin.convnet import ReLUConvLayer from scae_destin.convnet import SigmoidConvLayer from scae_destin.model import ConvAutoEncoder from scae_destin.convnet import MaxPoolingSameSize, MaxPooling from scae_destin.convnet import Flattener from scae_destin.model import FeedForward from scae_destin.optimize import gd_updates from scae_destin.cost import mean_square_cost from scae_destin.cost import categorical_cross_entropy_cost from scae_destin.cost import L2_regularization start_time=time.time() n_epochs=100; batch_size=100; nkerns=64; Xtr, Ytr, Xte, Yte=ds.load_CIFAR10_Processed("../data/train.npy", "../data/train.pkl", "../data/test.npy", "../data/test.pkl"); Xtr=Xtr.reshape(50000, 3, 32, 32).transpose(0, 2, 3, 1).mean(3); Xte=Xte.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).mean(3); Xtrain=Xtr.reshape(Xtr.shape[0], Xtr.shape[1]*Xtr.shape[2]) Xtest=Xte.reshape(Xte.shape[0], Xte.shape[1]*Xte.shape[2]) Ytr=Ytr.flatten() Yte=Yte.flatten() train_set_x, train_set_y=ds.shared_dataset((Xtrain, Ytr)); test_set_x, test_set_y=ds.shared_dataset((Xtest, Yte)); n_train_batches=train_set_x.get_value(borrow=True).shape[0]/batch_size; n_test_batches=test_set_x.get_value(borrow=True).shape[0]/batch_size; print "[MESSAGE] The data is loaded" ################################## FIRST LAYER ####################################### X=T.matrix("data") y=T.ivector("label") idx=T.lscalar() corruption_level=T.fscalar() images=X.reshape((batch_size, 1, 32, 32)) layer_0_en=ReLUConvLayer(filter_size=(4,4), num_filters=128, num_channels=1, fm_size=(32,32), batch_size=batch_size, border_mode="same") layer_0_de=SigmoidConvLayer(filter_size=(4,4), num_filters=1, num_channels=128, fm_size=(32,32), batch_size=batch_size, border_mode="same") layer_1_en=ReLUConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(8,8), batch_size=batch_size, border_mode="same") layer_1_de=SigmoidConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(8,8), batch_size=batch_size, border_mode="same") layer_2_en=ReLUConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(4,4), batch_size=batch_size, border_mode="same") layer_2_de=SigmoidConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(4,4), batch_size=batch_size, border_mode="same") layer_3_en=ReLUConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(2,2), batch_size=batch_size, border_mode="same") layer_3_de=SigmoidConvLayer(filter_size=(2,2), num_filters=128, num_channels=128, fm_size=(2,2), batch_size=batch_size, border_mode="same") layer_4_en=ReLUConvLayer(filter_size=(1,1), num_filters=128, num_channels=128, fm_size=(1,1), batch_size=batch_size, border_mode="same") layer_4_de=SigmoidConvLayer(filter_size=(1,1), num_filters=128, num_channels=128, fm_size=(1,1), batch_size=batch_size, border_mode="same") # layer_0 model_0=ConvAutoEncoder(layers=[layer_0_en, MaxPoolingSameSize(pool_size=(4,4)), layer_0_de]) out_0=model_0.fprop(images, corruption_level=corruption_level) cost_0=mean_square_cost(out_0[-1], images)+L2_regularization(model_0.params, 0.005) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.01, momentum=0.9, nesterov=True) # layer_0 --> layer_1 model_0_to_1=FeedForward(layers=[layer_0_en, MaxPooling(pool_size=(4,4))]); out_0_to_1=model_0_to_1.fprop(images); # layer_1 model_1=ConvAutoEncoder(layers=[layer_1_en, MaxPoolingSameSize(pool_size=(2,2)), layer_1_de]) out_1=model_1.fprop(out_0_to_1[-1], corruption_level=corruption_level) cost_1=mean_square_cost(out_1[-1], out_0_to_1[-1])+L2_regularization(model_1.params, 0.005) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.01, momentum=0.9, nesterov=True) # layer_1 --> layer_2 model_1_to_2=FeedForward(layers=[layer_1_en, MaxPooling(pool_size=(2,2))]); out_1_to_2=model_1_to_2.fprop(images); # layer_2 model_2=ConvAutoEncoder(layers=[layer_2_en, MaxPoolingSameSize(pool_size=(2,2)), layer_2_de]) out_2=model_2.fprop(out_1_to_2[-1], corruption_level=corruption_level) cost_2=mean_square_cost(out_2[-1], out_1_to_2[-1])+L2_regularization(model_2.params, 0.005) updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.01, momentum=0.9, nesterov=True) # layer_2 --> layer_3 model_2_to_3=FeedForward(layers=[layer_2_en, MaxPooling(pool_size=(2,2))]); out_2_to_3=model_2_to_3.fprop(images); # layer_3 model_3=ConvAutoEncoder(layers=[layer_3_en, MaxPoolingSameSize(pool_size=(2,2)), layer_3_de]) out_3=model_3.fprop(out_2_to_3[-1], corruption_level=corruption_level) cost_3=mean_square_cost(out_3[-1], out_2_to_3[-1])+L2_regularization(model_3.params, 0.005) updates_3=gd_updates(cost=cost_3, params=model_3.params, method="sgd", learning_rate=0.01, momentum=0.9, nesterov=True) # layer_3 --> layer_4 model_3_to_4=FeedForward(layers=[layer_3_en, MaxPooling(pool_size=(2,2))]); out_3_to_4=model_3_to_4.fprop(images); # layer_4 model_4=ConvAutoEncoder(layers=[layer_4_en, MaxPoolingSameSize(pool_size=(2,2)), layer_4_de]) out_4=model_4.fprop(out_3_to_4[-1], corruption_level=corruption_level) cost_4=mean_square_cost(out_4[-1], out_3_to_4[-1])+L2_regularization(model_4.params, 0.005) updates_4=gd_updates(cost=cost_4, params=model_4.params, method="sgd", learning_rate=0.01, momentum=0.9, nesterov=True) train_0=theano.function(inputs=[idx, corruption_level], outputs=[cost_0], updates=updates_0, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) train_1=theano.function(inputs=[idx, corruption_level], outputs=[cost_1], updates=updates_1, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) train_2=theano.function(inputs=[idx, corruption_level], outputs=[cost_2], updates=updates_2, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) train_3=theano.function(inputs=[idx, corruption_level], outputs=[cost_3], updates=updates_3, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) train_4=theano.function(inputs=[idx, corruption_level], outputs=[cost_4], updates=updates_4, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size]}) # learning_rate = theano.shared(np.asarray(initial_learning_rate,dtype=theano.config.floatX)) # decay_learning_rate = theano.function(inputs=[], outputs=learning_rate, # updates={learning_rate: learning_rate * learning_rate_decay}) print "[MESSAGE] The 5-layer model is built" corr={} corr[0]=np.random.uniform(low=0.5, high=0.9, size=1).astype("float32") corr[1]=np.random.uniform(low=0.5, high=0.9, size=1).astype("float32") corr[2]=np.random.uniform(low=0.5, high=0.9, size=1).astype("float32") corr[3]=np.random.uniform(low=0.5, high=0.9, size=1).astype("float32") corr[4]=np.random.uniform(low=0.5, high=0.9, size=1).astype("float32") min_cost={0:None, 1:None, 2:None, 3:None, 4:None} corr_best={0:corr[0], 1:corr[0], 2:corr[0], 3:corr[0], 4:corr[0]} max_iter={0:0, 1:0, 2:0, 3:0, 4:0} n_epochs=200 epoch = 0 while (epoch < n_epochs): epoch_time_start = time.time() epoch = epoch + 1 if epoch == 50: updates_4=gd_updates(cost=cost_4, params=model_4.params, method="sgd", learning_rate=0.001, momentum=0.9, nesterov=True) updates_3=gd_updates(cost=cost_3, params=model_3.params, method="sgd", learning_rate=0.001, momentum=0.9, nesterov=True) updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.001, momentum=0.9, nesterov=True) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.001, momentum=0.9, nesterov=True) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.001, momentum=0.9, nesterov=True) if epoch == 100: updates_4=gd_updates(cost=cost_4, params=model_4.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_3=gd_updates(cost=cost_3, params=model_3.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) if epoch == 150: updates_4=gd_updates(cost=cost_4, params=model_4.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_3=gd_updates(cost=cost_3, params=model_3.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_2=gd_updates(cost=cost_2, params=model_2.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_1=gd_updates(cost=cost_1, params=model_1.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) updates_0=gd_updates(cost=cost_0, params=model_0.params, method="sgd", learning_rate=0.0001, momentum=0.9, nesterov=True) c_0 = c_1 = c_2 = c_3 = c_4 = [] for batch_index in xrange(n_train_batches): for rep in xrange(8): train_cost=train_4(batch_index, corr_best[4][0]) c_4.append(train_cost) train_cost=train_3(batch_index, corr_best[3][0]) c_3.append(train_cost) train_cost=train_2(batch_index, corr_best[2][0]) c_2.append(train_cost) train_cost=train_1(batch_index, corr_best[1][0]) c_1.append(train_cost) train_cost=train_0(batch_index, corr_best[0][0]) c_0.append(train_cost) if min_cost[0]==None: min_cost[0]=np.mean(c_0) else: if (np.mean(c_0)<min_cost[0]*0.5) or (max_iter[0]>=20): min_cost[0]=np.mean(c_0) corr_best[0][0]=corr[0] corr[0]=np.random.uniform(low=corr_best[0][0], high=corr_best[0][0]-0.1, size=1).astype("float32") max_iter[0]=0 else: max_iter[0]+=1 if min_cost[1]==None: min_cost[1]=np.mean(c_1) else: if (np.mean(c_1)<min_cost[1]*0.5) or (max_iter[1]>=20): min_cost[1]=np.mean(c_1) corr_best[1][0]=corr[1] corr[1]=np.random.uniform(low=corr_best[1][0], high=corr_best[1][0]-0.1, size=1).astype("float32") max_iter[1]=0 else: max_iter[1]+=1 if min_cost[2]==None: min_cost[2]=np.mean(c_2) else: if (np.mean(c_2)<min_cost[2]*0.5) or (max_iter[2]>=20): min_cost[2]=np.mean(c_2) corr_best[2][0]=corr[2] corr[2]=np.random.uniform(low=corr_best[2][0], high=corr_best[2][0]-0.1, size=1).astype("float32") max_iter[2]=0 else: max_iter[2]+=1 if min_cost[3]==None: min_cost[3]=np.mean(c_3) else: if (np.mean(c_3)<min_cost[3]*0.5) or (max_iter[3]>=20): min_cost[3]=np.mean(c_3) corr_best[3][0]=corr[3] corr[3]=np.random.uniform(low=corr_best[3][0], high=corr_best[3][0]-0.1, size=1).astype("float32") max_iter[3]=0 else: max_iter[3]+=1 if min_cost[4]==None: min_cost[4]=np.mean(c_4) else: if (np.mean(c_4)<min_cost[4]*0.5) or (max_iter[4]>=20): min_cost[4]=np.mean(c_4) corr_best[4][0]=corr[4] corr[4]=np.random.uniform(low=corr_best[4][0], high=corr_best[4][0]-0.1, size=1).astype("float32") max_iter[4]=0 else: max_iter[4]+=1 print 'Training epoch %d, cost ' % epoch, np.mean(c_0), str(corr_best[0][0]), min_cost[0], max_iter[0] print ' ', np.mean(c_1), str(corr_best[1][0]), min_cost[1], max_iter[1] print ' ', np.mean(c_2), str(corr_best[2][0]), min_cost[2], max_iter[2] print ' ', np.mean(c_3), str(corr_best[3][0]), min_cost[3], max_iter[3] print ' ', np.mean(c_4), str(corr_best[4][0]), min_cost[4], max_iter[4] print '[TIME TAKEN ] :', (time.time() - epoch_time_start) print "[MESSAGE] The model is trained" ################################## BUILD SUPERVISED MODEL ####################################### pool_0=MaxPooling(pool_size=(4,4)); pool_1=MaxPooling(pool_size=(2,2)); pool_2=MaxPooling(pool_size=(2,2)); pool_3=MaxPooling(pool_size=(2,2)); flattener=Flattener() layer_5=ReLULayer(in_dim=128*1*1, out_dim=64) layer_6=SoftmaxLayer(in_dim=64, out_dim=10) model_sup=FeedForward(layers=[layer_0_en, pool_0, layer_1_en, pool_1, layer_2_en, pool_2, layer_3_en, pool_3, layer_4_en, flattener, layer_5, layer_6]) out_sup=model_sup.fprop(images) cost_sup=categorical_cross_entropy_cost(out_sup[-1], y) updates=gd_updates(cost=cost_sup, params=model_sup.params, method="sgd", learning_rate=0.1, momentum=0.9, nesterov=True) train_sup=theano.function(inputs=[idx], outputs=cost_sup, updates=updates, givens={X: train_set_x[idx * batch_size: (idx + 1) * batch_size], y: train_set_y[idx * batch_size: (idx + 1) * batch_size]}) test_sup=theano.function(inputs=[idx], outputs=model_sup.layers[-1].error(out_sup[-1], y), givens={X: test_set_x[idx * batch_size: (idx + 1) * batch_size], y: test_set_y[idx * batch_size: (idx + 1) * batch_size]}) print "[MESSAGE] The supervised model is built" test_record=np.zeros((n_epochs, 1)) epoch = 0 while (epoch < n_epochs): epoch+=1 for minibatch_index in xrange(n_train_batches): mlp_minibatch_avg_cost = train_sup(minibatch_index) iteration = (epoch - 1) * n_train_batches + minibatch_index if (iteration + 1) % n_train_batches == 0: print 'MLP MODEL' test_losses = [test_sup(i) for i in xrange(n_test_batches)] test_record[epoch-1] = np.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_record[epoch-1] * 100.)) end_time=time.time() print "\n---------------------------------------------" print "Total time taken is : ", (end_time - start_time)/60, ' minutes' filters=[] filters.append(model_sup.layers[0].filters.get_value(borrow=True)) filters.append(model_sup.layers[2].filters.get_value(borrow=True)) filters.append(model_sup.layers[4].filters.get_value(borrow=True)) filters.append(model_sup.layers[6].filters.get_value(borrow=True)) filters.append(model_sup.layers[8].filters.get_value(borrow=True)) # filters=model_1.layers[0].filters.get_value(borrow=True); pickle.dump(test_record, open("convae_destin_7.pkl", "w")) for i in xrange(128): for j in xrange(5): if i > (len(filters[j]) -1): continue image_adr="/home/profloo/Documents/ConvAE-DeSTIN/scripts/plots/layer_%d_filter_%d.eps" % (j,i) plt.imshow(filters[j][i, 0, :, :], cmap = plt.get_cmap('gray'), interpolation='nearest') plt.axis('off') plt.savefig(image_adr , bbox_inches='tight', pad_inches=0) if i%10 == 0: print 'completed saving filters till : ', i
apache-2.0
saiwing-yeung/scikit-learn
sklearn/metrics/cluster/tests/test_unsupervised.py
5
4635
import numpy as np from scipy.sparse import csr_matrix from sklearn import datasets from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import silhouette_score from sklearn.metrics.cluster import calinski_harabaz_score from sklearn.metrics import pairwise_distances def test_silhouette(): # Tests the Silhouette Coefficient. dataset = datasets.load_iris() X = dataset.data y = dataset.target D = pairwise_distances(X, metric='euclidean') # Given that the actual labels are used, we can assume that S would be # positive. silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) # Test without calculating D silhouette_metric = silhouette_score(X, y, metric='euclidean') assert_almost_equal(silhouette, silhouette_metric) # Test with sampling silhouette = silhouette_score(D, y, metric='precomputed', sample_size=int(X.shape[0] / 2), random_state=0) silhouette_metric = silhouette_score(X, y, metric='euclidean', sample_size=int(X.shape[0] / 2), random_state=0) assert(silhouette > 0) assert(silhouette_metric > 0) assert_almost_equal(silhouette_metric, silhouette) # Test with sparse X X_sparse = csr_matrix(X) D = pairwise_distances(X_sparse, metric='euclidean') silhouette = silhouette_score(D, y, metric='precomputed') assert(silhouette > 0) def test_no_nan(): # Assert Silhouette Coefficient != nan when there is 1 sample in a class. # This tests for the condition that caused issue 960. # Note that there is only one sample in cluster 0. This used to cause the # silhouette_score to return nan (see bug #960). labels = np.array([1, 0, 1, 1, 1]) # The distance matrix doesn't actually matter. D = np.random.RandomState(0).rand(len(labels), len(labels)) silhouette = silhouette_score(D, labels, metric='precomputed') assert_false(np.isnan(silhouette)) def test_correct_labelsize(): # Assert 1 < n_labels < n_samples dataset = datasets.load_iris() X = dataset.data # n_labels = n_samples y = np.arange(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) # n_labels = 1 y = np.zeros(X.shape[0]) assert_raises_regexp(ValueError, 'Number of labels is %d\. Valid values are 2 ' 'to n_samples - 1 \(inclusive\)' % len(np.unique(y)), silhouette_score, X, y) def test_non_encoded_labels(): dataset = datasets.load_iris() X = dataset.data labels = dataset.target assert_equal( silhouette_score(X, labels + 10), silhouette_score(X, labels)) def test_non_numpy_labels(): dataset = datasets.load_iris() X = dataset.data y = dataset.target assert_equal( silhouette_score(list(X), list(y)), silhouette_score(X, y)) def test_calinski_harabaz_score(): rng = np.random.RandomState(seed=0) # Assert message when there is only one label assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.zeros(10)) # Assert message when all point are in different clusters assert_raise_message(ValueError, "Number of labels is", calinski_harabaz_score, rng.rand(10, 2), np.arange(10)) # Assert the value is 1. when all samples are equals assert_equal(1., calinski_harabaz_score(np.ones((10, 2)), [0] * 5 + [1] * 5)) # Assert the value is 0. when all the mean cluster are equal assert_equal(0., calinski_harabaz_score([[-1, -1], [1, 1]] * 10, [0] * 10 + [1] * 10)) # General case (with non numpy arrays) X = ([[0, 0], [1, 1]] * 5 + [[3, 3], [4, 4]] * 5 + [[0, 4], [1, 3]] * 5 + [[3, 1], [4, 0]] * 5) labels = [0] * 10 + [1] * 10 + [2] * 10 + [3] * 10 assert_almost_equal(calinski_harabaz_score(X, labels), 45 * (40 - 4) / (5 * (4 - 1)))
bsd-3-clause
binarybana/samcnet
samcnet/data.py
1
16807
import os import sys import tempfile import subprocess as sb import numpy as np import pandas as pa from os import path from sklearn.feature_selection import SelectKBest, f_classif import scipy.stats as st import scipy.stats.distributions as di from statsmodels.sandbox.distributions.mv_normal import MVT,MVNormal from lori import sample_invwishart param_template = """.d NoOfTrainSamples0 {Ntrn} .d NoOfTrainSamples1 {Ntrn} .d NoOfTestSamples0 {Ntst} .d NoOfTestSamples1 {Ntst} .d TotalFeatures {f_tot} .d GlobalFeatures {f_glob} .d HeteroSubTypes {subclasses} .d HeteroFeaturesPerSubType {f_het} .d RandomFeatures {f_rand} .d CorrBlockSize {blocksize} .d CorrType 1 .f Rho {rho} .d ScrambleFlag 0 .f Mu_0 {mu0} .f Mu_1 {mu1} .f Sigma_0 {sigma0} .f Sigma_1 {sigma1} """ def setv(p,s,d,conv=None): if s not in p: p[s] = d return d elif conv is not None: return conv(p[s]) else: p[s] def data_yj(params): Ntrn = params['Ntrn'] Ntst = params['Ntst'] num_feat = params['num_feat'] lowd = params['lowd'] highd = params['highd'] seed = params['seed'] # Run Yousef/Jianping RNA Synthetic currdir = path.abspath('.') synloc = path.expanduser('~/GSP/research/samc/synthetic/rnaseq') YJparams = param_template.format(**params) try: os.chdir(synloc) fid,fname = tempfile.mkstemp(dir='params') fname = path.basename(fname) fid = os.fdopen(fid,'w') fid.write(YJparams) fid.close() inspec = 'gen -i params/%s -c 0.05 -l %f -h %f -s %d' % \ (fname, lowd, highd, seed) spec = path.join(synloc, inspec).split() sb.check_call(spec) except Exception as e: print "ERROR in data_yj: " + str(e) finally: os.chdir(currdir) try: trn_path = path.join(synloc, 'out','%s_trn.txt'%fname) tst_path = path.join(synloc, 'out','%s_tst.txt'%fname) raw_trn_data = np.loadtxt(trn_path, delimiter=',', skiprows=1) selector = SelectKBest(f_classif, k=num_feat) trn_labels = np.hstack(( np.zeros(Ntrn), np.ones(Ntrn) )) selector.fit(raw_trn_data, trn_labels) raw_tst_data = np.loadtxt(tst_path, delimiter=',', skiprows=1) except Exception as e: print "ERROR in data_yj: " + str(e) finally: os.remove(trn_path) os.remove(tst_path) trn0, trn1, tst0, tst1 = gen_labels(Ntrn, Ntrn, Ntst, Ntst) rawdata = np.vstack(( raw_trn_data, raw_tst_data )) pvind = selector.pvalues_.argsort() np.random.shuffle(pvind) feats = np.zeros(rawdata.shape[1], dtype=bool) feats[pvind[:num_feat]] = True calib = ~feats return rawdata, trn0, trn1, tst0, tst1, feats, calib def gen_data(mu, cov, n, lowd, highd): lams = MVNormal(mu, cov).rvs(n) ps = np.empty_like(lams) ps = di.poisson.rvs(di.uniform.rvs(lowd,highd-lowd,size=lams.shape) * np.exp(lams)) return ps def data_jk(params): D = params['num_gen_feat'] num_feat = params['num_feat'] Ntrn = params['Ntrn'] Ntst = params['Ntst'] sigma0 = params['sigma0'] sigma1 = params['sigma1'] mu0 = params['mu0'] mu1 = params['mu1'] kappa = params['kappa'] seed = params['seed'] rseed = params['rseed'] lowd = params['lowd'] highd = params['highd'] np.random.seed(seed) lmu0 = np.ones(D) * mu0 lmu1 = np.ones(D) * mu1 #rho0 = -0.4 #rho1 = 0.4 #cov0 = np.array([[1, rho0],[rho0, 1]]) #cov1 = np.array([[1, rho1],[rho1, 1]]) #cov0 = np.eye(D) #cov1 = np.eye(D) if kappa >= 1000: cov0 = sample_invwishart(np.eye(D)*sigma0, D+2) cov1 = sample_invwishart(np.eye(D)*sigma1, D+2) cov0 = np.diag(np.diag(cov0)) cov1 = np.diag(np.diag(cov1)) else: cov0 = sample_invwishart(np.eye(D)*(kappa-D-1)*sigma0, kappa) cov1 = sample_invwishart(np.eye(D)*(kappa-D-1)*sigma1, kappa) #v1,v2 = 0.2,1.3 #cov1 = cov0 #trn_data0 = np.vstack (( gen_data(np.array([v1, v2]),cov0,Ntrn/2), #gen_data(np.array([v2,v1]),cov0,Ntrn/2) )) #tst_data0 = np.vstack (( gen_data(np.array([v1, v2]),cov0,Ntst/2), #gen_data(np.array([v2,v1]),cov0,Ntst/2) )) trn_data0 = gen_data(lmu0,cov0,Ntrn,lowd,highd) trn_data1 = gen_data(lmu1,cov1,Ntrn,lowd,highd) tst_data0 = gen_data(lmu0,cov0,Ntst,lowd,highd) tst_data1 = gen_data(lmu1,cov1,Ntst,lowd,highd) rawdata = np.vstack(( trn_data0, trn_data1, tst_data0, tst_data1 )) trn0, trn1, tst0, tst1 = gen_labels(Ntrn, Ntrn, Ntst, Ntst) #selector = SelectKBest(f_classif, k=num_feat) #trn_data = np.vstack(( trn_data0, trn_data1 )) #trn_labels = np.hstack(( np.zeros(Ntrn), np.ones(Ntrn) )) #selector.fit(trn_data, trn_labels) #pvind = selector.pvalues_.argsort() #np.random.shuffle(pvind) feats = np.zeros(rawdata.shape[1], dtype=bool) #feats[pvind[:num_feat]] = True feats[:num_feat] = True calib = ~feats return rawdata, trn0, trn1, tst0, tst1, feats, calib def data_tcga(params): Ntrn = params['Ntrn'] num_feat = params['num_feat'] low = params['low_filter'] high = params['high_filter'] if 'c' in params: #Interpret Ntrn as total training samples Ntrn0 = int(round(params['c'] * Ntrn)) Ntrn1 = int(round((1-params['c']) * Ntrn)) else: Ntrn0, Ntrn1 = Ntrn, Ntrn print("Training data sizes: {}, {}".format(Ntrn0, Ntrn1)) store = pa.HDFStore(os.path.expanduser('~/largeresearch/seq-data/store.h5')) luad = store['lusc_norm'].as_matrix() lusc = store['luad_norm'].as_matrix() # Grab random training set and use the rest as testing luad_inds = np.arange(luad.shape[1]) lusc_inds = np.arange(lusc.shape[1]) np.random.shuffle(luad_inds) np.random.shuffle(lusc_inds) trn_data = np.round(np.hstack(( lusc[:,lusc_inds[:Ntrn0]], luad[:,luad_inds[:Ntrn1]] )).T) tst_data = np.round(np.hstack(( lusc[:,lusc_inds[Ntrn0:]], luad[:,luad_inds[Ntrn1:]] )).T) # Generate labels trn_labels = np.hstack(( np.zeros(Ntrn0), np.ones(Ntrn1) )) trn0, trn1, tst0, tst1 = gen_labels(Ntrn0, Ntrn1, lusc.shape[1]-Ntrn0, luad.shape[1]-Ntrn1) # Select a subset of the features, then select a further subset based on # Univariate F tests good_cols = (trn_data.mean(axis=0) < high) & (trn_data.mean(axis=0) > low) low_trn_data = trn_data[:, good_cols] low_tst_data = tst_data[:, good_cols] #selector = SelectKBest(f_classif, k=4) #selector.fit(low_trn_data, trn_labels) #pvind = selector.pvalues_.argsort() ########## #tst_labels = np.hstack(( np.zeros(lusc_inds.size-Ntrn0), np.ones(luad_inds.size-Ntrn1) )) #pvind2 = selector.pvalues_.argsort() #selector2 = SelectKBest(f_classif, k=4) #selector2.fit(low_tst_data, tst_labels) #print low, high #print trn_data.shape[1] #print good_cols.sum() #print selector.pvalues_[pvind[:10]] #print selector.pvalues_[pvind[-10:]] #print selector2.pvalues_[pvind2[:10]] #print selector2.pvalues_[pvind2[-10:]] ################### rawdata = np.vstack(( low_trn_data, low_tst_data )) feats_ind = np.random.choice(np.arange(low_trn_data.shape[1]), num_feat, replace=False) feats = np.zeros(rawdata.shape[1], dtype=bool) feats[feats_ind] = True #feats[:num_feat] = True calib = ~feats store.close() return rawdata, trn0, trn1, tst0, tst1, feats, calib def data_karen(params): Ntrn = params['Ntrn'] num_feat = params['num_feat'] low = params['low_filter'] high = params['high_filter'] num_candidates = params['num_candidates'] cat = params['split_category'] use_candidates = params['use_candidates'] datapath = os.path.expanduser('~/GSP/research/samc/samcnet/data/') store = pa.HDFStore(datapath+'karen-clean2.h5') data = store['data'] store.close() #num_cols = pa.Index(map(str.strip,open(datapath+'colon_rat.txt','r').readlines())) num_cols = data.columns - pa.Index(['oil', 'fiber', 'treatment']) numdata = data[num_cols] cls0 = data.loc[:,cat].iloc[0] aom = data[cat] == cls0 aom_inds = data.index[aom] saline_inds = data.index - aom_inds trn_inds = pa.Index(np.random.choice(aom_inds, Ntrn, replace=False)) \ + pa.Index(np.random.choice(saline_inds, Ntrn, replace=False)) tst_inds = data.index - trn_inds trn_labels = np.array((data.loc[trn_inds, cat]==cls0).astype(np.int64) * 1) # Feature selection, first stage good_cols = numdata.columns[(numdata.mean() <= high) & (numdata.mean() >= low)] print("# Good columns: {}, # Total columns: {}".format( len(good_cols), numdata.shape[1])) # F Tests selector = SelectKBest(f_classif, k=4) selector.fit(numdata.loc[:, good_cols].as_matrix().astype(np.float), aom) pvind = selector.pvalues_.argsort() #print(selector.pvalues_[pvind2[:50]]) if not use_candidates: np.random.shuffle(pvind) rawdata = numdata[good_cols].as_matrix() candidates = pvind[:num_candidates] feats_ind = np.random.choice(candidates, num_feat, replace=False) feats = np.zeros(rawdata.shape[1], dtype=bool) feats[feats_ind] = True calib = ~feats # It's hideous!!! # Wow... converting from indices/numeric locations to a boolean array # has never looked so ugly... but it works for now. trn0 = pa.Series(np.zeros(data.index.size), index=data.index, dtype=bool) trn1 = pa.Series(np.zeros(data.index.size), index=data.index, dtype=bool) tst0 = pa.Series(np.zeros(data.index.size), index=data.index, dtype=bool) tst1 = pa.Series(np.zeros(data.index.size), index=data.index, dtype=bool) trn0.loc[trn_inds & data.index[(data.loc[:, cat] == cls0)]] = True trn1.loc[trn_inds & data.index[(data.loc[:, cat] != cls0)]] = True tst0.loc[tst_inds & data.index[(data.loc[:, cat] == cls0)]] = True tst1.loc[tst_inds & data.index[(data.loc[:, cat] != cls0)]] = True trn0 = np.array(trn0) trn1 = np.array(trn1) tst0 = np.array(tst0) tst1 = np.array(tst1) return rawdata, trn0, trn1, tst0, tst1, feats, calib def data_test(params): trn_data = np.vstack(( np.zeros((10,2)), np.ones((10,2))+2 )) trn_labels = np.hstack(( np.ones(10), np.zeros(10) )) tst_data = np.vstack(( np.zeros((1000,2)), np.ones((1000,2)) )) tst_labels = np.hstack(( np.ones(1000), np.zeros(1000) )) return trn_data, trn_labels, tst_data, tst_labels def gen_labels(a,b,c,d): trn0 = np.hstack(( np.ones(a), np.zeros(b), np.zeros(c+d) )).astype(bool) trn1 = np.hstack(( np.zeros(a), np.ones(b), np.zeros(c+d) )).astype(bool) tst0 = np.hstack(( np.zeros(a+b), np.ones(c), np.zeros(d) )).astype(bool) tst1 = np.hstack(( np.zeros(a+b), np.zeros(c), np.ones(d) )).astype(bool) return trn0, trn1, tst0, tst1 def plot_p_hist(data, sel, label): selector = SelectKBest(f_classif, k=4) print sel['tst'].shape print data.loc[sel['tst'],:].shape selector.fit(data.loc[sel['tst'], :], sel['tstl']) pvals = selector.pvalues_ pvind = pvals.argsort() pvals[np.isnan(pvals)] = 1 import pylab as p p.hist(pvals, bins=np.logspace(-5,0,30), label=label, log=True, histtype='step') #def norm(data1, data2): #mu = data1.mean(axis=0) #std = np.sqrt(data1.var(axis=0, ddof=1)) #return (data1 - mu) / std, (data2 - mu) / std #def split(data, labels): #return data[labels==0,:], data[labels==1,:] #def shuffle_features(trn, tst): #D = trn.shape[1] #assert D == tst.shape[1] #ind = np.arange(D) #np.random.shuffle(ind) #return trn[:,ind], tst[:,ind] def subsample(sel, N=1): """ Takes N samples from each class's training sample and moves them to holdout """ s0 = np.random.choice(sel['trn0'].nonzero()[0], size=N, replace=False) s1 = np.random.choice(sel['trn1'].nonzero()[0], size=N, replace=False) sel['trn0'][s0] = False sel['trn'][s0] = False sel['tst0'][s0] = True sel['tst'][s0] = True sel['trn1'][s1] = False sel['trn'][s1] = False sel['tst1'][s1] = True sel['tst'][s1] = True # FIXME: Hack sel['trnl'] = (sel['trn0']*1 + sel['trn1']*2 - 1)[sel['trn']] sel['tstl'] = (sel['tst0']*1 + sel['tst1']*2 - 1)[sel['tst']] return sel def get_data(method, params): """ Returns a selector dictionary, rawdata matrix and normalized data matrix where the selector dictionary has the following keys defined: trn, trn0, trn1, tst, tst0, tst1, feats, calib where the last two are for the features and calibration features """ rawdata, trn0, trn1, tst0, tst1, feats, calib = method(params) trn = trn0 | trn1 tst = tst0 | tst1 # FIXME: Hack trnl = (trn0*1 + trn1*2 - 1)[trn] tstl = (tst0*1 + tst1*2 - 1)[tst] num_calibs = setv(params, 'num_calibs', 5, int) if num_calibs == 0 or params['num_gen_feat'] == params['num_feat']: # This should really be done cleaner, but I can accrue a little # technical debt every now and then right?... right?! sel = dict(trn0=trn0, trn1=trn1, trn=trn, tst0=tst0, tst1=tst1, tst=tst, tstl=tstl, trnl=trnl) else: size_calibs = setv(params, 'size_calibs', 2, int) subcalibs = calib.nonzero()[0] clip_calibs = subcalibs.size - (num_calibs * size_calibs) assert clip_calibs >= 0, clip_calibs np.random.shuffle(subcalibs) subcalibs = np.split(subcalibs[:-clip_calibs], num_calibs) sel = dict(trn0=trn0, trn1=trn1, trn=trn, tst0=tst0, tst1=tst1, tst=tst, feats=feats, calib=calib, tstl=tstl, trnl=trnl, subcalibs=subcalibs) # Normalize mu = rawdata[trn,:].mean(axis=0) std = np.sqrt(rawdata[trn,:].var(axis=0, ddof=1)) normdata = (rawdata - mu) / std return sel, pa.DataFrame(rawdata), pa.DataFrame(normdata) def setv(p,s,d,conv=None): if s not in p: p[s] = d return d elif conv is not None: return conv(p[s]) else: p[s] def get_test_params(): params = {} iters = setv(params, 'iters', int(1e4), int) num_feat = setv(params, 'num_feat', 5, int) num_gen_feat = setv(params, 'num_gen_feat', 30, int) seed = setv(params, 'seed', np.random.randint(10**8), int) rseed = setv(params, 'rseed', np.random.randint(10**8), int) Ntrn = setv(params, 'Ntrn', 20, int) Ntst = setv(params, 'Ntst', 300, int) f_glob = setv(params, 'f_glob', 10, int) subclasses = setv(params, 'subclasses', 2, int) f_het = setv(params, 'f_het', 20, int) f_rand = setv(params, 'f_rand', 20, int) rho = setv(params, 'rho', 0.6, float) f_tot = setv(params, 'f_tot', f_glob+f_het*subclasses+f_rand, int) blocksize = setv(params, 'blocksize', 5, int) mu0 = setv(params, 'mu0', 0.8, float) mu1 = setv(params, 'mu1', -0.8, float) sigma0 = setv(params, 'sigma0', 0.6, float) sigma1 = setv(params, 'sigma1', 0.2, float) kappa = setv(params, 'kappa', 32.0, float) lowd = setv(params, 'lowd', 9.0, float) highd = setv(params, 'highd', 11.0, float) numlam = setv(params, 'numlam', 20, int) low = setv(params, 'low_filter', 1, int) high = setv(params, 'high_filter', 10, int) num_candidates = setv(params, 'num_candidates', 50, int) cat = setv(params, 'split_category', 'treatment', str) use_candidates = setv(params, 'use_candidates', False, bool) return params if __name__ == '__main__': import pylab as p p.figure() params = get_test_params() sel, raw, norm = get_data(data_tcga, params) print(sel['tst'].sum(), sel['tst0'].sum(), sel['tst1'].sum()) sys.exit() #plot_p_hist(raw, sel, 'tcga low') sel, raw, norm = get_data(data_karen, params) plot_p_hist(raw, sel, 'karen low') params['low_filter'] = 0 params['high_filter'] = 10000 sel, raw, norm = get_data(data_karen, params) plot_p_hist(raw, sel, 'karen all') sel, raw, norm = get_data(data_jk, params) plot_p_hist(raw, sel, 'ic') p.legend(loc='best') #p.xscale('log') p.show() sys.exit() def test(out): sel, raw, norm = out assert raw.shape == norm.shape for k,v in sel.iteritems(): if type(v) == np.ndarray: assert v.sum() > 0, str(k) + str(v.shape) assert v.sum() < max(raw.shape) #assert v.shape[0] == raw.shape[0] or v.shape[0] == raw.shape[1] test(get_data(data_yj, params)) test(get_data(data_jk, params)) test(get_data(data_tcga, params)) test(get_data(data_karen, params))
mit
HengfengLi/algorithms-impl
01.graham_scan/graham_scan.py
1
5192
# Re-write the C code from Computational Geometry in C - Section 3.5. # max # of points PMAX = 1000 P_origin = None class Coord: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return "x:%.2f,y:%.2f" % (self.x, self.y) def __repr__(self): return self.__str__() class tsPoint: def __init__(self, id, coord): self.id = id self.coord = coord self.flag_deleted = False def __str__(self): return "vnum:%d,coord:%s,deleted:%s" \ % (self.id, self.coord, self.flag_deleted) def __repr__(self): return self.__str__() class tStackCell: def __init__(self, p): self.p = p self.next = None class tStack: def __init__(self): self.top = None self.num = 0 def pop(self): if self.num == 0: return None temp = self.top self.top = self.top.next self.num -= 1 return temp.p def push(self, p): c = tStackCell(p) c.next = self.top self.top = c self.num += 1 def values(self): t = self.top while t: yield t.p t = t.next def __str__(self): t = self.top output = "" while t: output += "vnum=%d\tx=%.2f\ty=%.2f\n" \ % (t.p.id, t.p.coord.x, t.p.coord.y) t = t.next return output def __repr__(self): return self.__str__() def area2(a, b, c): return (b.x-a.x) * (c.y-a.y) - (c.x-a.x)*(b.y-a.y) def compare(pi, pj): a = area2(P_origin.coord, pi.coord, pj.coord) if a > 0: return -1 if a < 0: return 1 # collinear with P[0] x = abs(pi.coord.x - P_origin.coord.x) - abs(pj.coord.x - P_origin.coord.x) y = abs(pi.coord.y - P_origin.coord.y) - abs(pj.coord.y - P_origin.coord.y) if x < 0 or y < 0: pi.flag_deleted = True return -1 elif x > 0 or y > 0: pj.flag_deleted = True return 1 else: # points are coincident if pi.id > pj.id: pj.flag_deleted = True else: pi.flag_deleted = True return 0 def swap(P, i, j): temp = P[i] P[i] = P[j] P[j] = temp def find_lowest(P): # get a copy P = P[:] # index of lowest m = 0 for i in range(1,len(P)): if (P[i].coord.y < P[m].coord.y or P[i].coord.y == P[m].coord.y) \ and (P[i].coord.x > P[m].coord.x): m = i swap(P, 0, m) return P def graham(P): # initalize stack stack = tStack() stack.push(P[0]) stack.push(P[1]) assert(stack.num == 2) # bottom two elements will never be removed i = 2 while i < len(P): # print "i", i p1 = stack.top.next.p p2 = stack.top.p # print area2(p1.coord, p2.coord, P[i].coord) if area2(p1.coord, p2.coord, P[i].coord) > 0: stack.push(P[i]) i += 1 else: # print "stack.pop" stack.pop() return stack def graham_scan(coords): global P_origin # construct the list of points P = [] for i in range(len(coords)): x, y = coords[i] P.append(tsPoint(i, Coord(x, y))) # actual # of points n = len(P) # find the right-most of lowest point P = find_lowest(P) print "lowest:", P[0] P_origin = P[0] # sort other points angularly new_P = [P[0]] + sorted(P[1:], cmp=compare) # squash new_P = filter(lambda p: p.flag_deleted != True ,new_P) # print new_P stack = graham(new_P) return [(p.coord.x, p.coord.y) for p in stack.values()] if __name__ == '__main__': import matplotlib.pyplot as plt coords = [(3,-2), (5,1), (7,4), (6,5), (4,2), (3,3), (3,5), (2,5), (0,5), \ (0,1), (-3,4), (-2,2), (0,0), (-3,2), (-5,2), (-5,1), (-5,-1), \ (1,-2), (-3,-2)] assert(len(coords) == 19) convex_hull_points = graham_scan(coords) fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111) ax.set_aspect('equal') ax.grid(True, which='both') # set the x-spine (see below for more info on `set_position`) ax.spines['left'].set_position('zero') # turn off the right spine/ticks ax.spines['right'].set_color('none') # set the y-spine ax.spines['bottom'].set_position('zero') # turn off the top spine/ticks ax.spines['top'].set_color('none') ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.set_xlim([-6,8]) ax.set_ylim([-3,6]) x1 = [p[0] for p in coords] y1 = [p[1] for p in coords] # "clip_on=False, zorder=100" makes the points are above axes and girds ax.scatter(x1, y1, c='red', clip_on=False, zorder=100) x2 = [p[0] for p in convex_hull_points + [convex_hull_points[0]]] y2 = [p[1] for p in convex_hull_points + [convex_hull_points[0]]] ax.plot(x2, y2, marker='o', clip_on=False, zorder=100) plt.show()
mit
micahhausler/pandashells
pandashells/test/p_regplot_test.py
10
1072
#! /usr/bin/env python from mock import patch from unittest import TestCase import numpy as np import pandas as pd from pandashells.bin.p_regplot import main, make_label class MakeLabelTests(TestCase): def test_make_label_html(self): label = make_label(coeffs=[1, 2, 3], savefig=['test.html']) self.assertEqual(label, 'y = (3) + (2) x + (1) x ^ 2') def test_make_label_tex(self): label = make_label(coeffs=[1, 2], savefig=['test.png']) self.assertEqual(label, '$y = (2) + (1) x$') class MainTests(TestCase): @patch( 'pandashells.bin.p_regplot.sys.argv', 'p.regplot -x x -y y'.split()) @patch('pandashells.bin.p_regplot.io_lib.df_from_input') @patch('pandashells.bin.p_regplot.plot_lib.show') def test_cli_non_plain(self, show_mock, df_from_input_mock): df_in = pd.DataFrame({ 'x': np.arange(1, 101), 'y': np.arange(1, 101) + np.random.randn(100) }) df_from_input_mock.return_value = df_in main() self.assertTrue(show_mock.called)
bsd-2-clause
tylerc-atx/script_library
kfolds_score_any_model.py
1
1105
''' Scores any model given a model class and data Originally writte by Shawn Terryah ''' import numpy as np from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score, average_precision_score, recall_score def KFolds_any_model(X_train, y_train, k, model_to_fit): ''' k = number of folds. Returns mean accuracy, precision, and recall of any model (kNN(), LogisticRegression(), LinearRegression, etc...''' index = 0 kf = KFold(n_splits = k) accuracy = np.empty(k) precision = np.empty(k) recall = np.empty(k) model = model_to_fit for train, test in kf.split(X_train, y_train): model.fit(X_train[train], y_train[train]) pred = model.predict(X_train[test]) accuracy[index] = accuracy_score(y_train[test], pred) precision[index] = average_precision_score(y_train[test], pred) recall[index] = recall_score(y_train[test], pred) index += 1 return 'accuracy: {}, precision: {}, recall: {}'.format(round(accuracy.mean(), 3), round(precision.mean(), 3), round(recall.mean(), 3))
mit
treycausey/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
scholer/py2cytoscape
tests/test_network.py
1
7157
# -*- coding: utf-8 -*- import unittest import networkx as nx from py2cytoscape.data.cyrest_client import CyRestClient import py2cytoscape.util.dataframe as df_util import json def pp(dict_data): print(json.dumps(dict_data, indent=4)) class CyRestClientTests(unittest.TestCase): def setUp(self): self.client = CyRestClient() # cleanup self.client.network.delete_all() def test_cyrest_client(self): print('\n---------- Client status tests start -----------\n') # Make sure CyREST server is running status = self.client.status() self.assertIsNotNone(status) pp(status) self.assertEqual('v1', status['apiVersion']) print('\n---------- Client status tests finished! -----------\n') def test_create_network(self): print('\n---------- Create network Tests Start -----------\n') # Create empty network num_networks = 5 for i in range(num_networks): self.client.network.create() networks = self.client.network.get_all() self.assertIsNotNone(networks) self.assertEqual(num_networks, len(networks)) def test_create_from(self): print('\n---------- Loading network tests start -----------\n') # Create from URL locations = [ 'http://chianti.ucsd.edu/cytoscape-data/galFiltered.sif', 'http://www.ebi.ac.uk/Tools/webservices/psicquic/intact/' + 'webservices/current/search/interactor/brca2_human?format=xml25' ] networks = self.client.network.create_from(locations) print(networks) self.assertIsNotNone(networks) print('---------- Loading networks done! -----------\n') def test_network_api(self): print('\n---------- Network API Tests Start -----------\n') # Create empty network for i in range(5): self.client.network.create() networks = self.client.network.get_all(format='json') self.assertIsNotNone(networks) pp(networks) def test_cynetwork(self): print('\n---------- CyNetwork Tests Start -----------\n') network = self.client.network.create() self.assertIsNotNone(network) nodes = network.get_nodes() pp(nodes) new_nodes = ['a', 'b', 'c'] nd = network.add_nodes(new_nodes) self.assertIsNotNone(nd) pp(nd) edge = network.add_edge(nd['a'], nd['b']) self.assertIsNotNone(edge) pp(edge) new_edges = ((nd['a'], nd['b'], 'i1'), (nd['a'], nd['c'], 'i1')) new_edges_result = network.add_edges(new_edges) print(new_edges_result) self.assertEqual(2, len(new_edges_result)) node_table = network.get_node_table() print(node_table) node_table = network.get_node_table(format='tsv') print(node_table) node_table = network.get_node_table(format='csv') print(node_table) edge_table = network.get_edge_table() print(edge_table) print('\n---------- CyNetwork Tests Finished! -----------\n') def test_create_view(self): print('\n---------- CyNetworkView Tests Start -----------\n') network = self.client.network.create() self.assertIsNotNone(network) nodes = network.get_nodes() pp(nodes) new_nodes = ['a', 'b', 'c'] nd = network.add_nodes(new_nodes) views = network.get_views() print('Views: ') print(views) view_id = views[0] view = network.get_view(view_id, format='view') self.assertIsNotNone(view) self.assertEqual(view_id, view.get_id()) node_views = view.get_node_views() self.assertIsNotNone(node_views) self.assertEqual(3, len(node_views)) view1 = node_views[0] self.assertIsNotNone(view1) all_values = view1.get_values() print(all_values) def test_view_api(self): print('\n---------- View API test start -----------\n') network = self.client.network.create() self.assertIsNotNone(network) nodes = network.get_nodes() pp(nodes) new_nodes = ['a', 'b', 'c'] nd = network.add_nodes(new_nodes) print(nd) views = network.get_views() print('Views: ') print(views) view_id = views[0] view = network.get_view(view_id, format='view') self.assertIsNotNone(view) self.assertEqual(view_id, view.get_id()) node_views = view.get_node_views() self.assertIsNotNone(node_views) self.assertEqual(3, len(node_views)) view1 = node_views[0] self.assertIsNotNone(view1) self.assertEqual(0, view1.get_x()) view1.set_x(100) self.assertEqual(100, view1.get_value('NODE_X_LOCATION')) new_values = {} for key in nd.keys(): suid = nd[key] new_values[suid] = 'red' view.update_node_views('NODE_FILL_COLOR', new_values) new_values_name = {} for node_name in new_nodes: new_values_name[node_name] = 'pink' view.update_node_views('NODE_FILL_COLOR', new_values_name, key_type='name') view.update_network_view('NETWORK_BACKGROUND_PAINT', 'red') net_view = view.get_network_view_as_dict() bg_paint = net_view['NETWORK_BACKGROUND_PAINT'] self.assertEqual('#FF0000', bg_paint) def test_convert(self): print('\n---------- DataFrame Conversion Tests Start -----------\n') import os import pandas as pd # Clean up Cytoscape session self.client.session.delete() dir_name = os.path.dirname(os.path.realpath(__file__)) df = pd.read_csv( dir_name + '/data/galFiltered.sif', names=['source', 'interaction', 'target'], sep=' ') print(df.head(3)) net = df_util.from_dataframe(df) network = self.client.network.create(data=net, name='Created from DataFrame') original_column_count = len(network.get_node_columns()) dir_name = os.path.dirname(os.path.realpath(__file__)) file_name = dir_name + '/data/galFiltered.nodeAttrTable.txt' data_table = pd.read_csv(file_name, sep='\t') network.update_node_table(df=data_table, data_key_col='ID') table_column_count = len(data_table.columns) total_column_count = len(network.get_node_columns()) self.assertEqual(total_column_count, (original_column_count+table_column_count-1)) print('\n---------- DataFrame Conversion Tests Finished! -----------\n') def test_delete_network(self): network = self.client.network.create() suids = self.client.network.get_all() self.assertEqual(1, len(suids)) self.client.network.delete(network) suids = self.client.network.get_all() self.assertEqual(0, len(suids)) def test_create_from_networkx(self): networkx1 = nx.scale_free_graph(100) network = self.client.network.create_from_networkx(networkx1) self.assertIsNotNone(network)
mit
RayMick/scikit-learn
sklearn/datasets/tests/test_base.py
205
5878
import os import shutil import tempfile import warnings import nose import numpy from pickle import loads from pickle import dumps from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.datasets.base import Bunch from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR) def test_loads_dumps_bunch(): bunch = Bunch(x="x") bunch_from_pkl = loads(dumps(bunch)) bunch_from_pkl.x = "y" assert_equal(bunch_from_pkl['x'], bunch_from_pkl.x)
bsd-3-clause
ocefpaf/python-ctd
ctd/extras.py
2
8451
""" Extra functionality for plotting and post-processing. """ import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma from pandas import Series def _extrap1d(interpolator): """ How to make scipy.interpolate return an extrapolated result beyond the input range. This is usually bad interpolation! But sometimes useful for pretty pictures, use it with caution! http://stackoverflow.com/questions/2745329/ """ xs, ys = interpolator.x, interpolator.y def pointwise(x): """Pointwise interpolation.""" if x < xs[0]: return ys[0] + (x - xs[0]) * (ys[1] - ys[0]) / (xs[1] - xs[0]) elif x > xs[-1]: return ys[-1] + (x - xs[-1]) * (ys[-1] - ys[-2]) / (xs[-1] - xs[-2]) else: return interpolator(x) def ufunclike(xs): """Return an interpolation ufunc.""" return np.array(list(map(pointwise, np.array(xs)))) return ufunclike def get_maxdepth(self): """Return the maximum depth/pressure of a cast.""" valid_last_depth = self.apply(Series.notnull).values.T return np.float_(self.index.values * valid_last_depth).max(axis=1) def extrap_sec(data, dist, depth, w1=1.0, w2=0): """ Extrapolates `data` to zones where the shallow stations are shadowed by the deep stations. The shadow region usually cannot be extrapolates via linear interpolation. The extrapolation is applied using the gradients of the `data` at a certain level. Parameters ---------- data : array_like Data to be extrapolated dist : array_like Stations distance fd : float Decay factor [0-1] Returns ------- Sec_extrap : array_like Extrapolated variable """ from scipy.interpolate import interp1d new_data1 = [] for row in data: mask = ~np.isnan(row) if mask.any(): y = row[mask] if y.size == 1: row = np.repeat(y, len(mask)) else: x = dist[mask] f_i = interp1d(x, y) f_x = _extrap1d(f_i) row = f_x(dist) new_data1.append(row) new_data2 = [] for col in data.T: mask = ~np.isnan(col) if mask.any(): y = col[mask] if y.size == 1: col = np.repeat(y, len(mask)) else: z = depth[mask] f_i = interp1d(z, y) f_z = _extrap1d(f_i) col = f_z(depth) new_data2.append(col) new_data = np.array(new_data1) * w1 + np.array(new_data2).T * w2 return new_data def gen_topomask(h, lon, lat, dx=1.0, kind="linear", plot=False): """ Generates a topography mask from an oceanographic transect taking the deepest CTD scan as the depth of each station. Inputs ------ h : array Pressure of the deepest CTD scan for each station [dbar]. lons : array Longitude of each station [decimal degrees east]. lat : Latitude of each station. [decimal degrees north]. dx : float Horizontal resolution of the output arrays [km]. kind : string, optional Type of the interpolation to be performed. See scipy.interpolate.interp1d documentation for details. plot : bool Whether to plot mask for visualization. Outputs ------- xm : array Horizontal distances [km]. hm : array Local depth [m]. Author ------ André Palóczy Filho ([email protected]) -- October/2012 """ import gsw from scipy.interpolate import interp1d h, lon, lat = list(map(np.asanyarray, (h, lon, lat))) # Distance in km. x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1e3)) h = -gsw.z_from_p(h, lat.mean()) Ih = interp1d(x, h, kind=kind, bounds_error=False, fill_value=h[-1]) xm = np.arange(0, x.max() + dx, dx) hm = Ih(xm) return xm, hm def plot_section(self, reverse=False, filled=False, **kw): """Plot a sequence of CTD casts as a section.""" import gsw lon, lat, data = list(map(np.asanyarray, (self.lon, self.lat, self.values))) data = ma.masked_invalid(data) h = self.get_maxdepth() if reverse: lon = lon[::-1] lat = lat[::-1] data = data.T[::-1].T h = h[::-1] lon, lat = map(np.atleast_2d, (lon, lat)) x = np.append(0, np.cumsum(gsw.distance(lon, lat)[0] / 1e3)) z = self.index.values.astype(float) if filled: # CAVEAT: this method cause discontinuities. data = data.filled(fill_value=np.nan) data = extrap_sec(data, x, z, w1=0.97, w2=0.03) # Contour key words. extend = kw.pop("extend", "both") fontsize = kw.pop("fontsize", 12) labelsize = kw.pop("labelsize", 11) cmap = kw.pop("cmap", plt.cm.rainbow) levels = kw.pop( "levels", np.arange(np.floor(data.min()), np.ceil(data.max()) + 0.5, 0.5), ) # Colorbar key words. pad = kw.pop("pad", 0.04) aspect = kw.pop("aspect", 40) shrink = kw.pop("shrink", 0.9) fraction = kw.pop("fraction", 0.05) # Topography mask key words. dx = kw.pop("dx", 1.0) kind = kw.pop("kind", "linear") linewidth = kw.pop("linewidth", 1.5) # Station symbols key words. station_marker = kw.pop("station_marker", None) color = kw.pop("color", "k") offset = kw.pop("offset", -5) alpha = kw.pop("alpha", 0.5) # Figure. figsize = kw.pop("figsize", (12, 6)) fig, ax = plt.subplots(figsize=figsize) xm, hm = gen_topomask(h, lon, lat, dx=dx, kind=kind) ax.plot(xm, hm, color="black", linewidth=linewidth, zorder=3) ax.fill_between(xm, hm, y2=hm.max(), color="0.9", zorder=3) if station_marker: ax.plot( x, [offset] * len(h), color=color, marker=station_marker, alpha=alpha, zorder=5, ) ax.set_xlabel("Cross-shore distance [km]", fontsize=fontsize) ax.set_ylabel("Depth [m]", fontsize=fontsize) ax.set_ylim(offset, hm.max()) ax.invert_yaxis() ax.xaxis.set_ticks_position("top") ax.xaxis.set_label_position("top") ax.yaxis.set_ticks_position("left") ax.yaxis.set_label_position("left") ax.xaxis.set_tick_params(tickdir="out", labelsize=labelsize, pad=1) ax.yaxis.set_tick_params(tickdir="out", labelsize=labelsize, pad=1) # Color version. cs = ax.contourf( x, z, data, cmap=cmap, levels=levels, alpha=1.0, extend=extend, zorder=2, ) # manual=True # Colorbar. cb = fig.colorbar( mappable=cs, ax=ax, orientation="vertical", aspect=aspect, shrink=shrink, fraction=fraction, pad=pad, ) return fig, ax, cb def cell_thermal_mass(temperature, conductivity): """ Sample interval is measured in seconds. Temperature in degrees. CTM is calculated in S/m. """ alpha = 0.03 # Thermal anomaly amplitude. beta = 1.0 / 7 # Thermal anomaly time constant (1/beta). sample_interval = 1 / 15.0 a = 2 * alpha / (sample_interval * beta + 2) b = 1 - (2 * a / alpha) dCodT = 0.1 * (1 + 0.006 * [temperature - 20]) dT = np.diff(temperature) ctm = -1.0 * b * conductivity + a * (dCodT) * dT # [S/m] return ctm def mixed_layer_depth(CT, method="half degree"): """Return the mixed layer depth based on the "half degree" criteria.""" if method == "half degree": mask = CT[0] - CT < 0.5 else: mask = np.zeros_like(CT) return Series(mask, index=CT.index, name="MLD") def barrier_layer_thickness(SA, CT): """ Compute the thickness of water separating the mixed surface layer from the thermocline. A more precise definition would be the difference between mixed layer depth (MLD) calculated from temperature minus the mixed layer depth calculated using density. """ import gsw sigma_theta = gsw.sigma0(SA, CT) mask = mixed_layer_depth(CT) mld = np.where(mask)[0][-1] sig_surface = sigma_theta[0] sig_bottom_mld = gsw.sigma0(SA[0], CT[mld]) d_sig_t = sig_surface - sig_bottom_mld d_sig = sigma_theta - sig_bottom_mld mask = d_sig < d_sig_t # Barrier layer. return Series(mask, index=SA.index, name="BLT")
bsd-3-clause
simpeg/processing
processing/DCIPtools/plottingTest.py
1
3721
import DCIPtools as DCIP import matplotlib.pyplot as plt import numpy as np ################################################################ # Read binary time-series ====================================== def getData(): xyz = open("/Users/juan/Documents/testData/L100_R42_SR_PG.xyz") t = [] xt = [] samples_half_t = 600.0 for line in xyz: x, y = line.split() t.append(float(x)) xt.append(float(y)) xyz.close() xt = np.asarray(xt) num_half_T = np.round(xt.size / samples_half_t) - 2 trim_length = num_half_T * samples_half_t xt = xt[0:int(trim_length)] xt = np.asarray(xt) return xt, num_half_T def getTime(): timeFrom = [2040., 2060., 2080., 2120., 2160., 2200., 2240., 2320., 2400., 2480., 2560., 2640., 2720., 2800., 2960., 3120., 3280., 3440., 3600., 3760.] timeTo = [2060., 2080., 2120., 2160., 2200., 2240., 2320., 2400., 2480., 2560., 2640., 2720., 2800., 2960., 3120., 3280., 3440., 3600., 3760., 3920.] return timeFrom, timeTo # end read ===================================================== # stack the data =================================================== xt, num_half_T = getData() timeFrom, timeTo = getTime() start_vp = 50 # start of Vp calculation (%) end_vp = 90 # end of Vp calculation (%) window = DCIP.createHanningWindow(num_half_T) # creates filter window window3 = DCIP.createHanningWindow(7) # creates filter window window2 = DCIP.createBruteStackWindow(int(num_half_T)) # print(window2.size, window.size) tHK = DCIP.filterKernal(filtershape=window) # creates filter kernal # eHK = DCIP.ensembleKernal(filtershape=window3, # number_half_periods=num_half_T) dkernal = DCIP.decayKernal(num_windows=np.asarray(timeTo).size, window_starts=np.asarray(timeFrom), window_ends=np.asarray(timeTo), window_weight=301, window_overlap=0.95, output_type="Vs") # creates decay kernal stack = tHK * xt # stack data # ens = eHK * xt # plt.plot(stack) # plt.show() decay = dkernal * (tHK * xt) # calculates the decay # end ====================================================== # cole-cole fitting ========================================= Vp = DCIP.getPrimaryVoltage(start_vp, end_vp, stack) # calculate the Vp staticmethod # # end ======================================================= # plt.plot(dkernal.getWindowCenters(), win_std) # plt.show() # plot results fig = plt.figure(figsize=(10, 8)) ax1 = plt.subplot(311) ax1.plot(xt, 'r') ax1.set_xlabel("num samples") ax1.set_ylabel("voltage (mV)") ax1.set_title("Raw time-series") ax4 = plt.subplot(323) ax4.plot(tHK.getFilterKernal, 'og') ax4.set_xlabel("num taps") ax4.set_ylabel("amplitude") amp = DCIP.getFrequnceyResponse(window) freqs = np.arange(0, amp.size) * (150. / window.size) ax5 = plt.subplot(324) ax5.plot(freqs, amp, 'm') ax5.set_xlabel("frequency (Hz)") ax5.set_ylabel("amplitude") ax2 = plt.subplot(326) ax2.plot(dkernal.getWindowCenters(), decay, '-ko') # ax2.plot(dkernal.getWindowCenters(), decay, '.') # ax2.plot(dkernal.getWindowCenters(), vs, '-o') ax2.set_xlabel("time (ms)") ax2.set_ylabel("Voltage (mV)") ax2.set_title("Secondary Voltage (decay)") ax3 = plt.subplot(325) ax3.plot(tHK * -xt) ax3.set_xlabel("num samples") ax3.set_ylabel("Voltage (mV)") ax3.set_title("Stack (decay)") plt.show()
mit
LouisPlisso/analysis_tools
cdfplot_1.2.py
1
14651
#!/usr/bin/env python "Module to plot cdf from data or file. Can be called directly." from __future__ import division, print_function from optparse import OptionParser import sys # in case of non-interactive usage #import matplotlib #matplotlib.use('Agg') import pylab from matplotlib.font_manager import FontProperties import numpy as np #import matplotlib.pyplot as plt _VERSION = '1.2' #TODO: possibility to place legend outside graph: #pylab.subfigure(111) #pylab.subplots_adjust(right=0.8) or (top=0.8) #pylab.legend(loc=(1.1, 0.5) #CCDF def ccdfplotdataN(list_data_name, _xlabel='x', _ylabel=r'1 - P(X$\leq$x)', _title='Empirical Distribution', _fs='x-large', _fs_legend='medium', _loc = 0, do_color=True, logx=True, logy=False): "Plot the ccdf of a list of data arrays and names" #corresponding line width with larger width for '-.' and ':' if not list_data_name: print("no data to plot", file=sys.stderr) return _ls = ['-', '-.', '-', '--'] * 2 #, ':'] # _lw = [1, 1] + [2, 4, 2, 4, 2, 4]#, 4] _lw = [2, 4] + [2, 4, 2, 4, 2, 4]#, 4] assert len(_ls) == len(_lw) # _colors = ['k', 'k', 'g', 'c', 'm', 'r', 'y', 'pink'] # consequent plots are same color _colors = ['k', 'k', 'c', 'c', 'm', 'm', 'y', 'y'] _ls_len = len(_ls) for i in range(len(list_data_name)):# - 1): name, data = list_data_name[i] #plot with round robin line style (ls) #and increasing line width (div, mod) = divmod(i, _ls_len) if not do_color: color = 'k' # line_width = _lw[mod]+2*div else: color = _colors[i % len(_colors)] # line_width = 2 + div line_width = _lw[mod]+2*div ccdfplotdata(data, _name=name, _title=_title, _xlabel=_xlabel, _ylabel=_ylabel, _lw=line_width, _ls=_ls[mod], _fs=_fs, _color=color) if logx and logy: setgraph_loglog(_loc=_loc, _fs_legend=_fs_legend) elif logy: setgraph_logy(_loc=_loc, _fs_legend=_fs_legend) elif logx: setgraph_logx(_loc=_loc, _fs_legend=_fs_legend) else: setgraph_lin(_loc=_loc, _fs_legend=_fs_legend) def ccdfplotdata(data_in, _color='k', _xlabel='x', _ylabel=r'1 - P(X$\leq$x)', _title='Empirical Distribution', _name='Data', _lw=2, _fs='x-large', _fs_legend='medium', _ls = '-', _loc=0): "Plot the ccdf of a data array" data = sorted(filter(lambda x: x is not None, data_in)) data_len = len(data) if data_len == 0: print("no data to plot", file=sys.stderr) return ccdf = 1 - np.arange(data_len + 1) / data_len data.append(data[-1]) pylab.plot(data, ccdf, _color, lw = _lw, drawstyle = 'steps', label = _name + ': %d' % data_len, ls = _ls) pylab.xlabel(_xlabel, size = _fs) pylab.ylabel(_ylabel, size = _fs) pylab.title(_title, size = _fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def ccdfplot(_file, col = 0, xlabel = 'X', ylabel = r'1 - P(X$\leq$x)', title = 'Empirical Distribution', name = 'Data', _lw = 2, _fs = 'x-large', _ls = '-', _loc=0): "Plot the ccdf of a column in file" data = pylab.loadtxt(_file, usecols = [col]) ccdfplotdata(data, _xlabel = xlabel, _ylabel = ylabel, _title = title, _name = name, _lw = _lw, _fs = _fs, _ls = _ls, _loc = _loc) #CDF def cdfplotdataN(list_data_name, _xlabel = 'x', _ylabel = r'P(X$\leq$x)', _title = 'Empirical Distribution', _fs = 'x-large', _fs_legend='medium', _loc = 0, do_color=True, logx=True, logy=False): "Plot the cdf of a list of names and data arrays" #corresponding line width with larger width for '-.' and ':' if not list_data_name: print("no data to plot", file=sys.stderr) return #_ls = ['-', '-.', '-', '--'] * 2 #, ':'] _ls = ['-', '-.', '-', '--'] * 2 + [':'] * 8 # _lw = [1, 1] + [2, 4, 2, 4, 2, 4]#, 4] _lw = ([2, 4] + [2, 4, 2, 4, 2, 4]) + ([4, 6] + [4, 6, 4, 6, 4, 6]) assert len(_ls) == len(_lw) # _colors = ['k', 'k', 'g', 'c', 'm', 'r', 'y', 'pink'] # consequent plots are same color _colors = ['k', 'k', 'c', 'c', 'm', 'm', 'y', 'y'] for i in range(len(list_data_name)):# - 1): name, data = list_data_name[i] #plot with round robin line style (ls) #and increasing line width (div, mod) = divmod(i, len(_ls)) if not do_color: color = 'k' # line_width = _lw[mod]+2*div else: color = _colors[i % len(_colors)] # line_width = 2 + div line_width = _lw[mod]+2*div cdfplotdata(data, _name=name, _title=_title, _xlabel=_xlabel, _ylabel=_ylabel, _lw=line_width, _ls=_ls[mod], _fs=_fs, _color=color) if logx and logy: setgraph_loglog(_loc=_loc, _fs_legend=_fs_legend) elif logy: setgraph_logy(_loc=_loc, _fs_legend=_fs_legend) elif logx: setgraph_logx(_loc=_loc, _fs_legend=_fs_legend) else: setgraph_lin(_loc=_loc, _fs_legend=_fs_legend) # cdfplotdata(data, _name=name, _lw=line_width, _ls=_ls[mod], # _fs=_fs, _color=color) # for last cdf, we put the legend and names # (data, name) = list_data_name[-1] # (div, mod) = divmod(len(list_data_name), len(_ls)) # if not do_color: # color = 'k' # line_width = _lw[mod]+2*div # else: # color = _colors[i % len(_colors)] # line_width = 1 + div # cdfplotdata(data, _name=name, _title=_title, _xlabel=_xlabel, # _ylabel=_ylabel, _lw=line_width, _ls=_ls[mod], _fs=_fs, # _fs_legend=_fs_legend, _color=color) def cdfplotdata(data_in, _color='k', _xlabel='x', _ylabel=r'P(X$\leq$x)', _title='Empirical Distribution', _name='Data', _lw=2, _fs='x-large', _fs_legend='medium', _ls = '-', _loc=0): "Plot the cdf of a data array" # data = pylab.array(data_in, copy=True) # to remove the None objects data = sorted(filter(lambda x: x is not None, data_in)) data_len = len(data) if data_len == 0: print("no data to plot", file=sys.stderr) return cdf = np.arange(data_len + 1) / data_len data.append(data[-1]) pylab.plot(data, cdf, _color, lw = _lw, drawstyle = 'steps', label = _name + ': %d' % data_len, ls = _ls) pylab.xlabel(_xlabel, size = _fs) pylab.ylabel(_ylabel, size = _fs) pylab.title(_title, size = _fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def cdfplot(_file, col = 0, xlabel = 'X', ylabel = r'P(X$\leq$x)', title = 'Empirical Distribution', name = 'Data', _lw = 2, _fs = 'x-large', _ls = '-', _loc=0): "Plot the cdf of a column in file" data = pylab.loadtxt(_file, usecols = [col]) cdfplotdata(data, _xlabel = xlabel, _ylabel = ylabel, _title = title, _name = name, _lw = _lw, _fs = _fs, _ls = _ls, _loc = _loc) def setgraph_lin(_fs = 'x-large', _loc = 2, _fs_legend = 'medium'): "Set graph in xlogscale and adjusts x&y markers" pylab.grid(True) _ax = pylab.gca() for tick in _ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) for tick in _ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def setgraph_logx(_fs = 'x-large', _loc = 2, _fs_legend = 'medium'): "Set graph in xlogscale and adjusts x&y markers" pylab.grid(True) pylab.semilogx(nonposy='clip', nonposx='clip') _ax = pylab.gca() for tick in _ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) for tick in _ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def setgraph_loglog(_fs = 'x-large', _loc = 2, _fs_legend = 'medium'): "Set graph in xlogscale and adjusts x&y markers" pylab.grid(True) pylab.loglog(nonposy='clip', nonposx='clip') _ax = pylab.gca() for tick in _ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) for tick in _ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def setgraph_logy(_fs = 'x-large', _loc = 2, _fs_legend = 'medium'): "Set graph in xlogscale and adjusts x&y markers" pylab.grid(True) pylab.semilogy(nonposy='clip', nonposx='clip') _ax = pylab.gca() for tick in _ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) for tick in _ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(_fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) #repartition plots def repartplotdataN(list_data_name, _xlabel = 'Rank', _ylabel = 'Cumulative Percentage of Data', _title = 'Repartition of values', _fs = 'x-large', do_color=True, _loc=0, loglog=True, savefile=None): "Plot the repartition of a list of data arrays and names" #corresponding line width with larger width for '-.' and ':' if not list_data_name: print("no data to plot", file=sys.stderr) return # while adapting cdfplot v2 pylab.clf() _ls = ['-', '-.', '-', '--'] * 2 #, ':'] # _ls = ['-', '-.', '--', ':'] _lw = [2, 4] + [2, 4, 2, 4, 2, 4]#, 4] # _lw = [1, 2, 3, 4] assert len(_ls) == len(_lw) _len_ls = len(_ls) # consequent plots are same color _colors = ['k', 'k', 'c', 'c', 'm', 'm', 'y', 'y'] for i, (name, data) in enumerate(list_data_name): #range(len(list_data_name)):# - 1): #name, data = list_data_name[i] #plot with round robin line style (ls) #and increasing line width (div, mod) = divmod(i, _len_ls) if not do_color: color = 'k' # line_width = _lw[mod]+2*div else: color = _colors[i % len(_colors)] # line_width = 2 + div line_width = _lw[mod]+2*div repartplotdata(data, _name=name, _title=_title, _xlabel=_xlabel, _ylabel=_ylabel, _lw=line_width, _ls=_ls[mod], _fs=_fs, _color=color) if loglog: setgraph_loglog(_loc=_loc) else: setgraph_lin(_loc=_loc) if savefile: pylab.savefig(savefile) # #for last cdf, we put the legend and names # (name, data) = list_data_name[-1] # (div, mod) = divmod(len(list_data_name), _len_ls) # repartplotdata(data, _name=name, _title=_title, _xlabel=_xlabel, # _ylabel=_ylabel, _lw=_lw[mod]+2*div, _ls=_ls[mod], _fs=_fs) # setgraph_loglog(_loc=_loc) def repartplotdata(data_in, _color='k', _xlabel = 'Rank', _ylabel = 'Cumulative Percentage of Data', _title = 'Repartition of values', _name = 'Data', _lw = 2, _fs = 'x-large', _fs_legend='medium', _ls = '-', _loc=0): "Plot the repartition of a data array" data = pylab.array(data_in, copy=True) if len(data) == 0: print("no data to plot", file=sys.stderr) return data.sort() rank = np.arange(1, len(data) + 1) values = np.cumsum(data[::-1]) pylab.plot(rank, 100 * values / values[-1], _color, lw = _lw, drawstyle = 'steps', label = _name + ': %d' % len(data), ls = _ls) pylab.xlabel(_xlabel, size = _fs) pylab.ylabel(_ylabel, size = _fs) pylab.title(_title, size = _fs) font = FontProperties(size = _fs_legend) pylab.legend(loc = _loc, prop = font) def repartplot(_file, col = 0, xlabel = 'Rank', ylabel = 'Cumulative Percentage of Data', title = 'Repartition of values', name = 'Data', _lw = 2, _fs = 'x-large', _ls = '-', _loc=0): "Plot the cdf of a column in file" data = pylab.loadtxt(_file, usecols = [col]) repartplotdata(data, _xlabel = xlabel, _ylabel = ylabel, _title = title, _name = name, _lw = _lw, _fs = _fs, _ls = _ls, _loc = _loc) def main(): "Program wrapper." usage = "%prog -r data_file [-c col -x x_label -y y_label -t title \ -n data_name -lw line_width -fs fontsize [-g|-p]]" parser = OptionParser(usage = usage, version="%prog " + _VERSION) parser.add_option("-r", dest = "file", help = "input data file or stdin if FILE is -") parser.add_option("-c", dest = "col", type = "int", default = 0, help = "column in the file [default value = 0]") parser.add_option("-x", dest = "xlabel", default = 'X', help = "x label") parser.add_option("-y", dest = "ylabel", default = r'P(X$\leq$x)', help = "y label") parser.add_option("-t", dest = "title", default = 'Empirical Distribution', help = "graph title") parser.add_option("-n", dest = "name", default = 'Data', help = "data name") parser.add_option("-l", "--lw", dest = "lw", type = "int", default = 2, help = "line width") parser.add_option("-f", "--fs", dest = "fs", type = "int", default = 18, help = "font size") parser.add_option("-g", "--ccdf", dest = "g", action="store_true", default=False, help = "plot ccdf instead of cdf") parser.add_option("-p", "--repartition", dest = "p", action="store_true", default=False, help = "plot repartition instead of cdf") (options, _) = parser.parse_args() if not options.file: print("Must provide filename.") parser.print_help() exit(1) if options.file == '-': out_file = sys.stdin else: try: out_file = open(options.file, 'r') except IOError: print("File, %s, does not exist." % options.file) parser.print_help() exit(1) if options.g and options.p: print("g and p options are exclusive.") parser.print_help() exit(1) pylab.clf() if options.g: ccdfplot(out_file, col=options.col, _lw=options.lw, _fs=options.fs) elif options.p: repartplot(out_file, col=options.col, _lw=options.lw, _fs=options.fs) else: cdfplot(out_file, col=options.col, xlabel=options.xlabel, ylabel=options.ylabel, title=options.title, name=options.name, _lw=options.lw, _fs=options.fs) setgraph_logx(_fs = options.fs) pylab.show() if __name__ == '__main__': sys.exit(main())
gpl-3.0
pradyu1993/scikit-learn
examples/linear_model/plot_omp.py
6
1677
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print __doc__ import pylab as pl import numpy as np from sklearn.linear_model import orthogonal_mp from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_atoms = 17 # generate the data ################### # y = Dx # |x|_0 = n_atoms y, D, x = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_atoms, random_state=0) idx, = x.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## pl.subplot(3, 1, 1) pl.xlim(0, 512) pl.title("Sparse signal") pl.stem(idx, x[idx]) # plot the noise-free reconstruction #################################### x_r = orthogonal_mp(D, y, n_atoms) idx_r, = x_r.nonzero() pl.subplot(3, 1, 2) pl.xlim(0, 512) pl.title("Recovered signal from noise-free measurements") pl.stem(idx_r, x_r[idx_r]) # plot the noisy reconstruction ############################### x_r = orthogonal_mp(D, y_noisy, n_atoms) idx_r, = x_r.nonzero() pl.subplot(3, 1, 3) pl.xlim(0, 512) pl.title("Recovered signal from noisy measurements") pl.stem(idx_r, x_r[idx_r]) pl.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) pl.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) pl.show()
bsd-3-clause
kklmn/xrt
examples/withRaycing/01_SynchrotronSources/undulatorTapering.py
1
4236
# -*- coding: utf-8 -*- __author__ = "Konstantin Klementiev", "Roman Chernikov" __date__ = "08 Mar 2016" import pickle import numpy as np import matplotlib.pyplot as plt import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore import xrt.backends.raycing as raycing import xrt.backends.raycing.sources as rs import xrt.backends.raycing.screens as rsc import xrt.backends.raycing.run as rr import xrt.backends.raycing.materials as rm import xrt.plotter as xrtp import xrt.runner as xrtr showIn3D = False prefix = 'taper_' xlimits = [-0.9, 0.9] zlimits = [-0.9, 0.9] eMin, eMax = 10200-800, 10200+800 def build_beamline(nrays=2e5): beamLine = raycing.BeamLine() rs.Undulator( beamLine, 'P06', nrays=nrays, eEspread=0.0011, eSigmaX=34.64, eSigmaZ=6.285, eEpsilonX=1., eEpsilonZ=0.01, period=31.4, K=2.1392-0.002, n=63, eE=6.08, eI=0.1, xPrimeMax=1.5e-2, zPrimeMax=1.5e-2, eMin=eMin, eMax=eMax, distE='BW', xPrimeMaxAutoReduce=False, zPrimeMaxAutoReduce=False, # targetOpenCL='CPU', taper=(1.09, 11.254)) beamLine.fsm1 = rsc.Screen(beamLine, 'FSM1', (0, 90000, 0)) return beamLine def run_process(beamLine): beamSource = beamLine.sources[0].shine() beamFSM1 = beamLine.fsm1.expose(beamSource) outDict = {'beamSource': beamSource, 'beamFSM1': beamFSM1} if showIn3D: beamLine.prepare_flow() return outDict rr.run_process = run_process def define_plots(beamLine): plots = [] plotsE = [] xaxis = xrtp.XYCAxis(r'$x$', 'mm', limits=xlimits, bins=360, ppb=1) yaxis = xrtp.XYCAxis(r'$z$', 'mm', limits=zlimits, bins=360, ppb=1) caxis = xrtp.XYCAxis('energy', 'keV', bins=360, ppb=1) plot = xrtp.XYCPlot( 'beamFSM1', (1,), xaxis=xaxis, yaxis=yaxis, caxis=caxis, aspect='auto', title='total flux', ePos=1) plot.baseName = prefix + '1TotalFlux' plot.saveName = plot.baseName + '.png' plots.append(plot) plotsE.append(plot) for plot in plotsE: plot.caxis.limits = eMin*1e-3, eMax*1e-3 for plot in plots: plot.fluxFormatStr = '%.2p' return plots, plotsE def afterScript(plots): plot = plots[-1] flux = [plot.intensity, plot.nRaysAll, plot.nRaysAccepted, plot.nRaysSeeded] cwd = os.getcwd() pickleName = os.path.join(cwd, plot.baseName+'.pickle') with open(pickleName, 'wb') as f: pickle.dump((flux, plot.caxis.binEdges, plot.caxis.total1D), f, protocol=2) plot_compare() def main(): beamLine = build_beamline() if showIn3D: beamLine.glow() else: plots, plotsE = define_plots(beamLine) xrtr.run_ray_tracing(plots, repeats=100, beamLine=beamLine, afterScript=afterScript, afterScriptArgs=[plots]) def plot_compare(): fig1 = plt.figure(1, figsize=(7, 5)) ax = plt.subplot(111, label='1') ax.set_xlabel(u'energy (keV)') ax.set_ylabel(u'flux (a.u.)') cwd = os.getcwd() pickleName = os.path.join(cwd, 'taper_1TotalFlux.pickle') with open(pickleName, 'rb') as f: _f, binEdges, total1D = pickle.load(f) dE = binEdges[1] - binEdges[0] E = binEdges[:-1] + dE/2. ax.plot(E, total1D/max(total1D), 'r', label='calculated by xrt', lw=2) try: e, f = np.loadtxt('fluxUndulator1DtaperP06.dc0', skiprows=10, usecols=[0, 1], unpack=True) ax.plot(e*1e-3, f/max(f), 'b', label='calculated by Spectra', lw=2) except: # analysis:ignore pass # e, f = np.loadtxt('yaup-0.out', skiprows=32, usecols=[0, 1], unpack=True) # ax.plot(e*1e-3, f/max(f), 'g', label='calculated by YAUP/XOP', lw=2) theta, fl = np.loadtxt("thetaexafssc1an_zn_hgap_00002r2.fio.gz", skiprows=113, usecols=(0, 5), unpack=True) si_1 = rm.CrystalSi(hkl=(1, 1, 1), tK=77) E = rm.ch / (2 * si_1.d * np.sin(np.radians(theta))) ax.plot(E*1e-3, fl/max(fl), 'k', lw=2, label='measured @ Petra3') # ax2.set_xlim(0, None) # ax2.set_ylim(1.400, 1.600) ax.legend(loc='lower center') fig1.savefig('compareTaper.png') plt.show() if __name__ == '__main__': main()
mit
SANDAG/spandex
setup.py
1
1323
import os.path # Install setuptools if not installed. try: import setuptools except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages # read README as the long description readme = 'README' if os.path.exists('README') else 'README.md' with open(readme, 'r') as f: long_description = f.read() setup( name='spandex', version='0.1dev', description='Spatial Analysis and Data Extraction', long_description=long_description, author='Autodesk', author_email='[email protected]', url='https://github.com/udst/spandex', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python :: 2.7', ], packages=find_packages(exclude=['*.tests']), install_requires=[ 'GeoAlchemy2>=0.2.1', # Bug fix for schemas other than public. 'pandas>=0.15.0', # pandas.Index.difference. 'psycopg2>=2.5', # connection and cursor context managers. 'six>=1.4', # Mapping for urllib. 'SQLAlchemy==0.9.9' # GeoAlchemy2 support. ], extras_require={ 'gdal': ['GDAL>=1.7'], # Python 3 support. 'plot': ['pygraphviz'], 'sim': ['urbansim>=1.3'], # TableFrame support and sim.table caching. } )
bsd-3-clause
BigTone2009/sms-tools
lectures/09-Sound-description/plots-code/loudness.py
25
1337
import numpy as np import matplotlib.pyplot as plt import essentia.standard as ess M = 1024 N = 1024 H = 512 fs = 44100 energy = ess.Energy() rms = ess.RMS() loudness = ess.Loudness() x = ess.MonoLoader(filename = '../../../sounds/piano.wav', sampleRate = fs)() energies = [] rmss = [] loudnesses = [] for frame in ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True): energy_val = energy(frame) energies.append(energy_val) rms_val = rms(frame) rmss.append(rms_val) loudness_val = loudness(frame) loudnesses.append(loudness_val) energies = np.array(energies)/max(energies) rmss = np.array(rmss)/max(rmss) loudnesses = np.array(loudnesses)/max(loudnesses) plt.figure(1, figsize=(9.5, 7)) plt.subplot(2,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.title('x (piano.wav)') plt.subplot(2,1,2) frmTime = H*np.arange(energies.size)/float(fs) plt.plot(frmTime, rmss, 'g', lw=1.5, label='normalized RMS') plt.plot(frmTime, loudnesses, 'c', lw=1.5, label ='normalized loudness') plt.plot(frmTime, energies, 'r', lw=1.5, label='normalized energy') plt.axis([0, x.size/float(fs), 0, 1]) plt.ylabel('normalized value') plt.legend() plt.tight_layout() plt.savefig('loudness.png') plt.show()
agpl-3.0
lucha93/RecFIN-Data-Analysis-Project
predict.py
1
1522
import sqlite3 import matplotlib.pyplot as plt from collections import OrderedDict import numpy as np # Connect to database conn = sqlite3.connect('sitedb.sqlite') cur = conn.cursor() months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] avg_list = [] std_list = [] for i in range(1, 13, 1): stuff = cur.execute(''' SELECT * FROM Data WHERE month = ? ORDER BY date''', (str(i), )) # catch from each month month_catch = [] for line in stuff: month_catch.append(line[7]) high = max(month_catch) month_catch = month_catch.remove(high) avg = np.mean(month_catch) std_dev = np.std(month_catch) # list of avg ordered by month avg_list.append(avg) # list of std deviations ordered by month std_list.append(std_dev) # Graph of normal distribution of predictions for i in range(len(avg_list)): mu = avg_list[i] sigma = std_list[i] s = np.random.normal(mu, sigma, 1000) count, bins, ignored = plt.hist(s, 30, normed=True) plt.title('Normal Distribution of Predicted Catch in %s' % months[i]) plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (bins - mu)**2 / (2 * sigma**2) ), linewidth=2, color='r') axes = plt.gca() axes.set_xlim(0,) plt.show() #plt.figure(1) #plt.bar(range(len(avg_catch)), avg_catch.values(), align='center') #plt.xticks(range(len(avg_catch)), avg_catch.keys()) #plt.xlabel('Month') #plt.ylabel('Average Catch') #plt.title('Average Catch at Ventura County Shore Sites 2000-2010') #plt.show()
mit
lehnertu/TEUFEL
scripts/plot_ObservationTimeDomain.py
1
2983
#!/usr/bin/env python # coding=UTF-8 import sys, sdds, time import os.path import argparse import numpy as np import matplotlib.pyplot as plt # magnetic field constant in N/A² mu0 = 4*np.pi*1e-7 parser = argparse.ArgumentParser() parser.add_argument('files', default=[], nargs='+', help='file name(s) for the stored population(s)') # parser.add_argument('file', help='the name of the SDDS file with the observation field data') parser.add_argument('--list_params', dest='listpar', action='store_const', const=True, default=False, help='list all parameters available in the file') parser.add_argument('--list_columns', dest='listcol', action='store_const', const=True, default=False, help='list all columns available in the file') args = parser.parse_args() left, width = 0.15, 0.80 rect1 = [left, 0.55, width, 0.40] #left, bottom, width, height rect2 = [left, 0.08, width, 0.40] fig = plt.figure(1,figsize=(12,9)) ax1 = fig.add_axes(rect1) ax4 = fig.add_axes(rect2, sharex=ax1) for file in args.files: fileOK = os.path.isfile(file) if not fileOK: print "file not found" sys.exit() print "reading ",file data = sdds.SDDS(0) data.load(file) if args.listpar: data.listParameters() if args.listcol: data.listColumns() if ("t" in data.columnName): t = np.array(data.getColumnData("t"))*1e9 if ("t0" in data.parameterName and "dt" in data.parameterName and "NumberTimeSteps" in data.parameterName): t0 = data.getParameterValue("t0") dt = data.getParameterValue("dt") nots = data.getParameterValue("NumberTimeSteps") print r'%d steps starting at t0=%12.3g s step dt=%12.3g s' % (nots,t0,dt) t = (np.linspace(t0, t0+nots*dt, num=nots)+0.5*dt)*1e9 Ex = np.array(data.getColumnData("Ex")) Ey = np.array(data.getColumnData("Ey")) Ez = np.array(data.getColumnData("Ez")) Bx = np.array(data.getColumnData("Bx")) By = np.array(data.getColumnData("By")) Bz = np.array(data.getColumnData("Bz")) EVec = np.array([Ex, Ey, Ez]).transpose() BVec = np.array([Bx, By, Bz]).transpose() # Poynting vector in V/m * (N/(A m)) / (N/A²) = W/m² SVec = np.cross(EVec, BVec) / mu0 if 'dt' in globals(): print 'energy flow density = ', SVec.sum(axis=0)*dt, " Ws/m²" l1 = ax1.plot(t, Ex, "r-", label=r'$E_x$') l2 = ax1.plot(t, Ey, "b-", label=r'$E_y$') l3 = ax1.plot(t, Ez, "g-", label=r'$E_z$') ax1.set_ylabel(r'$E$ [V/m]') lines = l1 + l2 + l3 labels = [l.get_label() for l in lines] ax1.legend(lines,labels,loc='upper right') for label in ax1.get_xticklabels(): label.set_visible(False) ax1.grid(True) l4 = ax4.plot(t, Bx, "r-", label=r'$B_x$') l5 = ax4.plot(t, By, "b-", label=r'$B_y$') l6 = ax4.plot(t, Bz, "g-", label=r'$B_z$') ax4.set_ylabel(r'$B$ [T]') ax4.set_xlabel(r't [ns]') lines = l4 + l5 +l6 labels = [l.get_label() for l in lines] ax4.legend(lines,labels,loc='upper right') ax4.grid(True) plt.show()
gpl-3.0
EricCline/CEM_inc
env/lib/python2.7/site-packages/IPython/kernel/inprocess/tests/test_kernel.py
4
3250
#------------------------------------------------------------------------------- # Copyright (C) 2012 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #------------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import print_function # Standard library imports import sys import unittest # Local imports from IPython.kernel.inprocess.blocking import BlockingInProcessKernelClient from IPython.kernel.inprocess.manager import InProcessKernelManager from IPython.kernel.inprocess.ipkernel import InProcessKernel from IPython.testing.decorators import skipif_not_matplotlib from IPython.utils.io import capture_output from IPython.utils import py3compat if py3compat.PY3: from io import StringIO else: from StringIO import StringIO #----------------------------------------------------------------------------- # Test case #----------------------------------------------------------------------------- class InProcessKernelTestCase(unittest.TestCase): def setUp(self): self.km = InProcessKernelManager() self.km.start_kernel() self.kc = BlockingInProcessKernelClient(kernel=self.km.kernel) self.kc.start_channels() @skipif_not_matplotlib def test_pylab(self): """ Does pylab work in the in-process kernel? """ kc = self.kc kc.execute('%pylab') msg = get_stream_message(kc) self.assert_('matplotlib' in msg['content']['data']) def test_raw_input(self): """ Does the in-process kernel handle raw_input correctly? """ io = StringIO('foobar\n') sys_stdin = sys.stdin sys.stdin = io try: if py3compat.PY3: self.kc.execute('x = input()') else: self.kc.execute('x = raw_input()') finally: sys.stdin = sys_stdin self.assertEqual(self.km.kernel.shell.user_ns.get('x'), 'foobar') def test_stdout(self): """ Does the in-process kernel correctly capture IO? """ kernel = InProcessKernel() with capture_output() as io: kernel.shell.run_cell('print("foo")') self.assertEqual(io.stdout, 'foo\n') kc = BlockingInProcessKernelClient(kernel=kernel) kernel.frontends.append(kc) kc.shell_channel.execute('print("bar")') msg = get_stream_message(kc) self.assertEqual(msg['content']['data'], 'bar\n') #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def get_stream_message(kernel_client, timeout=5): """ Gets a single stream message synchronously from the sub channel. """ while True: msg = kernel_client.get_iopub_msg(timeout=timeout) if msg['header']['msg_type'] == 'stream': return msg if __name__ == '__main__': unittest.main()
mit
wubr2000/zipline
tests/modelling/test_engine.py
2
15301
""" Tests for SimpleFFCEngine """ from __future__ import division from unittest import TestCase from numpy import ( full, isnan, nan, ) from numpy.testing import assert_array_equal from pandas import ( DataFrame, date_range, Int64Index, rolling_mean, Timestamp, Series, ) from pandas.util.testing import assert_frame_equal from testfixtures import TempDirectory from zipline.assets import AssetFinder from zipline.data.equities import USEquityPricing from zipline.data.ffc.synthetic import ( ConstantLoader, MultiColumnLoader, NullAdjustmentReader, SyntheticDailyBarWriter, ) from zipline.data.ffc.frame import ( DataFrameFFCLoader, MULTIPLY, ) from zipline.data.ffc.loaders.us_equity_pricing import ( BcolzDailyBarReader, USEquityPricingLoader, ) from zipline.finance.trading import TradingEnvironment from zipline.modelling.engine import SimpleFFCEngine from zipline.modelling.factor import TestingFactor from zipline.modelling.factor.technical import ( MaxDrawdown, SimpleMovingAverage, ) from zipline.utils.lazyval import lazyval from zipline.utils.test_utils import ( make_rotating_asset_info, make_simple_asset_info, product_upper_triangle, check_arrays, ) class RollingSumDifference(TestingFactor): window_length = 3 inputs = [USEquityPricing.open, USEquityPricing.close] def from_windows(self, open, close): return (open - close).sum(axis=0) class ConstantInputTestCase(TestCase): def setUp(self): self.constants = { # Every day, assume every stock starts at 2, goes down to 1, # goes up to 4, and finishes at 3. USEquityPricing.low: 1, USEquityPricing.open: 2, USEquityPricing.close: 3, USEquityPricing.high: 4, } self.assets = [1, 2, 3] self.dates = date_range('2014-01-01', '2014-02-01', freq='D', tz='UTC') self.loader = ConstantLoader( constants=self.constants, dates=self.dates, assets=self.assets, ) self.asset_info = make_simple_asset_info( self.assets, start_date=self.dates[0], end_date=self.dates[-1], ) self.asset_finder = AssetFinder(self.asset_info) def test_bad_dates(self): loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) msg = "start_date must be before end_date .*" with self.assertRaisesRegexp(ValueError, msg): engine.factor_matrix({}, self.dates[2], self.dates[1]) with self.assertRaisesRegexp(ValueError, msg): engine.factor_matrix({}, self.dates[2], self.dates[2]) def test_single_factor(self): loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) result_shape = (num_dates, num_assets) = (5, len(self.assets)) dates = self.dates[10:10 + num_dates] factor = RollingSumDifference() result = engine.factor_matrix({'f': factor}, dates[0], dates[-1]) self.assertEqual(set(result.columns), {'f'}) assert_array_equal( result['f'].unstack().values, full(result_shape, -factor.window_length), ) def test_multiple_rolling_factors(self): loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) shape = num_dates, num_assets = (5, len(self.assets)) dates = self.dates[10:10 + num_dates] short_factor = RollingSumDifference(window_length=3) long_factor = RollingSumDifference(window_length=5) high_factor = RollingSumDifference( window_length=3, inputs=[USEquityPricing.open, USEquityPricing.high], ) results = engine.factor_matrix( {'short': short_factor, 'long': long_factor, 'high': high_factor}, dates[0], dates[-1], ) self.assertEqual(set(results.columns), {'short', 'high', 'long'}) # row-wise sum over an array whose values are all (1 - 2) assert_array_equal( results['short'].unstack().values, full(shape, -short_factor.window_length), ) assert_array_equal( results['long'].unstack().values, full(shape, -long_factor.window_length), ) # row-wise sum over an array whose values are all (1 - 3) assert_array_equal( results['high'].unstack().values, full(shape, -2 * high_factor.window_length), ) def test_numeric_factor(self): constants = self.constants loader = self.loader engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) num_dates = 5 dates = self.dates[10:10 + num_dates] high, low = USEquityPricing.high, USEquityPricing.low open, close = USEquityPricing.open, USEquityPricing.close high_minus_low = RollingSumDifference(inputs=[high, low]) open_minus_close = RollingSumDifference(inputs=[open, close]) avg = (high_minus_low + open_minus_close) / 2 results = engine.factor_matrix( { 'high_low': high_minus_low, 'open_close': open_minus_close, 'avg': avg, }, dates[0], dates[-1], ) high_low_result = results['high_low'].unstack() expected_high_low = 3.0 * (constants[high] - constants[low]) assert_frame_equal( high_low_result, DataFrame( expected_high_low, index=dates, columns=self.assets, ) ) open_close_result = results['open_close'].unstack() expected_open_close = 3.0 * (constants[open] - constants[close]) assert_frame_equal( open_close_result, DataFrame( expected_open_close, index=dates, columns=self.assets, ) ) avg_result = results['avg'].unstack() expected_avg = (expected_high_low + expected_open_close) / 2.0 assert_frame_equal( avg_result, DataFrame( expected_avg, index=dates, columns=self.assets, ) ) class FrameInputTestCase(TestCase): def setUp(self): env = TradingEnvironment.instance() day = env.trading_day self.assets = Int64Index([1, 2, 3]) self.dates = date_range( '2015-01-01', '2015-01-31', freq=day, tz='UTC', ) asset_info = make_simple_asset_info( self.assets, start_date=self.dates[0], end_date=self.dates[-1], ) self.asset_finder = AssetFinder(asset_info) @lazyval def base_mask(self): return self.make_frame(True) def make_frame(self, data): return DataFrame(data, columns=self.assets, index=self.dates) def test_compute_with_adjustments(self): dates, assets = self.dates, self.assets low, high = USEquityPricing.low, USEquityPricing.high apply_idxs = [3, 10, 16] def apply_date(idx, offset=0): return dates[apply_idxs[idx] + offset] adjustments = DataFrame.from_records( [ dict( kind=MULTIPLY, sid=assets[1], value=2.0, start_date=None, end_date=apply_date(0, offset=-1), apply_date=apply_date(0), ), dict( kind=MULTIPLY, sid=assets[1], value=3.0, start_date=None, end_date=apply_date(1, offset=-1), apply_date=apply_date(1), ), dict( kind=MULTIPLY, sid=assets[1], value=5.0, start_date=None, end_date=apply_date(2, offset=-1), apply_date=apply_date(2), ), ] ) low_base = DataFrame(self.make_frame(30.0)) low_loader = DataFrameFFCLoader(low, low_base.copy(), adjustments=None) # Pre-apply inverse of adjustments to the baseline. high_base = DataFrame(self.make_frame(30.0)) high_base.iloc[:apply_idxs[0], 1] /= 2.0 high_base.iloc[:apply_idxs[1], 1] /= 3.0 high_base.iloc[:apply_idxs[2], 1] /= 5.0 high_loader = DataFrameFFCLoader(high, high_base, adjustments) loader = MultiColumnLoader({low: low_loader, high: high_loader}) engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) for window_length in range(1, 4): low_mavg = SimpleMovingAverage( inputs=[USEquityPricing.low], window_length=window_length, ) high_mavg = SimpleMovingAverage( inputs=[USEquityPricing.high], window_length=window_length, ) bounds = product_upper_triangle(range(window_length, len(dates))) for start, stop in bounds: results = engine.factor_matrix( {'low': low_mavg, 'high': high_mavg}, dates[start], dates[stop], ) self.assertEqual(set(results.columns), {'low', 'high'}) iloc_bounds = slice(start, stop + 1) # +1 to include end date low_results = results.unstack()['low'] assert_frame_equal(low_results, low_base.iloc[iloc_bounds]) high_results = results.unstack()['high'] assert_frame_equal(high_results, high_base.iloc[iloc_bounds]) class SyntheticBcolzTestCase(TestCase): @classmethod def setUpClass(cls): cls.first_asset_start = Timestamp('2015-04-01', tz='UTC') cls.env = TradingEnvironment.instance() cls.trading_day = cls.env.trading_day cls.asset_info = make_rotating_asset_info( num_assets=6, first_start=cls.first_asset_start, frequency=cls.trading_day, periods_between_starts=4, asset_lifetime=8, ) cls.all_assets = cls.asset_info.index cls.all_dates = date_range( start=cls.first_asset_start, end=cls.asset_info['end_date'].max(), freq=cls.trading_day, ) cls.finder = AssetFinder(cls.asset_info) cls.temp_dir = TempDirectory() cls.temp_dir.create() cls.writer = SyntheticDailyBarWriter( asset_info=cls.asset_info[['start_date', 'end_date']], calendar=cls.all_dates, ) table = cls.writer.write( cls.temp_dir.getpath('testdata.bcolz'), cls.all_dates, cls.all_assets, ) cls.ffc_loader = USEquityPricingLoader( BcolzDailyBarReader(table), NullAdjustmentReader(), ) @classmethod def tearDownClass(cls): cls.temp_dir.cleanup() def test_SMA(self): engine = SimpleFFCEngine( self.ffc_loader, self.env.trading_days, self.finder, ) dates, assets = self.all_dates, self.all_assets window_length = 5 SMA = SimpleMovingAverage( inputs=(USEquityPricing.close,), window_length=window_length, ) results = engine.factor_matrix( {'sma': SMA}, dates[window_length], dates[-1], ) raw_closes = self.writer.expected_values_2d(dates, assets, 'close') expected_sma_result = rolling_mean( raw_closes, window_length, min_periods=1, ) expected_sma_result[isnan(raw_closes)] = nan expected_sma_result = expected_sma_result[window_length:] sma_result = results['sma'].unstack() assert_frame_equal( sma_result, DataFrame( expected_sma_result, index=dates[window_length:], columns=assets, ), ) def test_drawdown(self): # The monotonically-increasing data produced by SyntheticDailyBarWriter # exercises two pathological cases for MaxDrawdown. The actual # computed results are pretty much useless (everything is either NaN) # or zero, but verifying we correctly handle those corner cases is # valuable. engine = SimpleFFCEngine( self.ffc_loader, self.env.trading_days, self.finder, ) dates, assets = self.all_dates, self.all_assets window_length = 5 drawdown = MaxDrawdown( inputs=(USEquityPricing.close,), window_length=window_length, ) results = engine.factor_matrix( {'drawdown': drawdown}, dates[window_length], dates[-1], ) dd_result = results['drawdown'] # We expect NaNs when the asset was undefined, otherwise 0 everywhere, # since the input is always increasing. expected = self.writer.expected_values_2d(dates, assets, 'close') expected[~isnan(expected)] = 0 expected = expected[window_length:] assert_frame_equal( dd_result.unstack(), DataFrame( expected, index=dates[window_length:], columns=assets, ), ) class MultiColumnLoaderTestCase(TestCase): def setUp(self): self.assets = [1, 2, 3] self.dates = date_range('2014-01-01', '2014-02-01', freq='D', tz='UTC') asset_info = make_simple_asset_info( self.assets, start_date=self.dates[0], end_date=self.dates[-1], ) self.asset_finder = AssetFinder(asset_info) def test_engine_with_multicolumn_loader(self): open_, close = USEquityPricing.open, USEquityPricing.close loader = MultiColumnLoader({ open_: ConstantLoader(dates=self.dates, assets=self.assets, constants={open_: 1}), close: ConstantLoader(dates=self.dates, assets=self.assets, constants={close: 2}) }) engine = SimpleFFCEngine(loader, self.dates, self.asset_finder) factor = RollingSumDifference() result = engine.factor_matrix({'f': factor}, self.dates[2], self.dates[-1]) self.assertIsNotNone(result) self.assertEqual({'f'}, set(result.columns)) # (close - open) * window = (1 - 2) * 3 = -3 # skipped 2 from the start, so that the window is full check_arrays(result['f'], Series([-3] * len(self.assets) * (len(self.dates) - 2)))
apache-2.0
CforED/Machine-Learning
examples/linear_model/plot_sgd_comparison.py
112
1819
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
ivannz/study_notes
year_15_16/thesis/notebooks/non_gaussian_profile.py
1
6063
"""None""" import time import os import numpy as np from sklearn.grid_search import ParameterGrid from sklearn.base import clone from sklearn.gaussian_process import GaussianProcess from scipy.stats import norm from joblib import Parallel, delayed from utils.state import _save from utils.functions_1d import f6, heaviside, pressure2 from utils.conformal import RRCM, CRR from utils.KRR import KRR_AB np.seterr(all="ignore") BASE_PATH = os.path.join(".", "prof_nongauss") if not os.path.exists(BASE_PATH): os.mkdir(BASE_PATH) n_jobs, verbose = -1, 0 parallel_ = Parallel(n_jobs=n_jobs, verbose=verbose) ## The levels and the random state seeds_ = [0x4A04E61B, 0x7A5F2F22, 0x52B4A070, 0x470BB766,] random_state = np.random.RandomState(seeds_[0]) levels = np.asanyarray([0.01, 0.05, 0.10, 0.25])[::-1] ## helpers def _helper(y, A, B, proc=RRCM, levels=levels, parallel=None, n_jobs=1, verbose=0): if not isinstance(parallel, Parallel): parallel = Parallel(n_jobs=n_jobs, verbose=verbose) regions = parallel(delayed(proc)(A[k], B[k], levels=levels) for k in xrange(y.shape[0])) hits_ = np.asarray( [[np.any(((int_[:, 0] <= target) & (target <= int_[:, 1]))).astype(float) for int_ in region] for target, region in zip(y, regions)]) width_ = np.asarray( [[np.sum(int_[:, 1] - int_[:, 0]) for int_ in region] for region in regions]) bounds_ = np.asarray( [[[int_[:, 0].min(), int_[:, 1].max()] for int_ in region] for region in regions]) return hits_, width_, bounds_ ## Define the grid true_nugget = [1e-6, 1e-1,] test_functions = [f6, heaviside, pressure2] sizes = [50, 200,] grid_ = ParameterGrid(dict(nugget=true_nugget, theta0=[1e+2, "auto"])) ## Initialize kernel = 'rbf' gp = GaussianProcess(beta0=0, normalize=False, corr='squared_exponential') # kernel = 'laplacian' # gp = GaussianProcess(beta0=0, normalize=False, corr='absolute_exponential') # Generate input XX_test = np.linspace(0, 1, num=501).reshape((-1, 1)) test_ = np.s_[:XX_test.shape[0]] experiment, batch_, dumps_ = list(), 1, list() for func_ in test_functions: for size_ in sizes: XX_train = np.linspace(0.05, 0.95, num=size_ + 1).reshape((-1, 1)) XX = np.concatenate([XX_test, XX_train], axis=0) for noise_ in true_nugget: yy = func_(XX) if yy.ndim == 1: yy = yy.reshape((-1, 1)) if noise_ > 0: yy += random_state.normal(size=yy.shape) * noise_ ## Split the pooled sample yy_train, yy_test = np.delete(yy, test_, axis=0), yy[test_].copy() for i_, par_ in enumerate(grid_): nugget_, theta0_ = par_['nugget'], par_['theta0'] key_ = func_.__name__, noise_, theta0_, nugget_, size_ print i_, key_ tick_ = time.time() ## Fit a GPR gp_ = clone(gp) gp_.nugget = nugget_ if isinstance(theta0_, float): gp_.theta0 = theta0_ elif theta0_ == "auto": gp_.thetaL, gp_.thetaU, gp_.theta0 = 1.0, 1e4, float(size_) gp_.fit(XX_train, yy_train) ## Compute the A, B matrices A, B, y_hat_, MM, loo_, A_loo, B_loo = \ KRR_AB(XX_train, yy_train, XX_test, forecast=True, nugget=gp_.nugget, metric=kernel, gamma=gp_.theta_[0]) del loo_ ## Construct the CKRR confidence interval: RRCM rrcm_hits_, rrcm_width_, rrcm_bounds_ = \ _helper(yy_test, A[0], B, proc=RRCM, levels=levels, parallel=parallel_) ## Construct the CKRR confidence interval: CCR-sided crr_hits_, crr_width_, crr_bounds_ = \ _helper(yy_test, A[0], B, proc=CRR, levels=levels, parallel=parallel_) ## Construct the CKRR confidence interval: RRCM loo_rrcm_hits_, loo_rrcm_width_, loo_rrcm_bounds_ = \ _helper(yy_test, A_loo[0], B_loo, proc=RRCM, levels=levels, parallel=parallel_) ## Construct the CKRR confidence interval: CCR-sided loo_crr_hits_, loo_crr_width_, loo_crr_bounds_ = \ _helper(yy_test, A_loo[0], B_loo, proc=CRR, levels=levels, parallel=parallel_) ## Construct the GPR forecast interval z_a = norm.ppf(1 - .5 * levels) half_width_ = np.sqrt(MM * gp_.sigma2) * z_a[np.newaxis] bf_bounds_ = np.stack([y_hat_ - half_width_, y_hat_ + half_width_], axis=-1) bf_width_ = bf_bounds_[..., 1] - bf_bounds_[..., 0] bf_hits_ = ((bf_bounds_[..., 0] <= yy_test) & (yy_test <= bf_bounds_[..., 1])).astype(float) ## Construct the GPR prediction interval half_width_ = np.sqrt((MM - gp_.nugget) * gp_.sigma2) * z_a[np.newaxis] bp_bounds_ = np.stack([y_hat_ - half_width_, y_hat_ + half_width_], axis=-1) bp_width_ = bp_bounds_[..., 1] - bp_bounds_[..., 0] bp_hits_ = ((bp_bounds_[..., 0] <= yy_test) & (yy_test <= bp_bounds_[..., 1])).astype(float) replication = (yy_test[:, 0], y_hat_[:, 0], bp_bounds_, bf_bounds_, rrcm_bounds_, crr_bounds_, loo_rrcm_bounds_, loo_crr_bounds_,) tock_ = time.time() print "%0.3fsec"%(tock_-tick_,) result_ = tuple(rep_ for rep_ in replication) experiment.append((key_,) + result_) basename_ = os.path.join(BASE_PATH, "prof_nongauss_%04d"%(batch_,)) dumps_.append(_save(experiment, basename_, gz=9))
mit
hughdbrown/QSTK-nohist
Examples/Basic/tutorial2.py
3
2170
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on September, 12, 2011 @author: Tucker Balch @contact: [email protected] @summary: Example tutorial code. ''' # # imports # import numpy as np import matplotlib.pyplot as plt from pylab import * import datetime as dt # # read in and slice up the data # data = np.loadtxt('example-data.csv',delimiter=',',skiprows=1) pricedat = data[:,3:] datesdat = np.int_(data[:,0:3]) # date stuff should be integer pricesnames = ['$SPX','XOM','GOOG','GLD'] print 'first 5 rows of price data:' print pricedat[:5,:] print print 'first 5 rows of dates:' print datesdat[:5,:] # # Convert columns of date info into date objects # dates = [] for i in range(0,datesdat.shape[0]): dates.append(dt.date(datesdat[i,0],datesdat[i,1],datesdat[i,2])) # # Plot the closing prices # plt.clf() for i in range(0,size(pricedat[0,:])): plt.plot(dates,pricedat[:,i]) plt.legend(pricesnames) plt.ylabel('Adjusted Close') plt.xlabel('Date') savefig('adjustedclose.pdf', format='pdf') # # Plot the normalized data # plt.clf() normdat = pricedat/pricedat[0,:] for i in range(0,size(normdat[0,:])): plt.plot(dates,normdat[:,i]) plt.legend(pricesnames) plt.ylabel('Normalized Adjusted Close') plt.xlabel('Date') savefig("normalizedclose.pdf", format='pdf') # # Daily returns # plt.clf() dailyrets = concatenate(([(zeros(pricedat.shape[1]))], ((pricedat[1:,:]/pricedat[0:-1,:]) - 1)),axis=0) plt.plot(dates[0:49],dailyrets[0:49,0]) # just plot first 50 days plt.plot(dates[0:49],dailyrets[0:49,1]) plt.axhline(y=0,color='r') plt.legend(['$SPX','XOM']) plt.ylabel('Daily Returns') plt.xlabel('Date') savefig("dailyrets.pdf", format='pdf') # # scatter plot $SPX v XOM # plt.clf() plt.scatter(dailyrets[:,0],dailyrets[:,1],c='blue') plt.ylabel('XOM') plt.xlabel('$SPX') savefig("scatterSPXvXOM.pdf", format='pdf') # # scatter plot $SPX v GLD # plt.clf() plt.scatter(dailyrets[:,0],dailyrets[:,3],c='red') plt.ylabel('GLD') plt.xlabel('$SPX') savefig("scatterSPXvGLD.pdf", format='pdf')
bsd-3-clause
Jacobsolawetz/trading-with-python
lib/functions.py
76
11627
# -*- coding: utf-8 -*- """ twp support functions @author: Jev Kuznetsov Licence: GPL v2 """ from scipy import polyfit, polyval import datetime as dt #from datetime import datetime, date from pandas import DataFrame, Index, Series import csv import matplotlib.pyplot as plt import numpy as np import pandas as pd def nans(shape, dtype=float): ''' create a nan numpy array ''' a = np.empty(shape, dtype) a.fill(np.nan) return a def plotCorrelationMatrix(price, thresh = None): ''' plot a correlation matrix as a heatmap image inputs: price: prices DataFrame thresh: correlation threshold to use for checking, default None ''' symbols = price.columns.tolist() R = price.pct_change() correlationMatrix = R.corr() if thresh is not None: correlationMatrix = correlationMatrix > thresh plt.imshow(abs(correlationMatrix.values),interpolation='none') plt.xticks(range(len(symbols)),symbols) plt.yticks(range(len(symbols)),symbols) plt.colorbar() plt.title('Correlation matrix') return correlationMatrix def pca(A): """ performs principal components analysis (PCA) on the n-by-p DataFrame A Rows of A correspond to observations, columns to variables. Returns : coeff : principal components, column-wise transform: A in principal component space latent : eigenvalues """ # computing eigenvalues and eigenvectors of covariance matrix M = (A - A.mean()).T # subtract the mean (along columns) [latent,coeff] = np.linalg.eig(np.cov(M)) # attention:not always sorted idx = np.argsort(latent) # sort eigenvalues idx = idx[::-1] # in ascending order coeff = coeff[:,idx] latent = latent[idx] score = np.dot(coeff.T,A.T) # projection of the data in the new space transform = DataFrame(index = A.index, data = score.T) return coeff,transform,latent def pos2pnl(price,position , ibTransactionCost=False ): """ calculate pnl based on price and position Inputs: --------- price: series or dataframe of price position: number of shares at each time. Column names must be same as in price ibTransactionCost: use bundled Interactive Brokers transaction cost of 0.005$/share Returns a portfolio DataFrame """ delta=position.diff() port = DataFrame(index=price.index) if isinstance(price,Series): # no need to sum along 1 for series port['cash'] = (-delta*price).cumsum() port['stock'] = (position*price) else: # dealing with DataFrame here port['cash'] = (-delta*price).sum(axis=1).cumsum() port['stock'] = (position*price).sum(axis=1) if ibTransactionCost: tc = -0.005*position.diff().abs() # basic transaction cost tc[(tc>-1) & (tc<0)] = -1 # everything under 1$ will be ceil'd to 1$ if isinstance(price,DataFrame): tc = tc.sum(axis=1) port['tc'] = tc.cumsum() else: port['tc'] = 0. port['total'] = port['stock']+port['cash']+port['tc'] return port def tradeBracket(price,entryBar,maxTradeLength,bracket): ''' trade a symmetrical bracket on price series, return price delta and exit bar # Input ------ price : series of price values entryBar: entry bar number maxTradeLength : max trade duration in bars bracket : allowed price deviation ''' lastBar = min(entryBar+maxTradeLength,len(price)-1) p = price[entryBar:lastBar]-price[entryBar] idxOutOfBound = np.nonzero(abs(p)>bracket) # find indices where price comes out of bracket if idxOutOfBound[0].any(): # found match priceDelta = p[idxOutOfBound[0][0]] exitBar = idxOutOfBound[0][0]+entryBar else: # all in bracket, exiting based on time priceDelta = p[-1] exitBar = lastBar return priceDelta, exitBar def estimateBeta(priceY,priceX,algo = 'standard'): ''' estimate stock Y vs stock X beta using iterative linear regression. Outliers outside 3 sigma boundary are filtered out Parameters -------- priceX : price series of x (usually market) priceY : price series of y (estimate beta of this price) Returns -------- beta : stockY beta relative to stock X ''' X = DataFrame({'x':priceX,'y':priceY}) if algo=='returns': ret = (X/X.shift(1)-1).dropna().values #print len(ret) x = ret[:,0] y = ret[:,1] # filter high values low = np.percentile(x,20) high = np.percentile(x,80) iValid = (x>low) & (x<high) x = x[iValid] y = y[iValid] iteration = 1 nrOutliers = 1 while iteration < 10 and nrOutliers > 0 : (a,b) = polyfit(x,y,1) yf = polyval([a,b],x) #plot(x,y,'x',x,yf,'r-') err = yf-y idxOutlier = abs(err) > 3*np.std(err) nrOutliers =sum(idxOutlier) beta = a #print 'Iteration: %i beta: %.2f outliers: %i' % (iteration,beta, nrOutliers) x = x[~idxOutlier] y = y[~idxOutlier] iteration += 1 elif algo=='log': x = np.log(X['x']) y = np.log(X['y']) (a,b) = polyfit(x,y,1) beta = a elif algo=='standard': ret =np.log(X).diff().dropna() beta = ret['x'].cov(ret['y'])/ret['x'].var() else: raise TypeError("unknown algorithm type, use 'standard', 'log' or 'returns'") return beta def estimateVolatility(ohlc, N=10, algo='YangZhang'): """ Volatility estimation Possible algorithms: ['YangZhang', 'CC'] """ cc = np.log(ohlc.close/ohlc.close.shift(1)) if algo == 'YangZhang': # Yang-zhang volatility ho = np.log(ohlc.high/ohlc.open) lo = np.log(ohlc.low/ohlc.open) co = np.log(ohlc.close/ohlc.open) oc = np.log(ohlc.open/ohlc.close.shift(1)) oc_sq = oc**2 cc_sq = cc**2 rs = ho*(ho-co)+lo*(lo-co) close_vol = pd.rolling_sum(cc_sq, window=N) * (1.0 / (N - 1.0)) open_vol = pd.rolling_sum(oc_sq, window=N) * (1.0 / (N - 1.0)) window_rs = pd.rolling_sum(rs, window=N) * (1.0 / (N - 1.0)) result = (open_vol + 0.164333 * close_vol + 0.835667 * window_rs).apply(np.sqrt) * np.sqrt(252) result[:N-1] = np.nan elif algo == 'CC': # standard close-close estimator result = np.sqrt(252)*np.sqrt(((pd.rolling_sum(cc**2,N))/N)) else: raise ValueError('Unknown algo type.') return result*100 def rank(current,past): ''' calculate a relative rank 0..1 for a value against series ''' return (current>past).sum()/float(past.count()) def returns(df): return (df/df.shift(1)-1) def logReturns(df): t = np.log(df) return t-t.shift(1) def dateTimeToDate(idx): ''' convert datetime index to date ''' dates = [] for dtm in idx: dates.append(dtm.date()) return dates def readBiggerScreener(fName): ''' import data from Bigger Capital screener ''' with open(fName,'rb') as f: reader = csv.reader(f) rows = [row for row in reader] header = rows[0] data = [[] for i in range(len(header))] for row in rows[1:]: for i,elm in enumerate(row): try: data[i].append(float(elm)) except Exception: data[i].append(str(elm)) return DataFrame(dict(zip(header,data)),index=Index(range(len(data[0]))))[header] def sharpe(pnl): return np.sqrt(250)*pnl.mean()/pnl.std() def drawdown(s): """ calculate max drawdown and duration Input: s, price or cumulative pnl curve $ Returns: drawdown : vector of drawdwon values duration : vector of drawdown duration """ # convert to array if got pandas series, 10x speedup if isinstance(s,pd.Series): idx = s.index s = s.values returnSeries = True else: returnSeries = False if s.min() < 0: # offset if signal minimum is less than zero s = s-s.min() highwatermark = np.zeros(len(s)) drawdown = np.zeros(len(s)) drawdowndur = np.zeros(len(s)) for t in range(1,len(s)): highwatermark[t] = max(highwatermark[t-1], s[t]) drawdown[t] = (highwatermark[t]-s[t]) drawdowndur[t]= (0 if drawdown[t] == 0 else drawdowndur[t-1]+1) if returnSeries: return pd.Series(index=idx,data=drawdown), pd.Series(index=idx,data=drawdowndur) else: return drawdown , drawdowndur def profitRatio(pnl): ''' calculate profit ratio as sum(pnl)/drawdown Input: pnl - daily pnl, Series or DataFrame ''' def processVector(pnl): # process a single column s = pnl.fillna(0) dd = drawdown(s)[0] p = s.sum()/dd.max() return p if isinstance(pnl,Series): return processVector(pnl) elif isinstance(pnl,DataFrame): p = Series(index = pnl.columns) for col in pnl.columns: p[col] = processVector(pnl[col]) return p else: raise TypeError("Input must be DataFrame or Series, not "+str(type(pnl))) def candlestick(df,width=0.5, colorup='b', colordown='r'): ''' plot a candlestick chart of a dataframe ''' O = df['open'].values H = df['high'].values L = df['low'].values C = df['close'].values fig = plt.gcf() ax = plt.axes() #ax.hold(True) X = df.index #plot high and low ax.bar(X,height=H-L,bottom=L,width=0.1,color='k') idxUp = C>O ax.bar(X[idxUp],height=(C-O)[idxUp],bottom=O[idxUp],width=width,color=colorup) idxDown = C<=O ax.bar(X[idxDown],height=(O-C)[idxDown],bottom=C[idxDown],width=width,color=colordown) try: fig.autofmt_xdate() except Exception: # pragma: no cover pass ax.grid(True) #ax.bar(x,height=H-L,bottom=L,width=0.01,color='k') def datetime2matlab(t): ''' convert datetime timestamp to matlab numeric timestamp ''' mdn = t + dt.timedelta(days = 366) frac = (t-dt.datetime(t.year,t.month,t.day,0,0,0)).seconds / (24.0 * 60.0 * 60.0) return mdn.toordinal() + frac def getDataSources(fName = None): ''' return data sources directories for this machine. directories are defined in datasources.ini or provided filepath''' import socket from ConfigParser import ConfigParser pcName = socket.gethostname() p = ConfigParser() p.optionxform = str if fName is None: fName = 'datasources.ini' p.read(fName) if pcName not in p.sections(): raise NameError('Host name section %s not found in file %s' %(pcName,fName)) dataSources = {} for option in p.options(pcName): dataSources[option] = p.get(pcName,option) return dataSources if __name__ == '__main__': df = DataFrame({'open':[1,2,3],'high':[5,6,7],'low':[-2,-1,0],'close':[2,1,4]}) plt.clf() candlestick(df)
bsd-3-clause
jayhetee/pandashells
pandashells/lib/module_checker_lib.py
7
2195
#! /usr/bin/env python import sys import importlib from pandashells.lib import config_lib # define the default error message to show when a module can't be found HEADER = "\n\nThis tool requires packages that have not been installed.\n" HEADER += "Below is a list of missing packages along with commands for\n" HEADER += "installing them.\n\n" # define a dict to map a module name to its install command CMD_DICT = { 'dateutil': 'pip install dateutil', 'gatspy': 'pip install gatspy', 'matplotlib': 'conda install matplotlib', 'mpld3': 'pip install mpld3', 'numpy': 'conda install numpy', 'pandas': 'conda install pandas', 'pylab': 'conda install matplotlib', 'requests': 'pip install requests', 'scipy': 'conda install scipy', 'seaborn': 'conda install seaborn', 'statsmodels': 'conda install statsmodels', } def check_for_modules(module_list): # make sure module_list only contains recognized modules unnamed_modules = set(module_list) - set(CMD_DICT.keys()) unnamed_modules = unnamed_modules - {'datetime', 're'} if unnamed_modules: msg = '\n\nThese modules unrecognized by check_for_modules(): ' msg += '{}\n'.format(unnamed_modules) raise ValueError(msg) # try using configured backend ignoring errors so they'll be caught later if set(module_list).intersection({'matplotlib', 'pylab', 'seaborn'}): CONFIG = config_lib.get_config() try: import matplotlib if matplotlib.get_backend() != CONFIG['plot_backend']: matplotlib.use(CONFIG['plot_backend']) except ImportError: pass # initialize an error message msg = '' # try importing all the required mojkdules for module in sorted(module_list): try: importlib.import_module(module) except ImportError: # add to error message for each bad module msg = msg if msg else HEADER msg += '-' * 60 + '\n' msg += "Missing module '{}'. To install use: \n".format(module) msg += " {}\n\n".format(CMD_DICT[module]) sys.stdout.write(msg + '\n') raise
bsd-2-clause
JeanKossaifi/scikit-learn
examples/mixture/plot_gmm_sin.py
248
2747
""" ================================= Gaussian Mixture Model Sine Curve ================================= This example highlights the advantages of the Dirichlet Process: complexity control and dealing with sparse data. The dataset is formed by 100 points loosely spaced following a noisy sine curve. The fit by the GMM class, using the expectation-maximization algorithm to fit a mixture of 10 Gaussian components, finds too-small components and very little structure. The fits by the Dirichlet process, however, show that the model can either learn a global structure for the data (small alpha) or easily interpolate to finding relevant local structure (large alpha), never falling into the problems shown by the GMM class. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture from sklearn.externals.six.moves import xrange # Number of samples per component n_samples = 100 # Generate random sample following a sine curve np.random.seed(0) X = np.zeros((n_samples, 2)) step = 4 * np.pi / n_samples for i in xrange(X.shape[0]): x = i * step - 6 X[i, 0] = x + np.random.normal(0, 0.1) X[i, 1] = 3 * (np.sin(x) + np.random.normal(0, .2)) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([ (mixture.GMM(n_components=10, covariance_type='full', n_iter=100), "Expectation-maximization"), (mixture.DPGMM(n_components=10, covariance_type='full', alpha=0.01, n_iter=100), "Dirichlet Process,alpha=0.01"), (mixture.DPGMM(n_components=10, covariance_type='diag', alpha=100., n_iter=100), "Dirichlet Process,alpha=100.")]): clf.fit(X) splot = plt.subplot(3, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-6, 4 * np.pi - 6) plt.ylim(-5, 5) plt.title(title) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
igormunkin/CMC-CTMM
task04_particles/gui.py
1
9040
import sys import re import time from controller import ParticleController, ParticlePlot from PyQt5.QtCore import Qt, QTimer from PyQt5.QtGui import QIcon, QFont, QColor from PyQt5.QtWidgets import ( QApplication, QTextEdit, QLabel, QPushButton, QMessageBox, QDesktopWidget, QMainWindow, QSlider, QToolTip, QSizePolicy, QComboBox ) class ParticleGUI(QMainWindow, ParticleController): handlers = { Qt.Key_Escape: lambda self: self.close() } qlwidth = 20 qlheight = 24 qtewidth = 55 qteheight = 24 def __init__(self): super().__init__(), QToolTip.setFont(QFont('Arial', 10)) self.__init_main_window() self.__init_labels(left = 30, top = 400) self.__init_textboxes(left = 50, top = 400) self.__init_slider_particle_mass() self.__init_combobox_verlet() self.__init_button_add_particle() self.__init_button_stat() self.__init_plot() self.show() def __init_main_window(self): """ Init function for application's main window """ self.resize(700, 400) self.setWindowTitle('Particles') frame = self.frameGeometry() frame.moveCenter(QDesktopWidget().availableGeometry().center()) self.move(frame.topLeft()) def __init_labels(self, left, top): s_lbl = QLabel("Velocity", self) s_lbl.setGeometry(left + __class__.qlwidth, top + __class__.qlheight, __class__.qtewidth, __class__.qlheight) u_lbl = QLabel(" u: ", self) u_lbl.setGeometry(left, top + 2 * __class__.qlheight, __class__.qlwidth, __class__.qlheight) v_lbl = QLabel(" v: ", self) v_lbl.setGeometry(left, top + 3.25 * __class__.qlheight, __class__.qlwidth, __class__.qlheight) p_lbl = QLabel("Position", self) p_lbl.setGeometry(left + 2 * __class__.qlwidth + __class__.qtewidth, top + __class__.qlheight, __class__.qtewidth, __class__.qlheight) x_lbl = QLabel(" x: ", self) x_lbl.setGeometry(left + __class__.qlwidth + __class__.qtewidth, top + 2 * __class__.qlheight, __class__.qlwidth, __class__.qlheight) y_lbl = QLabel(" y: ", self) y_lbl.setGeometry(left + __class__.qlwidth + __class__.qtewidth, top + 3.25 * __class__.qlheight, __class__.qlwidth, __class__.qlheight) e_lbl = QLabel("Optional", self) e_lbl.setGeometry(left + 3 * __class__.qlwidth + 2 * __class__.qtewidth, top + __class__.qlheight, __class__.qtewidth, __class__.qlheight) l_lbl = QLabel(" lifetime: ", self) l_lbl.setGeometry(left + 3 * __class__.qlwidth + 2 * __class__.qtewidth, top + 2 * __class__.qlheight, __class__.qtewidth, __class__.qlheight) m_lbl = QLabel(" mass: ", self) m_lbl.setGeometry(left + 3 * __class__.qlwidth + 2 * __class__.qtewidth, top + 3.25 * __class__.qlheight, __class__.qtewidth, __class__.qlheight) o_lbl = QLabel(" Methods: ", self) o_lbl.setGeometry(left + 5 * __class__.qlwidth + 4 * __class__.qtewidth, top + 3.25 * __class__.qlheight, 4 * __class__.qlwidth, __class__.qlheight) def __init_textboxes(self, left, top): self.u_tbx = QTextEdit(str(self.velocity["u"]), self) self.u_tbx.setGeometry(left, top + 2 * __class__.qlheight, __class__.qtewidth, __class__.qteheight) self.u_tbx.setTabChangesFocus(True) self.u_tbx.textChanged.connect(self.__u_tbx_changed) self.v_tbx = QTextEdit(str(self.velocity["v"]), self) self.v_tbx.setGeometry(left, top + 3.25 * __class__.qlheight, __class__.qtewidth, __class__.qteheight) self.v_tbx.setTabChangesFocus(True) self.v_tbx.textChanged.connect(self.__v_tbx_changed) self.x_tbx = QTextEdit(str(self.position["x"]), self) self.x_tbx.setGeometry(left + __class__.qlwidth + __class__.qtewidth, top + 2 * __class__.qteheight, __class__.qtewidth, __class__.qteheight) self.x_tbx.setTabChangesFocus(True) self.x_tbx.textChanged.connect(self.__x_tbx_changed) self.y_tbx = QTextEdit(str(self.position["y"]), self) self.y_tbx.setGeometry(left + __class__.qlwidth + __class__.qtewidth, top + 3.25 * __class__.qteheight, __class__.qtewidth, __class__.qteheight) self.y_tbx.setTabChangesFocus(True) self.y_tbx.textChanged.connect(self.__y_tbx_changed) self.l_tbx = QTextEdit(str(self.lifetime), self) self.l_tbx.setGeometry(left + 5 * __class__.qlwidth + 2 * __class__.qtewidth, top + 2 * __class__.qteheight, __class__.qtewidth, __class__.qteheight) self.l_tbx.setTabChangesFocus(True) self.l_tbx.textChanged.connect(self.__l_tbx_changed) def __init_slider_particle_mass(self): """Init function for slider that changes mass of the particle that will be created next""" sld = QSlider(Qt.Horizontal, self) sld.setFocusPolicy(Qt.NoFocus) sld.setGeometry(245, 475, 100, 30) sld.setMinimum(1) sld.setMaximum(1000) sld.setValue(self.mass / 5000) sld.valueChanged[int].connect(self.__sld_changed) def __init_combobox_verlet(self): """ Init combobox for selecting different Verlet implementation """ self.cmb = QComboBox(self); self.cmb.setObjectName("cmb") self.cmb.setGeometry(420, 475, 250, 30) self.cmb.addItems(self.methods) self.cmb.currentIndexChanged.connect(self.__cmb_changed) def __init_button_add_particle(self): """ Init function for button that adds one particle to the plot """ self.btn = QPushButton('Add particle', self) self.btn.setToolTip('Press this button to <b>Add a new particle</b>') self.btn.setGeometry(360, 430, 150, 40) self.btn.clicked.connect(self._ParticleController__add_particle) self.btn.setDisabled(False) def __init_plot(self): """ Init function for matplotlib plot """ self.plot = ParticlePlot(self, 13.5, 8, 50, QSizePolicy.Fixed) self.plot.move(0, 0) self.timer = QTimer(self) self.timer.timeout.connect(self.__draw_plot) self.timer.start(42) def __init_button_stat(self): """ Init function for button that shows benchmarks stats """ self.sbtn = QPushButton('Yo, stats', self) self.sbtn.setToolTip('Press this button to <b>Show stats</b>') self.sbtn.setGeometry(520, 430, 150, 40) self.sbtn.clicked.connect(self.__sbtn_clicked) def __draw_plot(self): """ Function for particles rendering """ self.plot.update_plot(self.particles, self.updaters[self.method]) self.particles = list(filter(lambda p: p.time < p.death, self.particles)) @staticmethod def __validate(textedit, pattern): if re.match(pattern, textedit.toPlainText()): textedit.setStyleSheet("QTextEdit {color: black}") return True else: textedit.setStyleSheet("QTextEdit {color: red}") return False def __u_tbx_changed(self): if __class__.__validate(self.u_tbx, r"^-?\d+(?:\.\d+)?$"): self.velocity["u"] = float(self.u_tbx.toPlainText()) def __v_tbx_changed(self): if __class__.__validate(self.v_tbx, r"^-?\d+(?:\.\d+)?$"): self.velocity["v"] = float(self.v_tbx.toPlainText()) def __x_tbx_changed(self): if __class__.__validate(self.x_tbx, r"^-?\d+(?:\.\d+)?$"): self.position["x"] = float(self.x_tbx.toPlainText()) def __y_tbx_changed(self): if __class__.__validate(self.y_tbx, r"^-?\d+(?:\.\d+)?$"): self.position["y"] = float(self.y_tbx.toPlainText()) def __l_tbx_changed(self): if __class__.__validate(self.l_tbx, r"^\d+?$"): self.lifetime = float(self.l_tbx.toPlainText()) def __sld_changed(self, value): self.mass = value * 50000 def __cmb_changed(self, value): self.method = value print("Current method: ", self.cmb.currentText()) def __sbtn_clicked(self): print("============== Stats ============") print("Number of particles: {}".format(len(self.particles))) for i in range(3): start = time.time() self.updaters[i](self.particles) end = time.time() print("{} time = {}".format(self.updaters[i].__name__, end - start)) print("============== Stats ============") def keyPressEvent(self, e): if e.key() in __class__.handlers.keys(): __class__.handlers[e.key()](self) def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', "Are you sure to quit?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) event.accept() if reply == QMessageBox.Yes else event.ignore() if __name__ == '__main__': app = QApplication(sys.argv) gui = ParticleGUI() sys.exit(app.exec())
mit
luo66/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
TheChymera/LabbookDB
labbookdb/db/add.py
1
13957
#!/usr/bin/python from __future__ import print_function import argh import json import numpy import pandas as pd from sqlalchemy import create_engine, literal, update, insert from sqlalchemy import inspect from os import path from sqlalchemy.orm import sessionmaker import sqlalchemy from .common_classes import * from .query import ALLOWED_CLASSES def load_session(db_path): """Load and return a new SQLalchemy session and engine. Parameters ---------- db_path : str Path to desired database location, can be relative or use tilde to specify the user $HOME. Returns ------- session : sqlalchemy.orm.session.Session Session instance. engine : sqlalchemy.engine.Engine Engine instance. """ db_path = "sqlite:///" + path.abspath(path.expanduser(db_path)) engine = create_engine(db_path, echo=False) #it is very important that `autoflush == False`, otherwise if "treatments" or "measurements" entried precede "external_ids" the latter will insert a null on the animal_id column Session = sessionmaker(bind=engine, autoflush=False) session = Session() Base.metadata.create_all(engine) return session, engine def add_to_db(session, engine, myobject): """Add an object to session and return the .id attribute value. Parameters ---------- session : sqlalchemy.orm.session.Session Session instance, as created with labbookdb.db.add.load_session(). engine : sqlalchemy.engine.Engine Engine instance correponding to the Session instance under session, as created with labbookdb.db.add.load_session(). myobject : object LabbookDB object with SQLAlchemy-compatible attributes (e.g. as found under labbookdb.db.common_classes). Returns ------- object_id : int Value of myobject.id attribute """ session.add(myobject) try: session.commit() except sqlalchemy.exc.IntegrityError: print("Please make sure this was not a double entry:", myobject) object_id=myobject.id return object_id def instructions(kind): """Print helpful instructions for common error-causing input issues Parameters ---------- kind : {"table_identifier",} Shorthand for the instructin message to be printed. """ if kind == "table_identifier": print("Make sure you have entered the filter value correctly. This value is supposed to refer to the id column of another table and needs to be specified as \'table_identifier\'.\'field_by_which_to_filter\'.\'target_value\'") def get_related_ids(session, engine, parameters): """Return the .id attribute value for existing entries matched by a string following the LabbookDB-syntax. Parameters ---------- session : sqlalchemy.orm.session.Session Session instance, as created with labbookdb.db.add.load_session(). engine : sqlalchemy.engine.Engine Engine instance correponding to the Session instance under session, as created with labbookdb.db.add.load_session(). parameters : str LabbookDB-syntax string specifying an existing entry. Returns ------- ids : list of int .id attribute values for the entries matched by the LabbookDB-syntax string. sql_query : sqlalchemy.orm.query.Query Query corresponding to the LabbookDB-syntax string Examples -------- >>> from labbookdb.db import add >>> session, engine = add.load_session("lala.db") >>> add.get_related_ids(s,e,"Animal:external_ids.AnimalExternalIdentifier:database.ETH/AIC/cdb&#&identifier.275511") BaseException: No entry was found with a value of "275511" on the "identifier" column of the "AnimalExternalIdentifier" CATEGORY, in the database. >>> add.get_related_ids(s,e,"Animal:external_ids.AnimalExternalIdentifier:database.ETH/AIC/cdb&&identifier.275511") BaseException: No entry was found with a value of "ETH/AIC/cdb" on the "database" column of the "AnimalExternalIdentifier" CATEGORY, in the database. Notes ----- Recursivity : This function calls itself recursively in order to get the .id attribute values of related entries (and related entries of related entries, etc.) specified in the LabbookDB-syntax string. Multiple constraints are separated by double ampersands which may be separated by none or up to two hashtags, to specify at which level the constrains tshould be applied to. One hashtag is removed on each recursion step, and the constraint is only evaluated when there are no hashtags left. "Animal:external_ids.AnimalExternalIdentifier:database.ETH/AIC/cdb&#&identifier.275511" will look for both the database and the identifier attributes in the AnimalExternalIdentifier class, while "Animal:external_ids.AnimalExternalIdentifier:database.ETH/AIC/cdb&#&identifier.275511" will look for the database attribute on the AnimalExternalIdentifier class, and for the identifier attribute on the Animal class. """ category = parameters.split(":",1)[0] sql_query=session.query(ALLOWED_CLASSES[category]) for field_value in parameters.split(":",1)[1].split("&&"): field, value = field_value.split(".",1) if "&#&" in value or "&##&" in value: value=value.replace("&#&", "&&") value=value.replace("&##&", "&#&") if ":" in value: values, objects = get_related_ids(session, engine, value) for value in values: value=int(value) # the value is returned as a numpy object if field[-4:] == "date": # support for date entry matching (the values have to be passes as string but matched as datetime) value = datetime.datetime(*[int(i) for i in value.split(",")]) # we are generally looking to match values, but sometimes the parent table does not have an id column, but only a relationship column (e.g. in one to many relationships) try: sql_query = sql_query.filter(getattr(ALLOWED_CLASSES[category], field)==value) except sqlalchemy.exc.InvalidRequestError: sql_query = sql_query.filter(getattr(ALLOWED_CLASSES[category], field).contains(*[i for i in objects])) else: if field[-4:] == "date": # support for date entry matching (the values have to be passes as string but matched as datetime) value = datetime.datetime(*[int(i) for i in value.split(",")]) sql_query = sql_query.filter(getattr(ALLOWED_CLASSES[category], field)==value) mystring = sql_query.with_labels().statement mydf = pd.read_sql_query(mystring,engine) category_tablename = ALLOWED_CLASSES[category].__table__.name related_table_ids = mydf[category_tablename+"_id"] ids = list(related_table_ids) ids = [int(i) for i in ids] if ids == []: raise BaseException("No entry was found with a value of \""+str(value)+"\" on the \""+field+"\" column of the \""+category+"\" CATEGORY, in the database.") session.close() engine.dispose() return ids, sql_query def append_parameter(db_path, entry_identification, parameters): """Assigns a value to a given parameter of a given entry. Parameters ---------- db_path : str A string especifying the database path entry_identification : str A LabbookDB syntax string specifying an instance of an object for which to update a parameter. Example strings: "Animal:external_ids.AnimalExternalIdentifier:database.ETH/AIC&#&identifier.5701" , "Cage:id.14" parameters : str or dict A LabbookDB-style dictionary (or JSON interpretable as dictionary), where keys are strings giving the names of attributes of the class selected by entry_identification, and values are either the values to assign (verbatim: string, int, or float) or LabbookDB-syntax strings specifying a related entry, or a list of LabbookDB-syntax strings specifying related entries, or a list of LabbookDB-style dictionaries specifying new entries to be created and linked. """ if isinstance(parameters, str): parameters = json.loads(parameters) session, engine = load_session(db_path) entry_class = ALLOWED_CLASSES[entry_identification.split(":")[0]] my_id = get_related_ids(session, engine, entry_identification)[0][0] myobject = session.query(entry_class).filter(entry_class.id == my_id)[0] for parameter_key in parameters: parameter_expression = parameters[parameter_key] if isinstance(parameter_expression, (str, int, float)): if ":" in parameter_expression and "." in parameter_expression: related_entry_ids, _ = get_related_ids(session, engine, i) related_entry_class = ALLOWED_CLASSES[i.split(":")[0]] for related_entry_id in related_entry_ids: related_entry = session.query(related_entry_class).filter(related_entry_class.id == related_entry_id)[0] setattr(myobject, parameter_key, related_entry) else: if parameter_key[-4:] == "date": parameter_expression = datetime.datetime(*[int(i) for i in parameter_expression.split(",")]) setattr(myobject, parameter_key, parameter_expression) else: set_attribute = getattr(myobject, parameter_key) for parameter_expression_entry in parameter_expression: if isinstance(parameter_expression_entry, dict): new_entry, _ = add_generic(db_path, parameter_expression_entry, session=session, engine=engine) set_attribute.append(new_entry) elif isinstance(parameter_expression_entry, str): related_entry_ids, _ = get_related_ids(session, engine, parameter_expression_entry) related_entry_class = ALLOWED_CLASSES[parameter_expression_entry.split(":")[0]] for related_entry_id in related_entry_ids: related_entry = session.query(related_entry_class).filter(related_entry_class.id == related_entry_id)[0] set_attribute.append(related_entry) commit_and_close(session, engine) def add_generic(db_path, parameters, session=None, engine=None): """Adds new entries based on a LabbookDB-syntax parameter dictionary. Parameters ---------- db_path : str Path to database to open if session and engine parameters are not already passed, can be relative or use tilde to specify the user $HOME. parameters : str or dict A LabbookDB-style dictionary (or JSON interpretable as dictionary), where keys are "CATEGORY" and other strings specifying the attribute names for the object to be created, and values are the class name (for "CATEGORY") and either the values to assign (verbatim: string, int, or float) or LabbookDB-syntax strings specifying a related entry, or a list of LabbookDB-syntax strings specifying related entries, or a list of LabbookDB-style dictionaries specifying new entries to be created and linked. session : sqlalchemy.orm.session.Session, optional Session instance, as created with labbookdb.db.add.load_session(). engine : sqlalchemy.engine.Engine, optional Engine instance correponding to the Session instance under session, as created with labbookdb.db.add.load_session(). Returns ------- myobject : object LabbookDB object with SQLAlchemy-compatible attributes (e.g. as found under labbookdb.db.common_classes). object_id : int Value of myobject.id attribute. """ if not (session and engine) : session, engine = load_session(db_path) close = True else: close = False if isinstance(parameters, str): parameters = json.loads(parameters) category_class = ALLOWED_CLASSES[parameters["CATEGORY"]] if list(parameters.keys()) == ["CATEGORY"]: attributes = dir(category_class()) filtered_attributes = [i for i in attributes if i[0] != "_"] print("You can list the following keys as part of your parameters: " + ", ".join(filtered_attributes)) parameters.pop("CATEGORY", None) myobject = category_class() columns = inspect(myobject).mapper.column_attrs relationships = inspect(myobject).mapper.relationships all_attributes = [attr.key for attr in columns+relationships] for key, _ in sorted(parameters.items()): if key not in all_attributes: raise ValueError("'"+myobject.__class__.__name__+"' object does not support '"+key+"' attribute. Acceptable attributes are: "+" ,".join(all_attributes)+".") if key[-4:] == "date": parameters[key] = datetime.datetime(*[int(i) for i in parameters[key].split(",")]) if key[-3:] == "_id" and not isinstance(parameters[key], int): try: input_values, _ = get_related_ids(session, engine, parameters[key]) except ValueError: instructions("table_identifier") for input_value in input_values: input_value = int(input_value) print("Setting", myobject.__class__.__name__+"'s",key,"attribute to",input_value) setattr(myobject, key, input_value) #this triggers on-the-fly related-entry creation: elif isinstance(parameters[key], list): related_entries=[] for related_entry in parameters[key]: if isinstance(related_entry, dict): related_entry, _ = add_generic(db_path, related_entry, session=session, engine=engine) related_entries.append(related_entry) elif isinstance(related_entry, str): my_id = get_related_ids(session, engine, related_entry)[0][0] entry_class = ALLOWED_CLASSES[related_entry.split(":")[0]] related_entry = session.query(entry_class).\ filter(entry_class.id == my_id).all()[0] related_entries.append(related_entry) session.add(myobject) # voodoo (imho) fix for the weird errors about myobject not being attached to a Session print("Setting", myobject.__class__.__name__+"'s",key,"attribute to",related_entries) setattr(myobject, key, related_entries) else: print("Setting", myobject.__class__.__name__+"'s",key,"attribute to",parameters[key]) setattr(myobject, key, parameters[key]) object_id = add_to_db(session, engine, myobject) if close: session.close() engine.dispose() return myobject, object_id def commit_and_close(session, engine): """Commit and close session and dispose of engine. Nonfatal for sqlalchemy.exc.IntegrityError with print notification. Parameters ---------- session : sqlalchemy.orm.session.Session, optional Session instance, as created with labbookdb.db.add.load_session(). engine : sqlalchemy.engine.Engine, optional Engine instance correponding to the Session instance under session, as created with labbookdb.db.add.load_session(). """ try: session.commit() except sqlalchemy.exc.IntegrityError: print("Please make sure this was not a double entry.") session.close() engine.dispose()
bsd-3-clause
nhuntwalker/astroML
book_figures/chapter10/fig_matchedfilt_chirp.py
3
4184
""" Matched Filter Chirp Search --------------------------- Figure 10.26 A matched filter search for a chirp signal in time series data. A simulated data set generated from a model of the form y = b0+Asin[omega t + beta t^2], with homoscedastic Gaussian errors with sigma = 2, is shown in the top-right panel. The posterior pdf for the four model parameters is determined using MCMC and shown in the other panels. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt # Hack to fix import issue in older versions of pymc import scipy import scipy.misc scipy.derivative = scipy.misc.derivative import pymc from astroML.plotting.mcmc import plot_mcmc from astroML.decorators import pickle_results #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #---------------------------------------------------------------------- # Set up toy dataset def chirp(t, b0, beta, A, omega): return b0 + A * np.sin(omega * t + beta * t * t) np.random.seed(0) N = 100 b0_true = 10 A_true = 5 beta_true = 0.01 omega_true = 0.1 sigma = 2.0 t = 100 * np.random.random(N) y_true = chirp(t, b0_true, beta_true, A_true, omega_true) y_obs = np.random.normal(y_true, sigma) t_fit = np.linspace(0, 100, 1000) y_fit = chirp(t_fit, b0_true, beta_true, A_true, omega_true) i = np.argsort(t) #---------------------------------------------------------------------- # Set up MCMC sampling b0 = pymc.Uniform('b0', 0, 50, value=50 * np.random.random()) A = pymc.Uniform('A', 0, 50, value=50 * np.random.random()) log_beta = pymc.Uniform('log_beta', -10, 10, value=-4.6) log_omega = pymc.Uniform('log_omega', -10, 10, value=-2.3) # uniform prior on log(beta) @pymc.deterministic def beta(log_beta=log_beta): return np.exp(log_beta) # uniform prior on log(omega) @pymc.deterministic def omega(log_omega=log_omega): return np.exp(log_omega) @pymc.deterministic def y_model(t=t, b0=b0, A=A, beta=beta, omega=omega): return chirp(t, b0, beta, A, omega) y = pymc.Normal('y', mu=y_model, tau=sigma ** -2, observed=True, value=y_obs) model = dict(b0=b0, A=A, log_beta=log_beta, beta=beta, log_omega=log_omega, omega=omega, y_model=y_model, y=y) #---------------------------------------------------------------------- # Run the MCMC sampling (saving results to a pickle) @pickle_results('matchedfilt_chirp.pkl') def compute_MCMC_results(niter=20000, burn=2000): S = pymc.MCMC(model) S.sample(iter=niter, burn=burn) traces = [S.trace(s)[:] for s in ['b0', 'A', 'omega', 'beta']] M = pymc.MAP(model) M.fit() fit_vals = (M.b0.value, M.beta.value, M.A.value, M.omega.value) return traces, fit_vals traces, fit_vals = compute_MCMC_results() labels = ['$b_0$', '$A$', r'$\omega$', r'$\beta$'] limits = [(9.5, 11.3), (3.6, 6.4), (0.065, 0.115), (0.00975, 0.01045)] true = [b0_true, A_true, omega_true, beta_true] #---------------------------------------------------------------------- # Find the Maximum a posteriori values fig = plt.figure(figsize=(5, 5)) ax = plt.axes([0.5, 0.7, 0.45, 0.25]) t_fit = np.linspace(0, 100, 1001) y_fit = chirp(t_fit, *fit_vals) plt.scatter(t, y_obs, s=9, lw=0, c='k') plt.plot(t_fit, y_fit, '-k') plt.xlim(0, 100) plt.xlabel('$t$') plt.ylabel(r'$h_{\rm obs}$') # This function plots multiple panels with the traces plot_mcmc(traces, labels=labels, limits=limits, true_values=true, fig=fig, bins=30, bounds=[0.12, 0.08, 0.95, 0.91], colors='k') plt.show()
bsd-2-clause
medit74/DeepLearning
MyPythonDeepLearning/Convolution/train_convnet.py
1
1494
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 부모 디렉터리의 파일을 가져올 수 있도록 설정 import numpy as np import matplotlib.pyplot as plt from Common.mnist import load_mnist from Convolution.simple_convnet import SimpleConvNet from Common.trainer import Trainer # 데이터 읽기 (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False) # 시간이 오래 걸릴 경우 데이터를 줄인다. #x_train, t_train = x_train[:5000], t_train[:5000] #x_test, t_test = x_test[:1000], t_test[:1000] max_epochs = 20 network = SimpleConvNet(input_dim=(1,28,28), conv_param = {'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1}, hidden_size=100, output_size=10, weight_init_std=0.01) trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=max_epochs, mini_batch_size=100, optimizer='Adam', optimizer_param={'lr': 0.001}, evaluate_sample_num_per_epoch=1000) trainer.train() # 매개변수 보존 network.save_params("params.pkl") print("Saved Network Parameters!") # 그래프 그리기 markers = {'train': 'o', 'test': 's'} x = np.arange(max_epochs) plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2) plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2) plt.xlabel("epochs") plt.ylabel("accuracy") plt.ylim(0, 1.0) plt.legend(loc='lower right') plt.show()
apache-2.0
walterreade/scikit-learn
sklearn/mixture/gmm.py
13
30702
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import warnings import numpy as np from scipy import linalg from time import time from ..base import BaseEstimator from ..utils import check_random_state, check_array from ..utils.extmath import logsumexp from ..utils.validation import check_is_fitted from .. import cluster from sklearn.externals.six.moves import zip EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covar : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) # get rid of tiny negatives np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model. Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Read more in the :ref:`User Guide <gmm>`. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (None by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. tol : float, optional Convergence threshold. EM iterations will stop when average gain in log-likelihood is below this threshold. Defaults to 1e-3. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. The best results is kept. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default: 0 Enable verbose output. If 1 then it always prints the current initialization and iteration step. If greater than 1 then it prints additionally the change and time needed for each step. Attributes ---------- weights_ : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. covars_ : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Infinite gaussian mixture model, using the Dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) # doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) # doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, tol=1e-3, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc', verbose=0): self.n_components = n_components self.covariance_type = covariance_type self.tol = tol self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.verbose = verbose if covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on ``cvtype``:: (n_states, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_states, n_features) if 'diag', (n_states, n_features, n_features) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance.""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X, y=None): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit_predict(self, X, y=None): """Fit and then predict labels for data. Warning: Due to the final maximization step in the EM algorithm, with low iterations the prediction may not be 100% accurate. .. versionadded:: 0.17 *fit_predict* method in Gaussian Mixture Model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ return self._fit(X, y).argmax(axis=1) def _fit(self, X, y=None, do_prediction=False): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ # initialization step X = check_array(X, dtype=np.float64, ensure_min_samples=2, estimator=self) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty if self.verbose > 0: print('Expectation-maximization algorithm started.') for init in range(self.n_init): if self.verbose > 0: print('Initialization ' + str(init + 1)) start_init_time = time() if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if self.verbose > 1: print('\tMeans have been initialized.') if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if self.verbose > 1: print('\tWeights have been initialized.') if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) if self.verbose > 1: print('\tCovariance matrices have been initialized.') # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False for i in range(self.n_iter): if self.verbose > 0: print('\tEM iteration ' + str(i + 1)) start_iter_time = time() prev_log_likelihood = current_log_likelihood # Expectation step log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() # Check for convergence. if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if self.verbose > 1: print('\t\tChange: ' + str(change)) if change < self.tol: self.converged_ = True if self.verbose > 0: print('\t\tEM algorithm converged.') break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.verbose > 1: print('\t\tEM iteration ' + str(i + 1) + ' took {0:.5f}s'.format( time() - start_iter_time)) # if the results are better, keep it if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} if self.verbose > 1: print('\tBetter parameters were found.') if self.verbose > 1: print('\tInitialization ' + str(init + 1) + ' took {0:.5f}s'.format( time() - start_init_time)) # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] else: # self.n_iter == 0 occurs when using GMM within HMM # Need to make sure that there are responsibilities to output # Output zeros because it was just a quick initialization responsibilities = np.zeros((X.shape[0], self.n_components)) return responsibilities def fit(self, X, y=None): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self """ self._fit(X, y) return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """Perform the Mstep of the EM algorithm and return the cluster weights. """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data. Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data. Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### # some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means, covars): """Compute Gaussian log-density at X for a diagonal model.""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means, covars): """Compute Gaussian log-density at X for a spherical model.""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model.""" cv = np.tile(covars, (means.shape[0], 1, 1)) return _log_multivariate_normal_density_full(X, means, cv) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices.""" n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probably stuck in a component with too # few observations, we need to reinitialize this components try: cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) except linalg.LinAlgError: raise ValueError("'covars' must be symmetric, " "positive-definite") cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values.""" from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape " "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template.""" if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Perform the covariance M step for diagonal cases.""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Perform the covariance M step for spherical cases.""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Perform the covariance M step for full cases.""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): # Underflow Errors in doing post * X.T are not important avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Perform the covariance M step for tied cases.""" # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) out = avg_X2 - avg_means2 out *= 1. / X.shape[0] out.flat[::len(out) + 1] += min_covar return out _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
walterreade/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
btabibian/scikit-learn
sklearn/manifold/tests/test_t_sne.py
11
25443
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.neighbors import BallTree from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_in from sklearn.utils.testing import skip_if_32bit from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _joint_probabilities_nn from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _kl_divergence_bh from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold import _barnes_hut_tsne from sklearn.manifold._utils import _binary_search_perplexity from sklearn.datasets import make_blobs from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform from sklearn.metrics.pairwise import pairwise_distances def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_binary_search_neighbors(): # Binary perplexity search approximation. # Should be approximately equal to the slow method when we use # all points as neighbors. n_samples = 500 desired_perplexity = 25.0 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) P1 = _binary_search_perplexity(distances, None, desired_perplexity, verbose=0) # Test that when we use all the neighbors the results are identical k = n_samples neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) P2 = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) assert_array_almost_equal(P1, P2, decimal=4) # Test that the highest P_ij are the same when few neighbors are used for k in np.linspace(80, n_samples, 10): k = int(k) topn = k * 10 # check the top 10 *k entries out of k * k entries neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) P2k = _binary_search_perplexity(distances, neighbors_nn, desired_perplexity, verbose=0) idx = np.argsort(P1.ravel())[::-1] P1top = P1.ravel()[idx][:topn] P2top = P2k.ravel()[idx][:topn] assert_array_almost_equal(P1top, P2top, decimal=2) def test_binary_perplexity_stability(): # Binary perplexity search should be stable. # The binary_search_perplexity had a bug wherein the P array # was uninitialized, leading to sporadically failing tests. k = 10 n_samples = 100 random_state = check_random_state(0) distances = random_state.randn(n_samples, 2).astype(np.float32) # Distances shouldn't be negative distances = np.abs(distances.dot(distances.T)) np.fill_diagonal(distances, 0.0) last_P = None neighbors_nn = np.argsort(distances, axis=1)[:, :k].astype(np.int64) for _ in range(100): P = _binary_search_perplexity(distances.copy(), neighbors_nn.copy(), 3, verbose=0) P1 = _joint_probabilities_nn(distances, neighbors_nn, 3, verbose=0) if last_P is None: last_P = P last_P1 = P1 else: assert_array_almost_equal(P, last_P, decimal=4) assert_array_almost_equal(P1, last_P1, decimal=4) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features).astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) def fun(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[0] def grad(params): return _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) # The Barnes-Hut approximation uses a different method to estimate # P_ij using only a number of nearest neighbors instead of all # points (so that k = 3 * perplexity). As a result we set the # perplexity=5, so that the number of neighbors is 5%. n_components = 2 methods = ['exact', 'barnes_hut'] X = random_state.randn(100, n_components).astype(np.float32) for init in ('random', 'pca'): for method in methods: tsne = TSNE(n_components=n_components, perplexity=50, learning_rate=100.0, init=init, random_state=0, method=method) X_embedded = tsne.fit_transform(X) T = trustworthiness(X, X_embedded, n_neighbors=1) assert_almost_equal(T, 1.0, decimal=1) def test_optimization_minimizes_kl_divergence(): """t-SNE should give a lower KL divergence with more iterations.""" random_state = check_random_state(0) X, _ = make_blobs(n_features=3, random_state=random_state) kl_divergences = [] for n_iter in [200, 250, 300]: tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, n_iter=n_iter, random_state=0) tsne.fit_transform(X) kl_divergences.append(tsne.kl_divergence_) assert_less_equal(kl_divergences[1], kl_divergences[0]) assert_less_equal(kl_divergences[2], kl_divergences[1]) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0, method='exact') X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, metric="precomputed", random_state=0, verbose=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca', 'random', or numpy array. m = "'init' must be 'pca', 'random', or a numpy array" assert_raises_regexp(ValueError, m, TSNE, init="not available") def test_init_ndarray(): # Initialize TSNE with ndarray and test fit tsne = TSNE(init=np.zeros((100, 2))) X_embedded = tsne.fit_transform(np.ones((100, 5))) assert_array_equal(np.zeros((100, 2)), X_embedded) def test_init_ndarray_precomputed(): # Initialize TSNE with ndarray and metric 'precomputed' # Make sure no FutureWarning is thrown from _fit tsne = TSNE(init=np.zeros((100, 2)), metric="precomputed") tsne.fit(np.zeros((100, 100))) def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_answer_gradient_two_points(): # Test the tree with only a single set of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0]]) pos_output = np.array([[-4.961291e-05, -1.072243e-04], [9.259460e-05, 2.702024e-04]]) neighbors = np.array([[1], [0]]) grad_output = np.array([[-2.37012478e-05, -6.29044398e-05], [2.37012478e-05, 6.29044398e-05]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_answer_gradient_four_points(): # Four points tests the tree with multiple levels of children. # # These tests & answers have been checked against the reference # implementation by LvdM. pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[5.81128448e-05, -7.78033454e-06], [-5.81526851e-05, 7.80976444e-06], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output) def test_skip_num_points_gradient(): # Test the kwargs option skip_num_points. # # Skip num points should make it such that the Barnes_hut gradient # is not calculated for indices below skip_num_point. # Aside from skip_num_points=2 and the first two gradient rows # being set to zero, these data points are the same as in # test_answer_gradient_four_points() pos_input = np.array([[1.0, 0.0], [0.0, 1.0], [5.0, 2.0], [7.3, 2.2]]) pos_output = np.array([[6.080564e-05, -7.120823e-05], [-1.718945e-04, -4.000536e-05], [-2.271720e-04, 8.663310e-05], [-1.032577e-04, -3.582033e-05]]) neighbors = np.array([[1, 2, 3], [0, 2, 3], [1, 0, 3], [1, 2, 0]]) grad_output = np.array([[0.0, 0.0], [0.0, 0.0], [4.24275173e-08, -3.69569698e-08], [-2.58720939e-09, 7.52706374e-09]]) _run_answer_test(pos_input, pos_output, neighbors, grad_output, False, 0.1, 2) def _run_answer_test(pos_input, pos_output, neighbors, grad_output, verbose=False, perplexity=0.1, skip_num_points=0): distances = pairwise_distances(pos_input).astype(np.float32) args = distances, perplexity, verbose pos_output = pos_output.astype(np.float32) neighbors = neighbors.astype(np.int64) pij_input = _joint_probabilities(*args) pij_input = squareform(pij_input).astype(np.float32) grad_bh = np.zeros(pos_output.shape, dtype=np.float32) _barnes_hut_tsne.gradient(pij_input, pos_output, neighbors, grad_bh, 0.5, 2, 1, skip_num_points=0) assert_array_almost_equal(grad_bh, grad_output, decimal=4) def test_verbose(): # Verbose options write to stdout. random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded))) def test_no_sparse_on_barnes_hut(): # No sparse matrices allowed on Barnes-Hut. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_iter=199, method='barnes_hut') assert_raises_regexp(TypeError, "A sparse matrix was.*", tsne.fit_transform, X_csr) def test_64bit(): # Ensure 64bit arrays are handled correctly. random_state = check_random_state(0) methods = ['barnes_hut', 'exact'] for method in methods: for dt in [np.float32, np.float64]: X = random_state.randn(100, 2).astype(dt) tsne = TSNE(n_components=2, perplexity=2, learning_rate=100.0, random_state=0, method=method) tsne.fit_transform(X) def test_barnes_hut_angle(): # When Barnes-Hut's angle=0 this corresponds to the exact method. angle = 0.0 perplexity = 10 n_samples = 100 for n_components in [2, 3]: n_features = 5 degrees_of_freedom = float(n_components - 1.0) random_state = check_random_state(0) distances = random_state.randn(n_samples, n_features) distances = distances.astype(np.float32) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) params = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, perplexity, False) kl, gradex = _kl_divergence(params, P, degrees_of_freedom, n_samples, n_components) k = n_samples - 1 bt = BallTree(distances) distances_nn, neighbors_nn = bt.query(distances, k=k + 1) neighbors_nn = neighbors_nn[:, 1:] Pbh = _joint_probabilities_nn(distances, neighbors_nn, perplexity, False) kl, gradbh = _kl_divergence_bh(params, Pbh, neighbors_nn, degrees_of_freedom, n_samples, n_components, angle=angle, skip_num_points=0, verbose=False) assert_array_almost_equal(Pbh, P, decimal=5) assert_array_almost_equal(gradex, gradbh, decimal=5) def test_quadtree_similar_point(): # Introduce a point into a quad tree where a similar point already exists. # Test will hang if it doesn't complete. Xs = [] # check the case where points are actually different Xs.append(np.array([[1, 2], [3, 4]], dtype=np.float32)) # check the case where points are the same on X axis Xs.append(np.array([[1.0, 2.0], [1.0, 3.0]], dtype=np.float32)) # check the case where points are arbitrarily close on X axis Xs.append(np.array([[1.00001, 2.0], [1.00002, 3.0]], dtype=np.float32)) # check the case where points are the same on Y axis Xs.append(np.array([[1.0, 2.0], [3.0, 2.0]], dtype=np.float32)) # check the case where points are arbitrarily close on Y axis Xs.append(np.array([[1.0, 2.00001], [3.0, 2.00002]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes Xs.append(np.array([[1.00001, 2.00001], [1.00002, 2.00002]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes # close to machine epsilon - x axis Xs.append(np.array([[1, 0.0003817754041], [2, 0.0003817753750]], dtype=np.float32)) # check the case where points are arbitrarily close on both axes # close to machine epsilon - y axis Xs.append(np.array([[0.0003817754041, 1.0], [0.0003817753750, 2.0]], dtype=np.float32)) for X in Xs: counts = np.zeros(3, dtype='int64') _barnes_hut_tsne.check_quadtree(X, counts) m = "Tree consistency failed: unexpected number of points at root node" assert_equal(counts[0], counts[1], m) m = "Tree consistency failed: unexpected number of points on the tree" assert_equal(counts[0], counts[2], m) def test_index_offset(): # Make sure translating between 1D and N-D indices are preserved assert_equal(_barnes_hut_tsne.test_index2offset(), 1) assert_equal(_barnes_hut_tsne.test_index_offset(), 1) @skip_if_32bit def test_n_iter_without_progress(): # Use a dummy negative n_iter_without_progress and check output on stdout random_state = check_random_state(0) X = random_state.randn(100, 2) tsne = TSNE(n_iter_without_progress=-1, verbose=2, random_state=1, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the value of n_iter_without_progress assert_in("did not make any progress during the " "last -1 episodes. Finished.", out) def test_min_grad_norm(): # Make sure that the parameter min_grad_norm is used correctly random_state = check_random_state(0) X = random_state.randn(100, 2) min_grad_norm = 0.002 tsne = TSNE(min_grad_norm=min_grad_norm, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout lines_out = out.split('\n') # extract the gradient norm from the verbose output gradient_norm_values = [] for line in lines_out: # When the computation is Finished just an old gradient norm value # is repeated that we do not need to store if 'Finished' in line: break start_grad_norm = line.find('gradient norm') if start_grad_norm >= 0: line = line[start_grad_norm:] line = line.replace('gradient norm = ', '') gradient_norm_values.append(float(line)) # Compute how often the gradient norm is smaller than min_grad_norm gradient_norm_values = np.array(gradient_norm_values) n_smaller_gradient_norms = \ len(gradient_norm_values[gradient_norm_values <= min_grad_norm]) # The gradient norm can be smaller than min_grad_norm at most once, # because in the moment it becomes smaller the optimization stops assert_less_equal(n_smaller_gradient_norms, 1) def test_accessible_kl_divergence(): # Ensures that the accessible kl_divergence matches the computed value random_state = check_random_state(0) X = random_state.randn(100, 2) tsne = TSNE(n_iter_without_progress=2, verbose=2, random_state=0, method='exact') old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout # The output needs to contain the accessible kl_divergence as the error at # the last iteration for line in out.split('\n')[::-1]: if 'Iteration' in line: _, _, error = line.partition('error = ') if error: error, _, _ = error.partition(',') break assert_almost_equal(tsne.kl_divergence_, float(error), decimal=5)
bsd-3-clause
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/frame/test_to_csv.py
7
44295
# -*- coding: utf-8 -*- from __future__ import print_function import csv import pytest from numpy import nan import numpy as np from pandas.compat import (lmap, range, lrange, StringIO, u) from pandas.errors import ParserError from pandas import (DataFrame, Index, Series, MultiIndex, Timestamp, date_range, read_csv, compat, to_datetime) import pandas as pd from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, ensure_clean, slow, makeCustomDataframe as mkdf) import pandas.util.testing as tm from pandas.tests.frame.common import TestData MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameToCSV(TestData): def test_to_csv_from_csv1(self): with ensure_clean('__tmp_to_csv_from_csv1__') as path: self.frame['A'][:5] = nan self.frame.to_csv(path) self.frame.to_csv(path, columns=['A', 'B']) self.frame.to_csv(path, header=False) self.frame.to_csv(path, index=False) # test roundtrip self.tsframe.to_csv(path) recons = DataFrame.from_csv(path) assert_frame_equal(self.tsframe, recons) self.tsframe.to_csv(path, index_label='index') recons = DataFrame.from_csv(path, index_col=None) assert(len(recons.columns) == len(self.tsframe.columns) + 1) # no index self.tsframe.to_csv(path, index=False) recons = DataFrame.from_csv(path, index_col=None) assert_almost_equal(self.tsframe.values, recons.values) # corner case dm = DataFrame({'s1': Series(lrange(3), lrange(3)), 's2': Series(lrange(2), lrange(2))}) dm.to_csv(path) recons = DataFrame.from_csv(path) assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self): with ensure_clean('__tmp_to_csv_from_csv2__') as path: # duplicate index df = DataFrame(np.random.randn(3, 3), index=['a', 'a', 'b'], columns=['x', 'y', 'z']) df.to_csv(path) result = DataFrame.from_csv(path) assert_frame_equal(result, df) midx = MultiIndex.from_tuples( [('A', 1, 2), ('A', 1, 2), ('B', 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=['x', 'y', 'z']) df.to_csv(path) result = DataFrame.from_csv(path, index_col=[0, 1, 2], parse_dates=False) # TODO from_csv names index ['Unnamed: 1', 'Unnamed: 2'] should it # ? assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(['AA', 'X', 'Y', 'Z']) self.frame2.to_csv(path, header=col_aliases) rs = DataFrame.from_csv(path) xp = self.frame2.copy() xp.columns = col_aliases assert_frame_equal(xp, rs) pytest.raises(ValueError, self.frame2.to_csv, path, header=['AA', 'X']) def test_to_csv_from_csv3(self): with ensure_clean('__tmp_to_csv_from_csv3__') as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode='a', header=False) xp = pd.concat([df1, df2]) rs = pd.read_csv(path, index_col=0) rs.columns = lmap(int, rs.columns) xp.columns = lmap(int, xp.columns) assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with ensure_clean('__tmp_to_csv_from_csv4__') as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = pd.DataFrame({'dt_data': [i * dt for i in range(3)]}, index=pd.Index([i * dt for i in range(3)], name='dt_index')) df.to_csv(path) result = pd.read_csv(path, index_col='dt_index') result.index = pd.to_timedelta(result.index) # TODO: remove renaming when GH 10875 is solved result.index = result.index.rename('dt_index') result['dt_data'] = pd.to_timedelta(result['dt_data']) assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self): # tz, 8260 with ensure_clean('__tmp_to_csv_from_csv5__') as path: self.tzframe.to_csv(path) result = pd.read_csv(path, index_col=0, parse_dates=['A']) converter = lambda c: to_datetime(result[c]).dt.tz_localize( 'UTC').dt.tz_convert(self.tzframe[c].dt.tz) result['B'] = converter('B') result['C'] = converter('C') assert_frame_equal(result, self.tzframe) def test_to_csv_cols_reordering(self): # GH3454 import pandas as pd chunksize = 5 N = int(chunksize * 2.5) df = mkdf(N, 3) cs = df.columns cols = [cs[2], cs[0]] with ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = pd.read_csv(path, index_col=0) assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): import pandas as pd def _check_df(df, cols=None): with ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = pd.read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique( cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): assert_series_equal(obj_df, obj_rs) else: assert_frame_equal( obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = mkdf(N, 3) df.columns = ['a', 'a', 'b'] _check_df(df, None) # dupe cols with selection cols = ['b', 'a'] _check_df(df, cols) @slow def test_to_csv_dtnat(self): # GH3437 from pandas import NaT def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range('2000', freq='5min', periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with ensure_clean('1.csv') as pth: df = DataFrame(dict(a=s1, b=s2)) df.to_csv(pth, chunksize=chunksize) recons = DataFrame.from_csv(pth)._convert(datetime=True, coerce=True) assert_frame_equal(df, recons, check_names=False, check_less_precise=True) @slow def test_to_csv_moar(self): def _do_test(df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False): kwargs = dict(parse_dates=False) if cnlvl: if rnlvl is not None: kwargs['index_col'] = lrange(rnlvl) kwargs['header'] = lrange(cnlvl) with ensure_clean('__tmp_to_csv_moar__') as path: df.to_csv(path, encoding='utf8', chunksize=chunksize, tupleize_cols=False) recons = DataFrame.from_csv( path, tupleize_cols=False, **kwargs) else: kwargs['header'] = 0 with ensure_clean('__tmp_to_csv_moar__') as path: df.to_csv(path, encoding='utf8', chunksize=chunksize) recons = DataFrame.from_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, compat.text_type): return x.decode('utf8') return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[ :, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1:] type_map = dict(i='i', f='f', s='O', u='O', dt='O', p='O') if r_dtype: if r_dtype == 'u': # unicode r_dtype = 'O' recons.index = np.array(lmap(_to_uni, recons.index), dtype=r_dtype) df.index = np.array(lmap(_to_uni, df.index), dtype=r_dtype) elif r_dtype == 'dt': # unicode r_dtype = 'O' recons.index = np.array(lmap(Timestamp, recons.index), dtype=r_dtype) df.index = np.array( lmap(Timestamp, df.index), dtype=r_dtype) elif r_dtype == 'p': r_dtype = 'O' recons.index = np.array( list(map(Timestamp, to_datetime(recons.index))), dtype=r_dtype) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == 'u': c_dtype = 'O' recons.columns = np.array(lmap(_to_uni, recons.columns), dtype=c_dtype) df.columns = np.array( lmap(_to_uni, df.columns), dtype=c_dtype) elif c_dtype == 'dt': c_dtype = 'O' recons.columns = np.array(lmap(Timestamp, recons.columns), dtype=c_dtype) df.columns = np.array( lmap(Timestamp, df.columns), dtype=c_dtype) elif c_dtype == 'p': c_dtype = 'O' recons.columns = np.array( lmap(Timestamp, to_datetime(recons.columns)), dtype=c_dtype) df.columns = np.array( lmap(Timestamp, df.columns.to_timestamp()), dtype=c_dtype) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) assert_frame_equal(df, recons, check_names=False, check_less_precise=True) N = 100 chunksize = 1000 for ncols in [4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type='dt', c_idx_type='s'), 'dt', 's') for ncols in [4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type='dt', c_idx_type='s'), 'dt', 's') pass for r_idx_type, c_idx_type in [('i', 'i'), ('s', 's'), ('u', 'dt'), ('p', 'p')]: for ncols in [1, 2, 3, 4]: base = int((chunksize // ncols or 1) or 1) for nrows in [2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type), r_idx_type, c_idx_type) for ncols in [1, 2, 3, 4]: base = int((chunksize // ncols or 1) or 1) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = mkdf(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=lrange(10))) _do_test(mkdf(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1]: _do_test(mkdf(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(mkdf(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test(mkdf(nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2), rnlvl=2, cnlvl=2) def test_to_csv_from_csv_w_some_infs(self): # test roundtrip with inf, -inf, nan, as full columns and mix self.frame['G'] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < .5] self.frame['H'] = self.frame.index.map(f) with ensure_clean() as path: self.frame.to_csv(path) recons = DataFrame.from_csv(path) # TODO to_csv drops column name assert_frame_equal(self.frame, recons, check_names=False) assert_frame_equal(np.isinf(self.frame), np.isinf(recons), check_names=False) def test_to_csv_from_csv_w_all_infs(self): # test roundtrip with inf, -inf, nan, as full columns and mix self.frame['E'] = np.inf self.frame['F'] = -np.inf with ensure_clean() as path: self.frame.to_csv(path) recons = DataFrame.from_csv(path) # TODO to_csv drops column name assert_frame_equal(self.frame, recons, check_names=False) assert_frame_equal(np.isinf(self.frame), np.isinf(recons), check_names=False) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with ensure_clean('__tmp_to_csv_no_index__') as path: df = DataFrame({'c1': [1, 2, 3], 'c2': [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) assert_frame_equal(df, result) df['c3'] = Series([7, 8, 9], dtype='int64') df.to_csv(path, index=False) result = read_csv(path) assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ['a', 'b', 'c'], 1: ['aa', 'bb', 'cc']}) df['test'] = 'txt' assert df.to_csv() == df.to_csv(columns=[0, 1, 'test']) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) to_df = DataFrame([[1, 2], [3, 4]], columns=['X', 'Y']) with ensure_clean('__tmp_to_csv_headers__') as path: from_df.to_csv(path, header=['X', 'Y']) recons = DataFrame.from_csv(path) assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=['X', 'Y']) recons = DataFrame.from_csv(path) recons.reset_index(inplace=True) assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self): frame = self.frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=['first', 'second']) frame.index = new_index with ensure_clean('__tmp_to_csv_multiindex__') as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=['A', 'B']) # round trip frame.to_csv(path) df = DataFrame.from_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUP becomes a classmethod self.frame.index = old_index # try multiindex with dates tsframe = self.tsframe old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=['time', 'foo']) recons = DataFrame.from_csv(path, index_col=[0, 1]) # TODO to_csv drops column name assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = DataFrame.from_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = DataFrame.from_csv(path, index_col=None) assert_almost_equal(recons.values, self.tsframe.values) # needed if setUP becomes classmethod self.tsframe.index = old_index with ensure_clean('__tmp_to_csv_multiindex__') as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ['first', 'second'] return DataFrame(np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [('bah', 'foo'), ('bah', 'bar'), ('ban', 'baz')], names=names), dtype='int64') # column & index are multi-index df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path, tupleize_cols=False) result = read_csv(path, header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) assert_frame_equal(df, result) # column is mi df = mkdf(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path, tupleize_cols=False) result = read_csv( path, header=[0, 1, 2, 3], index_col=0, tupleize_cols=False) assert_frame_equal(df, result) # dup column names? df = mkdf(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path, tupleize_cols=False) result = read_csv(path, header=[0, 1, 2, 3], index_col=[ 0, 1, 2], tupleize_cols=False) assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, tupleize_cols=False, index=False) result = read_csv(path, header=[0, 1], tupleize_cols=False) assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, tupleize_cols=False, index=False) result = read_csv(path, header=[0, 1], tupleize_cols=False) assert all([x is None for x in result.columns.names]) result.columns.names = df.columns.names assert_frame_equal(df, result) # tupleize_cols=True and index=False df = _make_frame(True) df.to_csv(path, tupleize_cols=True, index=False) result = read_csv( path, header=0, tupleize_cols=True, index_col=None) result.columns = df.columns assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path, tupleize_cols=False) result = read_csv(path, header=[0, 1], index_col=[ 0], tupleize_cols=False) assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path, tupleize_cols=False) result = read_csv(path, header=[0, 1], index_col=[ 0], tupleize_cols=False) assert_frame_equal(df, result) # column & index are multi-index (compatibility) df = mkdf(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path, tupleize_cols=True) result = read_csv(path, header=0, index_col=[ 0, 1], tupleize_cols=True) result.columns = df.columns assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path, tupleize_cols=False) for i in [6, 7]: msg = 'len of {i}, but only 5 lines in file'.format(i=i) with tm.assert_raises_regex(ParserError, msg): read_csv(path, tupleize_cols=False, header=lrange(i), index_col=0) # write with cols with tm.assert_raises_regex(TypeError, 'cannot specify cols ' 'with a MultiIndex'): df.to_csv(path, tupleize_cols=False, columns=['foo', 'bar']) with ensure_clean('__tmp_to_csv_multiindex__') as path: # empty tsframe[:0].to_csv(path) recons = DataFrame.from_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with ensure_clean('__tmp_to_csv_float32_nanrep__.csv') as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(',')[2] == '999' def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({'A': [1, 2, 3], 'B': ['5,6', '7,8', '9,0']}) with ensure_clean('__tmp_to_csv_withcommas__.csv') as path: df.to_csv(path) df2 = DataFrame.from_csv(path) assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return ["%s%03d" % (name, i) for i in range(5)] df_float = DataFrame(np.random.randn( 100, 5), dtype='float64', columns=create_cols('float')) df_int = DataFrame(np.random.randn(100, 5), dtype='int64', columns=create_cols('int')) df_bool = DataFrame(True, index=df_float.index, columns=create_cols('bool')) df_object = DataFrame('foo', index=df_float.index, columns=create_cols('object')) df_dt = DataFrame(Timestamp('20010101'), index=df_float.index, columns=create_cols('date')) # add in some nans df_float.loc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = dict() for n, dtype in [('float', np.float64), ('int', np.int64), ('bool', np.bool), ('object', np.object)]: for c in create_cols(n): dtypes[c] = dtype with ensure_clean() as filename: df.to_csv(filename) rs = read_csv(filename, index_col=0, dtype=dtypes, parse_dates=create_cols('date')) assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame(np.random.randn(1000, 30), columns=lrange( 15) + lrange(15), dtype='float64') with ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype='float64') df_int = DataFrame(np.random.randn(1000, 3), dtype='int64') df_bool = DataFrame(True, index=df_float.index, columns=lrange(3)) df_object = DataFrame('foo', index=df_float.index, columns=lrange(3)) df_dt = DataFrame(Timestamp('20010101'), index=df_float.index, columns=lrange(3)) df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True) cols = [] for i in range(5): cols.extend([0, 1, 2]) df.columns = cols with ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ['0.4', '1.4', '2.4']: result[i] = to_datetime(result[i]) result.columns = df.columns assert_frame_equal(result, df) # GH3457 from pandas.util.testing import makeCustomDataframe as mkdf N = 10 df = mkdf(N, 3) df.columns = ['a', 'a', 'b'] with ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={'a.1': 'a'}) assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({'A': lrange(100000)}) aa['B'] = aa.A + 1.0 aa['C'] = aa.A + 2.0 aa['D'] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) assert_frame_equal(rs, aa) @slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO('a,1.0\nb,2.0') df = DataFrame.from_csv(f1, header=None) newdf = DataFrame({'t': df[df.columns[0]]}) with ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({u('c/\u03c3'): [1, 2, 3]}) with ensure_clean() as path: df.to_csv(path, encoding='UTF-8') df2 = read_csv(path, index_col=0, encoding='UTF-8') assert_frame_equal(df, df2) df.to_csv(path, encoding='UTF-8', index=False) df2 = read_csv(path, index_col=None, encoding='UTF-8') assert_frame_equal(df, df2) def test_to_csv_unicode_index_col(self): buf = StringIO('') df = DataFrame( [[u("\u05d0"), "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]], columns=[u("\u05d0"), u("\u05d1"), u("\u05d2"), u("\u05d3")], index=[u("\u05d0"), u("\u05d1")]) df.to_csv(buf, encoding='UTF-8') buf.seek(0) df2 = read_csv(buf, index_col=0, encoding='UTF-8') assert_frame_equal(df, df2) def test_to_csv_stringio(self): buf = StringIO() self.frame.to_csv(buf) buf.seek(0) recons = read_csv(buf, index_col=0) # TODO to_csv drops column name assert_frame_equal(recons, self.frame, check_names=False) def test_to_csv_float_format(self): df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, float_format='%.2f') rs = read_csv(filename, index_col=0) xp = DataFrame([[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=['A', 'B'], columns=['X', 'Y', 'Z']) assert_frame_equal(rs, xp) def test_to_csv_unicodewriter_quoting(self): df = DataFrame({'A': [1, 2, 3], 'B': ['foo', 'bar', 'baz']}) buf = StringIO() df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding='utf-8') result = buf.getvalue() expected = ('"A","B"\n' '1,"foo"\n' '2,"bar"\n' '3,"baz"\n') assert result == expected def test_to_csv_quote_none(self): # GH4328 df = DataFrame({'A': ['hello', '{"hello"}']}) for encoding in (None, 'utf-8'): buf = StringIO() df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False) result = buf.getvalue() expected = 'A\nhello\n{"hello"}\n' assert result == expected def test_to_csv_index_no_leading_comma(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['one', 'two', 'three']) buf = StringIO() df.to_csv(buf, index_label=False) expected = ('A,B\n' 'one,1,4\n' 'two,2,5\n' 'three,3,6\n') assert buf.getvalue() == expected def test_to_csv_line_terminators(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['one', 'two', 'three']) buf = StringIO() df.to_csv(buf, line_terminator='\r\n') expected = (',A,B\r\n' 'one,1,4\r\n' 'two,2,5\r\n' 'three,3,6\r\n') assert buf.getvalue() == expected buf = StringIO() df.to_csv(buf) # The default line terminator remains \n expected = (',A,B\n' 'one,1,4\n' 'two,2,5\n' 'three,3,6\n') assert buf.getvalue() == expected def test_to_csv_from_csv_categorical(self): # CSV with categoricals should result in the same output as when one # would add a "normal" Series/DataFrame. s = Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'])) s2 = Series(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) res = StringIO() s.to_csv(res) exp = StringIO() s2.to_csv(exp) assert res.getvalue() == exp.getvalue() df = DataFrame({"s": s}) df2 = DataFrame({"s": s2}) res = StringIO() df.to_csv(res) exp = StringIO() df2.to_csv(exp) assert res.getvalue() == exp.getvalue() def test_to_csv_path_is_none(self): # GH 8215 # Make sure we return string for consistency with # Series.to_csv() csv_str = self.frame.to_csv(path_or_buf=None) assert isinstance(csv_str, str) recons = pd.read_csv(StringIO(csv_str), index_col=0) assert_frame_equal(self.frame, recons) def test_to_csv_compression_gzip(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="gzip") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="gzip", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is gziped import gzip f = gzip.open(filename, 'rb') text = f.read().decode('utf8') f.close() for col in df.columns: assert col in text def test_to_csv_compression_bz2(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="bz2") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="bz2", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is bz2ed import bz2 f = bz2.BZ2File(filename, 'rb') text = f.read().decode('utf8') f.close() for col in df.columns: assert col in text def test_to_csv_compression_xz(self): # GH11852 # use the compression kw in to_csv tm._skip_if_no_lzma() df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: df.to_csv(filename, compression="xz") # test the round trip - to_csv -> read_csv rs = read_csv(filename, compression="xz", index_col=0) assert_frame_equal(df, rs) # explicitly make sure file is xzipped lzma = compat.import_lzma() f = lzma.open(filename, 'rb') assert_frame_equal(df, read_csv(f, index_col=0)) f.close() def test_to_csv_compression_value_error(self): # GH7615 # use the compression kw in to_csv df = DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with ensure_clean() as filename: # zip compression is not supported and should raise ValueError import zipfile pytest.raises(zipfile.BadZipfile, df.to_csv, filename, compression="zip") def test_to_csv_date_format(self): with ensure_clean('__tmp_to_csv_date_format__') as path: dt_index = self.tsframe.index datetime_frame = DataFrame( {'A': dt_index, 'B': dt_index.shift(1)}, index=dt_index) datetime_frame.to_csv(path, date_format='%Y%m%d') # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_int = datetime_frame.applymap( lambda x: int(x.strftime('%Y%m%d'))) datetime_frame_int.index = datetime_frame_int.index.map( lambda x: int(x.strftime('%Y%m%d'))) assert_frame_equal(test, datetime_frame_int) datetime_frame.to_csv(path, date_format='%Y-%m-%d') # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_str = datetime_frame.applymap( lambda x: x.strftime('%Y-%m-%d')) datetime_frame_str.index = datetime_frame_str.index.map( lambda x: x.strftime('%Y-%m-%d')) assert_frame_equal(test, datetime_frame_str) # Check that columns get converted datetime_frame_columns = datetime_frame.T datetime_frame_columns.to_csv(path, date_format='%Y%m%d') test = read_csv(path, index_col=0) datetime_frame_columns = datetime_frame_columns.applymap( lambda x: int(x.strftime('%Y%m%d'))) # Columns don't get converted to ints by read_csv datetime_frame_columns.columns = ( datetime_frame_columns.columns .map(lambda x: x.strftime('%Y%m%d'))) assert_frame_equal(test, datetime_frame_columns) # test NaTs nat_index = to_datetime( ['NaT'] * 10 + ['2000-01-01', '1/1/2000', '1-1-2000']) nat_frame = DataFrame({'A': nat_index}, index=nat_index) nat_frame.to_csv(path, date_format='%Y-%m-%d') test = read_csv(path, parse_dates=[0, 1], index_col=0) assert_frame_equal(test, nat_frame) def test_to_csv_with_dst_transitions(self): with ensure_clean('csv_date_format_with_dst') as path: # make sure we are not failing on transitions times = pd.date_range("2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous='infer') for i in [times, times + pd.Timedelta('10s')]: time_range = np.array(range(len(i)), dtype='int64') df = DataFrame({'A': time_range}, index=i) df.to_csv(path, index=True) # we have to reconvert the index as we # don't parse the tz's result = read_csv(path, index_col=0) result.index = to_datetime(result.index).tz_localize( 'UTC').tz_convert('Europe/London') assert_frame_equal(result, df) # GH11619 idx = pd.date_range('2015-01-01', '2015-12-31', freq='H', tz='Europe/Paris') df = DataFrame({'values': 1, 'idx': idx}, index=idx) with ensure_clean('csv_date_format_with_dst') as path: df.to_csv(path, index=True) result = read_csv(path, index_col=0) result.index = to_datetime(result.index).tz_localize( 'UTC').tz_convert('Europe/Paris') result['idx'] = to_datetime(result['idx']).astype( 'datetime64[ns, Europe/Paris]') assert_frame_equal(result, df) # assert working df.astype(str) with ensure_clean('csv_date_format_with_dst') as path: df.to_pickle(path) result = pd.read_pickle(path) assert_frame_equal(result, df) def test_to_csv_quoting(self): df = DataFrame({ 'c_string': ['a', 'b,c'], 'c_int': [42, np.nan], 'c_float': [1.0, 3.2], 'c_bool': [True, False], }) expected = """\ ,c_bool,c_float,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,"b,c" """ result = df.to_csv() assert result == expected result = df.to_csv(quoting=None) assert result == expected result = df.to_csv(quoting=csv.QUOTE_MINIMAL) assert result == expected expected = """\ "","c_bool","c_float","c_int","c_string" "0","True","1.0","42.0","a" "1","False","3.2","","b,c" """ result = df.to_csv(quoting=csv.QUOTE_ALL) assert result == expected # see gh-12922, gh-13259: make sure changes to # the formatters do not break this behaviour expected = """\ "","c_bool","c_float","c_int","c_string" 0,True,1.0,42.0,"a" 1,False,3.2,"","b,c" """ result = df.to_csv(quoting=csv.QUOTE_NONNUMERIC) assert result == expected msg = "need to escape, but no escapechar set" tm.assert_raises_regex(csv.Error, msg, df.to_csv, quoting=csv.QUOTE_NONE) tm.assert_raises_regex(csv.Error, msg, df.to_csv, quoting=csv.QUOTE_NONE, escapechar=None) expected = """\ ,c_bool,c_float,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,b!,c """ result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar='!') assert result == expected expected = """\ ,c_bool,c_ffloat,c_int,c_string 0,True,1.0,42.0,a 1,False,3.2,,bf,c """ result = df.to_csv(quoting=csv.QUOTE_NONE, escapechar='f') assert result == expected # see gh-3503: quoting Windows line terminators # presents with encoding? text = 'a,b,c\n1,"test \r\n",3\n' df = pd.read_csv(StringIO(text)) buf = StringIO() df.to_csv(buf, encoding='utf-8', index=False) assert buf.getvalue() == text # xref gh-7791: make sure the quoting parameter is passed through # with multi-indexes df = pd.DataFrame({'a': [1, 2], 'b': [3, 4], 'c': [5, 6]}) df = df.set_index(['a', 'b']) expected = '"a","b","c"\n"1","3","5"\n"2","4","6"\n' assert df.to_csv(quoting=csv.QUOTE_ALL) == expected def test_period_index_date_overflow(self): # see gh-15982 dates = ["1990-01-01", "2000-01-01", "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = pd.DataFrame([4, 5, 6], index=index) result = df.to_csv() expected = ',0\n1990-01-01,4\n2000-01-01,5\n3005-01-01,6\n' assert result == expected date_format = "%m-%d-%Y" result = df.to_csv(date_format=date_format) expected = ',0\n01-01-1990,4\n01-01-2000,5\n01-01-3005,6\n' assert result == expected # Overflow with pd.NaT dates = ["1990-01-01", pd.NaT, "3005-01-01"] index = pd.PeriodIndex(dates, freq="D") df = pd.DataFrame([4, 5, 6], index=index) result = df.to_csv() expected = ',0\n1990-01-01,4\n,5\n3005-01-01,6\n' assert result == expected
mit
jerabaul29/MaterialForMEK3230
FlyingSeed_codeExperiment/select_valid_range.py
1
3755
from scipy import misc import os import fnmatch import numpy as np import matplotlib.pyplot as plt from scipy import ndimage from scipy import signal from tqdm import tqdm import pickle # %matplotlib inline ################################################################################# # all functions ---------------------------------------------------------------- class generateDataOnClick: def __init__(self, verbose=0): self.position_on_click_accumulator = [] self.verbose = verbose def position_on_click(self, event): x, y = event.x, event.y if event.button == 1: if event.inaxes is not None: if self.verbose > 0: print 'data coords:' + str(event.xdata) + " , " + str(event.ydata) self.position_on_click_accumulator.append((event.xdata, event.ydata)) plt.axvline(event.xdata, color='r') plt.show() def return_positions(self): return self.position_on_click_accumulator def select_valid_range(verbose=0): pos_seed = np.asarray(list_pos_seed) plt.figure() plt.plot(pos_seed[:, 0], label='x position') plt.plot(pos_seed[:, 1], label='y position') plt.xlabel('Frame number') plt.ylabel('Position seed (pxl)') plt.legend(loc=2) generate_data_on_click_object = generateDataOnClick() plt.connect('button_press_event', generate_data_on_click_object.position_on_click) plt.show() selected_positions_pixels = generate_data_on_click_object.return_positions() x_position_1 = int(np.floor(selected_positions_pixels[0][0])) x_position_2 = int(np.floor(selected_positions_pixels[1][0])) data_valid_range = np.array([x_position_1, x_position_2]) # save the valid range np.savetxt(path + list_cases[ind_case] + '/' + "valid_range.csv", data_valid_range, delimiter=",") def save_one_result(result_data, result_name): with open(path + list_cases[ind_case] + '/' + result_name + '.pkl', 'w') as crrt_file: pickle.dump(result_data, crrt_file, pickle.HIGHEST_PROTOCOL) def load_one_result(result_name): with open(path + list_cases[ind_case] + '/' + result_name + '.pkl', 'r') as crrt_file: result_data = pickle.load(crrt_file) return result_data ################################################################################# # analysis of the data path = '/media/hydroubuntu/Seagate Expansion Drive/data_lab_module_07122016/data_seed/' sampling_frequency = 30 # loads the calibration -------------------------------------------------------- poly_fit_calibration = np.load(path + 'poly_fit_calibration.npy') # load list of all cases ------------------------------------------------------- list_cases = [] for file_name in os.listdir(path): if fnmatch.fnmatch(file_name, 'Test_*'): list_cases.append(file_name) print "Cases to process:" for crrt_case in list_cases: print crrt_case print " " nbr_cases = len(list_cases) print "Number of cases: " + str(nbr_cases) # select range on all cases ---------------------------------------------------- for ind_case in range(nbr_cases): print "" print "------------------------------------------------------------" print "Analysing case: " + str(list_cases[ind_case]) path_to_images = path + list_cases[ind_case] + '/' print "Load generated data" list_pos_seed = load_one_result('list_pos_seed') list_width_data_seed = load_one_result('list_width_data_seed') list_true_wing_tip = load_one_result('list_true_wing_tip') print "" print "Select valid range" print "Click on the figure to select the range to use for later analysis" print "then close the figure." select_valid_range()
mit
mph-/lcapy
lcapy/noiseomegaexpr.py
1
5062
"""This module provides the AngularFourierNoiseDomainExpression class to represent omega-domain (angular Fourier domain) noise expressions. Copyright 2014--2020 Michael Hayes, UCECE """ from __future__ import division from .sym import symsimplify from .functions import sqrt from .sym import pi, omegasym, fsym from .state import state from .domains import AngularFourierNoiseDomain from .expr import expr from .noiseexpr import NoiseExpression from .fexpr import f, FourierDomainExpression from .omegaexpr import AngularFourierDomainExpression import sympy as sym import numpy as np class AngularFourierNoiseDomainExpression(AngularFourierNoiseDomain, NoiseExpression): """Angular frequency domain (one-sided) noise spectrum expression (amplitude spectral density). This characterises a wide-sense stationary, zero-mean Gaussian noise random process. When performing arithmetic on two AngularFourierNoiseDomainExpression expressions it is assumed that they are uncorrelated unless they have the same nid (noise indentifier). If the nid is not specified, a new one is created. Uncorrelated noise expressions are added in quadrature (on a power basis). Thus (AngularFourierNoiseDomainExpression(3) + AngularFourierNoiseDomainExpression(4)).expr = 5 since 5 = sqrt(3**2 + 4**2) AngularFourierNoiseDomainExpression(3) != AngularFourierNoiseDomainExpression(3) since they are different noise realisations albeit with the same properties. However, AngularFourierNoiseDomainExpression(3).expr == AngularFourierNoiseDomainExpression(3).expr. Similarly, AngularFourierNoiseDomainExpression(3, nid='n1') == AngularFourierNoiseDomainExpression(3, nid='n1') since they have the same noise identifier and thus have the same realisation. Caution: The sum of two noise expressions generates a noise expression with a new nid. This can lead to unexpected results since noise expressions with different nids are assumed to be uncorrelated. For example, consider: a = AngularFourierNoiseDomainExpression(3); b = AngularFourierNoiseDomainExpression(4) a + b - b gives sqrt(41) and a + b - a gives sqrt(34). This case is correctly handled by the SuperpositionVoltage and SuperpositionCurrent classes since each noise component is stored and considered separately. (SuperpositionVoltage(a) + SuperpositionVoltage(b) - SuperpositionVoltage(b)).n gives 3 as expected. """ var = omegasym def plot(self, omegavector=None, **kwargs): """Plot frequency response at values specified by omegavector. There are many plotting options, see matplotlib.pyplot.plot. For example: V.plot(omegavector, log_frequency=True) V.real.plot(omegavector, color='black') V.phase.plot(omegavector, color='black', linestyle='--') By default complex data is plotted as separate plots of magnitude (dB) and phase. """ from .plot import plot_angular_frequency return plot_angular_frequency(self, omegavector, **kwargs) def transform(self, arg, **assumptions): """Transform into a different domain.""" arg = expr(arg) if isinstance(arg, FourierDomainExpression): result = self.subs(f * 2 * pi) cls = self._class_by_quantity(self.quantity, 'fourier noise') return cls(result, nid=self.nid, **assumptions) elif isinstance(arg, AngularFourierDomainExpression): result = self.subs(arg, **assumptions) cls = self._class_by_quantity(self.quantity, 'angular fourier noise') return cls(result, nid=self.nid, **assumptions) return super(AngularFourierNoiseDomainExpression, self).transform(arg, **assumptions) class AngularFourierNoiseDomainVoltage(AngularFourierNoiseDomainExpression): """Voltage noise amplitude spectral density (units V/rtrad/s). This can be a function of angular frequency, omega. For example, to model an opamp voltage noise: v = AngularFourierNoiseDomainVoltage(1e-8 / sqrt(omega) + 8e-9) """ quantity_label = 'Voltage noise spectral density' units = 'V/rtrad/s' class AngularFourierNoiseDomainCurrent(AngularFourierNoiseDomainExpression): """Current noise amplitude spectral density (units A/rtrad/s). This can be a function of angular frequency, omega. For example, to model an opamp current noise: i = AngularFourierNoiseDomainCurrent(3e-12 / sqrt(omega) + 200e-15) """ quantity_label = 'Current noise spectral density' units = 'A/rtrad/s' from .expressionclasses import expressionclasses classes = expressionclasses.register('angular fourier noise', AngularFourierNoiseDomainExpression, None, ('voltage', 'current')) AngularFourierNoiseDomainVoltage = classes['voltage'] AngularFourierNoiseDomainCurrent = classes['current'] from .omegaexpr import omega from .noisefexpr import FourierNoiseDomainExpression
lgpl-2.1
stephenhelms/WormTracker
python/tsstats.py
1
8100
import numpy as np import numpy.ma as ma from numpy import linalg as LA import matplotlib.pyplot as plt import itertools import collections from scipy import stats def acf(x, lags=500, exclude=None): if exclude is None: exclude = np.zeros(x.shape) exclude = np.cumsum(exclude.astype(int)) # from stackexchange x = x - x.mean() # remove mean if type(lags) is int: lags = range(lags) C = ma.zeros((len(lags),)) sigma2 = x.var() for i, l in enumerate(lags): if l == 0: C[i] = 1 elif l >= x.shape[0]: C[i] = ma.masked else: x0 = x[:-l].copy() x1 = x[l:].copy() reject = (exclude[l:]-exclude[:-l])>0 x0[reject] = ma.masked x1[reject] = ma.masked C[i] = (x0*x1).mean()/sigma2 return C def ccf(x, y, lags, exclude=None): if exclude is None: exclude = np.zeros(x.shape) exclude = np.cumsum(exclude.astype(int)) x = x - x.mean() # remove mean y = y - y.mean() if type(lags) is int: lags = np.arange(-lags,lags) C = ma.zeros((len(lags),)) sigma2 = x.std()*y.std() for i, l in enumerate(lags): if l == 0: C[i] = (x*y).mean()/sigma2 else: if l > 0: x0 = x[:-l].copy() y1 = y[l:].copy() else: x0 = y[:l].copy() y1 = x[-l:].copy() reject = (exclude[l:]-exclude[:-l])>0 x0[reject] = ma.masked y1[reject] = ma.masked C[i] = (x0*y1).mean()/sigma2 return C def acv(k, List): ''' Autocovariance k is the lag order ''' y = List.copy() y = y - y.mean() if k == 0: return (y*y).mean() else: return (y[:-k]*y[k:]).mean() def dotacf(x, lags=500, exclude=None): if exclude is None: exclude = np.zeros(x.shape) exclude = np.cumsum(exclude.astype(int)) if type(lags) is int: lags = xrange(lags) C = ma.zeros((len(lags),)) for i, l in enumerate(lags): if l == 0: C[i] = (x*x).sum(axis=1).mean() else: x0 = x[:-l, :].copy() x1 = x[l:, :].copy() reject = (exclude[l:]-exclude[:-l])>0 x0[reject, :] = ma.masked x1[reject, :] = ma.masked C[i] = (x0*x1).sum(axis=1).mean() return C def pacfe(p,j,List): ''' Partial autocorrelation function estimates p is the order of the AR(p) process j is the coefficient in an AR(p) process ''' if p==2 and j==1: return (acf(j,List)*(1-acf(p,List)))/(1-(acf(j,List))**2) elif p==2 and j==2: return (acf(2,List)-(acf(1,List))**2)/(1-(acf(1,List))**2) elif p==j and p!=2 and j!=2: c=0 for a in range(1,p): c+=pacfe(p-1,a,List)*acf(p-a,List) d=0 for b in range(1,p): d+=pacfe(p-1,b,List)*acf(b,List) return (acf(p,List)-c)/(1-d) else: return pacfe(p-1,j,List)-pacfe(p,p,List)*pacfe(p-1,p-j,List) def drift(x, lags=500, exclude=None): if exclude is None: exclude = np.zeros(x.shape) exclude = np.cumsum(exclude.astype(int)) if type(lags) is int: lags = xrange(lags) mu = ma.zeros((len(lags),)) for i, lag in enumerate(lags): if lag==0: mu[i] = 0 elif lag >= x.shape[0]: mu[i] = ma.masked else: x0 = x[lag:].copy() x1 = x[:-lag].copy() reject = (exclude[lag:]-exclude[:-lag])>0 x0[reject] = ma.masked x1[reject] = ma.masked displacements = x0 - x1 mu[i] = displacements.mean() return mu def unwrapma(x): # Adapted from numpy unwrap, this version ignores missing data idx = ma.array(np.arange(0,x.shape[0]), mask=x.mask) idxc = idx.compressed() xc = x.compressed() dd = np.diff(xc) ddmod = np.mod(dd+np.pi, 2*np.pi)-np.pi ddmod[(ddmod==-np.pi) & (dd > 0)] = np.pi phc_correct = ddmod - dd phc_correct[np.abs(dd)<np.pi] = 0 ph_correct = np.zeros(x.shape) ph_correct[idxc[1:]] = phc_correct up = x + ph_correct.cumsum() return up def nextpow2(n): ''' Returns the next highest power of 2 from n ''' m_f = np.log2(n) m_i = np.ceil(m_f) return 2**m_i def phaserand(X, independent=False, reduceHighFreqNoise=True): ''' Generates a randomized surrogate dataset for X, preserving linear temporal correlations. If independent is False (default), linear correlations between columns of x are also preserved. If X contains missing values, they are filled with the mean of that channel. The algorithm works by randomizing the phases in the Fourier domain. For non-independent shuffling, the same random phases are used for each channel. References: Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Doyne Farmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1), 77-94. Prichard, D. and Theiler, J. (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 73(7), 951-954. Podobnik, B., Fu, D. F., Stanley, H. E., & Ivanov, P. C. (2007). Power-law autocorrelated stochastic processes with long-range cross-correlations. The European Physical Journal B, 56(1), 47-52. ''' # Deal with array vs matrix by adding new axis if len(X.shape) == 1: X = X[:, np.newaxis] # Deal with missing data if isinstance(X, ma.MaskedArray): # truncate all missing data at beginning and end idxNotAllMissing = (~np.all(X.mask, axis=1)).nonzero()[0] X = X[idxNotAllMissing[0]:idxNotAllMissing[-1], :] X = X.filled(X.mean(axis=0)) # fill interior mask with the mean # Reduce high-frequency noise by min difference between first and last if reduceHighFreqNoise: delta = X - X[0, :] threshold = 1e-3*np.std(X, axis=0) # find last pt in which all the channels are about the same as the beginning # and also the index is even goodEndPt = np.nonzero((np.all(np.abs(delta) < threshold, axis=1)) & (np.arange(0, X.shape[1]) % 2 == 0))[0][-1] if goodEndPt > X.shape[0]/2: # make sure we keep at least half the data X = X[:goodEndPt, :] # Fourier transform and extract amplitude and phases # The frequencies are shifted so 0 is centered (fftshift) N = X.shape[0] #int(nextpow2(X.shape[0])) # size for FFT if N % 2 != 0: N = N-1 h = np.floor(N/2) # half the length of the data Z = np.fft.fft(X, N, axis=0) M = np.fft.fftshift(np.abs(Z), axes=0) # the amplitudes phase = np.fft.fftshift(np.angle(Z), axes=0) # the original phases # Randomize the phases. The phases need to be symmetric for postivie and # negative frequencies. if independent: # generate random phases for each channel randphase = 2.*np.pi*np.random.rand((h-1, X.shape[1])) # random phases newphase = np.zeros((N, X.shape[1])) # new phases to use newphase[0, :] = phase[0, :] # keep the zero freq (don't know why) newphase[1:h, :] = randphase[::-1, :] newphase[h, :] = phase[h, :] newphase[h+1:, :] = -randphase else: # generate one set of random phases (same as above) randphase = 2.*np.pi*np.random.rand(h-1) newphase = np.zeros((N, X.shape[1])) newphase[0, :] = phase[0, :] newphase[1:h, :] = randphase[::-1, np.newaxis] newphase[h, :] = phase[h, :] newphase[h+1:, :] = -randphase[:, np.newaxis] # Reconstruct the signal from the original amplitude and the new phases z2 = M*np.exp(newphase*1.j) # Return the time-domain signal return np.fft.ifft(np.fft.ifftshift(z2, axes=0), axis=0).real.squeeze()
apache-2.0
cauchycui/scikit-learn
sklearn/tests/test_multiclass.py
72
24581
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import fit_ovr from sklearn.multiclass import fit_ovo from sklearn.multiclass import fit_ecoc from sklearn.multiclass import predict_ovr from sklearn.multiclass import predict_ovo from sklearn.multiclass import predict_ecoc from sklearn.multiclass import predict_proba_ovr from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) with ignore_warnings(): assert_raises(ValueError, predict_ovr, [LinearSVC(), MultinomialNB()], LabelBinarizer(), []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) @ignore_warnings def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"], ["ham", "eggs"], ["ham"]] # y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]] Y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): # test input as lists of tuples clf = assert_warns(DeprecationWarning, OneVsRestClassifier(base_clf).fit, X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict([[0, 4, 4]])[0] assert_equal(set(y_pred), set(["spam", "eggs"])) assert_true(clf.multilabel_) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) @ignore_warnings def test_deprecated(): base_estimator = DecisionTreeClassifier(random_state=0) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] all_metas = [ (OneVsRestClassifier, fit_ovr, predict_ovr, predict_proba_ovr), (OneVsOneClassifier, fit_ovo, predict_ovo, None), (OutputCodeClassifier, fit_ecoc, predict_ecoc, None), ] for MetaEst, fit_func, predict_func, proba_func in all_metas: try: meta_est = MetaEst(base_estimator, random_state=0).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train, random_state=0) except TypeError: meta_est = MetaEst(base_estimator).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train) if len(fitted_return) == 2: estimators_, classes_or_lb = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, X_test), meta_est.predict(X_test)) if proba_func is not None: assert_almost_equal(proba_func(estimators_, X_test, is_multilabel=False), meta_est.predict_proba(X_test)) else: estimators_, classes_or_lb, codebook = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, codebook, X_test), meta_est.predict(X_test))
bsd-3-clause
DaveBackus/Data_Bootcamp
Code/SQL/SQL_support_code.py
2
14108
# -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd import sqlite3 import xlrd as xl # if this .sqlite db doesn't already exists, this will create it # if the .sqlite db *does* already exist, this establishes the desired connection con = sqlite3.connect("sql_sample_db.sqlite") # create pandas dataframes from each .csv file: sales_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/sales_table.csv') car_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/car_table.csv') salesman_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/salesman_table.csv') cust_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/cust_table.csv') dog_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/dog_table.csv') cat_table = pd.read_csv('https://raw.githubusercontent.com/DaveBackus/Data_Bootcamp/master/Code/SQL/cat_table.csv') #%% # make a list of the tables (dataframes) and table names: tables = [sales_table, car_table, salesman_table, cust_table, dog_table, cat_table] table_names = ['sales_table', 'car_table', 'salesman_table', 'cust_table', 'dog_table', 'cat_table'] # drop each table name if it already exists to avoid error if you rerun this bit of code # then add it back (or add it for the first time, if the table didn't already exist) for i in range(len(tables)): table_name = table_names[i] table = tables[i] con.execute("DROP TABLE IF EXISTS {}".format(table_name)) pd.io.sql.to_sql(table, "{}".format(table_name), con, index=False) # Function to make it easy to run queries on this mini-database def run(query): results = pd.read_sql("{}".format(query), con).fillna(' ') return results # create some dataframes to act as keys to clarify differences between difference rdbms rdbms_differences = pd.DataFrame() # show describe options describe_index = ['Reading a table'] describe_differences = pd.DataFrame({'SQLite' : pd.Series(['PRAGMA TABLE_INFO(table_name)'], index=describe_index), 'MySQL' : pd.Series(['DESCRIBE table_name'], index=describe_index), 'Microsoft SQL Server' : pd.Series(['SP_HELP table_name'], index=describe_index), 'Oracle' : pd.Series(['DESCRIBE table_table'], index=describe_index)}) rdbms_differences = rdbms_differences.append(describe_differences) # show limit options limit_df_index = ['LIMITING'] limit_differences = pd.DataFrame({'SQLite' : pd.Series(['LIMIT N'], index=limit_df_index), 'MySQL' : pd.Series(['LIMIT N'], index=limit_df_index), 'Microsoft SQL Server' : pd.Series(['SELECT TOP N column_a...'], index=limit_df_index), 'Oracle' : pd.Series(['WHERE ROWNUM <=N'], index=limit_df_index)}) rdbms_differences = rdbms_differences.append(limit_differences) # show compatibility with joins and different DBs join_df_index = ['JOIN or INNER JOIN', 'LEFT JOIN or LEFT OUTER JOIN', 'RIGHT JOIN or RIGHT OUTER JOIN', 'OUTER JOIN or FULL OUTER JOIN'] join_differences = pd.DataFrame({'SQLite' : pd.Series(['✓', '✓', 'not supported', 'not supported'], index=join_df_index), 'MySQL' : pd.Series(['✓', '✓', '✓', 'not supported'], index=join_df_index), 'Microsoft SQL Server' : pd.Series(['✓','✓','✓','✓'], index=join_df_index), 'Oracle' : pd.Series(['✓','✓','✓','✓'], index=join_df_index)}) rdbms_differences = rdbms_differences.append(join_differences) # show concat options: concat_df_index = ['Concatenating'] concat_differences = pd.DataFrame({'SQLite' : pd.Series(['||'], index=concat_df_index), 'MySQL' : pd.Series(['CONCAT(column_a, column_b)'], index=concat_df_index), 'Microsoft SQL Server' : pd.Series(['CONCAT(column_a, column_b) or +'], index=concat_df_index), 'Oracle' : pd.Series(['CONCAT(column_a, column_b) or ||'], index=concat_df_index)}) rdbms_differences = rdbms_differences.append(concat_differences) # show options for IF and CASE WHEN statements conditional_df_index = ['IF', 'CASE WHEN'] conditional_differences = pd.DataFrame({'SQLite' : pd.Series(['not supported', '✓'], index=conditional_df_index), 'MySQL' : pd.Series(['IF(condition, value_if_true, value_if_false)', '✓'], index=conditional_df_index), 'Microsoft SQL Server' : pd.Series(['IF condition PRINT value_if_true...','✓'], index=conditional_df_index), 'Oracle' : pd.Series(['IF condition THEN value_if_true ELSIF...END IF','✓'], index=conditional_df_index)}) rdbms_differences = rdbms_differences.append(conditional_differences) rollup_df_index = ['ROLLUP'] rollup_differences = pd.DataFrame({'SQLite' : pd.Series(['not supported'], index=rollup_df_index), 'MySQL' : pd.Series(['GROUP BY column_a WITH ROLLUP'], index=rollup_df_index), 'Microsoft SQL Server' : pd.Series(['GROUP BY column_a WITH ROLLUP'], index=rollup_df_index), 'Oracle' : pd.Series(['GROUP BY ROLLUP (column_a)'], index=rollup_df_index)}) rdbms_differences = rdbms_differences.append(rollup_differences) # Below are all the cheats to the challenges describe_cheat = '''PRAGMA TABLE_INFO(car_table)''' select_cheat1 = ''' SELECT * FROM car_table ''' select_cheat2 = ''' SELECT model_id, model FROM car_table ''' select_cheat3 = ''' SELECT DISTINCT salesman_id FROM sales_table ''' where_cheat1 = ''' SELECT * FROM sales_table WHERE payment_type != 'cash' AND model_id IN (31,36) ''' where_cheat2 = ''' SELECT * FROM sales_table WHERE revenue BETWEEN 24000 AND 25000 ''' where_cheat3 = ''' SELECT * FROM car_table WHERE model LIKE 'out%' ''' order_cheat = ''' SELECT * FROM car_table ORDER BY sticker_price DESC ''' alias_cheat = ''' SELECT model_id AS Model, revenue AS Rev FROM sales_table WHERE Model = 36 ORDER BY Rev DESC ''' join_cheat1 = ''' SELECT * FROM sales_table JOIN cust_table on sales_table.customer_id = cust_table.customer_id ''' join_cheat2 = ''' SELECT gender, revenue FROM sales_table JOIN cust_table on sales_table.customer_id = cust_table.customer_id ''' join_cheat3 = ''' SELECT sales_table.customer_id, gender, revenue FROM sales_table JOIN cust_table on sales_table.customer_id = cust_table.customer_id **OR** SELECT cust_table.customer_id, gender, revenue FROM sales_table JOIN cust_table on sales_table.customer_id = cust_table.customer_id ''' join_cheat4 = ''' SELECT * FROM sales_table JOIN salesman_table ON sales_table.salesman_id = salesman_table.id ''' join_cheat5 = ''' SELECT S.id AS transaction_id, S.salesman_id as sales_table_salesman_id, SM.id as salesman_table_id FROM sales_table AS S JOIN salesman_table AS SM ON S.salesman_id = SM.id ''' inner_join_cheat = ''' SELECT * FROM Dog_Table D JOIN Cat_Table C ON D.Owner_Name = C.Owner_Name -- OR, to make it cleaner -- SELECT D.Owner_Name, Dog_Name, Cat_Name FROM Dog_Table D JOIN Cat_Table C ON D.Owner_Name = C.Owner_Name ''' left_join_cheat = ''' SELECT * FROM Dog_Table D LEFT JOIN Cat_Table C ON D.Owner_Name = C.Owner_Name -- OR, to make it cleaner -- SELECT C.Owner_Name, Cat_Name, Dog_Name FROM Dog_Table D LEFT JOIN Cat_Table C ON D.Owner_Name = C.Owner_Name ''' operator_cheat = ''' SELECT S.id, C.model, S.revenue, C.cogs, (S.revenue - C.cogs)/(C.cogs) AS gross_profit FROM sales_table S JOIN car_table C on S.model_id = C.model_id LIMIT 5 ''' concat_cheat = ''' SELECT model|| ' (' || make || ')' AS 'Model (Make)' FROM car_table ''' avg_cheat = ''' SELECT ROUND(AVG(cogs), 2) AS AVG_COGS FROM car_table ''' count_cheat = ''' SELECT COUNT(*) cars FROM car_table --bonus points (run separately)-- SELECT COUNT(*) Subarus FROM car_table WHERE make = 'Subaru' ''' avg_cheat2 = ''' SELECT AVG(C.sticker_price - S.revenue) AS Avg_Difference FROM sales_table S JOIN car_table C on C.model_id = S.model_id JOIN cust_table CUST on CUST.customer_id = S.customer_id WHERE CUST.age > 35 ''' concat_cheat = ''' SELECT GROUP_CONCAT(last_name, ', ') AS Last_Names FROM salesman_table ''' group_cheat = ''' SELECT C.make, AVG(S.revenue - C.cogs) FROM sales_table S JOIN car_table C on S.model_id = C.model_id GROUP BY C.make --bonus points-- SELECT C.make as Car_Maker, ROUND(AVG(S.revenue - C.cogs), 2) AS Avg_Gross_Profit FROM sales_table S JOIN car_table C on S.model_id = C.model_id JOIN salesman_table SM on S.salesman_id = SM.id WHERE SM.first_name = 'Michael' GROUP BY Car_Maker ORDER BY Avg_Gross_Profit DESC --solutions to WHERE problem-- SELECT SM.first_name as Salesman, C.make as Car_Maker, ROUND(AVG(S.revenue - C.cogs), 2) AS Avg_Gross_Profit FROM sales_table S JOIN car_table C on S.model_id = C.model_id JOIN salesman_table SM on S.salesman_id = SM.id WHERE SM.first_name = 'Michael' GROUP BY Car_Maker ORDER BY Avg_Gross_Profit DESC ''' group_cheat1 = ''' SELECT make as Maker, GROUP_CONCAT(model) as Car_Models FROM car_table GROUP BY Maker ''' group_cheat2 = ''' SELECT SM.first_name || ' ' || SM.last_name AS Salesperson, CUST.gender AS Gender, SUM(S.revenue) AS Total_Revenue, COUNT(S.id) AS Cars_Sold FROM sales_table S JOIN salesman_table SM ON S.salesman_id = SM.id JOIN cust_table CUST ON S.customer_id = CUST.customer_id GROUP BY Salesperson, Gender ''' having_cheat = ''' SELECT C.model as Car_Model, AVG(S.revenue) as Avg_Revenue FROM sales_table S JOIN car_table C on S.model_id = C.model_id GROUP BY Car_Model HAVING Avg_Revenue < 18000 ''' having_where_cheat = ''' SELECT SM.last_name as Salesperson, ROUND(AVG(S.revenue), 2) as Avg_Revenue FROM sales_table S JOIN salesman_table SM ON S.salesman_id = SM.id JOIN cust_table CUST ON S.customer_id = CUST.customer_id WHERE CUST.gender = 'female' GROUP BY Salesperson HAVING Avg_Revenue > 20000 ''' case_cheat = ''' SELECT C.model as Car_Model, SUM(CASE WHEN CUST.gender = 'female' THEN S.revenue END) Female_Customer_Revenue, SUM(CASE WHEN CUST.gender = 'male' THEN S.revenue END) Male_Customer_Revenue FROM sales_table S JOIN car_table C ON S.model_id = C.model_id JOIN cust_table CUST ON CUST.customer_id = S.customer_id GROUP BY Car_Model ''' case_cheat2 = ''' SELECT CASE WHEN age BETWEEN 18 AND 24 THEN '18-24 years' WHEN age BETWEEN 25 AND 34 THEN '25-34 years' WHEN age BETWEEN 35 AND 44 THEN '35-45 years' WHEN age BETWEEN 45 AND 54 THEN '45-54 years' WHEN age BETWEEN 55 AND 64 THEN '55-64 years' END Age_Group, SUM(CASE WHEN gender = 'female' THEN 1 END) Female_Customers, SUM(CASE WHEN gender = 'male' THEN 1 END) Male_Customers FROM cust_table GROUP BY Age_Group --bonus points-- SELECT CASE WHEN age BETWEEN 18 AND 24 THEN '18-24 years' WHEN age BETWEEN 25 AND 34 THEN '25-34 years' WHEN age BETWEEN 35 AND 44 THEN '35-45 years' WHEN age BETWEEN 45 AND 54 THEN '45-54 years' WHEN age BETWEEN 55 AND 64 THEN '55-64 years' END Age_Group, ROUND(SUM(CASE WHEN gender = 'female' THEN 1. END)/COUNT(*), 2) Female_Customers, ROUND(SUM(CASE WHEN gender = 'male' THEN 1. END)/COUNT(*), 2) Male_Customers FROM cust_table GROUP BY Age_Group ''' nest_cheat1 = ''' SELECT model AS Car_Model, cogs AS COGs, (SELECT AVG(cogs) from car_table) AS Average_COGs FROM car_table --bonus points-- SELECT model AS Car_Model, cogs AS COGs, (SELECT AVG(cogs) from car_table) AS Average_COGs, cogs - (SELECT AVG(cogs) from car_table) AS Difference FROM car_table ''' nest_cheat2 = ''' SELECT SUM(revenue) as Female_Revenue FROM sales_table WHERE customer_id in (SELECT customer_id FROM cust_table WHERE gender = 'female') ''' union_cheat1 = ''' SELECT model, cogs FROM car_table UNION ALL SELECT 'Combined_Average', ROUND(AVG(cogs), 2) FROM car_table '''
mit
mclevey/seaborn
seaborn/tests/test_axisgrid.py
11
42805
import warnings import numpy as np import pandas as pd from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt from distutils.version import LooseVersion import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif import pandas.util.testing as tm from .. import axisgrid as ag from .. import rcmod from ..palettes import color_palette from ..distributions import kdeplot from ..categorical import pointplot from ..linearmodels import pairplot from ..utils import categorical_order rs = np.random.RandomState(0) old_matplotlib = LooseVersion(mpl.__version__) < "1.4" class TestFacetGrid(object): df = pd.DataFrame(dict(x=rs.normal(size=60), y=rs.gamma(4, size=60), a=np.repeat(list("abc"), 20), b=np.tile(list("mn"), 30), c=np.tile(list("tuv"), 20), d=np.tile(list("abcdefghij"), 6))) def test_self_data(self): g = ag.FacetGrid(self.df) nt.assert_is(g.data, self.df) plt.close("all") def test_self_fig(self): g = ag.FacetGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) plt.close("all") def test_self_axes(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_axes_array_size(self): g1 = ag.FacetGrid(self.df) nt.assert_equal(g1.axes.shape, (1, 1)) g2 = ag.FacetGrid(self.df, row="a") nt.assert_equal(g2.axes.shape, (3, 1)) g3 = ag.FacetGrid(self.df, col="b") nt.assert_equal(g3.axes.shape, (1, 2)) g4 = ag.FacetGrid(self.df, hue="c") nt.assert_equal(g4.axes.shape, (1, 1)) g5 = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g5.axes.shape, (3, 2)) for ax in g5.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_single_axes(self): g1 = ag.FacetGrid(self.df) nt.assert_is_instance(g1.ax, plt.Axes) g2 = ag.FacetGrid(self.df, row="a") with nt.assert_raises(AttributeError): g2.ax g3 = ag.FacetGrid(self.df, col="a") with nt.assert_raises(AttributeError): g3.ax g4 = ag.FacetGrid(self.df, col="a", row="b") with nt.assert_raises(AttributeError): g4.ax def test_col_wrap(self): g = ag.FacetGrid(self.df, col="d") nt.assert_equal(g.axes.shape, (1, 10)) nt.assert_is(g.facet_axis(0, 8), g.axes[0, 8]) g_wrap = ag.FacetGrid(self.df, col="d", col_wrap=4) nt.assert_equal(g_wrap.axes.shape, (10,)) nt.assert_is(g_wrap.facet_axis(0, 8), g_wrap.axes[8]) nt.assert_equal(g_wrap._ncol, 4) nt.assert_equal(g_wrap._nrow, 3) with nt.assert_raises(ValueError): g = ag.FacetGrid(self.df, row="b", col="d", col_wrap=4) df = self.df.copy() df.loc[df.d == "j"] = np.nan g_missing = ag.FacetGrid(df, col="d") nt.assert_equal(g_missing.axes.shape, (1, 9)) g_missing_wrap = ag.FacetGrid(df, col="d", col_wrap=4) nt.assert_equal(g_missing_wrap.axes.shape, (9,)) plt.close("all") def test_normal_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df) npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="c") npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="a", row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, g.axes[:-1, 1:].flat) plt.close("all") def test_wrapped_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df, col="a", col_wrap=2) npt.assert_array_equal(g._bottom_axes, g.axes[np.array([1, 2])].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:1].flat) npt.assert_array_equal(g._left_axes, g.axes[np.array([0, 2])].flat) npt.assert_array_equal(g._not_left_axes, g.axes[np.array([1])].flat) npt.assert_array_equal(g._inner_axes, null) plt.close("all") def test_figure_size(self): g = ag.FacetGrid(self.df, row="a", col="b") npt.assert_array_equal(g.fig.get_size_inches(), (6, 9)) g = ag.FacetGrid(self.df, row="a", col="b", size=6) npt.assert_array_equal(g.fig.get_size_inches(), (12, 18)) g = ag.FacetGrid(self.df, col="c", size=4, aspect=.5) npt.assert_array_equal(g.fig.get_size_inches(), (6, 4)) plt.close("all") def test_figure_size_with_legend(self): g1 = ag.FacetGrid(self.df, col="a", hue="c", size=4, aspect=.5) npt.assert_array_equal(g1.fig.get_size_inches(), (6, 4)) g1.add_legend() nt.assert_greater(g1.fig.get_size_inches()[0], 6) g2 = ag.FacetGrid(self.df, col="a", hue="c", size=4, aspect=.5, legend_out=False) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) g2.add_legend() npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) plt.close("all") def test_legend_data(self): g1 = ag.FacetGrid(self.df, hue="a") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=3) nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(a_levels)) for label, level in zip(labels, a_levels): nt.assert_equal(label.get_text(), level) plt.close("all") def test_legend_data_missing_level(self): g1 = ag.FacetGrid(self.df, hue="a", hue_order=list("azbc")) g1.map(plt.plot, "x", "y") g1.add_legend() b, g, r, p = color_palette(n_colors=4) palette = [b, r, p] nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), 4) for label, level in zip(labels, list("azbc")): nt.assert_equal(label.get_text(), level) plt.close("all") def test_get_boolean_legend_data(self): self.df["b_bool"] = self.df.b == "m" g1 = ag.FacetGrid(self.df, hue="b_bool") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=2) nt.assert_equal(g1._legend.get_title().get_text(), "b_bool") b_levels = list(map(str, categorical_order(self.df.b_bool))) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(b_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(b_levels)) for label, level in zip(labels, b_levels): nt.assert_equal(label.get_text(), level) plt.close("all") def test_legend_options(self): g1 = ag.FacetGrid(self.df, hue="b") g1.map(plt.plot, "x", "y") g1.add_legend() def test_legendout_with_colwrap(self): g = ag.FacetGrid(self.df, col="d", hue='b', col_wrap=4, legend_out=False) g.map(plt.plot, "x", "y", linewidth=3) g.add_legend() def test_subplot_kws(self): g = ag.FacetGrid(self.df, subplot_kws=dict(axisbg="blue")) for ax in g.axes.flat: nt.assert_equal(ax.get_axis_bgcolor(), "blue") @skipif(old_matplotlib) def test_gridspec_kws(self): ratios = [3, 1, 2] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios, height_ratios=ratios) g = ag.FacetGrid(self.df, col='c', row='a', gridspec_kws=gskws) # clear out all ticks for ax in g.axes.flat: ax.set_xticks([]) ax.set_yticks([]) g.fig.tight_layout() widths, heights = np.meshgrid(sizes, sizes) for n, ax in enumerate(g.axes.flat): npt.assert_almost_equal( ax.get_position().width, widths.flatten()[n], decimal=2 ) npt.assert_almost_equal( ax.get_position().height, heights.flatten()[n], decimal=2 ) @skipif(old_matplotlib) def test_gridspec_kws_col_wrap(self): ratios = [3, 1, 2, 1, 1] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='d', col_wrap=5, gridspec_kws=gskws) @skipif(not old_matplotlib) def test_gridsic_kws_old_mpl(self): ratios = [3, 1, 2] sizes = [0.46, 0.15, 0.31] gskws = dict(width_ratios=ratios, height_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='c', row='a', gridspec_kws=gskws) def test_data_generator(self): g = ag.FacetGrid(self.df, row="a") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) tup, data = d[1] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) g = ag.FacetGrid(self.df, row="a", col="b") d = list(g.facet_data()) nt.assert_equal(len(d), 6) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "m").all()) tup, data = d[1] nt.assert_equal(tup, (0, 1, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "n").all()) tup, data = d[2] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) nt.assert_true((data["b"] == "m").all()) g = ag.FacetGrid(self.df, hue="c") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[1] nt.assert_equal(tup, (0, 0, 1)) nt.assert_true((data["c"] == "u").all()) plt.close("all") def test_map(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") g.map(plt.plot, "x", "y", linewidth=3) lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linewidth(), 3) x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_map_dataframe(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") plot = lambda x, y, data=None, **kws: plt.plot(data[x], data[y], **kws) g.map_dataframe(plot, "x", "y", linestyle="--") lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linestyle(), "--") x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_set(self): g = ag.FacetGrid(self.df, row="a", col="b") xlim = (-2, 5) ylim = (3, 6) xticks = [-2, 0, 3, 5] yticks = [3, 4.5, 6] g.set(xlim=xlim, ylim=ylim, xticks=xticks, yticks=yticks) for ax in g.axes.flat: npt.assert_array_equal(ax.get_xlim(), xlim) npt.assert_array_equal(ax.get_ylim(), ylim) npt.assert_array_equal(ax.get_xticks(), xticks) npt.assert_array_equal(ax.get_yticks(), yticks) plt.close("all") def test_set_titles(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "a = a | b = m") nt.assert_equal(g.axes[0, 1].get_title(), "a = a | b = n") nt.assert_equal(g.axes[1, 0].get_title(), "a = b | b = m") # Test a provided title g.set_titles("{row_var} == {row_name} \/ {col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "a == a \/ b == m") nt.assert_equal(g.axes[0, 1].get_title(), "a == a \/ b == n") nt.assert_equal(g.axes[1, 0].get_title(), "a == b \/ b == m") # Test a single row g = ag.FacetGrid(self.df, col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") # test with dropna=False g = ag.FacetGrid(self.df, col="b", hue="b", dropna=False) g.map(plt.plot, 'x', 'y') plt.close("all") def test_set_titles_margin_titles(self): g = ag.FacetGrid(self.df, row="a", col="b", margin_titles=True) g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") nt.assert_equal(g.axes[1, 0].get_title(), "") # Test the row "titles" nt.assert_equal(g.axes[0, 1].texts[0].get_text(), "a = a") nt.assert_equal(g.axes[1, 1].texts[0].get_text(), "a = b") # Test a provided title g.set_titles(col_template="{col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "b == m") nt.assert_equal(g.axes[0, 1].get_title(), "b == n") nt.assert_equal(g.axes[1, 0].get_title(), "") plt.close("all") def test_set_ticklabels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = [l.get_text() + "h" for l in g.axes[1, 0].get_xticklabels()] ylab = [l.get_text() for l in g.axes[1, 0].get_yticklabels()] g.set_xticklabels(xlab) g.set_yticklabels(rotation=90) got_x = [l.get_text() + "h" for l in g.axes[1, 1].get_xticklabels()] got_y = [l.get_text() for l in g.axes[0, 0].get_yticklabels()] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) x, y = np.arange(10), np.arange(10) df = pd.DataFrame(np.c_[x, y], columns=["x", "y"]) g = ag.FacetGrid(df).map(pointplot, "x", "y") g.set_xticklabels(step=2) got_x = [int(l.get_text()) for l in g.axes[0, 0].get_xticklabels()] npt.assert_array_equal(x[::2], got_x) g = ag.FacetGrid(self.df, col="d", col_wrap=5) g.map(plt.plot, "x", "y") g.set_xticklabels(rotation=45) g.set_yticklabels(rotation=75) for ax in g._bottom_axes: for l in ax.get_xticklabels(): nt.assert_equal(l.get_rotation(), 45) for ax in g._left_axes: for l in ax.get_yticklabels(): nt.assert_equal(l.get_rotation(), 75) plt.close("all") def test_set_axis_labels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = 'xx' ylab = 'yy' g.set_axis_labels(xlab, ylab) got_x = [ax.get_xlabel() for ax in g.axes[-1, :]] got_y = [ax.get_ylabel() for ax in g.axes[:, 0]] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) plt.close("all") def test_axis_lims(self): g = ag.FacetGrid(self.df, row="a", col="b", xlim=(0, 4), ylim=(-2, 3)) nt.assert_equal(g.axes[0, 0].get_xlim(), (0, 4)) nt.assert_equal(g.axes[0, 0].get_ylim(), (-2, 3)) plt.close("all") def test_data_orders(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g.row_names, list("abc")) nt.assert_equal(g.col_names, list("mn")) nt.assert_equal(g.hue_names, list("tuv")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bca"), col_order=list("nm"), hue_order=list("vtu")) nt.assert_equal(g.row_names, list("bca")) nt.assert_equal(g.col_names, list("nm")) nt.assert_equal(g.hue_names, list("vtu")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bcda"), col_order=list("nom"), hue_order=list("qvtu")) nt.assert_equal(g.row_names, list("bcda")) nt.assert_equal(g.col_names, list("nom")) nt.assert_equal(g.hue_names, list("qvtu")) nt.assert_equal(g.axes.shape, (4, 3)) plt.close("all") def test_palette(self): rcmod.set() g = ag.FacetGrid(self.df, hue="c") nt.assert_equal(g._colors, color_palette(n_colors=3)) g = ag.FacetGrid(self.df, hue="d") nt.assert_equal(g._colors, color_palette("husl", 10)) g = ag.FacetGrid(self.df, hue="c", palette="Set2") nt.assert_equal(g._colors, color_palette("Set2", 3)) dict_pal = dict(t="red", u="green", v="blue") list_pal = color_palette(["red", "green", "blue"], 3) g = ag.FacetGrid(self.df, hue="c", palette=dict_pal) nt.assert_equal(g._colors, list_pal) list_pal = color_palette(["green", "blue", "red"], 3) g = ag.FacetGrid(self.df, hue="c", hue_order=list("uvt"), palette=dict_pal) nt.assert_equal(g._colors, list_pal) plt.close("all") def test_hue_kws(self): kws = dict(marker=["o", "s", "D"]) g = ag.FacetGrid(self.df, hue="c", hue_kws=kws) g.map(plt.plot, "x", "y") for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) def test_dropna(self): df = self.df.copy() hasna = pd.Series(np.tile(np.arange(6), 10), dtype=np.float) hasna[hasna == 5] = np.nan df["hasna"] = hasna g = ag.FacetGrid(df, dropna=False, row="hasna") nt.assert_equal(g._not_na.sum(), 60) g = ag.FacetGrid(df, dropna=True, row="hasna") nt.assert_equal(g._not_na.sum(), 50) plt.close("all") @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all") class TestPairGrid(object): rs = np.random.RandomState(sum(map(ord, "PairGrid"))) df = pd.DataFrame(dict(x=rs.normal(size=80), y=rs.randint(0, 4, size=(80)), z=rs.gamma(3, size=80), a=np.repeat(list("abcd"), 20), b=np.repeat(list("abcdefgh"), 10))) def test_self_data(self): g = ag.PairGrid(self.df) nt.assert_is(g.data, self.df) plt.close("all") def test_ignore_datelike_data(self): df = self.df.copy() df['date'] = pd.date_range('2010-01-01', periods=len(df), freq='d') result = ag.PairGrid(self.df).data expected = df.drop('date', axis=1) tm.assert_frame_equal(result, expected) plt.close("all") def test_self_fig(self): g = ag.PairGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) plt.close("all") def test_self_axes(self): g = ag.PairGrid(self.df) for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) plt.close("all") def test_default_axes(self): g = ag.PairGrid(self.df) nt.assert_equal(g.axes.shape, (3, 3)) nt.assert_equal(g.x_vars, ["x", "y", "z"]) nt.assert_equal(g.y_vars, ["x", "y", "z"]) nt.assert_true(g.square_grid) plt.close("all") def test_specific_square_axes(self): vars = ["z", "x"] g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, vars) nt.assert_equal(g.y_vars, vars) nt.assert_true(g.square_grid) plt.close("all") def test_specific_nonsquare_axes(self): x_vars = ["x", "y"] y_vars = ["z", "y", "x"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, x_vars) nt.assert_equal(g.y_vars, y_vars) nt.assert_true(not g.square_grid) x_vars = ["x", "y"] y_vars = "z" g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) plt.close("all") def test_specific_square_axes_with_array(self): vars = np.array(["z", "x"]) g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, list(vars)) nt.assert_equal(g.y_vars, list(vars)) nt.assert_true(g.square_grid) plt.close("all") def test_specific_nonsquare_axes_with_array(self): x_vars = np.array(["x", "y"]) y_vars = np.array(["z", "y", "x"]) g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) plt.close("all") def test_size(self): g1 = ag.PairGrid(self.df, size=3) npt.assert_array_equal(g1.fig.get_size_inches(), (9, 9)) g2 = ag.PairGrid(self.df, size=4, aspect=.5) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 12)) g3 = ag.PairGrid(self.df, y_vars=["z"], x_vars=["x", "y"], size=2, aspect=2) npt.assert_array_equal(g3.fig.get_size_inches(), (8, 2)) plt.close("all") def test_map(self): vars = ["x", "y", "z"] g1 = ag.PairGrid(self.df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(self.df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate("abcd"): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) plt.close("all") def test_map_nonsquare(self): x_vars = ["x"] y_vars = ["y", "z"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) g.map(plt.scatter) x_in = self.df.x for i, i_var in enumerate(y_vars): ax = g.axes[i, 0] y_in = self.df[i_var] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) plt.close("all") def test_map_lower(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_lower(plt.scatter) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.triu_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") def test_map_upper(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_upper(plt.scatter) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_map_diag(self): g1 = ag.PairGrid(self.df) g1.map_diag(plt.hist) for ax in g1.diag_axes: nt.assert_equal(len(ax.patches), 10) g2 = ag.PairGrid(self.df) g2.map_diag(plt.hist, bins=15) for ax in g2.diag_axes: nt.assert_equal(len(ax.patches), 15) g3 = ag.PairGrid(self.df, hue="a") g3.map_diag(plt.hist) for ax in g3.diag_axes: nt.assert_equal(len(ax.patches), 40) plt.close("all") @skipif(old_matplotlib) def test_map_diag_and_offdiag(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_offdiag(plt.scatter) g.map_diag(plt.hist) for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") def test_palette(self): rcmod.set() g = ag.PairGrid(self.df, hue="a") nt.assert_equal(g.palette, color_palette(n_colors=4)) g = ag.PairGrid(self.df, hue="b") nt.assert_equal(g.palette, color_palette("husl", 8)) g = ag.PairGrid(self.df, hue="a", palette="Set2") nt.assert_equal(g.palette, color_palette("Set2", 4)) dict_pal = dict(a="red", b="green", c="blue", d="purple") list_pal = color_palette(["red", "green", "blue", "purple"], 4) g = ag.PairGrid(self.df, hue="a", palette=dict_pal) nt.assert_equal(g.palette, list_pal) list_pal = color_palette(["purple", "blue", "red", "green"], 4) g = ag.PairGrid(self.df, hue="a", hue_order=list("dcab"), palette=dict_pal) nt.assert_equal(g.palette, list_pal) plt.close("all") def test_hue_kws(self): kws = dict(marker=["o", "s", "d", "+"]) g = ag.PairGrid(self.df, hue="a", hue_kws=kws) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) g = ag.PairGrid(self.df, hue="a", hue_kws=kws, hue_order=list("dcab")) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) plt.close("all") @skipif(old_matplotlib) def test_hue_order(self): order = list("dcab") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") @skipif(old_matplotlib) def test_hue_order_missing_level(self): order = list("dcaeb") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") def test_nondefault_index(self): df = self.df.copy().set_index("b") vars = ["x", "y", "z"] g1 = ag.PairGrid(df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate("abcd"): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) plt.close("all") @skipif(old_matplotlib) def test_pairplot(self): vars = ["x", "y", "z"] g = pairplot(self.df) for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_reg(self): vars = ["x", "y", "z"] g = pairplot(self.df, kind="reg") for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_kde(self): vars = ["x", "y", "z"] g = pairplot(self.df, diag_kind="kde") for ax in g.diag_axes: nt.assert_equal(len(ax.lines), 1) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) plt.close("all") @skipif(old_matplotlib) def test_pairplot_markers(self): vars = ["x", "y", "z"] markers = ["o", "x", "s", "d"] g = pairplot(self.df, hue="a", vars=vars, markers=markers) nt.assert_equal(g.hue_kws["marker"], markers) plt.close("all") with nt.assert_raises(ValueError): g = pairplot(self.df, hue="a", vars=vars, markers=markers[:-2]) @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all") class TestJointGrid(object): rs = np.random.RandomState(sum(map(ord, "JointGrid"))) x = rs.randn(100) y = rs.randn(100) x_na = x.copy() x_na[10] = np.nan x_na[20] = np.nan data = pd.DataFrame(dict(x=x, y=y, x_na=x_na)) def test_margin_grid_from_arrays(self): g = ag.JointGrid(self.x, self.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_from_series(self): g = ag.JointGrid(self.data.x, self.data.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_from_dataframe(self): g = ag.JointGrid("x", "y", self.data) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) plt.close("all") def test_margin_grid_axis_labels(self): g = ag.JointGrid("x", "y", self.data) xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x") nt.assert_equal(ylabel, "y") g.set_axis_labels("x variable", "y variable") xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x variable") nt.assert_equal(ylabel, "y variable") plt.close("all") def test_dropna(self): g = ag.JointGrid("x_na", "y", self.data, dropna=False) nt.assert_equal(len(g.x), len(self.x_na)) g = ag.JointGrid("x_na", "y", self.data, dropna=True) nt.assert_equal(len(g.x), pd.notnull(self.x_na).sum()) plt.close("all") def test_axlims(self): lim = (-3, 3) g = ag.JointGrid("x", "y", self.data, xlim=lim, ylim=lim) nt.assert_equal(g.ax_joint.get_xlim(), lim) nt.assert_equal(g.ax_joint.get_ylim(), lim) nt.assert_equal(g.ax_marg_x.get_xlim(), lim) nt.assert_equal(g.ax_marg_y.get_ylim(), lim) def test_marginal_ticks(self): g = ag.JointGrid("x", "y", self.data) nt.assert_true(~len(g.ax_marg_x.get_xticks())) nt.assert_true(~len(g.ax_marg_y.get_yticks())) plt.close("all") def test_bivariate_plot(self): g = ag.JointGrid("x", "y", self.data) g.plot_joint(plt.plot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.y) plt.close("all") def test_univariate_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot_marginals(kdeplot) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) plt.close("all") def test_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot(plt.plot, kdeplot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.x) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) plt.close("all") def test_annotate(self): g = ag.JointGrid("x", "y", self.data) rp = stats.pearsonr(self.x, self.y) g.annotate(stats.pearsonr) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "pearsonr = %.2g; p = %.2g" % rp) g.annotate(stats.pearsonr, stat="correlation") annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "correlation = %.2g; p = %.2g" % rp) def rsquared(x, y): return stats.pearsonr(x, y)[0] ** 2 r2 = rsquared(self.x, self.y) g.annotate(rsquared) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "rsquared = %.2g" % r2) template = "{stat} = {val:.3g} (p = {p:.3g})" g.annotate(stats.pearsonr, template=template) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, template.format(stat="pearsonr", val=rp[0], p=rp[1])) plt.close("all") def test_space(self): g = ag.JointGrid("x", "y", self.data, space=0) joint_bounds = g.ax_joint.bbox.bounds marg_x_bounds = g.ax_marg_x.bbox.bounds marg_y_bounds = g.ax_marg_y.bbox.bounds nt.assert_equal(joint_bounds[2], marg_x_bounds[2]) nt.assert_equal(joint_bounds[3], marg_y_bounds[3]) @classmethod def teardown_class(cls): """Ensure that all figures are closed on exit.""" plt.close("all")
bsd-3-clause
treycausey/scikit-learn
examples/svm/plot_svm_regression.py
4
1429
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) ############################################################################### # Generate sample data import numpy as np X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model from sklearn.svm import SVR svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results import pylab as pl pl.scatter(X, y, c='k', label='data') pl.hold('on') pl.plot(X, y_rbf, c='g', label='RBF model') pl.plot(X, y_lin, c='r', label='Linear model') pl.plot(X, y_poly, c='b', label='Polynomial model') pl.xlabel('data') pl.ylabel('target') pl.title('Support Vector Regression') pl.legend() pl.show()
bsd-3-clause
Harefoot/TurboQUALTX
ET_Utils/WASP_Utils/__init__.py
1
11151
import numpy as np import pandas as pd import os import datetime from scipy.interpolate import interp1d def GetDateTimeVal(df): DateTimeVal = [] YEAR = np.asarray(df['YEAR'],dtype = int) MONTH = np.asarray(df['MONTH'],dtype = int) DAY = np.asarray(df['DAY'],dtype = int) HOUR = np.asarray(df['HOUR'],dtype = int) MINUTE = np.asarray(df['MINUTE'],dtype = int) for i in range(0,len(df)): DateTimeVal.append(datetime.datetime(YEAR[i],MONTH[i],DAY[i],HOUR[i],MINUTE[i])) return DateTimeVal #Function for unpivot a dataframe def unpivot(df,Keep_VARIABLEs): #Unpivoting N, K = df.shape data = {'VARIABLE' : np.asarray(df.columns).repeat(N), 'VALUE' : df.values.ravel('F')} up = pd.DataFrame(data, columns=['VARIABLE', 'VALUE']) #Append Keep_VARIABLEs as columns for KV in Keep_VARIABLEs: #np.tile constructs an array by repeating A the number of times given by reps up[KV] = np.tile(np.asarray(df[KV]), K) #filter out the VARIABLEs that we are already including as columns for KV in Keep_VARIABLEs: up = up[(up['VARIABLE']<> KV)] #Reorder the columns in the data frame such that the Keep_VARIABLEs #are on the left hand side and then followed by VARIABLE and VALUE reorder = Keep_VARIABLEs reorder.append('VARIABLE') reorder.append('VALUE') up = up[reorder] return up def parse_WASPdays_datenum(df,basedate): DAYZ = np.asarray(df['DAYS'],dtype = float) N = len(df['DAYS']) YEAR = np.zeros(N) MONTH = np.zeros(N) DAY = np.zeros(N) HOUR = np.zeros(N) MINUTE = np.zeros(N) YYYYMMDD = np.zeros(N) DATETIME = [] for i in range(0,N): DAYe = DAYZ[i] python_datetime = basedate + datetime.timedelta(DAYe) YEAR[i] = python_datetime.year MONTH[i] = python_datetime.month DAY[i] = python_datetime.day HOUR[i] = python_datetime.hour MINUTE[i] = python_datetime.minute YYYYMMDD[i] = YEAR[i]*10000+MONTH[i]*100+DAY[i] DATETIME.append(python_datetime.strftime('%m/%d/%Y %H:%M')) #put it all in a dataframe Sdict = {'YEAR':YEAR,'MONTH':MONTH,'DAY':DAY,'HOUR':HOUR,'MINUTE':MINUTE,'YYYYMMDD':YYYYMMDD,'DATETIME':DATETIME} #Convert it to a dataframe Datedf = pd.DataFrame(Sdict) df = pd.concat([Datedf, df], axis=1) return df def Dates_to_MatlabDateNum(Inputdf,DateField): CCMODdf = Inputdf.copy() CCMODdf = CCMODdf.reset_index() DateTimeArr = CCMODdf[DateField] MatlabDateNum = [] #a = datetime.datetime(1899, 12, 31,0,0) #fmt = '%Y-%m-%d %H:%M:%S %Z' for i in range(len(CCMODdf)): DateTimeElement= DateTimeArr[i] MatlabDateNum.append(datetime.datetime.toordinal(DateTimeElement)+366.+DateTimeElement.hour/24.+DateTimeElement.minute/3600.) CCMODdf['MATLABDATENUM'] = MatlabDateNum return CCMODdf def interpolate(x,y,x1): xnoNaN = x[np.isfinite(y) & np.isfinite(x)] ynoNaN = y[np.isfinite(y) & np.isfinite(x)] inds = xnoNaN.argsort() ynoNaN = ynoNaN[inds] xnoNaN = xnoNaN[inds] f = interp1d(xnoNaN,ynoNaN,bounds_error = False) return f(x1) #Function that parses individual WASP csv files and unpivots them def parseWASPcsv(modelpath,csvfile): print csvfile #Get parameter from csvfile name parameter = csvfile.split('.')[0] #Get num columns df = pd.read_csv(os.path.join(modelpath,csvfile), skiprows = 1) num_Segs = len(df.columns)-1#2 column_names = ['Days'] for i in range(1,num_Segs+1): column_names.append('Seg'+str(int(i))) column_names.append('STORETCODE') #print column_names column_names = np.asarray(column_names) df = pd.read_csv(os.path.join(modelpath,csvfile), skiprows = 1, header = None, names = column_names) #index_col = 0, df['STORETCODE'] = np.asarray(df['STORETCODE'],dtype = '|S100') df['STORETCODE'][:] = parameter Keep_VARIABLEs = ['Days','STORETCODE'] up = unpivot(df,Keep_VARIABLEs) return up#,mindepth_filter #def prep_model_results(modelpath, outputpath, csvfiles_of_interest,SegmentsOfInterest, calibration_csv, basedate, mindepth, num_Segs): def prep_model_results(modelpath, outputpath, pdf,SegmentsOfInterest, calibration_csv, basedate): #Get a list of which files to read csvfiles_of_interest = [] #parameters_of_interest = pdf['PlotParameter'] #for parameter in parameters_of_interest: for i in pdf.index: if pdf['PlotFlag'][i]==1: csvfiles_of_interest.append(pdf['PlotParameter'][i] + '.csv') #Use only unique see http://stackoverflow.com/questions/12897374/get-unique-VALUEs-from-a-list-in-python csvfiles_of_interest = list(set(csvfiles_of_interest)) #Need to find way to figure out the number of segments automatically if os.path.exists(outputpath) == False: os.mkdir(outputpath) os.chdir(modelpath) #Use segment depth as base file #Basedf = parseWASPcsv(modelpath,'Segment_Depth.csv').reset_index() #Basedf,mindepth_filter = parseWASPcsv_SegDepth(modelpath,'Segment_Depth.csv',mindepth) Basedf = parseWASPcsv(modelpath,'Segment_Depth.csv') Basedf = Basedf.reset_index() Basedf.columns = ['index','DAYS', 'STORETCODE', 'SITECODE','SEGMENT_DEPTH'] Basedf = Basedf[['DAYS', 'SITECODE','SEGMENT_DEPTH']] Basedf = parse_WASPdays_datenum(Basedf,basedate) #Define timeseries columns Tcols = ['AGENCY','SITECODE','MONTH','DAY','YEAR','HOUR','MINUTE','DATE','YYYYMMDD','QUALIFIER', 'SEGMENT_DEPTH','DATATYPE','STORETCODE','VALUE_ORIG','STORETCODE_NEW','VALUE_NEW'] #Basedf['MIN_SEG_DEP'] = match['SEGMENT_DEPTH_min'] Basedf['AGENCY'] = np.asarray(Basedf['SITECODE'], dtype = str) Basedf['AGENCY'][:] = 'WASP model' #+ modelpath Basedf['DATATYPE'] = np.asarray(Basedf['SITECODE'], dtype = str) Basedf['DATATYPE'][:] = 'WASP_results' Basedf['DATE'] = Basedf['DATETIME'] Basedf['QUALIFIER'] = Basedf['SITECODE'] Basedf['QUALIFIER'] = '' #Basedf['QUALIFIER'][Basedf['SEGMENT_DEPTH']<= mindepth] = 'DRY SEGMENT' #Basedf.to_csv(os.path.join(outputpath,'Basedf.csv'),index = False) #If you want to get a list of all WASP outputfiles # just print allcsvfiles #Process all other csvfiles #for csvfile in allcsvfiles[(allcsvfiles !='SEGMENT_DEPTH')]: Builder = Basedf.copy() for csvfile in csvfiles_of_interest: df = parseWASPcsv(modelpath,csvfile).reset_index() df2 = pd.concat([Basedf, df[['STORETCODE','VALUE']]], axis=1) df2['VALUE_ORIG'] = df2['VALUE'] df2['VALUE_NEW'] = df2['VALUE'] df2['STORETCODE_NEW'] = df2['STORETCODE'] df2 = df2[Tcols]#.reset_index() #df2.to_csv(os.path.join(outputpath,'TimeSeries_'+csvfile),index = False) col_name = df2['STORETCODE'][0] Builder[col_name] = df2['VALUE_NEW'] Builder['TKN'] = Builder['Total_Organic_N'] +Builder['Ammonia'] Builder.to_csv(os.path.join(outputpath,'TimeSeries_WQ_multicolumns.csv'),index = False) #When calibrating, only extract cells from segments of interest Boris = Builder[Builder['SITECODE'].isin(SegmentsOfInterest)] #Keep_VARIABLEs = ['DATETIME',' DAY','HOUR','MINUTE',' MONTH','YEAR','YYYYMMDD','DAYS','SITECODE','IMPACT_BY_DRY_FLAG','SEGMENT_DEPTH','AGENCY','DATATYPE','DATE','QUALIFIER','Unstable_flag'] Keep_VARIABLEs = ['AGENCY','SITECODE','MONTH','DAY','YEAR','HOUR','MINUTE','DATE','DATETIME','YYYYMMDD','QUALIFIER','SEGMENT_DEPTH','DATATYPE'] Calibdf = unpivot(Boris,Keep_VARIABLEs) Calibdf['STORETCODE'] = Calibdf['VARIABLE'] Calibdf['VALUE_ORIG'] = Calibdf['VALUE'] Calibdf['STORETCODE_NEW'] = Calibdf['VARIABLE'] Calibdf['VALUE_NEW'] = Calibdf['VALUE'] #Tcols.append('Unstable_flag') Calibdf = Calibdf[Tcols] Calibdf = Calibdf[Calibdf['STORETCODE']!='DAYS'] columns = list(Calibdf.columns) Calibdf = pd.merge(Calibdf,pdf,how = 'inner', left_on = 'STORETCODE', right_on = 'PlotParameter') Calibdf['VARIABLE']=Calibdf['PlotParameter'] Calibdf['UNIT']=Calibdf['Units'] columns.append('VARIABLE') columns.append('UNIT') Calibdf = Calibdf[columns] Calibdf['DEPTH_IN_METERS'] = Calibdf['SEGMENT_DEPTH'][:]/2 #Calibdf = Calibdf.reset_index() Calibdf.to_csv(calibration_csv,index = False) #--------------------------------------------------------------------------------------------------------------------------------- def main_processor(modelpath, pdf, prep_model_results_flag,SegmentsOfInterest,basedate): outputpath = os.path.join(modelpath,'parsed') #sitecodes_of_interest = ['OsoPlant','HRI_WestOso','HRI_OsoWard','HRI_OsoMouthShallow','HRI_NAS','HRI_Hwy358'] #sitecodes_plot_names = ['Oso Plant Outfall Channel','West Oso','Ward','Near Oso Mouth','NAS','Hwy358'] #SiteNames = ['Basin','Waller Ck','Lamar & South First Bridges','Barton Ck','Redbud Isle','Tom Miller Dam'] calibration_csv = os.path.join(outputpath,'TimeSeries_Calibration.csv') #basedataYYYYMMDD = 20120701 #Plot_OsoMouthDeep_flag =0 #specify whether to plot Oso Mouth Deep if prep_model_results_flag == 1: print 'Prepare calibration file' #prep_model_results(modelpath, outputpath, csvfiles_of_interest,SegmentsOfInterest, calibration_csv, basedate,mindepth,num_Segs) prep_model_results(modelpath, outputpath, pdf,SegmentsOfInterest, calibration_csv, basedate) #print 'Read model results' #Calibdf = pd.read_csv(calibration_csv) #Calibdf['DATETIMEVAL'] = GetDateTimeVal(Calibdf) #============================================================MAIN DECK======================================================================================= def MAIN_DECK(modelpaths, SegmentsOfInterest,basedate): print 'Start processing...' #modelpaths = [r'C:\G\LS20_Seg43_162MGD_20BOD5_20_4_5_4_20150615_cent_adj3'] prep_model_results_flag = 1 parameter_key_file =os.path.join(os.path.dirname(__file__),'ParameterKey.csv') print parameter_key_file #parameter_key_file = r'D:\APAI\M_drive\Projects\0382\022-05\2-0 Wrk Prod\Models\WASP\LBL\PostProcessing\Calibration\ParameterKey.csv' pdf = pd.read_csv(parameter_key_file) #pdf = pdf[pdf['PlotFlag']==1] for modelpath in modelpaths: print modelpath main_processor(modelpath, pdf, prep_model_results_flag,SegmentsOfInterest,basedate) print "done!" if __name__ == '__main__': # Just as an example modelpaths = [r'C:\G_Drive\LadyBirdLake\WASP\20151216_1049'] SegmentsOfInterest = ['Seg31','Seg57','Seg67','Seg69','Seg73','Seg80','Seg117','Seg124'] basedate = datetime.datetime(2012,7,1,0,0) MAIN_DECK(modelpaths, SegmentsOfInterest,basedate)
mit
PMitura/smiles-neural-network
rnn/rnn.py
1
14202
import data, utility, metrics import time import numpy as np from math import sqrt, exp, log, ceil from scipy.stats.stats import pearsonr from sklearn.metrics import roc_auc_score import db.db as db import visualization from config import config as cc import yaml import pandas as pd import socket # not used to relieve MetaCentrum of some dependencies # TODO: Remove unused imports after experiments are done from keras.models import Sequential from keras.layers import Activation, Dense, Dropout, LSTM, AveragePooling1D from keras.layers import TimeDistributed, SimpleRNN, GRU from keras.layers import BatchNormalization, Embedding, Merge from keras.optimizers import Adam, RMSprop, Adadelta, Adagrad from keras.regularizers import l2, activity_l2 import keras.callbacks # from keras.regularizers import l1 # handy aliases for config RP = cc.exp['params']['rnn'] RD = cc.exp['params']['data'] RG = cc.exp['grid'] # manual eval where needed RP['chained_labels'] = eval(str(cc.exp['params']['rnn']['chained_labels'])) RP['chained_predict'] = eval(str(cc.exp['params']['rnn']['chained_predict'])) RP['chained_test_labels'] = eval(str(cc.exp['params']['rnn']['chained_test_labels'])) RP['freeze_idxs'] = eval(str(cc.exp['params']['rnn']['freeze_idxs'])) RP['label_idxs'] = eval(str(cc.exp['params']['rnn']['label_idxs'])) OPTIMIZER = Adam(lr = RP['learning_rate'], clipnorm = 1.) def configureModel(input, outputLen = len(RD['labels'])): print(' Initializing and compiling...') alphaSize = input.shape[2] model = Sequential() ''' if RD['use_embedding']: # second value in nomiSize tuple is shift while using embedding model.add(Embedding(1 << nomiSize[1], RP['embedding_outputs'])) model.add(TimeDistributed(Dense(int(RP['td_layer_multiplier'] * (alphaSize + nomiSize[0])), activation = 'tanh', trainable = RP['trainable_inner']))) else: ''' model.add(TimeDistributed(Dense(300*RG['ratios'][0], activation = 'tanh', trainable = RP['trainable_inner']), input_shape = (None, alphaSize ))) model.add(Dropout(0.30)) model.add(GRU(300*RG['ratios'][1], trainable = RP['trainable_inner'], return_sequences = True)) model.add(Activation('tanh', trainable = RP['trainable_inner'])) model.add(Dropout(0.30)) model.add(GRU(300*RG['ratios'][2], trainable = RP['trainable_inner'])) model.add(Activation('tanh', trainable = RP['trainable_inner'])) model.add(Dropout(0.30)) model.add(Dense(outputLen)) # molweight # model = utility.loadModel('b3d9609da78bfbf0ad1a62ee6740df3b52f104b4', 'mol_') # all compounds # model = utility.loadModel('eab15a05a70b35d119c02fcc36b1cfaf27a0f36a', 'mol_') # maccs # model = utility.loadModel('67b51a1543b5d32b05671e4a08d193eed702ca54', 'mol_') # model.pop() # model.pop() # for i in xrange(len(model.layers)): # model.layers[0].trainable = False ''' model.add(Dropout(0.50)) model.add(Dense(500)) model.add(Activation('relu')) model.add(Dropout(0.50)) model.add(Dense(500)) model.add(Activation('relu')) model.add(Dropout(0.30)) ''' # model.add(Dense(outputLen)) if RP['classify']: model.add(Activation(RP['classify_activation'], trainable = RP['trainable_inner'])) metrics = [] if RP['classify']: metrics.append('accuracy') model.compile(loss = RP['objective'], optimizer = OPTIMIZER, metrics = metrics) print(' ...done') return model def configureEdgeModel(inputSmiles, inputFasta): print(' Initializing edge model and compiling...') smilesGRUInputShape = (None, inputSmiles.shape[2]) # smilesGRUSize = int(RP['gru_layer_multiplier'] * smilesGRUInputShape[1]) fastaGRUInputShape = (None, inputFasta.shape[2]) # fastaGRUSize = int(RP['fasta_gru_layer_multiplier'] * fastaGRUInputShape[1]) mergedOutputLen = len(RD['labels']) smilesModel = Sequential() smilesModel.add(TimeDistributed(Dense(300, activation = 'tanh', trainable = RP['trainable_inner']), input_shape = smilesGRUInputShape)) smilesModel.add(Dropout(0.30)) smilesModel.add(GRU(300, trainable = RP['trainable_inner'], return_sequences = True)) smilesModel.add(Activation('tanh', trainable = RP['trainable_inner'])) smilesModel.add(Dropout(0.30)) smilesModel.add(GRU(300, trainable = RP['trainable_inner'])) smilesModel.add(Activation('tanh', trainable = RP['trainable_inner'])) # utility.setModelConsumeLess(smilesModel, 'mem') ''' smilesModel = utility.loadModel('24e62794bb6d5b5c562e41a3a2cccc3525fa625f', 'smiles_') smilesModel.pop() # output smilesModel.pop() # dropout ''' # utility.setModelConsumeLess(smilesModel, 'gpu') fastaModel = Sequential() fastaModel.add(TimeDistributed(Dense(300, activation = 'tanh', trainable = RP['trainable_inner']), input_shape = fastaGRUInputShape)) fastaModel.add(Dropout(0.30)) fastaModel.add(GRU(300, trainable = RP['trainable_inner'], return_sequences = True)) fastaModel.add(Activation('tanh', trainable = RP['trainable_inner'])) fastaModel.add(Dropout(0.30)) fastaModel.add(GRU(300, trainable = RP['trainable_inner'])) fastaModel.add(Activation('tanh', trainable = RP['trainable_inner'])) # utility.setModelConsumeLess(fastaModel, 'mem') ''' fastaModel = utility.loadModel('e6beb8b7e146b9ab46a71db8f3001bf62d96ff08', 'fasta_') fastaModel.pop() # activation fastaModel.pop() # output fastaModel.pop() # dropout ''' # utility.setModelConsumeLess(fastaModel, 'gpu') merged = Merge([smilesModel, fastaModel], mode='concat') mergedModel = Sequential() mergedModel.add(merged) mergedModel.add(Dense(300)) mergedModel.add(Activation('relu')) mergedModel.add(Dropout(0.3)) mergedModel.add(Dense(300)) mergedModel.add(Activation('relu')) mergedModel.add(Dropout(0.3)) mergedModel.add(Dense(mergedOutputLen)) if RP['classify']: mergedModel.add(Activation(RP['classify_activation'], trainable = RP['trainable_inner'])) metrics = [] if RP['classify']: metrics.append('accuracy') mergedModel.compile(loss = RP['objective'], optimizer = OPTIMIZER, metrics = metrics) print(' ...done') return mergedModel def learningRateDecayer(epoch): if not RP['learning_rate_decay']: return RP['learning_rate'] if RP['learning_rate_decay_type'] == 'step': drop = np.floor((epoch)/RP['learning_rate_decay_step_config_steps']) new_lr = float(RP['learning_rate'] * np.power(RP['learning_rate_decay_step_config_ratio'],drop)) print('lr',epoch,new_lr) return new_lr elif RP['learning_rate_decay_type'] == 'time': raise NotImplementedError('learning rate decay: time') elif RP['learning_rate_decay_type'] == 'peter': raise NotImplementedError('learning rate decay: peter') else: raise RuntimeError('learning rate decat: unknown type {}'.format(RP['learning_rate_decay_type'])) def train(model, nnInput, labels, validation, makePlot = True, labelIndexes = RP['label_idxs']): print(' Training model...') # needed format is orthogonal to ours ''' formattedLabels = np.zeros((len(labels[0]), len(labelIndexes))) formattedValid = np.zeros((len(validation[1][labelIndexes[0]]), len(labelIndexes))) for i in range(len(labelIndexes)): for j in range(len(labels[0])): formattedLabels[j][i] = labels[labelIndexes[i]][j] for j in range(len(validation[1][labelIndexes[i]])): formattedValid[j][i] = validation[1][labelIndexes[i]][j] ''' early = keras.callbacks.EarlyStopping(monitor = 'val_loss', patience = RP['early_stop']) learningRateScheduler = keras.callbacks.LearningRateScheduler(learningRateDecayer) modelLogger = visualization.ModelLogger() history = model.fit(nnInput, labels, nb_epoch = RP['epochs'], batch_size = RP['batch'], callbacks = [early], validation_data = (validation[0], validation[1])) if makePlot: values = np.zeros((len(history.history['loss']), 2)) for i in range(len(history.history['loss'])): values[i][0] = history.history['loss'][i] values[i][1] = history.history['val_loss'][i] utility.plotLoss(values) visualization.histograms(modelLogger) print(' Model weights:') print(model.summary()) # print(model.get_weights()) print(' ...done') return len(history.history['loss']) def run(grid = None): stats = {} stats['runtime_second'] = time.time() # initialize using the same seed (to get stable results on comparisons) np.random.seed(RP['seed']) # grab the commit at start stats['git_commit'] = utility.getGitCommitHash() # get the training and testing datasets along with some meta info if RP['edge_prediction']: trainIn, trainLabel, testIn, testLabel, preprocessMeta = data.preprocessEdgeData(db.getData()) else: trainIn, trainLabel, testIn, testLabel, preprocessMeta = data.preprocessData(db.getData()) # trainIn, trainLabel, testIn, testLabel, preprocessMeta = data.preprocessFastaOneHotData(db.getData()) stats['training_row_count'] = len(testLabel) stats['testing_row_count'] = len(testLabel) # load model from file or create and train one from scratch if RP['load_model']: model = utility.loadModel(RP['load_model']) else: if RP['edge_prediction']: model = configureEdgeModel(trainIn[0],trainIn[1]) elif RP['discrete_label']: model = configureModel(trainIn, len(trainLabel[0])) else: model = configureModel(trainIn) stats['epoch_count'] = train(model, trainIn, trainLabel, (testIn, testLabel)) # persistence first if cc.cfg['persistence']['model']: name = '{}_rg_{}'.format(stats['git_commit'],':'.join([str(x) for x in RG['ratios']])) # name = stats['git_commit'] stats['persistent_model_name'] = name utility.saveModel(model, name) # compute metrics for the model based on the task for both testing and training data print('\nGetting metrics for training data:') if RP['classify']: if RP['discrete_label']: trainMetrics = metrics.discreteClassify(model, trainIn, trainLabel, preprocessMeta) else: trainMetrics = metrics.classify(model, trainIn, trainLabel, preprocessMeta) else: trainMetrics = metrics.predict(model, trainIn, trainLabel, preprocessMeta) print('\nGetting metrics for test data:') if RP['classify']: if RP['discrete_label']: testMetrics = metrics.discreteClassify(model, testIn, testLabel, preprocessMeta) else: testMetrics = metrics.classify(model, testIn, testLabel, preprocessMeta) else: testMetrics = metrics.predict(model, testIn, testLabel, preprocessMeta) # utilities and visualizations if cc.cfg['plots']['layer_activations']: visualization.layerActivations(model, testIn, testLabel) if cc.cfg['plots']['seq_output']: df = pd.DataFrame(cc.cfg['plots']['seq_output_seq_input'], columns=[RD['fasta'] if cc.cfg['plots']['seq_output_seq_input_name'] == 'fasta' else RD['smiles']]) visualization.visualizeSequentialOutput(model, cc.cfg['plots']['seq_output_layer_idx'], df) if cc.cfg['plots']['print_pred']: visualization.printPrediction(model, cc.cfg['plots']['print_pred_smiles']) if cc.cfg['plots']['print_train_test_pred']: visualization.printTrainTestPred(model, cc.cfg['plots']['print_train_test_pred_cnt'], trainIn, trainLabel, testIn, testLabel, preprocessMeta) # statistics to send to journal stats['runtime_second'] = time.time() - stats['runtime_second'] stats['memory_pm_mb'], stats['memory_vm_mb'] = utility.getMemoryUsage() stats['comment'] = RP['comment'] stats['hostname'] = socket.gethostname() stats['experiment_config'] = yaml.dump(cc.exp,default_flow_style=False) stats['model'] = utility.modelToString(model) stats['loaded_model'] = RP['load_model'] stats['parameter_count'] = model.count_params() stats['task'] = 'classification' if RP['classify'] else 'regression' stats['dataset_name'] = cc.exp['fetch']['table'] stats['split_name'] = RD['testing'] stats['label_name'] = ','.join(RD['labels']) stats['epoch_max'] = RP['epochs'] stats['learning_rate'] = RP['learning_rate'] stats['optimization_method'] = OPTIMIZER.__class__.__name__ stats['batch_size'] = RP['batch'] stats['seed'] = RP['seed'] stats['objective'] = RP['objective'] stats['learning_curve'] = {'val':open('{}/{}'.format(cc.cfg['plots']['dir'], utility.PLOT_NAME),'rb').read(),'type':'bin'} # metric statistics to send metricStats = {} if RP['classify']: metricStats['relevance_training'] = trainMetrics['acc_avg'] metricStats['relevance_training_std'] = trainMetrics['acc_std'] metricStats['relevance_testing'] = testMetrics['acc_avg'] metricStats['relevance_testing_std'] = testMetrics['acc_std'] metricStats['log_loss'] = testMetrics['log_loss_avg'] metricStats['log_loss_std'] = testMetrics['log_loss_std'] metricStats['auc'] = testMetrics['auc_avg'] metricStats['auc_std'] = testMetrics['auc_std'] metricStats['auc_micro'] = testMetrics['auc_avg'] metricStats['auc_micro_std'] = testMetrics['auc_std'] else: metricStats['relevance_training'] = trainMetrics['r2_avg'] metricStats['relevance_training_std'] = trainMetrics['r2_std'] metricStats['relevance_testing'] = testMetrics['r2_avg'] metricStats['relevance_testing_std'] = testMetrics['r2_std'] metricStats['mse'] = testMetrics['mse_avg'] metricStats['mse_std'] = testMetrics['mse_std'] metricStats['mae'] = testMetrics['mae_avg'] metricStats['mae_std'] = testMetrics['mae_std'] stats.update(metricStats) db.sendStatistics(**stats) utility.freeModel(model)
bsd-3-clause
rdhyee/working-open-data-2014
notebooks/Day_19_B_HackFSM.py
2
11257
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <markdowncell> # HackFSM # # Relationship to other public APIs based on Solr? # # * http://www.hathitrust.org/htrc/solr-api # * http://api.plos.org/solr/search-fields/ # # <markdowncell> # Documentation: # # http://digitalhumanities.berkeley.edu/hackfsm/api/detail # <codecell> from settings import (HACKFSM_ID, HACKFSM_KEY, HACKFSM_BASEURL) from itertools import islice import logging import requests import json import urllib import urlparse from pandas import DataFrame, Series import pandas as pd import numpy as np logging.basicConfig(filename='Experiment_20140325_HackFSM.log',level=logging.WARNING) logger=logging.getLogger() # <codecell> def query(q, fl="id"): url = "{base_url}?".format(base_url=HACKFSM_BASEURL) + \ urllib.urlencode({'q':q, 'fl':fl, 'wt':'json', 'app_id':HACKFSM_ID, 'app_key':HACKFSM_KEY}) r = requests.get(url) return r.json() # <codecell> result = query(q="fsmTitle:Savio")['response'] result # <headingcell level=1> # Paging through results # <codecell> # try again # http://stackoverflow.com/a/5724453/7782 # http://excess.org/article/2013/02/itergen1/ class my_g(object): def __init__(self,max_count): self._remaining = range(max_count) self._len = max_count def __iter__(self): return self def __len__(self): return self._len def next(self): if not self._remaining: raise StopIteration return self._remaining.pop(0) g=my_g(10) print len(g) list(g) # <codecell> class FSM(object): def __init__(self, q, fl="id", start=0, rows=30, base_url=HACKFSM_BASEURL, app_id=HACKFSM_ID, app_key=HACKFSM_KEY): self.q = q self.fl = fl self.start = start self.rows = rows self.base_url = base_url self.app_id = app_id self.app_key = app_key # get first page and numfound self.cursor = start # get the first page result = self._get_page(q, fl, self.cursor, self.rows) self.numfound = result['response']['numFound'] def _check_status(self,result): """throw exception if non-zero status""" if result['responseHeader']['status'] != 0: raise FSMException("status: " + str(result['responseHeader']['status'])) def _get_page(self, q, fl, start, rows): result = self._call_api(q, fl, start, rows) # update current page self.page = result['response']['docs'] self.page_len = len(self.page) return result def _call_api(self, q, fl, start, rows): url = "{base_url}?".format(base_url=self.base_url) + \ urllib.urlencode({'q':q, 'fl':fl, 'wt':'json', 'start':start, 'row':rows, 'app_id':self.app_id, 'app_key':self.app_key}) result = requests.get(url).json() self._check_status(result) # check whether we're getting fewer records than expected if len(result['response']['docs']) < rows: # are we at the end of the results if start + len(result['response']['docs']) != self.numfound: logger.warning("url:{url}, numfound:{numfound}, start+len{start_plus_len}".format(url=url, numfound=self.numfound, start_plus_len=start + len(result['response']['docs']))) return result def __iter__(self): return self def __len__(self): return self.numfound def next(self): if not self.page: # retrieve next page and check whether there's anything left self.cursor += self.page_len result = self._get_page(self.q, self.fl, self.cursor, self.rows) if self.page_len == 0: raise StopIteration return self.page.pop(0) # <codecell> fsm = FSM("-fsmTeiUrl:[* TO *]", fl="id,fsmTitle,fsmImageUrl,fsmDateCreated") # <codecell> len(fsm) # <codecell> results = list(islice(fsm,None)) results[:10] # <codecell> df = DataFrame(results) # <codecell> len(df) # <codecell> df.fsmImageUrl # <codecell> from IPython.display import HTML from jinja2 import Template CSS = """ <style> .wrap img { margin-left: 0px; margin-right: 0px; display: inline-block; width: 150px; } .wrap { /* Prevent vertical gaps */ line-height: 0; -webkit-column-count: 5; -webkit-column-gap: 0px; -moz-column-count: 5; -moz-column-gap: 0px; column-count: 5; column-gap: 0px; } .wrap img { /* Just in case there are inline attributes */ width: 100% !important; height: auto !important; } </style> """ IMAGES_TEMPLATE = CSS + """ <div class="wrap"> {% for item in items %}<img title="{{item.fsmTitle.0}}" src="{{item.fsmImageUrl.0}}"/>{% endfor %} </div> """ template = Template(IMAGES_TEMPLATE) HTML(template.render(items=results[:10])) # <markdowncell> # # DISTINGUISHING IMAGES FROM DOCUMENTS # # To programmatically differentiate records that describe images from records that describe TEI-encoded XML documents, the API permits queries that exclude records with NULL values in the "unwanted" Url field. # # That is, to retrieve TEI documents only, one would query for null values in the `fsmImageUrl` field. To retrieve images only, one would query for null values in the `fsmTeiUrl` field. # # NOTE: Please observe the hyphen prepended to the field names in the examples below. The hyphen (minus sign) functions here as a NOT operator. # # Example that selects for TEI encoded XML documents by excluding null values of `fsmImageUrl`: # # https://<BASE URL>/solr/fsm/select?q=-fsmImageUrl:[* TO *]&wt=json&indent=true&app_id=abcdefgh&app_key=12345678901234567890123456789012 # # Example that selects for images by excluding null values of fsmTeiUrl: # # https://<BASE URL>/solr/fsm/select?q=-fsmTeiUrl:[* TO *]&wt=json&indent=true&app_id=abcdefgh&app_key=12345678901234567890123456789012 # <codecell> # TEI-encoded docs len(FSM("-fsmImageUrl:[* TO *]")) # <codecell> # images len(FSM("-fsmTeiUrl:[* TO *]", fl="id,fsmImageUrl")) # <headingcell level=1> # Studying the API parameters # <codecell> from lxml.html import parse, fromstring from collections import OrderedDict api_docs_url = "http://digitalhumanities.berkeley.edu/hackfsm/api/detail" r = requests.get(api_docs_url).content doc = fromstring(r) # <codecell> rows = doc.xpath('//div[@id="content"]/article/div/div/div/table[1]//tr') headers = [col.text_content().strip() for col in rows[0].findall('td')] headers # <codecell> fields = [] for row in rows[1:]: field = [col.text_content().strip() for col in row.findall('td')] fields.append(field) fsmfields = OrderedDict(fields) fsmfields.keys() # <headingcell level=1> # Study all the records # <codecell> fsm = FSM(q="*",fl=",".join(fsmfields.keys())) # <codecell> len(fsm) # <codecell> df = DataFrame(list(fsm)) # <codecell> len(df) # <codecell> df.head() # <codecell> # TEI URIs len(list(df[~df.fsmTeiUrl.isnull()].fsmTeiUrl.apply(lambda a: a[0]))) # <codecell> # null dates len(df[df.fsmDateCreated.isnull()]) # <codecell> # non-null image URLs len(df[~df.fsmImageUrl.isnull()]) # <codecell> df[~df.fsmImageUrl.isnull()].id # <codecell> # distribution of number of image URLs df[~df.fsmImageUrl.isnull()].fsmImageUrl.apply(len).value_counts() # <codecell> # let's crawl for images results_images = list(FSM("-fsmTeiUrl:[* TO *]", fl=",".join(fsmfields.keys()))) # <codecell> len(results_images) # <codecell> df_images=DataFrame(results_images) # <codecell> df_images[df_images.fsmImageUrl.isnull()] # <codecell> # would be interesting to see sizes of images and whether we can get at thumbnails df_images.fsmImageUrl # <markdowncell> # http://content.cdlib.org/ark:/13030/tf1z09n5r1/thumbnail -> # http://digitalassets.lib.berkeley.edu/fsm/ucb/images/brk00040569b_a.gif # # ![Mario Savio addressing the crowd (thumbnail)](http://content.cdlib.org/ark:/13030/tf1z09n5r1/thumbnail "Mario Savio addressing the crowd.") # # http://content.cdlib.org/ark:/13030/tf1z09n5r1/hi-res.jpg -> # http://digitalassets.lib.berkeley.edu/fsm/ucb/images/brk00040569b_c.jpg # <codecell> urlparse.urlparse("http://digitalassets.lib.berkeley.edu/fsm/ucb/images/brk00040569b_c.jpg").netloc # <codecell> df_images.fsmImageUrl # <codecell> # calculate hostnames for all image urls # might be possible to do this all with pandas netlocs = list(df_images.fsmImageUrl.dropna().apply(lambda urls: set([urlparse.urlparse(url).netloc for url in urls]))) reduce(lambda x,y: x | y, netlocs, set()) # <codecell> def len2(x): try: return len(x) except: return np.nan df_images.fsmImageUrl.apply(len2) == 3 # <codecell> df_images[df_images.fsmImageUrl.apply(len2) == 3].head() # <markdowncell> # ![a](http://sunsite.berkeley.edu/FindingAids/dynaweb/calher/fsm/figures/brk00038887a_a.gif "a") # ![b](http://sunsite.berkeley.edu/FindingAids/dynaweb/calher/fsm/figures/brk00038887a_b.jpg "b") # ![a](http://sunsite.berkeley.edu/FindingAids/dynaweb/calher/fsm/figures/brk00038887a_c.jpg "c") # <codecell> df_images[df_images.fsmImageUrl.apply(len2) == 4].ix[100].fsmImageUrl # <codecell> IMAGES_TEMPLATE = """ <div class="nowrap"> {% for item in items %}<img title="{{item}}" src="{{item}}"/>{% endfor %} </div> """ template = Template(IMAGES_TEMPLATE) HTML(template.render(items=df_images[df_images.fsmImageUrl.apply(len2) == 4].ix[100].fsmImageUrl )) # <headingcell level=1> # Dates # <codecell> len(df[~df.fsmDateCreated.isnull()]) # <codecell> s = df[~df.fsmDateCreated.isnull()].fsmDateCreated.apply(len)==2 #.astype('datetime64[ns]') # <codecell> def first(x): try: return x[0] except: return np.nan df['calc_date'] = pd.to_datetime(df.fsmDateCreated.apply(first), coerce=True) # <codecell> df[~df.calc_date.isnull()].sort_index(by='calc_date').calc_date # <codecell> pd.to_datetime(df.fsmDateCreated.dropna().apply(lambda s:s[0]).astype('str'), coerce=True).dropna() # <codecell> # http://stackoverflow.com/questions/17690738/in-pandas-how-do-i-convert-a-string-of-date-strings-to-datetime-objects-and-put date_stngs = ('2008-12-20','2008-12-21','2008-12-22','2008-12-23','Nov. 9, 1964', 'junk') pd.to_datetime(pd.Series(date_stngs),coerce=True) # <headingcell level=1> # Types of Resources # <codecell> def f(x): try: return set(x) except: return set() reduce(lambda x,y: x | y, df.fsmTypeOfResource.apply(f), set()) # <codecell> #related id len(df.fsmRelatedIdentifier.dropna()) # <headingcell level=1> # TEI documents # <codecell> df.fsmTeiUrl.dropna()
apache-2.0
lcharleux/compmod-doc
doc/sphinxext/inheritance_diagram.py
98
13648
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException, e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
gpl-2.0
jjhelmus/scipy
scipy/signal/signaltools.py
2
115724
# Author: Travis Oliphant # 1999 -- 2002 from __future__ import division, print_function, absolute_import import warnings import threading import sys import timeit from . import sigtools, dlti from ._upfirdn import upfirdn, _output_len from scipy._lib.six import callable from scipy._lib._version import NumpyVersion from scipy import fftpack, linalg from numpy import (allclose, angle, arange, argsort, array, asarray, atleast_1d, atleast_2d, cast, dot, exp, expand_dims, iscomplexobj, mean, ndarray, newaxis, ones, pi, poly, polyadd, polyder, polydiv, polymul, polysub, polyval, product, r_, ravel, real_if_close, reshape, roots, sort, take, transpose, unique, where, zeros, zeros_like) import numpy as np import math from scipy.special import factorial from .windows import get_window from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext from .filter_design import cheby1, _validate_sos from .fir_filter_design import firwin if sys.version_info.major >= 3 and sys.version_info.minor >= 5: from math import gcd else: from fractions import gcd __all__ = ['correlate', 'fftconvolve', 'convolve', 'convolve2d', 'correlate2d', 'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter', 'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2', 'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue', 'residuez', 'resample', 'resample_poly', 'detrend', 'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method', 'filtfilt', 'decimate', 'vectorstrength'] _modedict = {'valid': 0, 'same': 1, 'full': 2} _boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1, 'symmetric': 1, 'reflect': 4} _rfft_mt_safe = (NumpyVersion(np.__version__) >= '1.9.0.dev-e24486e') _rfft_lock = threading.Lock() def _valfrommode(mode): try: val = _modedict[mode] except KeyError: if mode not in [0, 1, 2]: raise ValueError("Acceptable mode flags are 'valid' (0)," " 'same' (1), or 'full' (2).") val = mode return val def _bvalfromboundary(boundary): try: val = _boundarydict[boundary] << 2 except KeyError: if val not in [0, 1, 2]: raise ValueError("Acceptable boundary flags are 'fill', 'wrap'" " (or 'circular'), \n and 'symm'" " (or 'symmetric').") val = boundary << 2 return val def _inputs_swap_needed(mode, shape1, shape2): """ If in 'valid' mode, returns whether or not the input arrays need to be swapped depending on whether `shape1` is at least as large as `shape2` in every dimension. This is important for some of the correlation and convolution implementations in this module, where the larger array input needs to come before the smaller array input when operating in this mode. Note that if the mode provided is not 'valid', False is immediately returned. """ if mode == 'valid': ok1, ok2 = True, True for d1, d2 in zip(shape1, shape2): if not d1 >= d2: ok1 = False if not d2 >= d1: ok2 = False if not (ok1 or ok2): raise ValueError("For 'valid' mode, one must be at least " "as large as the other in every dimension") return not ok1 return False def correlate(in1, in2, mode='full', method='auto'): r""" Cross-correlate two N-dimensional arrays. Cross-correlate `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. method : str {'auto', 'direct', 'fft'}, optional A string indicating which method to use to calculate the correlation. ``direct`` The correlation is determined directly from sums, the definition of correlation. ``fft`` The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.) ``auto`` Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See `convolve` Notes for more detail. .. versionadded:: 0.19.0 Returns ------- correlate : array An N-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. See Also -------- choose_conv_method : contains more documentation on `method`. Notes ----- The correlation z of two d-dimensional arrays x and y is defined as:: z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...]) This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')`` then .. math:: z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*} for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2` where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`, and :math:`y_m` is 0 when m is outside the range of y. ``method='fft'`` only works for numerical arrays as it relies on `fftconvolve`. In certain cases (i.e., arrays of objects or when rounding integers can lose precision), ``method='direct'`` is always used. Examples -------- Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel. >>> from scipy import signal >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128) >>> sig_noise = sig + np.random.randn(len(sig)) >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128 >>> import matplotlib.pyplot as plt >>> clock = np.arange(64, len(sig), 128) >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.plot(clock, sig[clock], 'ro') >>> ax_orig.set_title('Original signal') >>> ax_noise.plot(sig_noise) >>> ax_noise.set_title('Signal with noise') >>> ax_corr.plot(corr) >>> ax_corr.plot(clock, corr[clock], 'ro') >>> ax_corr.axhline(0.5, ls=':') >>> ax_corr.set_title('Cross-correlated with rectangular pulse') >>> ax_orig.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: return in1 * in2 elif in1.ndim != in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") # Don't use _valfrommode, since correlate should not accept numeric modes try: val = _modedict[mode] except KeyError: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") # this either calls fftconvolve or this function with method=='direct' if method in ('fft', 'auto'): return convolve(in1, _reverse_and_conj(in2), mode, method) # fastpath to faster numpy.correlate for 1d inputs when possible if _np_conv_ok(in1, in2, mode): return np.correlate(in1, in2, mode) # _correlateND is far slower when in2.size > in1.size, so swap them # and then undo the effect afterward if mode == 'full'. Also, it fails # with 'valid' mode if in2 is larger than in1, so swap those, too. # Don't swap inputs for 'same' mode, since shape of in1 matters. swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or _inputs_swap_needed(mode, in1.shape, in2.shape)) if swapped_inputs: in1, in2 = in2, in1 if mode == 'valid': ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)] out = np.empty(ps, in1.dtype) z = sigtools._correlateND(in1, in2, out, val) else: ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)] # zero pad input in1zpadded = np.zeros(ps, in1.dtype) sc = [slice(0, i) for i in in1.shape] in1zpadded[sc] = in1.copy() if mode == 'full': out = np.empty(ps, in1.dtype) elif mode == 'same': out = np.empty(in1.shape, in1.dtype) z = sigtools._correlateND(in1zpadded, in2, out, val) if swapped_inputs: # Reverse and conjugate to undo the effect of swapping inputs z = _reverse_and_conj(z) return z def _centered(arr, newshape): # Return the center newshape portion of the array. newshape = asarray(newshape) currshape = array(arr.shape) startind = (currshape - newshape) // 2 endind = startind + newshape myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def fftconvolve(in1, in2, mode="full"): """Convolve two N-dimensional arrays using FFT. Convolve `in1` and `in2` using the fast Fourier transform method, with the output size determined by the `mode` argument. This is generally much faster than `convolve` for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). As of v0.19, `convolve` automatically chooses this method or the direct method based on an estimation of which is faster. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. Returns ------- out : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Autocorrelation of white noise is an impulse. >>> from scipy import signal >>> sig = np.random.randn(1000) >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1) >>> ax_orig.plot(sig) >>> ax_orig.set_title('White noise') >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr) >>> ax_mag.set_title('Autocorrelation') >>> fig.tight_layout() >>> fig.show() Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The `convolve2d` function allows for other types of image boundaries, but is far slower. >>> from scipy import misc >>> face = misc.face(gray=True) >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8)) >>> blurred = signal.fftconvolve(face, kernel, mode='same') >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_kernel.imshow(kernel, cmap='gray') >>> ax_kernel.set_title('Gaussian kernel') >>> ax_kernel.set_axis_off() >>> ax_blurred.imshow(blurred, cmap='gray') >>> ax_blurred.set_title('Blurred') >>> ax_blurred.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if in1.ndim == in2.ndim == 0: # scalar inputs return in1 * in2 elif not in1.ndim == in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") elif in1.size == 0 or in2.size == 0: # empty arrays return array([]) s1 = array(in1.shape) s2 = array(in2.shape) complex_result = (np.issubdtype(in1.dtype, complex) or np.issubdtype(in2.dtype, complex)) shape = s1 + s2 - 1 # Check that input sizes are compatible with 'valid' mode if _inputs_swap_needed(mode, s1, s2): # Convolution is commutative; order doesn't have any effect on output in1, s1, in2, s2 = in2, s2, in1, s1 # Speed up FFT by padding to optimal size for FFTPACK fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape] fslice = tuple([slice(0, int(sz)) for sz in shape]) # Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make # sure we only call rfftn/irfftn from one thread at a time. if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)): try: sp1 = np.fft.rfftn(in1, fshape) sp2 = np.fft.rfftn(in2, fshape) ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy()) finally: if not _rfft_mt_safe: _rfft_lock.release() else: # If we're here, it's either because we need a complex result, or we # failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and # is already in use by another thread). In either case, use the # (threadsafe but slower) SciPy complex-FFT routines instead. sp1 = fftpack.fftn(in1, fshape) sp2 = fftpack.fftn(in2, fshape) ret = fftpack.ifftn(sp1 * sp2)[fslice].copy() if not complex_result: ret = ret.real if mode == "full": return ret elif mode == "same": return _centered(ret, s1) elif mode == "valid": return _centered(ret, s1 - s2 + 1) else: raise ValueError("Acceptable mode flags are 'valid'," " 'same', or 'full'.") def _numeric_arrays(arrays, kinds='buifc'): """ See if a list of arrays are all numeric. Parameters ---------- ndarrays : array or list of arrays arrays to check if numeric. numeric_kinds : string-like The dtypes of the arrays to be checked. If the dtype.kind of the ndarrays are not in this string the function returns False and otherwise returns True. """ if type(arrays) == ndarray: return arrays.dtype.kind in kinds for array_ in arrays: if array_.dtype.kind not in kinds: return False return True def _prod(iterable): """ Product of a list of numbers. Faster than np.prod for short lists like array shapes. """ product = 1 for x in iterable: product *= x return product def _fftconv_faster(x, h, mode): """ See if using `fftconvolve` or `_correlateND` is faster. The boolean value returned depends on the sizes and shapes of the input values. The big O ratios were found to hold across different machines, which makes sense as it's the ratio that matters (the effective speed of the computer is found in both big O constants). Regardless, this had been tuned on an early 2015 MacBook Pro with 8GB RAM and an Intel i5 processor. """ if mode == 'full': out_shape = [n + k - 1 for n, k in zip(x.shape, h.shape)] big_O_constant = 10963.92823819 if x.ndim == 1 else 8899.1104874 elif mode == 'same': out_shape = x.shape if x.ndim == 1: if h.size <= x.size: big_O_constant = 7183.41306773 else: big_O_constant = 856.78174111 else: big_O_constant = 34519.21021589 elif mode == 'valid': out_shape = [n - k + 1 for n, k in zip(x.shape, h.shape)] big_O_constant = 41954.28006344 if x.ndim == 1 else 66453.24316434 else: raise ValueError('mode is invalid') # see whether the Fourier transform convolution method or the direct # convolution method is faster (discussed in scikit-image PR #1792) direct_time = (x.size * h.size * _prod(out_shape)) fft_time = sum(n * math.log(n) for n in (x.shape + h.shape + tuple(out_shape))) return big_O_constant * fft_time < direct_time def _reverse_and_conj(x): """ Reverse array `x` in all dimensions and perform the complex conjugate """ reverse = [slice(None, None, -1)] * x.ndim return x[reverse].conj() def _np_conv_ok(volume, kernel, mode): """ See if numpy supports convolution of `volume` and `kernel` (i.e. both are 1D ndarrays and of the appropriate shape). Numpy's 'same' mode uses the size of the larger input, while Scipy's uses the size of the first input. """ np_conv_ok = volume.ndim == kernel.ndim == 1 return np_conv_ok and (volume.size >= kernel.size or mode != 'same') def _fftconvolve_valid(volume, kernel): # fftconvolve doesn't support complex256 for not_fft_conv_supp in ["complex256", "complex192"]: if hasattr(np, not_fft_conv_supp): if volume.dtype == not_fft_conv_supp or kernel.dtype == not_fft_conv_supp: return False # for integer input, # catch when more precision required than float provides (representing a # integer as float can lose precision in fftconvolve if larger than 2**52) if any([_numeric_arrays([x], kinds='ui') for x in [volume, kernel]]): max_value = int(np.abs(volume).max()) * int(np.abs(kernel).max()) max_value *= int(min(volume.size, kernel.size)) if max_value > 2**np.finfo('float').nmant - 1: return False if _numeric_arrays([volume, kernel]): return False return True def _timeit_fast(stmt="pass", setup="pass", repeat=3): """ Returns the time the statement/function took, in seconds. Faster, less precise version of IPython's timeit. `stmt` can be a statement written as a string or a callable. Will do only 1 loop (like IPython's timeit) with no repetitions (unlike IPython) for very slow functions. For fast functions, only does enough loops to take 5 ms, which seems to produce similar results (on Windows at least), and avoids doing an extraneous cycle that isn't measured. """ timer = timeit.Timer(stmt, setup) # determine number of calls per rep so total time for 1 rep >= 5 ms x = 0 for p in range(0, 10): number = 10**p x = timer.timeit(number) # seconds if x >= 5e-3 / 10: # 5 ms for final test, 1/10th that for this one break if x > 1: # second # If it's macroscopic, don't bother with repetitions best = x else: number *= 10 r = timer.repeat(repeat, number) best = min(r) sec = best / number return sec def choose_conv_method(in1, in2, mode='full', measure=False): """ Find the fastest convolution/correlation method. This primarily exists to be called during the ``method='auto'`` option in `convolve` and `correlate`, but can also be used when performing many convolutions of the same input shapes and dtypes, determining which method to use for all of them, either to avoid the overhead of the 'auto' option or to use accurate real-world measurements. Parameters ---------- in1 : array_like The first argument passed into the convolution function. in2 : array_like The second argument passed into the convolution function. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. measure : bool, optional If True, run and time the convolution of `in1` and `in2` with both methods and return the fastest. If False (default), predict the fastest method using precomputed values. Returns ------- method : str A string indicating which convolution method is fastest, either 'direct' or 'fft' times : dict, optional A dictionary containing the times (in seconds) needed for each method. This value is only returned if ``measure=True``. See Also -------- convolve correlate Notes ----- For large n, ``measure=False`` is accurate and can quickly determine the fastest method to perform the convolution. However, this is not as accurate for small n (when any dimension in the input or output is small). In practice, we found that this function estimates the faster method up to a multiplicative factor of 5 (i.e., the estimated method is *at most* 5 times slower than the fastest method). The estimation values were tuned on an early 2015 MacBook Pro with 8GB RAM but we found that the prediction held *fairly* accurately across different machines. If ``measure=True``, time the convolutions. Because this function uses `fftconvolve`, an error will be thrown if it does not support the inputs. There are cases when `fftconvolve` supports the inputs but this function returns `direct` (e.g., to protect against floating point integer precision). .. versionadded:: 0.19 Examples -------- Estimate the fastest method for a given input: >>> from scipy import signal >>> a = np.random.randn(1000) >>> b = np.random.randn(1000000) >>> method = signal.choose_conv_method(a, b, mode='same') >>> method 'fft' This can then be applied to other arrays of the same dtype and shape: >>> c = np.random.randn(1000) >>> d = np.random.randn(1000000) >>> # `method` works with correlate and convolve >>> corr1 = signal.correlate(a, b, mode='same', method=method) >>> corr2 = signal.correlate(c, d, mode='same', method=method) >>> conv1 = signal.convolve(a, b, mode='same', method=method) >>> conv2 = signal.convolve(c, d, mode='same', method=method) """ volume = asarray(in1) kernel = asarray(in2) if measure: times = {} for method in ['fft', 'direct']: times[method] = _timeit_fast(lambda: convolve(volume, kernel, mode=mode, method=method)) chosen_method = 'fft' if times['fft'] < times['direct'] else 'direct' return chosen_method, times # fftconvolve doesn't support complex256 fftconv_unsup = "complex256" if sys.maxsize > 2**32 else "complex192" if hasattr(np, fftconv_unsup): if volume.dtype == fftconv_unsup or kernel.dtype == fftconv_unsup: return 'direct' # for integer input, # catch when more precision required than float provides (representing an # integer as float can lose precision in fftconvolve if larger than 2**52) if any([_numeric_arrays([x], kinds='ui') for x in [volume, kernel]]): max_value = int(np.abs(volume).max()) * int(np.abs(kernel).max()) max_value *= int(min(volume.size, kernel.size)) if max_value > 2**np.finfo('float').nmant - 1: return 'direct' if _numeric_arrays([volume, kernel]): if _fftconv_faster(volume, kernel, mode): return 'fft' return 'direct' def convolve(in1, in2, mode='full', method='auto'): """ Convolve two N-dimensional arrays. Convolve `in1` and `in2`, with the output size determined by the `mode` argument. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. method : str {'auto', 'direct', 'fft'}, optional A string indicating which method to use to calculate the convolution. ``direct`` The convolution is determined directly from sums, the definition of convolution. ``fft`` The Fourier Transform is used to perform the convolution by calling `fftconvolve`. ``auto`` Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See Notes for more detail. .. versionadded:: 0.19.0 Returns ------- convolve : array An N-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. See Also -------- numpy.polymul : performs polynomial multiplication (same operation, but also accepts poly1d objects) choose_conv_method : chooses the fastest appropriate convolution method fftconvolve Notes ----- By default, `convolve` and `correlate` use ``method='auto'``, which calls `choose_conv_method` to choose the fastest method using pre-computed values (`choose_conv_method` can also measure real-world timing with a keyword argument). Because `fftconvolve` relies on floating point numbers, there are certain constraints that may force `method=direct` (more detail in `choose_conv_method` docstring). Examples -------- Smooth a square pulse using a Hann window: >>> from scipy import signal >>> sig = np.repeat([0., 1., 0.], 100) >>> win = signal.hann(50) >>> filtered = signal.convolve(sig, win, mode='same') / sum(win) >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True) >>> ax_orig.plot(sig) >>> ax_orig.set_title('Original pulse') >>> ax_orig.margins(0, 0.1) >>> ax_win.plot(win) >>> ax_win.set_title('Filter impulse response') >>> ax_win.margins(0, 0.1) >>> ax_filt.plot(filtered) >>> ax_filt.set_title('Filtered signal') >>> ax_filt.margins(0, 0.1) >>> fig.tight_layout() >>> fig.show() """ volume = asarray(in1) kernel = asarray(in2) if volume.ndim == kernel.ndim == 0: return volume * kernel if _inputs_swap_needed(mode, volume.shape, kernel.shape): # Convolution is commutative; order doesn't have any effect on output volume, kernel = kernel, volume if method == 'auto': method = choose_conv_method(volume, kernel, mode=mode) if method == 'fft': out = fftconvolve(volume, kernel, mode=mode) if volume.dtype.kind in 'ui': out = np.around(out) return out.astype(volume.dtype) # fastpath to faster numpy.convolve for 1d inputs when possible if _np_conv_ok(volume, kernel, mode): return np.convolve(volume, kernel, mode) return correlate(volume, _reverse_and_conj(kernel), mode, 'direct') def order_filter(a, domain, rank): """ Perform an order filter on an N-dimensional array. Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list. Parameters ---------- a : ndarray The N-dimensional input array. domain : array_like A mask array with the same number of dimensions as `a`. Each dimension should have an odd number of elements. rank : int A non-negative integer which selects the element from the sorted list (0 corresponds to the smallest element, 1 is the next smallest element, etc.). Returns ------- out : ndarray The results of the order filter in an array with the same shape as `a`. Examples -------- >>> from scipy import signal >>> x = np.arange(25).reshape(5, 5) >>> domain = np.identity(3) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) >>> signal.order_filter(x, domain, 0) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 1., 2., 0.], [ 0., 5., 6., 7., 0.], [ 0., 10., 11., 12., 0.], [ 0., 0., 0., 0., 0.]]) >>> signal.order_filter(x, domain, 2) array([[ 6., 7., 8., 9., 4.], [ 11., 12., 13., 14., 9.], [ 16., 17., 18., 19., 14.], [ 21., 22., 23., 24., 19.], [ 20., 21., 22., 23., 24.]]) """ domain = asarray(domain) size = domain.shape for k in range(len(size)): if (size[k] % 2) != 1: raise ValueError("Each dimension of domain argument " " should have an odd number of elements.") return sigtools._order_filterND(a, domain, rank) def medfilt(volume, kernel_size=None): """ Perform a median filter on an N-dimensional array. Apply a median filter to the input array using a local window-size given by `kernel_size`. Parameters ---------- volume : array_like An N-dimensional input array. kernel_size : array_like, optional A scalar or an N-length list giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension. Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ volume = atleast_1d(volume) if kernel_size is None: kernel_size = [3] * volume.ndim kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), volume.ndim) for k in range(volume.ndim): if (kernel_size[k] % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") domain = ones(kernel_size) numels = product(kernel_size, axis=0) order = numels // 2 return sigtools._order_filterND(volume, domain, order) def wiener(im, mysize=None, noise=None): """ Perform a Wiener filter on an N-dimensional array. Apply a Wiener filter to the N-dimensional array `im`. Parameters ---------- im : ndarray An N-dimensional array. mysize : int or array_like, optional A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension. noise : float, optional The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Returns ------- out : ndarray Wiener filtered result with the same shape as `im`. """ im = asarray(im) if mysize is None: mysize = [3] * im.ndim mysize = asarray(mysize) if mysize.shape == (): mysize = np.repeat(mysize.item(), im.ndim) # Estimate the local mean lMean = correlate(im, ones(mysize), 'same') / product(mysize, axis=0) # Estimate the local variance lVar = (correlate(im ** 2, ones(mysize), 'same') / product(mysize, axis=0) - lMean ** 2) # Estimate the noise power if needed. if noise is None: noise = mean(ravel(lVar), axis=0) res = (im - lMean) res *= (1 - noise / lVar) res += lMean out = where(lVar < noise, lMean, res) return out def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Convolve two 2-dimensional arrays. Convolve `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- out : ndarray A 2-dimensional array containing a subset of the discrete linear convolution of `in1` with `in2`. Examples -------- Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries. >>> from scipy import signal >>> from scipy import misc >>> ascent = misc.ascent() >>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j], ... [-10+0j, 0+ 0j, +10 +0j], ... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy >>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same') >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15)) >>> ax_orig.imshow(ascent, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_mag.imshow(np.absolute(grad), cmap='gray') >>> ax_mag.set_title('Gradient magnitude') >>> ax_mag.set_axis_off() >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles >>> ax_ang.set_title('Gradient orientation') >>> ax_ang.set_axis_off() >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if not in1.ndim == in2.ndim == 2: raise ValueError('convolve2d inputs must both be 2D arrays') if _inputs_swap_needed(mode, in1.shape, in2.shape): in1, in2 = in2, in1 val = _valfrommode(mode) bval = _bvalfromboundary(boundary) with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # FIXME: some cast generates a warning here out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue) return out def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0): """ Cross-correlate two 2-dimensional arrays. Cross correlate `in1` and `in2` with output size determined by `mode`, and boundary conditions determined by `boundary` and `fillvalue`. Parameters ---------- in1 : array_like First input. in2 : array_like Second input. Should have the same number of dimensions as `in1`. If operating in 'valid' mode, either `in1` or `in2` must be at least as large as the other in every dimension. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear cross-correlation of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. boundary : str {'fill', 'wrap', 'symm'}, optional A flag indicating how to handle boundaries: ``fill`` pad input arrays with fillvalue. (default) ``wrap`` circular boundary conditions. ``symm`` symmetrical boundary conditions. fillvalue : scalar, optional Value to fill pad input arrays with. Default is 0. Returns ------- correlate2d : ndarray A 2-dimensional array containing a subset of the discrete linear cross-correlation of `in1` with `in2`. Examples -------- Use 2D cross-correlation to find the location of a template in a noisy image: >>> from scipy import signal >>> from scipy import misc >>> face = misc.face(gray=True) - misc.face(gray=True).mean() >>> template = np.copy(face[300:365, 670:750]) # right eye >>> template -= template.mean() >>> face = face + np.random.randn(*face.shape) * 50 # add noise >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same') >>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match >>> import matplotlib.pyplot as plt >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1, ... figsize=(6, 15)) >>> ax_orig.imshow(face, cmap='gray') >>> ax_orig.set_title('Original') >>> ax_orig.set_axis_off() >>> ax_template.imshow(template, cmap='gray') >>> ax_template.set_title('Template') >>> ax_template.set_axis_off() >>> ax_corr.imshow(corr, cmap='gray') >>> ax_corr.set_title('Cross-correlation') >>> ax_corr.set_axis_off() >>> ax_orig.plot(x, y, 'ro') >>> fig.show() """ in1 = asarray(in1) in2 = asarray(in2) if not in1.ndim == in2.ndim == 2: raise ValueError('correlate2d inputs must both be 2D arrays') swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape) if swapped_inputs: in1, in2 = in2, in1 val = _valfrommode(mode) bval = _bvalfromboundary(boundary) with warnings.catch_warnings(): warnings.simplefilter('ignore', np.ComplexWarning) # FIXME: some cast generates a warning here out = sigtools._convolve2d(in1, in2, 0, val, bval, fillvalue) if swapped_inputs: out = out[::-1, ::-1] return out def medfilt2d(input, kernel_size=3): """ Median filter a 2-dimensional array. Apply a median filter to the `input` array using a local window-size given by `kernel_size` (must be odd). Parameters ---------- input : array_like A 2-dimensional input array. kernel_size : array_like, optional A scalar or a list of length 2, giving the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size (3, 3). Returns ------- out : ndarray An array the same size as input containing the median filtered result. """ image = asarray(input) if kernel_size is None: kernel_size = [3] * 2 kernel_size = asarray(kernel_size) if kernel_size.shape == (): kernel_size = np.repeat(kernel_size.item(), 2) for size in kernel_size: if (size % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") return sigtools._medfilt2d(image, kernel_size) def lfilter(b, a, x, axis=-1, zi=None): """ Filter data along one-dimension with an IIR or FIR filter. Filter a data sequence, `x`, using a digital filter. This works for many fundamental data types (including Object type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes). Parameters ---------- b : array_like The numerator coefficient vector in a 1-D sequence. a : array_like The denominator coefficient vector in a 1-D sequence. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the filter delays. It is a vector (or array of vectors for an N-dimensional input) of length ``max(len(a), len(b)) - 1``. If `zi` is None or is not given then initial rest is assumed. See `lfiltic` for more information. Returns ------- y : array The output of the digital filter. zf : array, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. See Also -------- lfiltic : Construct initial conditions for `lfilter`. lfilter_zi : Compute initial state (steady state of step response) for `lfilter`. filtfilt : A forward-backward filter, to obtain a filter with linear phase. savgol_filter : A Savitzky-Golay filter. sosfilt: Filter data using cascaded second-order sections. sosfiltfilt: A forward-backward filter using second-order sections. Notes ----- The filter function is implemented as a direct II transposed structure. This means that the filter implements:: a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M] - a[1]*y[n-1] - ... - a[N]*y[n-N] where `M` is the degree of the numerator, `N` is the degree of the denominator, and `n` is the sample number. It is implemented using the following difference equations (assuming M = N):: a[0]*y[n] = b[0] * x[n] + d[0][n-1] d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1] d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1] ... d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1] d[N-1][n] = b[N] * x[n] - a[N] * y[n] where `d` are the state variables. The rational transfer function describing this filter in the z-transform domain is:: -1 -M b[0] + b[1]z + ... + b[M] z Y(z) = -------------------------------- X(z) -1 -N a[0] + a[1]z + ... + a[N] z Examples -------- Generate a noisy signal to be filtered: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 201) >>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) + ... 0.1*np.sin(2*np.pi*1.25*t + 1) + ... 0.18*np.cos(2*np.pi*3.85*t)) >>> xn = x + np.random.randn(len(t)) * 0.08 Create an order 3 lowpass butterworth filter: >>> b, a = signal.butter(3, 0.05) Apply the filter to xn. Use lfilter_zi to choose the initial condition of the filter: >>> zi = signal.lfilter_zi(b, a) >>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0]) Apply the filter again, to have a result filtered at an order the same as filtfilt: >>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0]) Use filtfilt to apply the filter: >>> y = signal.filtfilt(b, a, xn) Plot the original signal and the various filtered versions: >>> plt.figure >>> plt.plot(t, xn, 'b', alpha=0.75) >>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k') >>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice', ... 'filtfilt'), loc='best') >>> plt.grid(True) >>> plt.show() """ a = np.atleast_1d(a) if len(a) == 1: # This path only supports types fdgFDGO to mirror _linear_filter below. # Any of b, a, x, or zi can set the dtype, but there is no default # casting of other types; instead a NotImplementedError is raised. b = np.asarray(b) a = np.asarray(a) if b.ndim != 1 and a.ndim != 1: raise ValueError('object of too small depth for desired array') x = np.asarray(x) inputs = [b, a, x] if zi is not None: # _linear_filter does not broadcast zi, but does do expansion of # singleton dims. zi = np.asarray(zi) if zi.ndim != x.ndim: raise ValueError('object of too small depth for desired array') expected_shape = list(x.shape) expected_shape[axis] = b.shape[0] - 1 expected_shape = tuple(expected_shape) # check the trivial case where zi is the right shape first if zi.shape != expected_shape: strides = zi.ndim * [None] if axis < 0: axis += zi.ndim for k in range(zi.ndim): if k == axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == expected_shape[k]: strides[k] = zi.strides[k] elif k != axis and zi.shape[k] == 1: strides[k] = 0 else: raise ValueError('Unexpected shape for zi: expected ' '%s, found %s.' % (expected_shape, zi.shape)) zi = np.lib.stride_tricks.as_strided(zi, expected_shape, strides) inputs.append(zi) dtype = np.result_type(*inputs) if dtype.char not in 'fdgFDGO': raise NotImplementedError("input type '%s' not supported" % dtype) b = np.array(b, dtype=dtype) a = np.array(a, dtype=dtype, copy=False) b /= a[0] x = np.array(x, dtype=dtype, copy=False) out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x) ind = out_full.ndim * [slice(None)] if zi is not None: ind[axis] = slice(zi.shape[axis]) out_full[ind] += zi ind[axis] = slice(out_full.shape[axis] - len(b) + 1) out = out_full[ind] if zi is None: return out else: ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None) zf = out_full[ind] return out, zf else: if zi is None: return sigtools._linear_filter(b, a, x, axis) else: return sigtools._linear_filter(b, a, x, axis, zi) def lfiltic(b, a, y, x=None): """ Construct initial conditions for lfilter. Given a linear filter (b, a) and initial conditions on the output `y` and the input `x`, return the initial conditions on the state vector zi which is used by `lfilter` to generate the output given the input. Parameters ---------- b : array_like Linear filter term. a : array_like Linear filter term. y : array_like Initial conditions. If ``N = len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``. If `y` is too short, it is padded with zeros. x : array_like, optional Initial conditions. If ``M = len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``. If `x` is not given, its initial conditions are assumed zero. If `x` is too short, it is padded with zeros. Returns ------- zi : ndarray The state vector ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``, where ``K = max(M, N)``. See Also -------- lfilter, lfilter_zi """ N = np.size(a) - 1 M = np.size(b) - 1 K = max(M, N) y = asarray(y) if y.dtype.kind in 'bui': # ensure calculations are floating point y = y.astype(np.float64) zi = zeros(K, y.dtype) if x is None: x = zeros(M, y.dtype) else: x = asarray(x) L = np.size(x) if L < M: x = r_[x, zeros(M - L)] L = np.size(y) if L < N: y = r_[y, zeros(N - L)] for m in range(M): zi[m] = np.sum(b[m + 1:] * x[:M - m], axis=0) for m in range(N): zi[m] -= np.sum(a[m + 1:] * y[:N - m], axis=0) return zi def deconvolve(signal, divisor): """Deconvolves ``divisor`` out of ``signal`` using inverse filtering. Returns the quotient and remainder such that ``signal = convolve(divisor, quotient) + remainder`` Parameters ---------- signal : array_like Signal data, typically a recorded signal divisor : array_like Divisor data, typically an impulse response or filter that was applied to the original signal Returns ------- quotient : ndarray Quotient, typically the recovered original signal remainder : ndarray Remainder Examples -------- Deconvolve a signal that's been filtered: >>> from scipy import signal >>> original = [0, 1, 0, 0, 1, 1, 0, 0] >>> impulse_response = [2, 1] >>> recorded = signal.convolve(impulse_response, original) >>> recorded array([0, 2, 1, 0, 2, 3, 1, 0, 0]) >>> recovered, remainder = signal.deconvolve(recorded, impulse_response) >>> recovered array([ 0., 1., 0., 0., 1., 1., 0., 0.]) See Also -------- numpy.polydiv : performs polynomial division (same operation, but also accepts poly1d objects) """ num = atleast_1d(signal) den = atleast_1d(divisor) N = len(num) D = len(den) if D > N: quot = [] rem = num else: input = zeros(N - D + 1, float) input[0] = 1 quot = lfilter(num, den, input) rem = num - convolve(den, quot, mode='full') return quot, rem def hilbert(x, N=None, axis=-1): """ Compute the analytic signal, using the Hilbert transform. The transformation is done along the last axis by default. Parameters ---------- x : array_like Signal data. Must be real. N : int, optional Number of Fourier components. Default: ``x.shape[axis]`` axis : int, optional Axis along which to do the transformation. Default: -1. Returns ------- xa : ndarray Analytic signal of `x`, of each 1-D array along `axis` See Also -------- scipy.fftpack.hilbert : Return Hilbert transform of a periodic sequence x. Notes ----- The analytic signal ``x_a(t)`` of signal ``x(t)`` is: .. math:: x_a = F^{-1}(F(x) 2U) = x + i y where `F` is the Fourier transform, `U` the unit step function, and `y` the Hilbert transform of `x`. [1]_ In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a complex signal. The Hilbert transformed signal can be obtained from ``np.imag(hilbert(x))``, and the original signal from ``np.real(hilbert(x))``. Examples --------- In this example we use the Hilbert transform to determine the amplitude envelope and instantaneous frequency of an amplitude-modulated signal. >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.signal import hilbert, chirp >>> duration = 1.0 >>> fs = 400.0 >>> samples = int(fs*duration) >>> t = np.arange(samples) / fs We create a chirp of which the frequency increases from 20 Hz to 100 Hz and apply an amplitude modulation. >>> signal = chirp(t, 20.0, t[-1], 100.0) >>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) ) The amplitude envelope is given by magnitude of the analytic signal. The instantaneous frequency can be obtained by differentiating the instantaneous phase in respect to time. The instantaneous phase corresponds to the phase angle of the analytic signal. >>> analytic_signal = hilbert(signal) >>> amplitude_envelope = np.abs(analytic_signal) >>> instantaneous_phase = np.unwrap(np.angle(analytic_signal)) >>> instantaneous_frequency = (np.diff(instantaneous_phase) / ... (2.0*np.pi) * fs) >>> fig = plt.figure() >>> ax0 = fig.add_subplot(211) >>> ax0.plot(t, signal, label='signal') >>> ax0.plot(t, amplitude_envelope, label='envelope') >>> ax0.set_xlabel("time in seconds") >>> ax0.legend() >>> ax1 = fig.add_subplot(212) >>> ax1.plot(t[1:], instantaneous_frequency) >>> ax1.set_xlabel("time in seconds") >>> ax1.set_ylim(0.0, 120.0) References ---------- .. [1] Wikipedia, "Analytic signal". http://en.wikipedia.org/wiki/Analytic_signal .. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2. .. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, Third Edition, 2009. Chapter 12. ISBN 13: 978-1292-02572-8 """ x = asarray(x) if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape[axis] if N <= 0: raise ValueError("N must be positive.") Xf = fftpack.fft(x, N, axis=axis) h = zeros(N) if N % 2 == 0: h[0] = h[N // 2] = 1 h[1:N // 2] = 2 else: h[0] = 1 h[1:(N + 1) // 2] = 2 if x.ndim > 1: ind = [newaxis] * x.ndim ind[axis] = slice(None) h = h[ind] x = fftpack.ifft(Xf * h, axis=axis) return x def hilbert2(x, N=None): """ Compute the '2-D' analytic signal of `x` Parameters ---------- x : array_like 2-D signal data. N : int or tuple of two ints, optional Number of Fourier components. Default is ``x.shape`` Returns ------- xa : ndarray Analytic signal of `x` taken along axes (0,1). References ---------- .. [1] Wikipedia, "Analytic signal", http://en.wikipedia.org/wiki/Analytic_signal """ x = atleast_2d(x) if x.ndim > 2: raise ValueError("x must be 2-D.") if iscomplexobj(x): raise ValueError("x must be real.") if N is None: N = x.shape elif isinstance(N, int): if N <= 0: raise ValueError("N must be positive.") N = (N, N) elif len(N) != 2 or np.any(np.asarray(N) <= 0): raise ValueError("When given as a tuple, N must hold exactly " "two positive integers") Xf = fftpack.fft2(x, N, axes=(0, 1)) h1 = zeros(N[0], 'd') h2 = zeros(N[1], 'd') for p in range(2): h = eval("h%d" % (p + 1)) N1 = N[p] if N1 % 2 == 0: h[0] = h[N1 // 2] = 1 h[1:N1 // 2] = 2 else: h[0] = 1 h[1:(N1 + 1) // 2] = 2 exec("h%d = h" % (p + 1), globals(), locals()) h = h1[:, newaxis] * h2[newaxis, :] k = x.ndim while k > 2: h = h[:, newaxis] k -= 1 x = fftpack.ifft2(Xf * h, axes=(0, 1)) return x def cmplx_sort(p): """Sort roots based on magnitude. Parameters ---------- p : array_like The roots to sort, as a 1-D array. Returns ------- p_sorted : ndarray Sorted roots. indx : ndarray Array of indices needed to sort the input `p`. """ p = asarray(p) if iscomplexobj(p): indx = argsort(abs(p)) else: indx = argsort(p) return take(p, indx, 0), indx def unique_roots(p, tol=1e-3, rtype='min'): """ Determine unique roots and their multiplicities from a list of roots. Parameters ---------- p : array_like The list of roots. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- pout : ndarray The list of unique roots, sorted from low to high. mult : ndarray The multiplicity of each root. Notes ----- This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and multiplicity has to be determined. For a more general routine, see `numpy.unique`. Examples -------- >>> from scipy import signal >>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3] >>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg') Check which roots have multiplicity larger than 1: >>> uniq[mult > 1] array([ 1.305]) """ if rtype in ['max', 'maximum']: comproot = np.max elif rtype in ['min', 'minimum']: comproot = np.min elif rtype in ['avg', 'mean']: comproot = np.mean else: raise ValueError("`rtype` must be one of " "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}") p = asarray(p) * 1.0 tol = abs(tol) p, indx = cmplx_sort(p) pout = [] mult = [] indx = -1 curp = p[0] + 5 * tol sameroots = [] for k in range(len(p)): tr = p[k] if abs(tr - curp) < tol: sameroots.append(tr) curp = comproot(sameroots) pout[indx] = curp mult[indx] += 1 else: pout.append(tr) curp = tr sameroots = [tr] indx += 1 mult.append(1) return array(pout), array(mult) def invres(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(s) and a(s) from partial fraction expansion. If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M] H(s) = ------ = ------------------------------------------ a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N] then the partial-fraction expansion H(s) is defined as:: r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer together than `tol`), then H(s) has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use `invresz`. Parameters ---------- r : array_like Residues. p : array_like Poles. k : array_like Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. See Also -------- residue, invresz, unique_roots """ extra = k p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 for k in range(len(pout)): temp = [] for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) b = polyadd(b, r[indx] * atleast_1d(poly(t2))) indx += 1 b = real_if_close(b) while allclose(b[0], 0, rtol=1e-14) and (b.shape[-1] > 1): b = b[1:] return b, a def residue(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(s) / a(s). If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M] H(s) = ------ = ------------------------------------------ a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N] then the partial-fraction expansion H(s) is defined as:: r[0] r[1] r[-1] = -------- + -------- + ... + --------- + k(s) (s-p[0]) (s-p[1]) (s-p[-1]) If there are any repeated roots (closer together than `tol`), then H(s) has terms like:: r[i] r[i+1] r[i+n-1] -------- + ----------- + ... + ----------- (s-p[i]) (s-p[i])**2 (s-p[i])**n This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls engineering. For negative powers of z (typical for digital filters in DSP), use `residuez`. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. See Also -------- invres, residuez, numpy.poly, unique_roots """ b, a = map(asarray, (b, a)) rscale = a[0] k, b = polydiv(b, a) p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula indx = 0 for n in range(len(pout)): bn = b.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn)) # bn(s) / an(s) is (s-po[n])**Nn * b(s) / a(s) where Nn is # multiplicity of pole at po[n] sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, pout[n]) / polyval(an, pout[n]) / factorial(sig - m)) indx += sig return r / rscale, p, k def residuez(b, a, tol=1e-3, rtype='avg'): """ Compute partial-fraction expansion of b(z) / a(z). If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M) H(z) = ------ = ------------------------------------------ a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N) then the partial-fraction expansion H(z) is defined as:: r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than `tol`), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use `residue`. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- r : ndarray Residues. p : ndarray Poles. k : ndarray Coefficients of the direct polynomial term. See Also -------- invresz, residue, unique_roots """ b, a = map(asarray, (b, a)) gain = a[0] brev, arev = b[::-1], a[::-1] krev, brev = polydiv(brev, arev) if krev == []: k = [] else: k = krev[::-1] b = brev[::-1] p = roots(a) r = p * 0.0 pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for n in range(len(pout)): p.extend([pout[n]] * mult[n]) p = asarray(p) # Compute the residue from the general formula (for discrete-time) # the polynomial is in z**(-1) and the multiplication is by terms # like this (1-p[i] z**(-1))**mult[i]. After differentiation, # we must divide by (-p[i])**(m-k) as well as (m-k)! indx = 0 for n in range(len(pout)): bn = brev.copy() pn = [] for l in range(len(pout)): if l != n: pn.extend([pout[l]] * mult[l]) an = atleast_1d(poly(pn))[::-1] # bn(z) / an(z) is (1-po[n] z**(-1))**Nn * b(z) / a(z) where Nn is # multiplicity of pole at po[n] and b(z) and a(z) are polynomials. sig = mult[n] for m in range(sig, 0, -1): if sig > m: # compute next derivative of bn(s) / an(s) term1 = polymul(polyder(bn, 1), an) term2 = polymul(bn, polyder(an, 1)) bn = polysub(term1, term2) an = polymul(an, an) r[indx + m - 1] = (polyval(bn, 1.0 / pout[n]) / polyval(an, 1.0 / pout[n]) / factorial(sig - m) / (-pout[n]) ** (sig - m)) indx += sig return r / gain, p, k def invresz(r, p, k, tol=1e-3, rtype='avg'): """ Compute b(z) and a(z) from partial fraction expansion. If `M` is the degree of numerator `b` and `N` the degree of denominator `a`:: b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M) H(z) = ------ = ------------------------------------------ a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N) then the partial-fraction expansion H(z) is defined as:: r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1)) If there are any repeated roots (closer than `tol`), then the partial fraction expansion has terms like:: r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use `invres`. Parameters ---------- r : array_like Residues. p : array_like Poles. k : array_like Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {'max', 'min, 'avg'}, optional How to determine the returned root if multiple roots are within `tol` of each other. - 'max': pick the maximum of those roots. - 'min': pick the minimum of those roots. - 'avg': take the average of those roots. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. See Also -------- residuez, unique_roots, invres """ extra = asarray(k) p, indx = cmplx_sort(p) r = take(r, indx, 0) pout, mult = unique_roots(p, tol=tol, rtype=rtype) p = [] for k in range(len(pout)): p.extend([pout[k]] * mult[k]) a = atleast_1d(poly(p)) if len(extra) > 0: b = polymul(extra, a) else: b = [0] indx = 0 brev = asarray(b)[::-1] for k in range(len(pout)): temp = [] # Construct polynomial which does not include any of this root for l in range(len(pout)): if l != k: temp.extend([pout[l]] * mult[l]) for m in range(mult[k]): t2 = temp[:] t2.extend([pout[k]] * (mult[k] - m - 1)) brev = polyadd(brev, (r[indx] * atleast_1d(poly(t2)))[::-1]) indx += 1 b = real_if_close(brev[::-1]) return b, a def resample(x, num, t=None, axis=0, window=None): """ Resample `x` to `num` samples using Fourier method along the given axis. The resampled signal starts at the same value as `x` but is sampled with a spacing of ``len(x) / num * (spacing of x)``. Because a Fourier method is used, the signal is assumed to be periodic. Parameters ---------- x : array_like The data to be resampled. num : int The number of samples in the resampled signal. t : array_like, optional If `t` is given, it is assumed to be the sample positions associated with the signal data in `x`. axis : int, optional The axis of `x` that is resampled. Default is 0. window : array_like, callable, string, float, or tuple, optional Specifies the window applied to the signal in the Fourier domain. See below for details. Returns ------- resampled_x or (resampled_x, resampled_t) Either the resampled array, or, if `t` was given, a tuple containing the resampled array and the corresponding resampled positions. See Also -------- decimate : Downsample the signal after applying an FIR or IIR filter. resample_poly : Resample using polyphase filtering and an FIR filter. Notes ----- The argument `window` controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to alleviate ringing in the resampled values for sampled signals you didn't intend to be interpreted as band-limited. If `window` is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ). If `window` is an array of the same length as `x.shape[axis]` it is assumed to be the window to be applied directly in the Fourier domain (with dc and low-frequency first). For any other type of `window`, the function `scipy.signal.get_window` is called to generate the window. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * len(x) / num``. If `t` is not None, then it represents the old sample positions, and the new sample positions will be returned as well as the new samples. As noted, `resample` uses FFT transformations, which can be very slow if the number of input or output samples is large and prime; see `scipy.fftpack.fft`. Examples -------- Note that the end of the resampled data rises to meet the first sample of the next cycle: >>> from scipy import signal >>> x = np.linspace(0, 10, 20, endpoint=False) >>> y = np.cos(-x**2/6.0) >>> f = signal.resample(y, 100) >>> xnew = np.linspace(0, 10, 100, endpoint=False) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro') >>> plt.legend(['data', 'resampled'], loc='best') >>> plt.show() """ x = asarray(x) X = fftpack.fft(x, axis=axis) Nx = x.shape[axis] if window is not None: if callable(window): W = window(fftpack.fftfreq(Nx)) elif isinstance(window, ndarray): if window.shape != (Nx,): raise ValueError('window must have the same length as data') W = window else: W = fftpack.ifftshift(get_window(window, Nx)) newshape = [1] * x.ndim newshape[axis] = len(W) W.shape = newshape X = X * W W.shape = (Nx,) sl = [slice(None)] * x.ndim newshape = list(x.shape) newshape[axis] = num N = int(np.minimum(num, Nx)) Y = zeros(newshape, 'D') sl[axis] = slice(0, (N + 1) // 2) Y[sl] = X[sl] sl[axis] = slice(-(N - 1) // 2, None) Y[sl] = X[sl] y = fftpack.ifft(Y, axis=axis) * (float(num) / float(Nx)) if x.dtype.char not in ['F', 'D']: y = y.real if t is None: return y else: new_t = arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0] return y, new_t def resample_poly(x, up, down, axis=0, window=('kaiser', 5.0)): """ Resample `x` along the given axis using polyphase filtering. The signal `x` is upsampled by the factor `up`, a zero-phase low-pass FIR filter is applied, and then it is downsampled by the factor `down`. The resulting sample rate is ``up / down`` times the original sample rate. Values beyond the boundary of the signal are assumed to be zero during the filtering step. Parameters ---------- x : array_like The data to be resampled. up : int The upsampling factor. down : int The downsampling factor. axis : int, optional The axis of `x` that is resampled. Default is 0. window : string, tuple, or array_like, optional Desired window to use to design the low-pass filter, or the FIR filter coefficients to employ. See below for details. Returns ------- resampled_x : array The resampled array. See Also -------- decimate : Downsample the signal after applying an FIR or IIR filter. resample : Resample up or down using the FFT method. Notes ----- This polyphase method will likely be faster than the Fourier method in `scipy.signal.resample` when the number of samples is large and prime, or when the number of samples is large and `up` and `down` share a large greatest common denominator. The length of the FIR filter used will depend on ``max(up, down) // gcd(up, down)``, and the number of operations during polyphase filtering will depend on the filter length and `down` (see `scipy.signal.upfirdn` for details). The argument `window` specifies the FIR low-pass filter design. If `window` is an array_like it is assumed to be the FIR filter coefficients. Note that the FIR filter is applied after the upsampling step, so it should be designed to operate on a signal at a sampling frequency higher than the original by a factor of `up//gcd(up, down)`. This function's output will be centered with respect to this array, so it is best to pass a symmetric filter with an odd number of samples if, as is usually the case, a zero-phase filter is desired. For any other type of `window`, the functions `scipy.signal.get_window` and `scipy.signal.firwin` are called to generate the appropriate filter coefficients. The first sample of the returned vector is the same as the first sample of the input vector. The spacing between samples is changed from ``dx`` to ``dx * down / float(up)``. Examples -------- Note that the end of the resampled data rises to meet the first sample of the next cycle for the FFT method, and gets closer to zero for the polyphase method: >>> from scipy import signal >>> x = np.linspace(0, 10, 20, endpoint=False) >>> y = np.cos(-x**2/6.0) >>> f_fft = signal.resample(y, 100) >>> f_poly = signal.resample_poly(y, 100, 20) >>> xnew = np.linspace(0, 10, 100, endpoint=False) >>> import matplotlib.pyplot as plt >>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-') >>> plt.plot(x, y, 'ko-') >>> plt.plot(10, y[0], 'bo', 10, 0., 'ro') # boundaries >>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best') >>> plt.show() """ x = asarray(x) up = int(up) down = int(down) if up < 1 or down < 1: raise ValueError('up and down must be >= 1') # Determine our up and down factors # Use a rational approimation to save computation time on really long # signals g_ = gcd(up, down) up //= g_ down //= g_ if up == down == 1: return x.copy() n_out = x.shape[axis] * up n_out = n_out // down + bool(n_out % down) if isinstance(window, (list, np.ndarray)): window = asarray(window) if window.ndim > 1: raise ValueError('window must be 1-D') half_len = (window.size - 1) // 2 h = window else: # Design a linear-phase low-pass FIR filter max_rate = max(up, down) f_c = 1. / max_rate # cutoff of FIR filter (rel. to Nyquist) half_len = 10 * max_rate # reasonable cutoff for our sinc-like function h = firwin(2 * half_len + 1, f_c, window=window) h *= up # Zero-pad our filter to put the output samples at the center n_pre_pad = (down - half_len % down) n_post_pad = 0 n_pre_remove = (half_len + n_pre_pad) // down # We should rarely need to do this given our filter lengths... while _output_len(len(h) + n_pre_pad + n_post_pad, x.shape[axis], up, down) < n_out + n_pre_remove: n_post_pad += 1 h = np.concatenate((np.zeros(n_pre_pad), h, np.zeros(n_post_pad))) n_pre_remove_end = n_pre_remove + n_out # filter then remove excess y = upfirdn(h, x, up, down, axis=axis) keep = [slice(None), ]*x.ndim keep[axis] = slice(n_pre_remove, n_pre_remove_end) return y[keep] def vectorstrength(events, period): ''' Determine the vector strength of the events corresponding to the given period. The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single period of a periodic signal. If multiple periods are used, calculate the vector strength of each. This is called the "resonating vector strength". Parameters ---------- events : 1D array_like An array of time points containing the timing of the events. period : float or array_like The period of the signal that the events should synchronize to. The period is in the same units as `events`. It can also be an array of periods, in which case the outputs are arrays of the same length. Returns ------- strength : float or 1D array The strength of the synchronization. 1.0 is perfect synchronization and 0.0 is no synchronization. If `period` is an array, this is also an array with each element containing the vector strength at the corresponding period. phase : float or array The phase that the events are most strongly synchronized to in radians. If `period` is an array, this is also an array with each element containing the phase for the corresponding period. References ---------- van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector strength: Auditory system, electric fish, and noise. Chaos 21, 047508 (2011); :doi:`10.1063/1.3670512`. van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biol Cybern. 2013 Aug;107(4):385-96. :doi:`10.1007/s00422-013-0561-7`. van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens when we vary the "probing" frequency while keeping the spike times fixed. Biol Cybern. 2013 Aug;107(4):491-94. :doi:`10.1007/s00422-013-0560-8`. ''' events = asarray(events) period = asarray(period) if events.ndim > 1: raise ValueError('events cannot have dimensions more than 1') if period.ndim > 1: raise ValueError('period cannot have dimensions more than 1') # we need to know later if period was originally a scalar scalarperiod = not period.ndim events = atleast_2d(events) period = atleast_2d(period) if (period <= 0).any(): raise ValueError('periods must be positive') # this converts the times to vectors vectors = exp(dot(2j*pi/period.T, events)) # the vector strength is just the magnitude of the mean of the vectors # the vector phase is the angle of the mean of the vectors vectormean = mean(vectors, axis=1) strength = abs(vectormean) phase = angle(vectormean) # if the original period was a scalar, return scalars if scalarperiod: strength = strength[0] phase = phase[0] return strength, phase def detrend(data, axis=-1, type='linear', bp=0): """ Remove linear trend along axis from data. Parameters ---------- data : array_like The input data. axis : int, optional The axis along which to detrend the data. By default this is the last axis (-1). type : {'linear', 'constant'}, optional The type of detrending. If ``type == 'linear'`` (default), the result of a linear least-squares fit to `data` is subtracted from `data`. If ``type == 'constant'``, only the mean of `data` is subtracted. bp : array_like of ints, optional A sequence of break points. If given, an individual linear fit is performed for each part of `data` between two break points. Break points are specified as indices into `data`. Returns ------- ret : ndarray The detrended input data. Examples -------- >>> from scipy import signal >>> randgen = np.random.RandomState(9) >>> npoints = 1000 >>> noise = randgen.randn(npoints) >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise >>> (signal.detrend(x) - noise).max() < 0.01 True """ if type not in ['linear', 'l', 'constant', 'c']: raise ValueError("Trend type must be 'linear' or 'constant'.") data = asarray(data) dtype = data.dtype.char if dtype not in 'dfDF': dtype = 'd' if type in ['constant', 'c']: ret = data - expand_dims(mean(data, axis), axis) return ret else: dshape = data.shape N = dshape[axis] bp = sort(unique(r_[0, bp, N])) if np.any(bp > N): raise ValueError("Breakpoints must be less than length " "of data along given axis.") Nreg = len(bp) - 1 # Restructure data so that axis is along first dimension and # all other dimensions are collapsed into second dimension rnk = len(dshape) if axis < 0: axis = axis + rnk newdims = r_[axis, 0:axis, axis + 1:rnk] newdata = reshape(transpose(data, tuple(newdims)), (N, _prod(dshape) // N)) newdata = newdata.copy() # make sure we have a copy if newdata.dtype.char not in 'dfDF': newdata = newdata.astype(dtype) # Find leastsq fit and remove it for each piece for m in range(Nreg): Npts = bp[m + 1] - bp[m] A = ones((Npts, 2), dtype) A[:, 0] = cast[dtype](arange(1, Npts + 1) * 1.0 / Npts) sl = slice(bp[m], bp[m + 1]) coef, resids, rank, s = linalg.lstsq(A, newdata[sl]) newdata[sl] = newdata[sl] - dot(A, coef) # Put data back in original shape. tdshape = take(dshape, newdims, 0) ret = reshape(newdata, tuple(tdshape)) vals = list(range(1, rnk)) olddims = vals[:axis] + [0] + vals[axis:] ret = transpose(ret, tuple(olddims)) return ret def lfilter_zi(b, a): """ Compute an initial state `zi` for the lfilter function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- b, a : array_like (1-D) The IIR filter coefficients. See `lfilter` for more information. Returns ------- zi : 1-D ndarray The initial state for the filter. See Also -------- lfilter, lfiltic, filtfilt Notes ----- A linear filter with order m has a state space representation (A, B, C, D), for which the output y of the filter can be expressed as:: z(n+1) = A*z(n) + B*x(n) y(n) = C*z(n) + D*x(n) where z(n) is a vector of length m, A has shape (m, m), B has shape (m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is a scalar). lfilter_zi solves:: zi = A*zi + B In other words, it finds the initial condition for which the response to an input of all ones is a constant. Given the filter coefficients `a` and `b`, the state space matrices for the transposed direct form II implementation of the linear filter, which is the implementation used by scipy.signal.lfilter, are:: A = scipy.linalg.companion(a).T B = b[1:] - a[1:]*b[0] assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first divided by a[0]. Examples -------- The following code creates a lowpass Butterworth filter. Then it applies that filter to an array whose values are all 1.0; the output is also all 1.0, as expected for a lowpass filter. If the `zi` argument of `lfilter` had not been given, the output would have shown the transient signal. >>> from numpy import array, ones >>> from scipy.signal import lfilter, lfilter_zi, butter >>> b, a = butter(5, 0.25) >>> zi = lfilter_zi(b, a) >>> y, zo = lfilter(b, a, ones(10), zi=zi) >>> y array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) Another example: >>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0]) >>> y, zf = lfilter(b, a, x, zi=zi*x[0]) >>> y array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528, 0.44399389, 0.35505241]) Note that the `zi` argument to `lfilter` was computed using `lfilter_zi` and scaled by `x[0]`. Then the output `y` has no transient until the input drops from 0.5 to 0.0. """ # FIXME: Can this function be replaced with an appropriate # use of lfiltic? For example, when b,a = butter(N,Wn), # lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)). # # We could use scipy.signal.normalize, but it uses warnings in # cases where a ValueError is more appropriate, and it allows # b to be 2D. b = np.atleast_1d(b) if b.ndim != 1: raise ValueError("Numerator b must be 1-D.") a = np.atleast_1d(a) if a.ndim != 1: raise ValueError("Denominator a must be 1-D.") while len(a) > 1 and a[0] == 0.0: a = a[1:] if a.size < 1: raise ValueError("There must be at least one nonzero `a` coefficient.") if a[0] != 1.0: # Normalize the coefficients so a[0] == 1. b = b / a[0] a = a / a[0] n = max(len(a), len(b)) # Pad a or b with zeros so they are the same length. if len(a) < n: a = np.r_[a, np.zeros(n - len(a))] elif len(b) < n: b = np.r_[b, np.zeros(n - len(b))] IminusA = np.eye(n - 1) - linalg.companion(a).T B = b[1:] - a[1:] * b[0] # Solve zi = A*zi + B zi = np.linalg.solve(IminusA, B) # For future reference: we could also use the following # explicit formulas to solve the linear system: # # zi = np.zeros(n - 1) # zi[0] = B.sum() / IminusA[:,0].sum() # asum = 1.0 # csum = 0.0 # for k in range(1,n-1): # asum += a[k] # csum += b[k] - a[k]*b[0] # zi[k] = asum*zi[0] - csum return zi def sosfilt_zi(sos): """ Compute an initial state `zi` for the sosfilt function that corresponds to the steady state of the step response. A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the first element of the signal to be filtered. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- zi : ndarray Initial conditions suitable for use with ``sosfilt``, shape ``(n_sections, 2)``. See Also -------- sosfilt, zpk2sos Notes ----- .. versionadded:: 0.16.0 Examples -------- Filter a rectangular pulse that begins at time 0, with and without the use of the `zi` argument of `scipy.signal.sosfilt`. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> sos = signal.butter(9, 0.125, output='sos') >>> zi = signal.sosfilt_zi(sos) >>> x = (np.arange(250) < 100).astype(int) >>> f1 = signal.sosfilt(sos, x) >>> f2, zo = signal.sosfilt(sos, x, zi=zi) >>> plt.plot(x, 'k--', label='x') >>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered') >>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi') >>> plt.legend(loc='best') >>> plt.show() """ sos = np.asarray(sos) if sos.ndim != 2 or sos.shape[1] != 6: raise ValueError('sos must be shape (n_sections, 6)') n_sections = sos.shape[0] zi = np.empty((n_sections, 2)) scale = 1.0 for section in range(n_sections): b = sos[section, :3] a = sos[section, 3:] zi[section] = scale * lfilter_zi(b, a) # If H(z) = B(z)/A(z) is this section's transfer function, then # b.sum()/a.sum() is H(1), the gain at omega=0. That's the steady # state value of this section's step response. scale *= b.sum() / a.sum() return zi def _filtfilt_gust(b, a, x, axis=-1, irlen=None): """Forward-backward IIR filter that uses Gustafsson's method. Apply the IIR filter defined by `(b,a)` to `x` twice, first forward then backward, using Gustafsson's initial conditions [1]_. Let ``y_fb`` be the result of filtering first forward and then backward, and let ``y_bf`` be the result of filtering first backward then forward. Gustafsson's method is to compute initial conditions for the forward pass and the backward pass such that ``y_fb == y_bf``. Parameters ---------- b : scalar or 1-D ndarray Numerator coefficients of the filter. a : scalar or 1-D ndarray Denominator coefficients of the filter. x : ndarray Data to be filtered. axis : int, optional Axis of `x` to be filtered. Default is -1. irlen : int or None, optional The length of the nonnegligible part of the impulse response. If `irlen` is None, or if the length of the signal is less than ``2 * irlen``, then no part of the impulse response is ignored. Returns ------- y : ndarray The filtered data. x0 : ndarray Initial condition for the forward filter. x1 : ndarray Initial condition for the backward filter. Notes ----- Typically the return values `x0` and `x1` are not needed by the caller. The intended use of these return values is in unit tests. References ---------- .. [1] F. Gustaffson. Determining the initial states in forward-backward filtering. Transactions on Signal Processing, 46(4):988-992, 1996. """ # In the comments, "Gustafsson's paper" and [1] refer to the # paper referenced in the docstring. b = np.atleast_1d(b) a = np.atleast_1d(a) order = max(len(b), len(a)) - 1 if order == 0: # The filter is just scalar multiplication, with no state. scale = (b[0] / a[0])**2 y = scale * x return y, np.array([]), np.array([]) if axis != -1 or axis != x.ndim - 1: # Move the axis containing the data to the end. x = np.swapaxes(x, axis, x.ndim - 1) # n is the number of samples in the data to be filtered. n = x.shape[-1] if irlen is None or n <= 2*irlen: m = n else: m = irlen # Create Obs, the observability matrix (called O in the paper). # This matrix can be interpreted as the operator that propagates # an arbitrary initial state to the output, assuming the input is # zero. # In Gustafsson's paper, the forward and backward filters are not # necessarily the same, so he has both O_f and O_b. We use the same # filter in both directions, so we only need O. The same comment # applies to S below. Obs = np.zeros((m, order)) zi = np.zeros(order) zi[0] = 1 Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0] for k in range(1, order): Obs[k:, k] = Obs[:-k, 0] # Obsr is O^R (Gustafsson's notation for row-reversed O) Obsr = Obs[::-1] # Create S. S is the matrix that applies the filter to the reversed # propagated initial conditions. That is, # out = S.dot(zi) # is the same as # tmp, _ = lfilter(b, a, zeros(), zi=zi) # Propagate ICs. # out = lfilter(b, a, tmp[::-1]) # Reverse and filter. # Equations (5) & (6) of [1] S = lfilter(b, a, Obs[::-1], axis=0) # Sr is S^R (row-reversed S) Sr = S[::-1] # M is [(S^R - O), (O^R - S)] if m == n: M = np.hstack((Sr - Obs, Obsr - S)) else: # Matrix described in section IV of [1]. M = np.zeros((2*m, 2*order)) M[:m, :order] = Sr - Obs M[m:, order:] = Obsr - S # Naive forward-backward and backward-forward filters. # These have large transients because the filters use zero initial # conditions. y_f = lfilter(b, a, x) y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1] y_b = lfilter(b, a, x[..., ::-1])[..., ::-1] y_bf = lfilter(b, a, y_b) delta_y_bf_fb = y_bf - y_fb if m == n: delta = delta_y_bf_fb else: start_m = delta_y_bf_fb[..., :m] end_m = delta_y_bf_fb[..., -m:] delta = np.concatenate((start_m, end_m), axis=-1) # ic_opt holds the "optimal" initial conditions. # The following code computes the result shown in the formula # of the paper between equations (6) and (7). if delta.ndim == 1: ic_opt = linalg.lstsq(M, delta)[0] else: # Reshape delta so it can be used as an array of multiple # right-hand-sides in linalg.lstsq. delta2d = delta.reshape(-1, delta.shape[-1]).T ic_opt0 = linalg.lstsq(M, delta2d)[0].T ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],)) # Now compute the filtered signal using equation (7) of [1]. # First, form [S^R, O^R] and call it W. if m == n: W = np.hstack((Sr, Obsr)) else: W = np.zeros((2*m, 2*order)) W[:m, :order] = Sr W[m:, order:] = Obsr # Equation (7) of [1] says # Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt] # `wic` is (almost) the product on the right. # W has shape (m, 2*order), and ic_opt has shape (..., 2*order), # so we can't use W.dot(ic_opt). Instead, we dot ic_opt with W.T, # so wic has shape (..., m). wic = ic_opt.dot(W.T) # `wic` is "almost" the product of W and the optimal ICs in equation # (7)--if we're using a truncated impulse response (m < n), `wic` # contains only the adjustments required for the ends of the signal. # Here we form y_opt, taking this into account if necessary. y_opt = y_fb if m == n: y_opt += wic else: y_opt[..., :m] += wic[..., :m] y_opt[..., -m:] += wic[..., -m:] x0 = ic_opt[..., :order] x1 = ic_opt[..., -order:] if axis != -1 or axis != x.ndim - 1: # Restore the data axis to its original position. x0 = np.swapaxes(x0, axis, x.ndim - 1) x1 = np.swapaxes(x1, axis, x.ndim - 1) y_opt = np.swapaxes(y_opt, axis, x.ndim - 1) return y_opt, x0, x1 def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None): """ A forward-backward filter. This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. The function provides options for handling the edges of the signal. When `method` is "pad", the function pads the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at the end points. On both the forward and backward passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data. When `method` is "gust", Gustafsson's method [1]_ is used. Initial conditions are chosen for the forward and backward passes so that the forward-backward filter gives the same result as the backward-forward filter. Parameters ---------- b : (N,) array_like The numerator coefficient vector of the filter. a : (N,) array_like The denominator coefficient vector of the filter. If ``a[0]`` is not 1, then both `a` and `b` are normalized by ``a[0]``. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is ``3 * max(len(a), len(b))``. method : str, optional Determines the method for handling the edges of the signal, either "pad" or "gust". When `method` is "pad", the signal is padded; the type of padding is determined by `padtype` and `padlen`, and `irlen` is ignored. When `method` is "gust", Gustafsson's method is used, and `padtype` and `padlen` are ignored. irlen : int or None, optional When `method` is "gust", `irlen` specifies the length of the impulse response of the filter. If `irlen` is None, no part of the impulse response is ignored. For a long signal, specifying `irlen` can significantly improve the performance of the filter. Returns ------- y : ndarray The filtered output with the same shape as `x`. See Also -------- sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt Notes ----- The option to use Gustaffson's method was added in scipy version 0.16.0. References ---------- .. [1] F. Gustaffson, "Determining the initial states in forward-backward filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992, 1996. Examples -------- The examples will use several functions from `scipy.signal`. >>> from scipy import signal >>> import matplotlib.pyplot as plt First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz. >>> t = np.linspace(0, 1.0, 2001) >>> xlow = np.sin(2 * np.pi * 5 * t) >>> xhigh = np.sin(2 * np.pi * 250 * t) >>> x = xlow + xhigh Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to ``x`` with `filtfilt`. The result should be approximately ``xlow``, with no phase shift. >>> b, a = signal.butter(8, 0.125) >>> y = signal.filtfilt(b, a, x, padlen=150) >>> np.abs(y - xlow).max() 9.1086182074789912e-06 We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable. The following example demonstrates the option ``method="gust"``. First, create a filter. >>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied. >>> np.random.seed(123456) `sig` is a random input signal to be filtered. >>> n = 60 >>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum() Apply `filtfilt` to `sig`, once using the Gustafsson method, and once using padding, and plot the results for comparison. >>> fgust = signal.filtfilt(b, a, sig, method="gust") >>> fpad = signal.filtfilt(b, a, sig, padlen=50) >>> plt.plot(sig, 'k-', label='input') >>> plt.plot(fgust, 'b-', linewidth=4, label='gust') >>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad') >>> plt.legend(loc='best') >>> plt.show() The `irlen` argument can be used to improve the performance of Gustafsson's method. Estimate the impulse response length of the filter. >>> z, p, k = signal.tf2zpk(b, a) >>> eps = 1e-9 >>> r = np.max(np.abs(p)) >>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r))) >>> approx_impulse_len 137 Apply the filter to a longer signal, with and without the `irlen` argument. The difference between `y1` and `y2` is small. For long signals, using `irlen` gives a significant performance improvement. >>> x = np.random.randn(5000) >>> y1 = signal.filtfilt(b, a, x, method='gust') >>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len) >>> print(np.max(np.abs(y1 - y2))) 1.80056858312e-10 """ b = np.atleast_1d(b) a = np.atleast_1d(a) x = np.asarray(x) if method not in ["pad", "gust"]: raise ValueError("method must be 'pad' or 'gust'.") if method == "gust": y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen) return y # method == "pad" edge, ext = _validate_pad(padtype, padlen, x, axis, ntaps=max(len(a), len(b))) # Get the steady state of the filter's step response. zi = lfilter_zi(b, a) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y def _validate_pad(padtype, padlen, x, axis, ntaps): """Helper to validate padding for filtfilt""" if padtype not in ['even', 'odd', 'constant', None]: raise ValueError(("Unknown value '%s' given to padtype. padtype " "must be 'even', 'odd', 'constant', or None.") % padtype) if padtype is None: padlen = 0 if padlen is None: # Original padding; preserved for backwards compatibility. edge = ntaps * 3 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x return edge, ext def sosfilt(sos, x, axis=-1, zi=None): """ Filter data along one dimension using cascaded second-order sections Filter a data sequence, `x`, using a digital IIR filter defined by `sos`. This is implemented by performing `lfilter` for each second-order section. See `lfilter` for details. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like An N-dimensional input array. axis : int, optional The axis of the input data array along which to apply the linear filter. The filter is applied to each subarray along this axis. Default is -1. zi : array_like, optional Initial conditions for the cascaded filter delays. It is a (at least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where ``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]`` replaced by 2. If `zi` is None or is not given then initial rest (i.e. all zeros) is assumed. Note that these initial conditions are *not* the same as the initial conditions given by `lfiltic` or `lfilter_zi`. Returns ------- y : ndarray The output of the digital filter. zf : ndarray, optional If `zi` is None, this is not returned, otherwise, `zf` holds the final filter delay values. See Also -------- zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz Notes ----- The filter function is implemented as a series of second-order filters with direct-form II transposed structure. It is designed to minimize numerical precision errors for high-order filters. .. versionadded:: 0.16.0 Examples -------- Plot a 13th-order filter's impulse response using both `lfilter` and `sosfilt`, showing the instability that results from trying to do a 13th-order filter in a single stage (the numerical error pushes some poles outside of the unit circle): >>> import matplotlib.pyplot as plt >>> from scipy import signal >>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba') >>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos') >>> x = signal.unit_impulse(700) >>> y_tf = signal.lfilter(b, a, x) >>> y_sos = signal.sosfilt(sos, x) >>> plt.plot(y_tf, 'r', label='TF') >>> plt.plot(y_sos, 'k', label='SOS') >>> plt.legend(loc='best') >>> plt.show() """ x = np.asarray(x) sos, n_sections = _validate_sos(sos) use_zi = zi is not None if use_zi: zi = np.asarray(zi) x_zi_shape = list(x.shape) x_zi_shape[axis] = 2 x_zi_shape = tuple([n_sections] + x_zi_shape) if zi.shape != x_zi_shape: raise ValueError('Invalid zi shape. With axis=%r, an input with ' 'shape %r, and an sos array with %d sections, zi ' 'must have shape %r, got %r.' % (axis, x.shape, n_sections, x_zi_shape, zi.shape)) zf = zeros_like(zi) for section in range(n_sections): if use_zi: x, zf[section] = lfilter(sos[section, :3], sos[section, 3:], x, axis, zi=zi[section]) else: x = lfilter(sos[section, :3], sos[section, 3:], x, axis) out = (x, zf) if use_zi else x return out def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None): """ A forward-backward filter using cascaded second-order sections. See `filtfilt` for more complete information about this method. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is:: 3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())) The extra subtraction at the end attempts to compensate for poles and zeros at the origin (e.g. for odd-order filters) to yield equivalent estimates of `padlen` to those of `filtfilt` for second-order section filters built with `scipy.signal` functions. Returns ------- y : ndarray The filtered output with the same shape as `x`. See Also -------- filtfilt, sosfilt, sosfilt_zi, sosfreqz Notes ----- .. versionadded:: 0.18.0 """ sos, n_sections = _validate_sos(sos) # `method` is "pad"... ntaps = 2 * n_sections + 1 ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum()) edge, ext = _validate_pad(padtype, padlen, x, axis, ntaps=ntaps) # These steps follow the same form as filtfilt with modifications zi = sosfilt_zi(sos) # shape (n_sections, 2) --> (n_sections, ..., 2, ...) zi_shape = [1] * x.ndim zi_shape[axis] = 2 zi.shape = [n_sections] + zi_shape x_0 = axis_slice(ext, stop=1, axis=axis) (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0) y_0 = axis_slice(y, start=-1, axis=axis) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0) y = axis_reverse(y, axis=axis) if edge > 0: y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y def decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True): """ Downsample the signal after applying an anti-aliasing filter. By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with Hamming window is used if `ftype` is 'fir'. Parameters ---------- x : ndarray The signal to be downsampled, as an N-dimensional array. q : int The downsampling factor. For downsampling factors higher than 13, it is recommended to call `decimate` multiple times. n : int, optional The order of the filter (1 less than the length for 'fir'). Defaults to 8 for 'iir' and 30 for 'fir'. ftype : str {'iir', 'fir'} or ``dlti`` instance, optional If 'iir' or 'fir', specifies the type of lowpass filter. If an instance of an `dlti` object, uses that object to filter before downsampling. axis : int, optional The axis along which to decimate. zero_phase : bool, optional Prevent phase shift by filtering with `filtfilt` instead of `lfilter` when using an IIR filter, and shifting the outputs back by the filter's group delay when using an FIR filter. The default value of ``True`` is recommended, since a phase shift is generally not desired. .. versionadded:: 0.18.0 Returns ------- y : ndarray The down-sampled signal. See Also -------- resample : Resample up or down using the FFT method. resample_poly : Resample using polyphase filtering and an FIR filter. Notes ----- The ``zero_phase`` keyword was added in 0.18.0. The possibility to use instances of ``dlti`` as ``ftype`` was added in 0.18.0. """ if not isinstance(q, int): raise TypeError("q must be an integer") if n is not None and not isinstance(n, int): raise TypeError("n must be an integer") if ftype == 'fir': if n is None: n = 30 system = dlti(firwin(n+1, 1. / q, window='hamming'), 1.) elif ftype == 'iir': if n is None: n = 8 system = dlti(*cheby1(n, 0.05, 0.8 / q)) elif isinstance(ftype, dlti): system = ftype._as_tf() # Avoids copying if already in TF form n = np.max((system.num.size, system.den.size)) - 1 else: raise ValueError('invalid ftype') sl = [slice(None)] * x.ndim if len(system.den) == 1: # FIR case if zero_phase: y = resample_poly(x, 1, q, axis=axis, window=system.num) else: # upfirdn is generally faster than lfilter by a factor equal to the # downsampling factor, since it only calculates the needed outputs n_out = x.shape[axis] // q + bool(x.shape[axis] % q) y = upfirdn(system.num, x, up=1, down=q, axis=axis) sl[axis] = slice(None, n_out, None) else: # IIR case if zero_phase: y = filtfilt(system.num, system.den, x, axis=axis) else: y = lfilter(system.num, system.den, x, axis=axis) sl[axis] = slice(None, None, q) return y[sl]
bsd-3-clause
appapantula/scikit-learn
sklearn/decomposition/tests/test_truncated_svd.py
240
6055
"""Test truncated SVD transformer.""" import numpy as np import scipy.sparse as sp from sklearn.decomposition import TruncatedSVD from sklearn.utils import check_random_state from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_raises, assert_greater, assert_array_less) # Make an X that looks somewhat like a small tf-idf matrix. # XXX newer versions of SciPy have scipy.sparse.rand for this. shape = 60, 55 n_samples, n_features = shape rng = check_random_state(42) X = rng.randint(-100, 20, np.product(shape)).reshape(shape) X = sp.csr_matrix(np.maximum(X, 0), dtype=np.float64) X.data[:] = 1 + np.log(X.data) Xdense = X.A def test_algorithms(): svd_a = TruncatedSVD(30, algorithm="arpack") svd_r = TruncatedSVD(30, algorithm="randomized", random_state=42) Xa = svd_a.fit_transform(X)[:, :6] Xr = svd_r.fit_transform(X)[:, :6] assert_array_almost_equal(Xa, Xr) comp_a = np.abs(svd_a.components_) comp_r = np.abs(svd_r.components_) # All elements are equal, but some elements are more equal than others. assert_array_almost_equal(comp_a[:9], comp_r[:9]) assert_array_almost_equal(comp_a[9:], comp_r[9:], decimal=3) def test_attributes(): for n_components in (10, 25, 41): tsvd = TruncatedSVD(n_components).fit(X) assert_equal(tsvd.n_components, n_components) assert_equal(tsvd.components_.shape, (n_components, n_features)) def test_too_many_components(): for algorithm in ["arpack", "randomized"]: for n_components in (n_features, n_features+1): tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm) assert_raises(ValueError, tsvd.fit, X) def test_sparse_formats(): for fmt in ("array", "csr", "csc", "coo", "lil"): Xfmt = Xdense if fmt == "dense" else getattr(X, "to" + fmt)() tsvd = TruncatedSVD(n_components=11) Xtrans = tsvd.fit_transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) Xtrans = tsvd.transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) def test_inverse_transform(): for algo in ("arpack", "randomized"): # We need a lot of components for the reconstruction to be "almost # equal" in all positions. XXX Test means or sums instead? tsvd = TruncatedSVD(n_components=52, random_state=42) Xt = tsvd.fit_transform(X) Xinv = tsvd.inverse_transform(Xt) assert_array_almost_equal(Xinv, Xdense, decimal=1) def test_integers(): Xint = X.astype(np.int64) tsvd = TruncatedSVD(n_components=6) Xtrans = tsvd.fit_transform(Xint) assert_equal(Xtrans.shape, (n_samples, tsvd.n_components)) def test_explained_variance(): # Test sparse data svd_a_10_sp = TruncatedSVD(10, algorithm="arpack") svd_r_10_sp = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_sp = TruncatedSVD(20, algorithm="arpack") svd_r_20_sp = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_sp = svd_a_10_sp.fit_transform(X) X_trans_r_10_sp = svd_r_10_sp.fit_transform(X) X_trans_a_20_sp = svd_a_20_sp.fit_transform(X) X_trans_r_20_sp = svd_r_20_sp.fit_transform(X) # Test dense data svd_a_10_de = TruncatedSVD(10, algorithm="arpack") svd_r_10_de = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_de = TruncatedSVD(20, algorithm="arpack") svd_r_20_de = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_de = svd_a_10_de.fit_transform(X.toarray()) X_trans_r_10_de = svd_r_10_de.fit_transform(X.toarray()) X_trans_a_20_de = svd_a_20_de.fit_transform(X.toarray()) X_trans_r_20_de = svd_r_20_de.fit_transform(X.toarray()) # helper arrays for tests below svds = (svd_a_10_sp, svd_r_10_sp, svd_a_20_sp, svd_r_20_sp, svd_a_10_de, svd_r_10_de, svd_a_20_de, svd_r_20_de) svds_trans = ( (svd_a_10_sp, X_trans_a_10_sp), (svd_r_10_sp, X_trans_r_10_sp), (svd_a_20_sp, X_trans_a_20_sp), (svd_r_20_sp, X_trans_r_20_sp), (svd_a_10_de, X_trans_a_10_de), (svd_r_10_de, X_trans_r_10_de), (svd_a_20_de, X_trans_a_20_de), (svd_r_20_de, X_trans_r_20_de), ) svds_10_v_20 = ( (svd_a_10_sp, svd_a_20_sp), (svd_r_10_sp, svd_r_20_sp), (svd_a_10_de, svd_a_20_de), (svd_r_10_de, svd_r_20_de), ) svds_sparse_v_dense = ( (svd_a_10_sp, svd_a_10_de), (svd_a_20_sp, svd_a_20_de), (svd_r_10_sp, svd_r_10_de), (svd_r_20_sp, svd_r_20_de), ) # Assert the 1st component is equal for svd_10, svd_20 in svds_10_v_20: assert_array_almost_equal( svd_10.explained_variance_ratio_, svd_20.explained_variance_ratio_[:10], decimal=5, ) # Assert that 20 components has higher explained variance than 10 for svd_10, svd_20 in svds_10_v_20: assert_greater( svd_20.explained_variance_ratio_.sum(), svd_10.explained_variance_ratio_.sum(), ) # Assert that all the values are greater than 0 for svd in svds: assert_array_less(0.0, svd.explained_variance_ratio_) # Assert that total explained variance is less than 1 for svd in svds: assert_array_less(svd.explained_variance_ratio_.sum(), 1.0) # Compare sparse vs. dense for svd_sparse, svd_dense in svds_sparse_v_dense: assert_array_almost_equal(svd_sparse.explained_variance_ratio_, svd_dense.explained_variance_ratio_) # Test that explained_variance is correct for svd, transformed in svds_trans: total_variance = np.var(X.toarray(), axis=0).sum() variances = np.var(transformed, axis=0) true_explained_variance_ratio = variances / total_variance assert_array_almost_equal( svd.explained_variance_ratio_, true_explained_variance_ratio, )
bsd-3-clause
xavierwu/scikit-learn
sklearn/preprocessing/tests/test_function_transformer.py
176
2169
from nose.tools import assert_equal import numpy as np from sklearn.preprocessing import FunctionTransformer def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X): def _func(X, *args, **kwargs): args_store.append(X) args_store.extend(args) kwargs_store.update(kwargs) return func(X) return _func def test_delegate_to_func(): # (args|kwargs)_store will hold the positional and keyword arguments # passed to the function inside the FunctionTransformer. args_store = [] kwargs_store = {} X = np.arange(10).reshape((5, 2)) np.testing.assert_array_equal( FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X), X, 'transform should have returned X unchanged', ) # The function should only have recieved X. assert_equal( args_store, [X], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) # reset the argument stores. args_store[:] = [] # python2 compatible inplace list clear. kwargs_store.clear() y = object() np.testing.assert_array_equal( FunctionTransformer( _make_func(args_store, kwargs_store), pass_y=True, ).transform(X, y), X, 'transform should have returned X unchanged', ) # The function should have recieved X and y. assert_equal( args_store, [X, y], 'Incorrect positional arguments passed to func: {args}'.format( args=args_store, ), ) assert_equal( kwargs_store, {}, 'Unexpected keyword arguments passed to func: {args}'.format( args=kwargs_store, ), ) def test_np_log(): X = np.arange(10).reshape((5, 2)) # Test that the numpy.log example still works. np.testing.assert_array_equal( FunctionTransformer(np.log1p).transform(X), np.log1p(X), )
bsd-3-clause
RTHMaK/RPGOne
Documents/skflow-master/skflow/tests/test_data_feeder.py
2
4801
# Copyright 2015-present Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from struct import Struct import numpy as np import six import tensorflow as tf from skflow import data_feeder from skflow.io.data_feeder import setup_predict_data_feeder from skflow.io import * class MockPlaceholder(object): def __init__(self, name): self.name = name class DataFeederTest(tf.test.TestCase): def test_data_feeder_regression(self): X = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) df = data_feeder.DataFeeder(X, y, n_classes=0, batch_size=3) feed_dict_fn = df.get_feed_dict_fn( MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[3, 4], [1, 2]]) self.assertAllClose(feed_dict['output'], [2, 1]) def test_data_feeder_multioutput_regression(self): X = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) df = data_feeder.DataFeeder(X, y, n_classes=0, batch_size=2) feed_dict_fn = df.get_feed_dict_fn( MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[3, 4], [1, 2]]) self.assertAllClose(feed_dict['output'], [[3, 4], [1, 2]]) def test_data_feeder_multioutput_classification(self): X = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) df = data_feeder.DataFeeder(X, y, n_classes=5, batch_size=2) feed_dict_fn = df.get_feed_dict_fn( MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[3, 4], [1, 2]]) self.assertAllClose(feed_dict['output'], [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]]) def test_streaming_data_feeder(self): def X_iter(): yield np.array([1, 2]) yield np.array([3, 4]) def y_iter(): yield np.array([1]) yield np.array([2]) df = data_feeder.StreamingDataFeeder(X_iter(), y_iter(), n_classes=0, batch_size=2) feed_dict_fn = df.get_feed_dict_fn( MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[1, 2], [3, 4]]) self.assertAllClose(feed_dict['output'], [1, 2]) def test_dask_data_feeder(self): if HAS_PANDAS and HAS_DASK: X = pd.DataFrame(dict(a=np.array([.1, .3, .4, .6, .2, .1, .6]), b=np.array([.7, .8, .1, .2, .5, .3, .9]))) X = dd.from_pandas(X, npartitions=2) y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2]))) y = dd.from_pandas(y, npartitions=2) # X = extract_dask_data(X) # y = extract_dask_labels(y) df = data_feeder.DaskDataFeeder(X, y, n_classes=2, batch_size=2) feed_dict_fn = df.get_feed_dict_fn( MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[ 0.40000001, 0.1], [ 0.60000002, 0.2]]) self.assertAllClose(feed_dict['output'], [[ 0., 0., 1.], [ 0., 1., 0.]]) class SetupPredictDataFeederTest(tf.test.TestCase): def test_iterable_data(self): X = iter([[1, 2], [3, 4], [5, 6]]) df = setup_predict_data_feeder(X, batch_size=2) self.assertAllClose(six.next(df), [[1, 2], [3, 4]]) self.assertAllClose(six.next(df), [[5, 6]]) if __name__ == '__main__': tf.test.main()
apache-2.0
altairpearl/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
xavierwu/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
98
20870
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
ch3ll0v3k/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
TomAugspurger/pandas
pandas/io/gbq.py
1
7998
""" Google BigQuery support """ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from pandas.compat._optional import import_optional_dependency if TYPE_CHECKING: from pandas import DataFrame def _try_import(): # since pandas is a dependency of pandas-gbq # we need to import on first use msg = ( "pandas-gbq is required to load data from Google BigQuery. " "See the docs: https://pandas-gbq.readthedocs.io." ) pandas_gbq = import_optional_dependency("pandas_gbq", extra=msg) return pandas_gbq def read_gbq( query: str, project_id: Optional[str] = None, index_col: Optional[str] = None, col_order: Optional[List[str]] = None, reauth: bool = False, auth_local_webserver: bool = False, dialect: Optional[str] = None, location: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, credentials=None, use_bqstorage_api: Optional[bool] = None, private_key=None, verbose=None, progress_bar_type: Optional[str] = None, ) -> "DataFrame": """ Load data from Google BigQuery. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- query : str SQL-Like Query to return data values. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. index_col : str, optional Name of result column to use for index in results DataFrame. col_order : list(str), optional List of BigQuery column names in the desired order for results DataFrame. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. dialect : str, default 'legacy' Note: The default value is changing to 'standard' in a future version. SQL syntax dialect to use. Value can be one of: ``'legacy'`` Use BigQuery's legacy SQL dialect. For more information see `BigQuery Legacy SQL Reference <https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__. ``'standard'`` Use BigQuery's standard SQL, which is compliant with the SQL 2011 standard. For more information see `BigQuery Standard SQL Reference <https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__. .. versionchanged:: 0.24.0 location : str, optional Location where the query job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of any datasets used in the query. *New in version 0.5.0 of pandas-gbq*. configuration : dict, optional Query config parameters for job processing. For example: configuration = {'query': {'useQueryCache': False}} For more information see `BigQuery REST API Reference <https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 use_bqstorage_api : bool, default False Use the `BigQuery Storage API <https://cloud.google.com/bigquery/docs/reference/storage/>`__ to download query results quickly, but at an increased cost. To use this API, first `enable it in the Cloud Console <https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__. You must also have the `bigquery.readsessions.create <https://cloud.google.com/bigquery/docs/access-control#roles>`__ permission on the project you are billing queries to. This feature requires version 0.10.0 or later of the ``pandas-gbq`` package. It also requires the ``google-cloud-bigquery-storage`` and ``fastavro`` packages. .. versionadded:: 0.25.0 progress_bar_type : Optional, str If set, use the `tqdm <https://tqdm.github.io/>`__ library to display a progress bar while the data downloads. Install the ``tqdm`` package to use this feature. Possible values of ``progress_bar_type`` include: ``None`` No progress bar. ``'tqdm'`` Use the :func:`tqdm.tqdm` function to print a progress bar to :data:`sys.stderr`. ``'tqdm_notebook'`` Use the :func:`tqdm.tqdm_notebook` function to display a progress bar as a Jupyter notebook widget. ``'tqdm_gui'`` Use the :func:`tqdm.tqdm_gui` function to display a progress bar as a graphical dialog box. Note that his feature requires version 0.12.0 or later of the ``pandas-gbq`` package. And it requires the ``tqdm`` package. Slightly different than ``pandas-gbq``, here the default is ``None``. .. versionadded:: 1.0.0 Returns ------- df: DataFrame DataFrame representing results of query. See Also -------- pandas_gbq.read_gbq : This function in the pandas-gbq library. DataFrame.to_gbq : Write a DataFrame to Google BigQuery. """ pandas_gbq = _try_import() kwargs: Dict[str, Union[str, bool, None]] = {} # START: new kwargs. Don't populate unless explicitly set. if use_bqstorage_api is not None: kwargs["use_bqstorage_api"] = use_bqstorage_api kwargs["progress_bar_type"] = progress_bar_type # END: new kwargs return pandas_gbq.read_gbq( query, project_id=project_id, index_col=index_col, col_order=col_order, reauth=reauth, auth_local_webserver=auth_local_webserver, dialect=dialect, location=location, configuration=configuration, credentials=credentials, **kwargs, ) def to_gbq( dataframe: "DataFrame", destination_table: str, project_id: Optional[str] = None, chunksize: Optional[int] = None, reauth: bool = False, if_exists: str = "fail", auth_local_webserver: bool = False, table_schema: Optional[List[Dict[str, str]]] = None, location: Optional[str] = None, progress_bar: bool = True, credentials=None, verbose=None, private_key=None, ) -> None: pandas_gbq = _try_import() pandas_gbq.to_gbq( dataframe, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, verbose=verbose, private_key=private_key, )
bsd-3-clause
laijingtao/landlab
landlab/ca/examples/rock_weathering.py
6
5506
#!/usr/env/python """ rock_weathering.py CellLab-CTS model that simulates the weathering of rock to saprolite around a network of fractures. Created (and translated from earlier code by) by Greg Tucker, Jul 2015 """ from __future__ import print_function import time import numpy as np from landlab import RasterModelGrid from landlab.ca.celllab_cts import Transition, CAPlotter from landlab.ca.raster_cts import RasterCTS from landlab.components.fracture_grid.fracture_grid import make_frac_grid import matplotlib from landlab.io.netcdf import write_netcdf def setup_transition_list(): """ Creates and returns a list of Transition() objects to represent the grain-by-grain transformation of bedrock to saprolite. Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- Weathering here is treated very simply: a bedrock particle adjacent to a saprolite particle has a specified probability (rate) of weathering to saprolite; in other words, a rock-saprolite pair can turn into a saprolite-saprolite pair. The states and transitions are as follows: Pair state Transition to Process Rate (cells/s) ========== ============= ======= ============== 0 (0-0) 1 (0-1) 0.5 2 (1-0) 0.5 1 (0-1) 3 (1-1) 1.0 2 (1-0) 3 (1-1) 1.0 3 (1-1) (none) - """ # Create an empty transition list xn_list = [] # Append two transitions to the list. # Note that the arguments to the Transition() object constructor are: # - Tuple representing starting pair state # (left/bottom cell, right/top cell, orientation) # - Tuple representing new pair state # (left/bottom cell, right/top cell, orientation) # - Transition rate (cells per time step, in this case 1 sec) # - Name for transition xn_list.append( Transition((0,1,0), (1,1,0), 1., 'weathering') ) xn_list.append( Transition((1,0,0), (1,1,0), 1., 'weathering') ) return xn_list def main(): # INITIALIZE # User-defined parameters nr = 200 # number of rows in grid nc = 200 # number of columns in grid plot_interval = 0.05 # time interval for plotting (unscaled) run_duration = 5.0 # duration of run (unscaled) report_interval = 10.0 # report interval, in real-time seconds frac_spacing = 10 # average fracture spacing, nodes outfilename = 'wx' # name for netCDF files # Remember the clock time, and calculate when we next want to report # progress. current_real_time = time.time() next_report = current_real_time + report_interval # Counter for output files time_slice = 0 # Create grid mg = RasterModelGrid(nr, nc, 1.0) # Make the boundaries be walls mg.set_closed_boundaries_at_grid_edges(True, True, True, True) # Set up the states and pair transitions. ns_dict = { 0 : 'rock', 1 : 'saprolite' } xn_list = setup_transition_list() # Create the node-state array and attach it to the grid. # (Note use of numpy's uint8 data type. This saves memory AND allows us # to write output to a netCDF3 file; netCDF3 does not handle the default # 64-bit integer type) node_state_grid = mg.add_zeros('node', 'node_state_map', dtype=np.uint8) node_state_grid[:] = make_frac_grid(frac_spacing, model_grid=mg) # Create the CA model ca = RasterCTS(mg, ns_dict, xn_list, node_state_grid) # Set up the color map rock_color = (0.8, 0.8, 0.8) sap_color = (0.4, 0.2, 0) clist = [rock_color, sap_color] my_cmap = matplotlib.colors.ListedColormap(clist) # Create a CAPlotter object for handling screen display ca_plotter = CAPlotter(ca, cmap=my_cmap) # Plot the initial grid ca_plotter.update_plot() # Output the initial grid to file write_netcdf((outfilename+str(time_slice)+'.nc'), mg, #format='NETCDF3_64BIT', names='node_state_map') # RUN current_time = 0.0 while current_time < run_duration: # Once in a while, print out simulation and real time to let the user # know that the sim is running ok current_real_time = time.time() if current_real_time >= next_report: print('Current sim time', current_time, '(', 100 * current_time/run_duration, '%)') next_report = current_real_time + report_interval # Run the model forward in time until the next output step ca.run(current_time+plot_interval, ca.node_state, plot_each_transition=False) current_time += plot_interval # Plot the current grid ca_plotter.update_plot() # Output the current grid to a netCDF file time_slice += 1 write_netcdf((outfilename+str(time_slice)+'.nc'), mg, #format='NETCDF3_64BIT', names='node_state_map') # FINALIZE # Plot ca_plotter.finalize() # If user runs this file, activate the main() function if __name__ == "__main__": main()
mit
thilbern/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
247
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
ElDeveloper/qiime
qiime/plot_rank_abundance_graph.py
15
4175
#!/usr/bin/env python # File created on 17 Aug 2010 from __future__ import division __author__ = "Jens Reeder" __copyright__ = "Copyright 2011, The QIIME Project" __credits__ = ["Jens Reeder", "Emily TerAvest"] __license__ = "GPL" __version__ = "1.9.1-dev" __maintainer__ = "Justin Kuczynski" __email__ = "[email protected]" from matplotlib import use use('Agg', warn=False) from numpy import arange, array, sort from itertools import cycle from matplotlib.pyplot import plot, gca, ylim, xlim, show, legend, \ savefig from os.path import join from qiime.colors import data_color_order, data_colors from biom.table import UnknownIDError def make_sorted_frequencies(counts, absolute=False): """transform and sort a vector of count. counts: a column of an OTU table absolute: if True return absolute values instead of frequencies. """ c = sort(counts) c = c[c.nonzero()] c = c[::-1] if absolute: return c else: f = c / float(c.sum()) return f def plot_rank_abundance_graph( otu_count_vector, color='red', absolute=False, label=None): """Plots rank-abundance curve. otu_count_vector: a vector of otu counts for a single sample color: color of the series to plot absolute: if True plot absolute counts instead of freqs label: text for the legend of this series """ f = make_sorted_frequencies(otu_count_vector, absolute) x = arange(1, len(f) + 1) plot(x, f, color=color, alpha=0.8, label=label) ax = gca() return ax def plot_rank_abundance_graphs(result_fp, sample_names, otu_table, file_type='pdf', absolute_counts=False, x_linear_scale=False, y_linear_scale=False, no_legend=False, log_fh=None): """plot rank-abundance curves for sample specified in sample_name. result_fp: filename of output figure sample_names: comma separated string of sample names otu_table_fh: open file handle to otu table file_type: valid matplotlib file type x_linear_scale: if True draw x axis in linear scale, otherwise use log y_linear_scale: if True draw y axis in linear scale, otherwise use log no_legend: if True don't draw legend log_fh: open file handle to log file, if not None used to log """ # figure out which samples to draw if sample_names == '*': user_sample_names = otu_table.ids() else: user_sample_names = sample_names.split(',') if len(user_sample_names) < 1: raise ValueError("sample IDs must be comma separated list of " + "sample names - found %s" % sample_names) # do the actual drawing ax = None for sample_name, color in zip(user_sample_names, cycle(data_color_order)): color = data_colors[color].toHex() try: otu_count_vector = otu_table.data(sample_name, 'sample') except UnknownIDError: if log_fh: log_fh.write( "UnknownIDError: Sample name %s not in OTU table - skipping." % sample_name) continue ax = plot_rank_abundance_graph(otu_count_vector, color=color, absolute=absolute_counts, label=sample_name) ax.set_label(sample_name) if ax is None: # ax should be defined if at least one series has been drawn raise ValueError( "No data series drawn. Check your OTU table and sample names") # settings for all series ax.grid() ax.set_xlabel('Species rank') if absolute_counts: ax.set_ylabel('Absolute abundance') else: ax.set_ylabel('Relative abundance') if not x_linear_scale: ax.set_xscale('log') if not y_linear_scale: ax.set_yscale('log') if not no_legend: legend() if not result_fp.endswith(file_type): result_fp += '.' + file_type savefig(result_fp)
gpl-2.0
Totoketchup/das
experiments/analysis/analyzing_adapt.py
1
1839
import tensorflow as tf import os import config from utils.postprocessing.representation import * import matplotlib.pyplot as plt import numpy as np import argparse # from models import Adapt ## Here we plot the windows and bases of the Adapt model # /home/anthony/das/log/pretraining/ # AdaptiveNet-noisy-breeze-3898-N=256-- # alpha=0.01--batch_size=16--beta=0.05-- # chunk_size=20480--maxpool=256--optimizer=Adam-- # reg=0.001--rho=0.01--same_filter=True-- # smooth_size=10--type=pretraining--window=1024-/ #### #### MODEL CONFIG #### def main(args): sess = tf.Session() checkpoint = tf.train.latest_checkpoint(args.path) importer = tf.train.import_meta_graph(checkpoint+'.meta') importer.restore(sess, checkpoint) graph = tf.get_default_graph() front_window = graph.get_tensor_by_name('front/window/w:0') front_bases = graph.get_tensor_by_name('front/bases/bases:0') back_window = graph.get_tensor_by_name('back/window/value:0') back_bases = graph.get_tensor_by_name('back/bases/value:0') with sess.as_default(): front_window = front_window.eval() front_bases = front_bases.eval() front_bases = np.transpose(front_bases) back_window = back_window.eval() back_bases = back_bases.eval() back_bases = np.transpose(back_bases) win_size = front_window.shape[0] filters_nb, _ = front_bases.shape sub = filters_nb // 16 for j in range(sub): fig, plots = plt.subplots(4, 4, figsize=(18, 16)) for x in range(4): for y in range(4): plots[x, y].plot(front_window*front_bases[j*16+(4*y+x)]) plots[x, y].axis([0,win_size,-0.005,0.005]) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Argument Parser") parser.add_argument( '--path', help='Path to Adapt model', required=True) main(parser.parse_args())
mit
anirudhjayaraman/scikit-learn
sklearn/discriminant_analysis.py
32
27308
""" Linear Discriminant Analysis and Quadratic Discriminant Analysis """ # Authors: Clemens Brunner # Martin Billinger # Matthieu Perrot # Mathieu Blondel # License: BSD 3-Clause from __future__ import print_function import warnings import numpy as np from scipy import linalg from .externals.six import string_types from .externals.six.moves import xrange from .base import BaseEstimator, TransformerMixin, ClassifierMixin from .linear_model.base import LinearClassifierMixin from .covariance import ledoit_wolf, empirical_covariance, shrunk_covariance from .utils.multiclass import unique_labels from .utils import check_array, check_X_y from .utils.validation import check_is_fitted from .utils.fixes import bincount from .preprocessing import StandardScaler __all__ = ['LinearDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis'] def _cov(X, shrinkage=None): """Estimate covariance matrix (using optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. shrinkage : string or float, optional Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- s : array, shape (n_features, n_features) Estimated covariance matrix. """ shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, string_types): if shrinkage == 'auto': sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = sc.std_ * ledoit_wolf(X)[0] * sc.std_ # scale back elif shrinkage == 'empirical': s = empirical_covariance(X) else: raise ValueError('unknown shrinkage parameter') elif isinstance(shrinkage, float) or isinstance(shrinkage, int): if shrinkage < 0 or shrinkage > 1: raise ValueError('shrinkage parameter must be between 0 and 1') s = shrunk_covariance(empirical_covariance(X), shrinkage) else: raise TypeError('shrinkage must be of string or int type') return s def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like, shape (n_features,) Class means. """ means = [] classes = np.unique(y) for group in classes: Xg = X[y == group, :] means.append(Xg.mean(0)) return np.asarray(means) def _class_cov(X, y, priors=None, shrinkage=None): """Compute class covariance matrix. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like, shape (n_classes,) Class priors. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Returns ------- cov : array-like, shape (n_features, n_features) Class covariance matrix. """ classes = np.unique(y) covs = [] for group in classes: Xg = X[y == group, :] covs.append(np.atleast_2d(_cov(Xg, shrinkage))) return np.average(covs, axis=0, weights=priors) class LinearDiscriminantAnalysis(BaseEstimator, LinearClassifierMixin, TransformerMixin): """Linear Discriminant Analysis A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix. The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discriminative directions. Parameters ---------- solver : string, optional Solver to use, possible values: - 'svd': Singular value decomposition (default). Does not compute the covariance matrix, therefore this solver is recommended for data with a large number of features. - 'lsqr': Least squares solution, can be combined with shrinkage. - 'eigen': Eigenvalue decomposition, can be combined with shrinkage. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Note that shrinkage works only with 'lsqr' and 'eigen' solvers. priors : array, optional, shape (n_classes,) Class priors. n_components : int, optional Number of components (< n_classes - 1) for dimensionality reduction. store_covariance : bool, optional Additionally compute class covariance matrix (default False). tol : float, optional Threshold used for rank estimation in SVD solver. Attributes ---------- coef_ : array, shape (n_features,) or (n_classes, n_features) Weight vector(s). intercept_ : array, shape (n_features,) Intercept term. covariance_ : array-like, shape (n_features, n_features) Covariance matrix (shared by all classes). explained_variance_ratio_ : array, shape (n_components,) Percentage of variance explained by each of the selected components. If ``n_components`` is not set then all components are stored and the sum of explained variances is equal to 1.0. Only available when eigen solver is used. means_ : array-like, shape (n_classes, n_features) Class means. priors_ : array-like, shape (n_classes,) Class priors (sum to 1). scalings_ : array-like, shape (rank, n_classes - 1) Scaling of the features in the space spanned by the class centroids. xbar_ : array-like, shape (n_features,) Overall mean. classes_ : array-like, shape (n_classes,) Unique class labels. See also -------- sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis: Quadratic Discriminant Analysis Notes ----- The default solver is 'svd'. It can perform both classification and transform, and it does not rely on the calculation of the covariance matrix. This can be an advantage in situations where the number of features is large. However, the 'svd' solver cannot be used with shrinkage. The 'lsqr' solver is an efficient algorithm that only works for classification. It supports shrinkage. The 'eigen' solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used for both classification and transform, and it supports shrinkage. However, the 'eigen' solver needs to compute the covariance matrix, so it might not be suitable for situations with a high number of features. Examples -------- >>> import numpy as np >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = LinearDiscriminantAnalysis() >>> clf.fit(X, y) LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=None, solver='svd', store_covariance=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] """ def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=1e-4): self.solver = solver self.shrinkage = shrinkage self.priors = priors self.n_components = n_components self.store_covariance = store_covariance # used only in svd solver self.tol = tol # used only in svd solver def _solve_lsqr(self, X, y, shrinkage): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with optional shrinkage), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_eigen(self, X, y, shrinkage): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with optional shrinkage). Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : string or float, optional Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov(X, y, self.priors_, shrinkage) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors # evecs /= np.linalg.norm(evecs, axis=0) # doesn't work with numpy 1.6 evecs /= np.apply_along_axis(np.linalg.norm, 0, evecs) self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = (-0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(self.priors_)) def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. """ n_samples, n_features = X.shape n_classes = len(self.classes_) self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group, :] Xc.append(Xg - self.means_[idx]) self.xbar_ = np.dot(self.priors_, self.means_) Xc = np.concatenate(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = Xc.std(axis=0) # avoid division by zero in normalization std[std == 0] = 1. fac = 1. / (n_samples - n_classes) # 2) Within variance scaling X = np.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, V = linalg.svd(X, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear.") # Scaling of within covariance is: V' 1/S scalings = (V[:rank] / std).T / S[:rank] # 3) Between variance scaling # Scale weighted centers X = np.dot(((np.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T).T, scalings) # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, V = linalg.svd(X, full_matrices=0) rank = np.sum(S > self.tol * S[0]) self.scalings_ = np.dot(scalings, V.T[:, :rank]) coef = np.dot(self.means_ - self.xbar_, self.scalings_) self.intercept_ = (-0.5 * np.sum(coef ** 2, axis=1) + np.log(self.priors_)) self.coef_ = np.dot(coef, self.scalings_.T) self.intercept_ -= np.dot(self.xbar_, self.coef_.T) def fit(self, X, y, store_covariance=None, tol=None): """Fit LinearDiscriminantAnalysis model according to the given training data and parameters. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array, shape (n_samples,) Target values. """ if store_covariance: warnings.warn("The parameter 'store_covariance' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariance = store_covariance if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y, ensure_min_samples=2) self.classes_ = unique_labels(y) if self.priors is None: # estimate priors from sample _, y_t = np.unique(y, return_inverse=True) # non-negative ints self.priors_ = bincount(y_t) / float(len(y)) else: self.priors_ = np.asarray(self.priors) if (self.priors_ < 0).any(): raise ValueError("priors must be non-negative") if self.priors_.sum() != 1: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() if self.solver == 'svd': if self.shrinkage is not None: raise NotImplementedError('shrinkage not supported') self._solve_svd(X, y) elif self.solver == 'lsqr': self._solve_lsqr(X, y, shrinkage=self.shrinkage) elif self.solver == 'eigen': self._solve_eigen(X, y, shrinkage=self.shrinkage) else: raise ValueError("unknown solver {} (valid solvers are 'svd', " "'lsqr', and 'eigen').".format(self.solver)) if self.classes_.size == 2: # treat binary case as a special case self.coef_ = np.array(self.coef_[1, :] - self.coef_[0, :], ndmin=2) self.intercept_ = np.array(self.intercept_[1] - self.intercept_[0], ndmin=1) return self def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data. """ if self.solver == 'lsqr': raise NotImplementedError("transform not implemented for 'lsqr' " "solver (use 'svd' or 'eigen').") check_is_fitted(self, ['xbar_', 'scalings_'], all_or_any=any) X = check_array(X) if self.solver == 'svd': X_new = np.dot(X - self.xbar_, self.scalings_) elif self.solver == 'eigen': X_new = np.dot(X, self.scalings_) n_components = X.shape[1] if self.n_components is None \ else self.n_components return X_new[:, :n_components] def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated probabilities. """ prob = self.decision_function(X) prob *= -1 np.exp(prob, prob) prob += 1 np.reciprocal(prob, prob) if len(self.classes_) == 2: # binary case return np.column_stack([1 - prob, prob]) else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- C : array, shape (n_samples, n_classes) Estimated log probabilities. """ return np.log(self.predict_proba(X)) class QuadraticDiscriminantAnalysis(BaseEstimator, ClassifierMixin): """ Quadratic Discriminant Analysis A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and using Bayes' rule. The model fits a Gaussian density to each class. Parameters ---------- priors : array, optional, shape = [n_classes] Priors on classes reg_param : float, optional Regularizes the covariance estimate as ``(1-reg_param)*Sigma + reg_param*np.eye(n_features)`` Attributes ---------- covariances_ : list of array-like, shape = [n_features, n_features] Covariance matrices of each class. means_ : array-like, shape = [n_classes, n_features] Class means. priors_ : array-like, shape = [n_classes] Class priors (sum to 1). rotations_ : list of arrays For each class k an array of shape [n_features, n_k], with ``n_k = min(n_features, number of elements in class k)`` It is the rotation of the Gaussian distribution, i.e. its principal axis. scalings_ : list of arrays For each class k an array of shape [n_k]. It contains the scaling of the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate system. store_covariances : boolean If True the covariance matrices are computed and stored in the `self.covariances_` attribute. tol : float, optional, default 1.0e-4 Threshold used for rank estimation. Examples -------- >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = QuadraticDiscriminantAnalysis() >>> clf.fit(X, y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE QuadraticDiscriminantAnalysis(priors=None, reg_param=0.0, store_covariances=False, tol=0.0001) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.discriminant_analysis.LinearDiscriminantAnalysis: Linear Discriminant Analysis """ def __init__(self, priors=None, reg_param=0., store_covariances=False, tol=1.0e-4): self.priors = np.asarray(priors) if priors is not None else None self.reg_param = reg_param self.store_covariances = store_covariances self.tol = tol def fit(self, X, y, store_covariances=None, tol=None): """Fit the model according to the given training data and parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) """ if store_covariances: warnings.warn("The parameter 'store_covariances' is deprecated as " "of version 0.17 and will be removed in 0.19. The " "parameter is no longer necessary because the value " "is set via the estimator initialisation or " "set_params method.", DeprecationWarning) self.store_covariances = store_covariances if tol: warnings.warn("The parameter 'tol' is deprecated as of version " "0.17 and will be removed in 0.19. The parameter is " "no longer necessary because the value is set via " "the estimator initialisation or set_params method.", DeprecationWarning) self.tol = tol X, y = check_X_y(X, y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError('y has less than 2 classes') if self.priors is None: self.priors_ = bincount(y) / float(n_samples) else: self.priors_ = self.priors cov = None if self.store_covariances: cov = [] means = [] scalings = [] rotations = [] for ind in xrange(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError('y has only 1 sample in class %s, covariance ' 'is ill defined.' % str(self.classes_[ind])) Xgc = Xg - meang # Xgc = U * S * V.T U, S, Vt = np.linalg.svd(Xgc, full_matrices=False) rank = np.sum(S > self.tol) if rank < n_features: warnings.warn("Variables are collinear") S2 = (S ** 2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param if self.store_covariances: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariances: self.covariances_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self def _decision_function(self, X): check_is_fitted(self, 'classes_') X = check_array(X) norm2 = [] for i in range(len(self.classes_)): R = self.rotations_[i] S = self.scalings_[i] Xm = X - self.means_[i] X2 = np.dot(Xm, R * (S ** (-0.5))) norm2.append(np.sum(X2 ** 2, 1)) norm2 = np.array(norm2).T # shape = [len(X), n_classes] u = np.asarray([np.sum(np.log(s)) for s in self.scalings_]) return (-0.5 * (norm2 + u) + np.log(self.priors_)) def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples (test vectors). Returns ------- C : array, shape = [n_samples, n_classes] or [n_samples,] Decision function values related to each class, per sample. In the two-class case, the shape is [n_samples,], giving the log likelihood ratio of the positive class. """ dec_func = self._decision_function(X) # handle special case of two classes if len(self.classes_) == 2: return dec_func[:, 1] - dec_func[:, 0] return dec_func def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] """ d = self._decision_function(X) y_pred = self.classes_.take(d.argmax(1)) return y_pred def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior probabilities of classification per class. """ values = self._decision_function(X) # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis]) # compute posterior probabilities return likelihood / likelihood.sum(axis=1)[:, np.newaxis] def predict_log_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like, shape = [n_samples, n_features] Array of samples/test vectors. Returns ------- C : array, shape = [n_samples, n_classes] Posterior log-probabilities of classification per class. """ # XXX : can do better to avoid precision overflows probas_ = self.predict_proba(X) return np.log(probas_)
bsd-3-clause
microsoft/EconML
econml/tests/test_inference.py
1
22822
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np import pandas as pd import unittest import pytest import pickle from sklearn.base import clone from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression, LogisticRegression, Lasso from econml.dml import LinearDML, DML, NonParamDML from econml.dr import LinearDRLearner, DRLearner from econml.inference import (BootstrapInference, NormalInferenceResults, EmpiricalInferenceResults, PopulationSummaryResults) from econml.sklearn_extensions.linear_model import StatsModelsLinearRegression, DebiasedLasso from econml.utilities import get_input_columns class TestInference(unittest.TestCase): @classmethod def setUpClass(cls): np.random.seed(123) # DGP constants cls.n = 1000 cls.d_w = 3 cls.d_x = 3 # Generate data cls.X = np.random.uniform(0, 1, size=(cls.n, cls.d_x)) cls.W = np.random.normal(0, 1, size=(cls.n, cls.d_w)) cls.T = np.random.binomial(1, .5, size=(cls.n,)) cls.Y = np.random.normal(0, 1, size=(cls.n, )) def test_summary(self): """Tests the inference results summary for continuous treatment estimators.""" # Test inference results when `cate_feature_names` doesn not exist for inference in [BootstrapInference(n_bootstrap_samples=5), 'auto']: cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) ) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = cate_est.summary() coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] default_names = get_input_columns(TestInference.X) fnames = PolynomialFeatures(degree=2, include_bias=False).fit( TestInference.X).get_feature_names(default_names) np.testing.assert_array_equal(coef_rows, fnames) intercept_rows = np.asarray(summary_results.tables[1].data)[1:, 0] np.testing.assert_array_equal(intercept_rows, ['cate_intercept']) cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) ) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = cate_est.summary(feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] fnames = PolynomialFeatures(degree=2, include_bias=False).fit( TestInference.X).get_feature_names(input_features=fnames) np.testing.assert_array_equal(coef_rows, fnames) cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=None) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = cate_est.summary() coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, ['X' + str(i) for i in range(TestInference.d_x)]) cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=None) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = cate_est.summary(feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, fnames) cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=None) wrapped_est = self._NoFeatNamesEst(cate_est) wrapped_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = wrapped_est.summary() coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, ['X' + str(i) for i in range(TestInference.d_x)]) cate_est = LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=None) wrapped_est = self._NoFeatNamesEst(cate_est) wrapped_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = wrapped_est.summary(feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, fnames) def test_summary_discrete(self): """Tests the inference results summary for discrete treatment estimators.""" # Test inference results when `cate_feature_names` doesn not exist for inference in [BootstrapInference(n_bootstrap_samples=5), 'auto']: cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) ) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = cate_est.summary(T=1) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] default_names = get_input_columns(TestInference.X) fnames = PolynomialFeatures(degree=2, include_bias=False).fit( TestInference.X).get_feature_names(default_names) np.testing.assert_array_equal(coef_rows, fnames) intercept_rows = np.asarray(summary_results.tables[1].data)[1:, 0] np.testing.assert_array_equal(intercept_rows, ['cate_intercept']) cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) ) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = cate_est.summary(T=1, feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] fnames = PolynomialFeatures(degree=2, include_bias=False).fit( TestInference.X).get_feature_names(input_features=fnames) np.testing.assert_array_equal(coef_rows, fnames) cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=None) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = cate_est.summary(T=1) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, ['X' + str(i) for i in range(TestInference.d_x)]) cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=None) cate_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = cate_est.summary(T=1, feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, fnames) cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=None) wrapped_est = self._NoFeatNamesEst(cate_est) wrapped_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) summary_results = wrapped_est.summary(T=1) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, ['X' + str(i) for i in range(TestInference.d_x)]) cate_est = LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=None) wrapped_est = self._NoFeatNamesEst(cate_est) wrapped_est.fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W, inference=inference ) fnames = ['Q' + str(i) for i in range(TestInference.d_x)] summary_results = wrapped_est.summary(T=1, feature_names=fnames) coef_rows = np.asarray(summary_results.tables[0].data)[1:, 0] np.testing.assert_array_equal(coef_rows, fnames) def test_degenerate_cases(self): """Test that we return the correct values when our distribution doesn't vary""" predictions = np.array([[1, 0], [1, 1]]) # first component is always 1 for inf in [EmpiricalInferenceResults(d_t=1, d_y=2, pred=np.mean(predictions, axis=0), pred_dist=predictions, inf_type='coefficient'), NormalInferenceResults(d_t=1, d_y=2, pred=np.mean(predictions, axis=0), pred_stderr=np.std(predictions, axis=0), mean_pred_stderr=None, inf_type='coefficient')]: zs = inf.zstat() pv = inf.pvalue() # test value 0 is less than estimate of 1 and variance is 0, so z score should be inf assert np.isposinf(zs[0]) # predictions in column 1 have nonzero variance, so the zstat should always be some finite value assert np.isfinite(zs[1]) assert pv[0] == 0 # pvalue should be zero when test value is greater or less than all samples test_point = np.array([1, 0.5]) zs = inf.zstat(test_point) pv = inf.pvalue(test_point) # test value 1 is equal to the estimate of 1 and variance is 0, so z score should be nan assert np.isnan(zs[0]) # predictions in column 1 have nonzero variance, so the zstat should always be some finite value assert np.isfinite(zs[1]) # pvalue is also nan when variance is 0 and the point tested is equal to the point tested assert np.isnan(pv[0]) # pvalue for second column should be greater than zero since some points are on either side # of the tested value assert 0 < pv[1] <= 1 test_point = np.array([2, 1]) zs = inf.zstat(test_point) pv = inf.pvalue(test_point) # test value 2 is greater than estimate of 1 and variance is 0, so z score should be -inf assert np.isneginf(zs[0]) # predictions in column 1 have nonzero variance, so the zstat should always be some finite value assert np.isfinite(zs[1]) # pvalue is also nan when variance is 0 and the point tested is equal to the point tested assert pv[0] == 0 # pvalue should be zero when test value is greater or less than all samples pop = PopulationSummaryResults(np.mean(predictions, axis=0).reshape(1, 2), np.std( predictions, axis=0).reshape(1, 2), None, d_t=1, d_y=2, alpha=0.05, value=0, decimals=3, tol=0.001) pop._print() # verify that we can access all attributes even in degenerate case pop.summary() def test_can_summarize(self): LinearDML(model_t=LinearRegression(), model_y=LinearRegression()).fit( TestInference.Y, TestInference.T, TestInference.X, TestInference.W ).summary() LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), fit_cate_intercept=False).fit( TestInference.Y, TestInference.T > 0, TestInference.X, TestInference.W, inference=BootstrapInference(5) ).summary(1) def test_inference_with_none_stderr(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W est = DML(model_y=LinearRegression(), model_t=LinearRegression(), model_final=Lasso(alpha=0.1, fit_intercept=False), featurizer=PolynomialFeatures(degree=1, include_bias=False), random_state=123) est.fit(Y, T, X=X, W=W) est.summary() est.coef__inference().summary_frame() est.intercept__inference().summary_frame() est.effect_inference(X).summary_frame() est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() est.marginal_effect_inference(T, X).summary_frame() est = NonParamDML(model_y=LinearRegression(), model_t=LinearRegression(), model_final=LinearRegression(fit_intercept=False), featurizer=PolynomialFeatures(degree=1, include_bias=False), random_state=123) est.fit(Y, T, X=X, W=W) est.effect_inference(X).summary_frame() est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() est.marginal_effect_inference(T, X).summary_frame() est = DRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), model_final=LinearRegression()) est.fit(Y, T, X=X, W=W) est.effect_inference(X).summary_frame() est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() est.marginal_effect_inference(T, X).summary_frame() def test_auto_inference(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W est = DRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), model_final=StatsModelsLinearRegression()) est.fit(Y, T, X=X, W=W) est.effect_inference(X).summary_frame() est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() est.marginal_effect_inference(T, X).summary_frame() est = DRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), model_final=LinearRegression(), multitask_model_final=True) est.fit(Y, T, X=X, W=W) with pytest.raises(AttributeError): est.effect_inference(X) est = DML(model_y=LinearRegression(), model_t=LinearRegression(), model_final=StatsModelsLinearRegression(fit_intercept=False), random_state=123) est.fit(Y, T, X=X, W=W) est.summary() est.coef__inference().summary_frame() assert est.coef__inference().stderr is not None est.intercept__inference().summary_frame() assert est.intercept__inference().stderr is not None est.effect_inference(X).summary_frame() assert est.effect_inference(X).stderr is not None est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() assert est.const_marginal_effect_inference(X).stderr is not None est.marginal_effect_inference(T, X).summary_frame() assert est.marginal_effect_inference(T, X).stderr is not None est = NonParamDML(model_y=LinearRegression(), model_t=LinearRegression(), model_final=DebiasedLasso(), random_state=123) est.fit(Y, T, X=X, W=W) est.effect_inference(X).summary_frame() assert est.effect_inference(X).stderr is not None est.effect_inference(X).population_summary() est.const_marginal_effect_inference(X).summary_frame() assert est.const_marginal_effect_inference(X).stderr is not None est.marginal_effect_inference(T, X).summary_frame() assert est.marginal_effect_inference(T, X).stderr is not None def test_pickle_inferenceresult(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W est = DML(model_y=LinearRegression(), model_t=LinearRegression(), model_final=Lasso(alpha=0.1, fit_intercept=False), featurizer=PolynomialFeatures(degree=1, include_bias=False), random_state=123) est.fit(Y, T, X=X, W=W) effect_inf = est.effect_inference(X) s = pickle.dumps(effect_inf) def test_mean_pred_stderr(self): """Test that mean_pred_stderr is not None when estimator's final stage is linear""" Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W ests = [LinearDML(model_t=LinearRegression(), model_y=LinearRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) ), LinearDRLearner(model_regression=LinearRegression(), model_propensity=LogisticRegression(), featurizer=PolynomialFeatures(degree=2, include_bias=False) )] for est in ests: est.fit(Y, T, X=X, W=W) assert est.const_marginal_effect_inference(X).population_summary().mean_pred_stderr is not None # only is not None when T1 is a constant or a list of constant assert est.effect_inference(X).population_summary().mean_pred_stderr is not None if est.__class__.__name__ == "LinearDRLearner": assert est.coef__inference(T=1).mean_pred_stderr is None else: assert est.coef__inference().mean_pred_stderr is None def test_isolate_inferenceresult_from_estimator(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W est = LinearDML().fit(Y, T, X=X, W=W) coef = est.coef_ inf = est.coef__inference() inf.pred[0] = .5 new_coef = est.coef_ np.testing.assert_array_equal(coef, new_coef) def test_translate(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W for offset in [10, pd.Series(np.arange(TestInference.X.shape[0]))]: for inf in ['auto', BootstrapInference(n_bootstrap_samples=5)]: est = LinearDML().fit(Y, T, X=X, W=W, inference=inf) inf = est.const_marginal_effect_inference(X) pred, bounds, summary = inf.point_estimate, inf.conf_int(), inf.summary_frame() inf.translate(offset) pred2, bounds2, summary2 = inf.point_estimate, inf.conf_int(), inf.summary_frame() np.testing.assert_array_equal(pred + offset, pred2) np.testing.assert_array_almost_equal(bounds[0] + offset, bounds2[0]) np.testing.assert_array_almost_equal(bounds[1] + offset, bounds2[1]) def test_scale(self): Y, T, X, W = TestInference.Y, TestInference.T, TestInference.X, TestInference.W for factor in [10, pd.Series(np.arange(TestInference.X.shape[0]))]: for inf in ['auto', BootstrapInference(n_bootstrap_samples=5)]: est = LinearDML().fit(Y, T, X=X, W=W, inference=inf) inf = est.const_marginal_effect_inference(X) pred, bounds, summary = inf.point_estimate, inf.conf_int(), inf.summary_frame() inf.scale(factor) pred2, bounds2, summary2 = inf.point_estimate, inf.conf_int(), inf.summary_frame() np.testing.assert_array_equal(pred * factor, pred2) np.testing.assert_array_almost_equal(bounds[0] * factor, bounds2[0]) np.testing.assert_array_almost_equal(bounds[1] * factor, bounds2[1]) class _NoFeatNamesEst: def __init__(self, cate_est): self.cate_est = clone(cate_est, safe=False) def __getattr__(self, name): if name != 'cate_feature_names': return getattr(self.cate_est, name) else: return self.__getattribute__(name)
mit
musically-ut/statsmodels
statsmodels/iolib/tests/test_summary.py
31
1535
'''examples to check summary, not converted to tests yet ''' from __future__ import print_function if __name__ == '__main__': from statsmodels.regression.tests.test_regression import TestOLS #def mytest(): aregression = TestOLS() TestOLS.setupClass() results = aregression.res1 r_summary = str(results.summary_old()) print(r_summary) olsres = results print('\n\n') r_summary = str(results.summary()) print(r_summary) print('\n\n') from statsmodels.discrete.tests.test_discrete import TestProbitNewton aregression = TestProbitNewton() TestProbitNewton.setupClass() results = aregression.res1 r_summary = str(results.summary()) print(r_summary) print('\n\n') probres = results from statsmodels.robust.tests.test_rlm import TestHampel aregression = TestHampel() #TestHampel.setupClass() results = aregression.res1 r_summary = str(results.summary()) print(r_summary) rlmres = results print('\n\n') from statsmodels.genmod.tests.test_glm import TestGlmBinomial aregression = TestGlmBinomial() #TestGlmBinomial.setupClass() results = aregression.res1 r_summary = str(results.summary()) print(r_summary) #print(results.summary2(return_fmt='latex')) #print(results.summary2(return_fmt='csv')) smry = olsres.summary() print(smry.as_csv()) # import matplotlib.pyplot as plt # plt.plot(rlmres.model.endog,'o') # plt.plot(rlmres.fittedvalues,'-') # # plt.show()
bsd-3-clause
bsipocz/statsmodels
examples/python/tsa_dates.py
29
1169
## Dates in timeseries models from __future__ import print_function import statsmodels.api as sm import pandas as pd # ## Getting started data = sm.datasets.sunspots.load() # Right now an annual date series must be datetimes at the end of the year. dates = sm.tsa.datetools.dates_from_range('1700', length=len(data.endog)) # ## Using Pandas # # Make a pandas TimeSeries or DataFrame endog = pd.TimeSeries(data.endog, index=dates) # Instantiate the model ar_model = sm.tsa.AR(endog, freq='A') pandas_ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) # Out-of-sample prediction pred = pandas_ar_res.predict(start='2005', end='2015') print(pred) # ## Using explicit dates ar_model = sm.tsa.AR(data.endog, dates=dates, freq='A') ar_res = ar_model.fit(maxlag=9, method='mle', disp=-1) pred = ar_res.predict(start='2005', end='2015') print(pred) # This just returns a regular array, but since the model has date information attached, you can get the prediction dates in a roundabout way. print(ar_res.data.predict_dates) # Note: This attribute only exists if predict has been called. It holds the dates associated with the last call to predict.
bsd-3-clause