repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/matplotlib/backends/backend_wx.py
6
64967
""" A wxPython backend for matplotlib, based (very heavily) on backend_template.py and backend_gtk.py Author: Jeremy O'Donoghue ([email protected]) Derived from original copyright work by John Hunter ([email protected]) Copyright (C) Jeremy O'Donoghue & John Hunter, 2003-4 License: This work is licensed under a PSF compatible license. A copy should be included with this source code. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from six.moves import xrange import sys import os import os.path import math import weakref import warnings import numpy as np import matplotlib from matplotlib.backend_bases import (RendererBase, GraphicsContextBase, FigureCanvasBase, FigureManagerBase, NavigationToolbar2, cursors, TimerBase) from matplotlib.backend_bases import ShowBase from matplotlib.backend_bases import _has_pil from matplotlib._pylab_helpers import Gcf from matplotlib.cbook import (is_string_like, is_writable_file_like, warn_deprecated) from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.transforms import Affine2D from matplotlib.widgets import SubplotTool from matplotlib import rcParams from . import wx_compat as wxc import wx # Debugging settings here... # Debug level set here. If the debug level is less than 5, information # messages (progressively more info for lower value) are printed. In addition, # traceback is performed, and pdb activated, for all uncaught exceptions in # this case _DEBUG = 5 if _DEBUG < 5: import traceback import pdb _DEBUG_lvls = {1: 'Low ', 2: 'Med ', 3: 'High', 4: 'Error'} def DEBUG_MSG(string, lvl=3, o=None): if lvl >= _DEBUG: cls = o.__class__ # Jeremy, often times the commented line won't print but the # one below does. I think WX is redefining stderr, damned # beast #print >>sys.stderr, "%s- %s in %s" % (_DEBUG_lvls[lvl], string, cls) print("%s- %s in %s" % (_DEBUG_lvls[lvl], string, cls)) def debug_on_error(type, value, tb): """Code due to Thomas Heller - published in Python Cookbook (O'Reilley)""" traceback.print_exc(type, value, tb) print() pdb.pm() # jdh uncomment class fake_stderr(object): """ Wx does strange things with stderr, as it makes the assumption that there is probably no console. This redirects stderr to the console, since we know that there is one! """ def write(self, msg): print("Stderr: %s\n\r" % msg) #if _DEBUG < 5: #sys.excepthook = debug_on_error #WxLogger =wx.LogStderr() #sys.stderr = fake_stderr # the True dots per inch on the screen; should be display dependent # see # http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 # for some info about screen dpi PIXELS_PER_INCH = 75 # Delay time for idle checks IDLE_DELAY = 5 def error_msg_wx(msg, parent=None): """ Signal an error condition -- in a GUI, popup a error dialog """ dialog = wx.MessageDialog(parent=parent, message=msg, caption='Matplotlib backend_wx error', style=wx.OK | wx.CENTRE) dialog.ShowModal() dialog.Destroy() return None def raise_msg_to_str(msg): """msg is a return arg from a raise. Join with new lines""" if not is_string_like(msg): msg = '\n'.join(map(str, msg)) return msg class TimerWx(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses WxTimer events. Attributes: * interval: The time between timer events in milliseconds. Default is 1000 ms. * single_shot: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. * callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions add_callback and remove_callback can be used. ''' def __init__(self, parent, *args, **kwargs): TimerBase.__init__(self, *args, **kwargs) # Create a new timer and connect the timer event to our handler. # For WX, the events have to use a widget for binding. self.parent = parent self._timer = wx.Timer(self.parent, wx.NewId()) self.parent.Bind(wx.EVT_TIMER, self._on_timer, self._timer) # Unbinding causes Wx to stop for some reason. Disabling for now. # def __del__(self): # TimerBase.__del__(self) # self.parent.Bind(wx.EVT_TIMER, None, self._timer) def _timer_start(self): self._timer.Start(self._interval, self._single) def _timer_stop(self): self._timer.Stop() def _timer_set_interval(self): self._timer_start() def _timer_set_single_shot(self): self._timer.Start() def _on_timer(self, *args): TimerBase._on_timer(self) class RendererWx(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles. It acts as the 'renderer' instance used by many classes in the hierarchy. """ # In wxPython, drawing is performed on a wxDC instance, which will # generally be mapped to the client aread of the window displaying # the plot. Under wxPython, the wxDC instance has a wx.Pen which # describes the colour and weight of any lines drawn, and a wxBrush # which describes the fill colour of any closed polygon. fontweights = wxc.fontweights fontangles = wxc.fontangles # wxPython allows for portable font styles, choosing them appropriately # for the target platform. Map some standard font names to the portable # styles # QUESTION: Is it be wise to agree standard fontnames across all backends? fontnames = wxc.fontnames def __init__(self, bitmap, dpi): """ Initialise a wxWindows renderer instance. """ warn_deprecated('2.0', message="The WX backend is " "deprecated. It's untested " "and will be removed in Matplotlib 2.2. " "Use the WXAgg backend instead. " "See Matplotlib usage FAQ for more info on backends.", alternative='WXAgg') RendererBase.__init__(self) DEBUG_MSG("__init__()", 1, self) self.width = bitmap.GetWidth() self.height = bitmap.GetHeight() self.bitmap = bitmap self.fontd = {} self.dpi = dpi self.gc = None def flipy(self): return True def offset_text_height(self): return True def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop """ # return 1, 1 if ismath: s = self.strip_math(s) if self.gc is None: gc = self.new_gc() else: gc = self.gc gfx_ctx = gc.gfx_ctx font = self.get_wx_font(s, prop) gfx_ctx.SetFont(font, wx.BLACK) w, h, descent, leading = gfx_ctx.GetFullTextExtent(s) return w, h, descent def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def handle_clip_rectangle(self, gc): new_bounds = gc.get_clip_rectangle() if new_bounds is not None: new_bounds = new_bounds.bounds gfx_ctx = gc.gfx_ctx if gfx_ctx._lastcliprect != new_bounds: gfx_ctx._lastcliprect = new_bounds if new_bounds is None: gfx_ctx.ResetClip() else: gfx_ctx.Clip(new_bounds[0], self.height - new_bounds[1] - new_bounds[3], new_bounds[2], new_bounds[3]) @staticmethod def convert_path(gfx_ctx, path, transform): wxpath = gfx_ctx.CreatePath() for points, code in path.iter_segments(transform): if code == Path.MOVETO: wxpath.MoveToPoint(*points) elif code == Path.LINETO: wxpath.AddLineToPoint(*points) elif code == Path.CURVE3: wxpath.AddQuadCurveToPoint(*points) elif code == Path.CURVE4: wxpath.AddCurveToPoint(*points) elif code == Path.CLOSEPOLY: wxpath.CloseSubpath() return wxpath def draw_path(self, gc, path, transform, rgbFace=None): gc.select() self.handle_clip_rectangle(gc) gfx_ctx = gc.gfx_ctx transform = transform + \ Affine2D().scale(1.0, -1.0).translate(0.0, self.height) wxpath = self.convert_path(gfx_ctx, path, transform) if rgbFace is not None: gfx_ctx.SetBrush(wx.Brush(gc.get_wxcolour(rgbFace))) gfx_ctx.DrawPath(wxpath) else: gfx_ctx.StrokePath(wxpath) gc.unselect() def draw_image(self, gc, x, y, im): bbox = gc.get_clip_rectangle() if bbox is not None: l, b, w, h = bbox.bounds else: l = 0 b = 0 w = self.width h = self.height rows, cols = im.shape[:2] bitmap = wxc.BitmapFromBuffer(cols, rows, im.tostring()) gc = self.get_gc() gc.select() gc.gfx_ctx.DrawBitmap(bitmap, int(l), int(self.height - b), int(w), int(-h)) gc.unselect() def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): if ismath: s = self.strip_math(s) DEBUG_MSG("draw_text()", 1, self) gc.select() self.handle_clip_rectangle(gc) gfx_ctx = gc.gfx_ctx font = self.get_wx_font(s, prop) color = gc.get_wxcolour(gc.get_rgb()) gfx_ctx.SetFont(font, color) w, h, d = self.get_text_width_height_descent(s, prop, ismath) x = int(x) y = int(y - h) if angle == 0.0: gfx_ctx.DrawText(s, x, y) else: rads = angle / 180.0 * math.pi xo = h * math.sin(rads) yo = h * math.cos(rads) gfx_ctx.DrawRotatedText(s, x - xo, y - yo, rads) gc.unselect() def new_gc(self): """ Return an instance of a GraphicsContextWx, and sets the current gc copy """ DEBUG_MSG('new_gc()', 2, self) self.gc = GraphicsContextWx(self.bitmap, self) self.gc.select() self.gc.unselect() return self.gc def get_gc(self): """ Fetch the locally cached gc. """ # This is a dirty hack to allow anything with access to a renderer to # access the current graphics context assert self.gc is not None, "gc must be defined" return self.gc def get_wx_font(self, s, prop): """ Return a wx font. Cache instances in a font dictionary for efficiency """ DEBUG_MSG("get_wx_font()", 1, self) key = hash(prop) fontprop = prop fontname = fontprop.get_name() font = self.fontd.get(key) if font is not None: return font # Allow use of platform independent and dependent font names wxFontname = self.fontnames.get(fontname, wx.ROMAN) wxFacename = '' # Empty => wxPython chooses based on wx_fontname # Font colour is determined by the active wx.Pen # TODO: It may be wise to cache font information size = self.points_to_pixels(fontprop.get_size_in_points()) font = wx.Font(int(size + 0.5), # Size wxFontname, # 'Generic' name self.fontangles[fontprop.get_style()], # Angle self.fontweights[fontprop.get_weight()], # Weight False, # Underline wxFacename) # Platform font name # cache the font and gc and return it self.fontd[key] = font return font def points_to_pixels(self, points): """ convert point measures to pixes using dpi and the pixels per inch of the display """ return points * (PIXELS_PER_INCH / 72.0 * self.dpi / 72.0) class GraphicsContextWx(GraphicsContextBase): """ The graphics context provides the color, line styles, etc... This class stores a reference to a wxMemoryDC, and a wxGraphicsContext that draws to it. Creating a wxGraphicsContext seems to be fairly heavy, so these objects are cached based on the bitmap object that is passed in. The base GraphicsContext stores colors as a RGB tuple on the unit interval, e.g., (0.5, 0.0, 1.0). wxPython uses an int interval, but since wxPython colour management is rather simple, I have not chosen to implement a separate colour manager class. """ _capd = {'butt': wx.CAP_BUTT, 'projecting': wx.CAP_PROJECTING, 'round': wx.CAP_ROUND} _joind = {'bevel': wx.JOIN_BEVEL, 'miter': wx.JOIN_MITER, 'round': wx.JOIN_ROUND} _dashd_wx = wxc.dashd_wx _cache = weakref.WeakKeyDictionary() def __init__(self, bitmap, renderer): GraphicsContextBase.__init__(self) #assert self.Ok(), "wxMemoryDC not OK to use" DEBUG_MSG("__init__()", 1, self) DEBUG_MSG("__init__() 2: %s" % bitmap, 1, self) dc, gfx_ctx = self._cache.get(bitmap, (None, None)) if dc is None: dc = wx.MemoryDC() dc.SelectObject(bitmap) gfx_ctx = wx.GraphicsContext.Create(dc) gfx_ctx._lastcliprect = None self._cache[bitmap] = dc, gfx_ctx self.bitmap = bitmap self.dc = dc self.gfx_ctx = gfx_ctx self._pen = wx.Pen('BLACK', 1, wx.SOLID) gfx_ctx.SetPen(self._pen) self._style = wx.SOLID self.renderer = renderer def select(self): """ Select the current bitmap into this wxDC instance """ if sys.platform == 'win32': self.dc.SelectObject(self.bitmap) self.IsSelected = True def unselect(self): """ Select a Null bitmasp into this wxDC instance """ if sys.platform == 'win32': self.dc.SelectObject(wx.NullBitmap) self.IsSelected = False def set_foreground(self, fg, isRGBA=None): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. """ # Implementation note: wxPython has a separate concept of pen and # brush - the brush fills any outline trace left by the pen. # Here we set both to the same colour - if a figure is not to be # filled, the renderer will set the brush to be transparent # Same goes for text foreground... DEBUG_MSG("set_foreground()", 1, self) self.select() GraphicsContextBase.set_foreground(self, fg, isRGBA) self._pen.SetColour(self.get_wxcolour(self.get_rgb())) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_graylevel(self, frac): """ Set the foreground color. fg can be a matlab format string, a html hex color string, an rgb unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. """ DEBUG_MSG("set_graylevel()", 1, self) self.select() GraphicsContextBase.set_graylevel(self, frac) self._pen.SetColour(self.get_wxcolour(self.get_rgb())) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_linewidth(self, w): """ Set the line width. """ w = float(w) DEBUG_MSG("set_linewidth()", 1, self) self.select() if w > 0 and w < 1: w = 1 GraphicsContextBase.set_linewidth(self, w) lw = int(self.renderer.points_to_pixels(self._linewidth)) if lw == 0: lw = 1 self._pen.SetWidth(lw) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ DEBUG_MSG("set_capstyle()", 1, self) self.select() GraphicsContextBase.set_capstyle(self, cs) self._pen.SetCap(GraphicsContextWx._capd[self._capstyle]) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ DEBUG_MSG("set_joinstyle()", 1, self) self.select() GraphicsContextBase.set_joinstyle(self, js) self._pen.SetJoin(GraphicsContextWx._joind[self._joinstyle]) self.gfx_ctx.SetPen(self._pen) self.unselect() def set_linestyle(self, ls): """ Set the line style to be one of """ DEBUG_MSG("set_linestyle()", 1, self) self.select() GraphicsContextBase.set_linestyle(self, ls) try: self._style = GraphicsContextWx._dashd_wx[ls] except KeyError: self._style = wx.LONG_DASH # Style not used elsewhere... # On MS Windows platform, only line width of 1 allowed for dash lines if wx.Platform == '__WXMSW__': self.set_linewidth(1) self._pen.SetStyle(self._style) self.gfx_ctx.SetPen(self._pen) self.unselect() def get_wxcolour(self, color): """return a wx.Colour from RGB format""" DEBUG_MSG("get_wx_color()", 1, self) if len(color) == 3: r, g, b = color r *= 255 g *= 255 b *= 255 return wx.Colour(red=int(r), green=int(g), blue=int(b)) else: r, g, b, a = color r *= 255 g *= 255 b *= 255 a *= 255 return wx.Colour( red=int(r), green=int(g), blue=int(b), alpha=int(a)) class FigureCanvasWx(FigureCanvasBase, wx.Panel): """ The FigureCanvas contains the figure and does event handling. In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated by a FigureManagerWx. The parent window probably implements a wx.Sizer to control the displayed control size - but we give a hint as to our preferred minimum size. """ keyvald = { wx.WXK_CONTROL: 'control', wx.WXK_SHIFT: 'shift', wx.WXK_ALT: 'alt', wx.WXK_LEFT: 'left', wx.WXK_UP: 'up', wx.WXK_RIGHT: 'right', wx.WXK_DOWN: 'down', wx.WXK_ESCAPE: 'escape', wx.WXK_F1: 'f1', wx.WXK_F2: 'f2', wx.WXK_F3: 'f3', wx.WXK_F4: 'f4', wx.WXK_F5: 'f5', wx.WXK_F6: 'f6', wx.WXK_F7: 'f7', wx.WXK_F8: 'f8', wx.WXK_F9: 'f9', wx.WXK_F10: 'f10', wx.WXK_F11: 'f11', wx.WXK_F12: 'f12', wx.WXK_SCROLL: 'scroll_lock', wx.WXK_PAUSE: 'break', wx.WXK_BACK: 'backspace', wx.WXK_RETURN: 'enter', wx.WXK_INSERT: 'insert', wx.WXK_DELETE: 'delete', wx.WXK_HOME: 'home', wx.WXK_END: 'end', wx.WXK_PAGEUP: 'pageup', wx.WXK_PAGEDOWN: 'pagedown', wx.WXK_NUMPAD0: '0', wx.WXK_NUMPAD1: '1', wx.WXK_NUMPAD2: '2', wx.WXK_NUMPAD3: '3', wx.WXK_NUMPAD4: '4', wx.WXK_NUMPAD5: '5', wx.WXK_NUMPAD6: '6', wx.WXK_NUMPAD7: '7', wx.WXK_NUMPAD8: '8', wx.WXK_NUMPAD9: '9', wx.WXK_NUMPAD_ADD: '+', wx.WXK_NUMPAD_SUBTRACT: '-', wx.WXK_NUMPAD_MULTIPLY: '*', wx.WXK_NUMPAD_DIVIDE: '/', wx.WXK_NUMPAD_DECIMAL: 'dec', wx.WXK_NUMPAD_ENTER: 'enter', wx.WXK_NUMPAD_UP: 'up', wx.WXK_NUMPAD_RIGHT: 'right', wx.WXK_NUMPAD_DOWN: 'down', wx.WXK_NUMPAD_LEFT: 'left', wx.WXK_NUMPAD_PAGEUP: 'pageup', wx.WXK_NUMPAD_PAGEDOWN: 'pagedown', wx.WXK_NUMPAD_HOME: 'home', wx.WXK_NUMPAD_END: 'end', wx.WXK_NUMPAD_INSERT: 'insert', wx.WXK_NUMPAD_DELETE: 'delete', } def __init__(self, parent, id, figure): """ Initialise a FigureWx instance. - Initialise the FigureCanvasBase and wxPanel parents. - Set event handlers for: EVT_SIZE (Resize event) EVT_PAINT (Paint event) """ FigureCanvasBase.__init__(self, figure) # Set preferred window size hint - helps the sizer (if one is # connected) l, b, w, h = figure.bbox.bounds w = int(math.ceil(w)) h = int(math.ceil(h)) wx.Panel.__init__(self, parent, id, size=wx.Size(w, h)) def do_nothing(*args, **kwargs): warnings.warn( "could not find a setinitialsize function for backend_wx; " "please report your wxpython version=%s " "to the matplotlib developers list" % wxc.backend_version) pass # try to find the set size func across wx versions try: getattr(self, 'SetInitialSize') except AttributeError: self.SetInitialSize = getattr(self, 'SetBestFittingSize', do_nothing) if not hasattr(self, 'IsShownOnScreen'): self.IsShownOnScreen = getattr(self, 'IsVisible', lambda *args: True) # Create the drawing bitmap self.bitmap = wxc.EmptyBitmap(w, h) DEBUG_MSG("__init__() - bitmap w:%d h:%d" % (w, h), 2, self) # TODO: Add support for 'point' inspection and plot navigation. self._isDrawn = False self.Bind(wx.EVT_SIZE, self._onSize) self.Bind(wx.EVT_PAINT, self._onPaint) self.Bind(wx.EVT_KEY_DOWN, self._onKeyDown) self.Bind(wx.EVT_KEY_UP, self._onKeyUp) self.Bind(wx.EVT_RIGHT_DOWN, self._onRightButtonDown) self.Bind(wx.EVT_RIGHT_DCLICK, self._onRightButtonDClick) self.Bind(wx.EVT_RIGHT_UP, self._onRightButtonUp) self.Bind(wx.EVT_MOUSEWHEEL, self._onMouseWheel) self.Bind(wx.EVT_LEFT_DOWN, self._onLeftButtonDown) self.Bind(wx.EVT_LEFT_DCLICK, self._onLeftButtonDClick) self.Bind(wx.EVT_LEFT_UP, self._onLeftButtonUp) self.Bind(wx.EVT_MOTION, self._onMotion) self.Bind(wx.EVT_LEAVE_WINDOW, self._onLeave) self.Bind(wx.EVT_ENTER_WINDOW, self._onEnter) self.Bind(wx.EVT_IDLE, self._onIdle) # Add middle button events self.Bind(wx.EVT_MIDDLE_DOWN, self._onMiddleButtonDown) self.Bind(wx.EVT_MIDDLE_DCLICK, self._onMiddleButtonDClick) self.Bind(wx.EVT_MIDDLE_UP, self._onMiddleButtonUp) if wx.VERSION_STRING < "2.9": # only needed in 2.8 to reduce flicker self.SetBackgroundStyle(wx.BG_STYLE_CUSTOM) self.Bind(wx.EVT_ERASE_BACKGROUND, self._onEraseBackground) else: # this does the same in 2.9+ self.SetBackgroundStyle(wx.BG_STYLE_PAINT) self.macros = {} # dict from wx id to seq of macros def Destroy(self, *args, **kwargs): wx.Panel.Destroy(self, *args, **kwargs) def Copy_to_Clipboard(self, event=None): "copy bitmap of canvas to system clipboard" bmp_obj = wx.BitmapDataObject() bmp_obj.SetBitmap(self.bitmap) if not wx.TheClipboard.IsOpened(): open_success = wx.TheClipboard.Open() if open_success: wx.TheClipboard.SetData(bmp_obj) wx.TheClipboard.Close() wx.TheClipboard.Flush() def draw_idle(self): """ Delay rendering until the GUI is idle. """ DEBUG_MSG("draw_idle()", 1, self) self._isDrawn = False # Force redraw # Triggering a paint event is all that is needed to defer drawing # until later. The platform will send the event when it thinks it is # a good time (usually as soon as there are no other events pending). self.Refresh(eraseBackground=False) def draw(self, drawDC=None): """ Render the figure using RendererWx instance renderer, or using a previously defined renderer if none is specified. """ DEBUG_MSG("draw()", 1, self) self.renderer = RendererWx(self.bitmap, self.figure.dpi) self.figure.draw(self.renderer) self._isDrawn = True self.gui_repaint(drawDC=drawDC) def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerWx(self, *args, **kwargs) def flush_events(self): wx.Yield() def start_event_loop(self, timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. Raises RuntimeError if event loop is already running. """ if hasattr(self, '_event_loop'): raise RuntimeError("Event loop already running") id = wx.NewId() timer = wx.Timer(self, id=id) if timeout > 0: timer.Start(timeout * 1000, oneShot=True) self.Bind(wx.EVT_TIMER, self.stop_event_loop, id=id) # Event loop handler for start/stop event loop self._event_loop = wxc.EventLoop() self._event_loop.Run() timer.Stop() def stop_event_loop(self, event=None): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. """ if hasattr(self, '_event_loop'): if self._event_loop.IsRunning(): self._event_loop.Exit() del self._event_loop def _get_imagesave_wildcards(self): 'return the wildcard string for the filesave dialog' default_filetype = self.get_default_filetype() filetypes = self.get_supported_filetypes_grouped() sorted_filetypes = sorted(filetypes.items()) wildcards = [] extensions = [] filter_index = 0 for i, (name, exts) in enumerate(sorted_filetypes): ext_list = ';'.join(['*.%s' % ext for ext in exts]) extensions.append(exts[0]) wildcard = '%s (%s)|%s' % (name, ext_list, ext_list) if default_filetype in exts: filter_index = i wildcards.append(wildcard) wildcards = '|'.join(wildcards) return wildcards, extensions, filter_index def gui_repaint(self, drawDC=None, origin='WX'): """ Performs update of the displayed image on the GUI canvas, using the supplied wx.PaintDC device context. The 'WXAgg' backend sets origin accordingly. """ DEBUG_MSG("gui_repaint()", 1, self) if self.IsShownOnScreen(): if not drawDC: # not called from OnPaint use a ClientDC drawDC = wx.ClientDC(self) # following is for 'WX' backend on Windows # the bitmap can not be in use by another DC, # see GraphicsContextWx._cache if wx.Platform == '__WXMSW__' and origin == 'WX': img = self.bitmap.ConvertToImage() bmp = img.ConvertToBitmap() drawDC.DrawBitmap(bmp, 0, 0) else: drawDC.DrawBitmap(self.bitmap, 0, 0) filetypes = FigureCanvasBase.filetypes.copy() filetypes['bmp'] = 'Windows bitmap' filetypes['jpeg'] = 'JPEG' filetypes['jpg'] = 'JPEG' filetypes['pcx'] = 'PCX' filetypes['png'] = 'Portable Network Graphics' filetypes['tif'] = 'Tagged Image Format File' filetypes['tiff'] = 'Tagged Image Format File' filetypes['xpm'] = 'X pixmap' def print_figure(self, filename, *args, **kwargs): # Use pure Agg renderer to draw FigureCanvasBase.print_figure(self, filename, *args, **kwargs) # Restore the current view; this is needed because the # artist contains methods rely on particular attributes # of the rendered figure for determining things like # bounding boxes. if self._isDrawn: self.draw() def print_bmp(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_BMP, *args, **kwargs) if not _has_pil: def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_JPEG, *args, **kwargs) print_jpg = print_jpeg def print_pcx(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_PCX, *args, **kwargs) def print_png(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_PNG, *args, **kwargs) if not _has_pil: def print_tiff(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_TIF, *args, **kwargs) print_tif = print_tiff def print_xpm(self, filename, *args, **kwargs): return self._print_image(filename, wx.BITMAP_TYPE_XPM, *args, **kwargs) def _print_image(self, filename, filetype, *args, **kwargs): origBitmap = self.bitmap l, b, width, height = self.figure.bbox.bounds width = int(math.ceil(width)) height = int(math.ceil(height)) self.bitmap = wxc.EmptyBitmap(width, height) renderer = RendererWx(self.bitmap, self.figure.dpi) gc = renderer.new_gc() self.figure.draw(renderer) # image is the object that we call SaveFile on. image = self.bitmap # set the JPEG quality appropriately. Unfortunately, it is only # possible to set the quality on a wx.Image object. So if we # are saving a JPEG, convert the wx.Bitmap to a wx.Image, # and set the quality. if filetype == wx.BITMAP_TYPE_JPEG: jpeg_quality = kwargs.get('quality', rcParams['savefig.jpeg_quality']) image = self.bitmap.ConvertToImage() image.SetOption(wx.IMAGE_OPTION_QUALITY, str(jpeg_quality)) # Now that we have rendered into the bitmap, save it # to the appropriate file type and clean up if is_string_like(filename): if not image.SaveFile(filename, filetype): DEBUG_MSG('print_figure() file save error', 4, self) raise RuntimeError( 'Could not save figure to %s\n' % (filename)) elif is_writable_file_like(filename): if not isinstance(image, wx.Image): image = image.ConvertToImage() if not image.SaveStream(filename, filetype): DEBUG_MSG('print_figure() file save error', 4, self) raise RuntimeError( 'Could not save figure to %s\n' % (filename)) # Restore everything to normal self.bitmap = origBitmap # Note: draw is required here since bits of state about the # last renderer are strewn about the artist draw methods. Do # not remove the draw without first verifying that these have # been cleaned up. The artist contains() methods will fail # otherwise. if self._isDrawn: self.draw() self.Refresh() def _onPaint(self, evt): """ Called when wxPaintEvt is generated """ DEBUG_MSG("_onPaint()", 1, self) drawDC = wx.PaintDC(self) if not self._isDrawn: self.draw(drawDC=drawDC) else: self.gui_repaint(drawDC=drawDC) evt.Skip() def _onEraseBackground(self, evt): """ Called when window is redrawn; since we are blitting the entire image, we can leave this blank to suppress flicker. """ pass def _onSize(self, evt): """ Called when wxEventSize is generated. In this application we attempt to resize to fit the window, so it is better to take the performance hit and redraw the whole window. """ DEBUG_MSG("_onSize()", 2, self) # Create a new, correctly sized bitmap self._width, self._height = self.GetClientSize() self.bitmap = wxc.EmptyBitmap(self._width, self._height) self._isDrawn = False if self._width <= 1 or self._height <= 1: return # Empty figure dpival = self.figure.dpi winch = self._width / dpival hinch = self._height / dpival self.figure.set_size_inches(winch, hinch, forward=False) # Rendering will happen on the associated paint event # so no need to do anything here except to make sure # the whole background is repainted. self.Refresh(eraseBackground=False) FigureCanvasBase.resize_event(self) def _get_key(self, evt): keyval = evt.KeyCode if keyval in self.keyvald: key = self.keyvald[keyval] elif keyval < 256: key = chr(keyval) # wx always returns an uppercase, so make it lowercase if the shift # key is not depressed (NOTE: this will not handle Caps Lock) if not evt.ShiftDown(): key = key.lower() else: key = None for meth, prefix in ( [evt.AltDown, 'alt'], [evt.ControlDown, 'ctrl'], ): if meth(): key = '{0}+{1}'.format(prefix, key) return key def _onIdle(self, evt): 'a GUI idle event' evt.Skip() FigureCanvasBase.idle_event(self, guiEvent=evt) def _onKeyDown(self, evt): """Capture key press.""" key = self._get_key(evt) evt.Skip() FigureCanvasBase.key_press_event(self, key, guiEvent=evt) def _onKeyUp(self, evt): """Release key.""" key = self._get_key(evt) # print 'release key', key evt.Skip() FigureCanvasBase.key_release_event(self, key, guiEvent=evt) def _onRightButtonDown(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 3, guiEvent=evt) def _onRightButtonDClick(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 3, dblclick=True, guiEvent=evt) def _onRightButtonUp(self, evt): """End measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() if self.HasCapture(): self.ReleaseMouse() FigureCanvasBase.button_release_event(self, x, y, 3, guiEvent=evt) def _onLeftButtonDown(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 1, guiEvent=evt) def _onLeftButtonDClick(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 1, dblclick=True, guiEvent=evt) def _onLeftButtonUp(self, evt): """End measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() # print 'release button', 1 evt.Skip() if self.HasCapture(): self.ReleaseMouse() FigureCanvasBase.button_release_event(self, x, y, 1, guiEvent=evt) # Add middle button events def _onMiddleButtonDown(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 2, guiEvent=evt) def _onMiddleButtonDClick(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() self.CaptureMouse() FigureCanvasBase.button_press_event(self, x, y, 2, dblclick=True, guiEvent=evt) def _onMiddleButtonUp(self, evt): """End measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() # print 'release button', 1 evt.Skip() if self.HasCapture(): self.ReleaseMouse() FigureCanvasBase.button_release_event(self, x, y, 2, guiEvent=evt) def _onMouseWheel(self, evt): """Translate mouse wheel events into matplotlib events""" # Determine mouse location x = evt.GetX() y = self.figure.bbox.height - evt.GetY() # Convert delta/rotation/rate into a floating point step size delta = evt.GetWheelDelta() rotation = evt.GetWheelRotation() rate = evt.GetLinesPerAction() # print "delta,rotation,rate",delta,rotation,rate step = rate * float(rotation) / delta # Done handling event evt.Skip() # Mac is giving two events for every wheel event # Need to skip every second one if wx.Platform == '__WXMAC__': if not hasattr(self, '_skipwheelevent'): self._skipwheelevent = True elif self._skipwheelevent: self._skipwheelevent = False return # Return without processing event else: self._skipwheelevent = True # Convert to mpl event FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=evt) def _onMotion(self, evt): """Start measuring on an axis.""" x = evt.GetX() y = self.figure.bbox.height - evt.GetY() evt.Skip() FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=evt) def _onLeave(self, evt): """Mouse has left the window.""" evt.Skip() FigureCanvasBase.leave_notify_event(self, guiEvent=evt) def _onEnter(self, evt): """Mouse has entered the window.""" FigureCanvasBase.enter_notify_event(self, guiEvent=evt) ######################################################################## # # The following functions and classes are for pylab compatibility # mode (matplotlib.pylab) and implement figure managers, etc... # ######################################################################## def _create_wx_app(): """ Creates a wx.App instance if it has not been created sofar. """ wxapp = wx.GetApp() if wxapp is None: wxapp = wx.App(False) wxapp.SetExitOnFrameDelete(True) # retain a reference to the app object so it does not get garbage # collected and cause segmentation faults _create_wx_app.theWxApp = wxapp def draw_if_interactive(): """ This should be overriden in a windowing environment if drawing should be done in interactive python mode """ DEBUG_MSG("draw_if_interactive()", 1, None) if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw_idle() class Show(ShowBase): def mainloop(self): needmain = not wx.App.IsMainLoopRunning() if needmain: wxapp = wx.GetApp() if wxapp is not None: wxapp.MainLoop() show = Show() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) _create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, fig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ fig = figure frame = FigureFrameWx(num, fig) figmgr = frame.get_figure_manager() if matplotlib.is_interactive(): figmgr.frame.Show() figure.canvas.draw_idle() return figmgr class FigureFrameWx(wx.Frame): def __init__(self, num, fig): # On non-Windows platform, explicitly set the position - fix # positioning bug on some Linux platforms if wx.Platform == '__WXMSW__': pos = wx.DefaultPosition else: pos = wx.Point(20, 20) l, b, w, h = fig.bbox.bounds wx.Frame.__init__(self, parent=None, id=-1, pos=pos, title="Figure %d" % num) # Frame will be sized later by the Fit method DEBUG_MSG("__init__()", 1, self) self.num = num statbar = StatusBarWx(self) self.SetStatusBar(statbar) self.canvas = self.get_canvas(fig) self.canvas.SetInitialSize(wx.Size(fig.bbox.width, fig.bbox.height)) self.canvas.SetFocus() self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.canvas, 1, wx.TOP | wx.LEFT | wx.EXPAND) # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version self.toolbar = self._get_toolbar(statbar) if self.toolbar is not None: self.toolbar.Realize() # On Windows platform, default window size is incorrect, so set # toolbar width to figure width. if wxc.is_phoenix: tw, th = self.toolbar.GetSize() fw, fh = self.canvas.GetSize() else: tw, th = self.toolbar.GetSizeTuple() fw, fh = self.canvas.GetSizeTuple() # By adding toolbar in sizer, we are able to put it at the bottom # of the frame - so appearance is closer to GTK version. self.toolbar.SetSize(wx.Size(fw, th)) self.sizer.Add(self.toolbar, 0, wx.LEFT | wx.EXPAND) self.SetSizer(self.sizer) self.Fit() self.canvas.SetMinSize((2, 2)) # give the window a matplotlib icon rather than the stock one. # This is not currently working on Linux and is untested elsewhere. # icon_path = os.path.join(matplotlib.rcParams['datapath'], # 'images', 'matplotlib.png') #icon = wx.IconFromBitmap(wx.Bitmap(icon_path)) # for xpm type icons try: #icon = wx.Icon(icon_path, wx.BITMAP_TYPE_XPM) # self.SetIcon(icon) self.figmgr = FigureManagerWx(self.canvas, num, self) self.Bind(wx.EVT_CLOSE, self._onClose) def _get_toolbar(self, statbar): if rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2Wx(self.canvas) toolbar.set_status_bar(statbar) else: toolbar = None return toolbar def get_canvas(self, fig): return FigureCanvasWx(self, -1, fig) def get_figure_manager(self): DEBUG_MSG("get_figure_manager()", 1, self) return self.figmgr def _onClose(self, evt): DEBUG_MSG("onClose()", 1, self) self.canvas.close_event() self.canvas.stop_event_loop() Gcf.destroy(self.num) # self.Destroy() def GetToolBar(self): """Override wxFrame::GetToolBar as we don't have managed toolbar""" return self.toolbar def Destroy(self, *args, **kwargs): try: self.canvas.mpl_disconnect(self.toolbar._idDrag) # Rationale for line above: see issue 2941338. except AttributeError: pass # classic toolbar lacks the attribute if not self.IsBeingDeleted(): wx.Frame.Destroy(self, *args, **kwargs) if self.toolbar is not None: self.toolbar.Destroy() wxapp = wx.GetApp() if wxapp: wxapp.Yield() return True class FigureManagerWx(FigureManagerBase): """ This class contains the FigureCanvas and GUI frame It is instantiated by GcfWx whenever a new figure is created. GcfWx is responsible for managing multiple instances of FigureManagerWx. public attrs canvas - a FigureCanvasWx(wx.Panel) instance window - a wxFrame instance - wxpython.org/Phoenix/docs/html/Frame.html """ def __init__(self, canvas, num, frame): DEBUG_MSG("__init__()", 1, self) FigureManagerBase.__init__(self, canvas, num) self.frame = frame self.window = frame self.tb = frame.GetToolBar() self.toolbar = self.tb # consistent with other backends def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.tb is not None: self.tb.update() self.canvas.figure.add_axobserver(notify_axes_change) def show(self): self.frame.Show() self.canvas.draw() def destroy(self, *args): DEBUG_MSG("destroy()", 1, self) self.frame.Destroy() wxapp = wx.GetApp() if wxapp: wxapp.Yield() def get_window_title(self): return self.window.GetTitle() def set_window_title(self, title): self.window.SetTitle(title) def resize(self, width, height): 'Set the canvas size in pixels' self.canvas.SetInitialSize(wx.Size(width, height)) self.window.GetSizer().Fit(self.window) # Identifiers for toolbar controls - images_wx contains bitmaps for the images # used in the controls. wxWindows does not provide any stock images, so I've # 'stolen' those from GTK2, and transformed them into the appropriate format. #import images_wx _NTB_AXISMENU = wx.NewId() _NTB_AXISMENU_BUTTON = wx.NewId() _NTB_X_PAN_LEFT = wx.NewId() _NTB_X_PAN_RIGHT = wx.NewId() _NTB_X_ZOOMIN = wx.NewId() _NTB_X_ZOOMOUT = wx.NewId() _NTB_Y_PAN_UP = wx.NewId() _NTB_Y_PAN_DOWN = wx.NewId() _NTB_Y_ZOOMIN = wx.NewId() _NTB_Y_ZOOMOUT = wx.NewId() #_NTB_SUBPLOT =wx.NewId() _NTB_SAVE = wx.NewId() _NTB_CLOSE = wx.NewId() def _load_bitmap(filename): """ Load a bitmap file from the backends/images subdirectory in which the matplotlib library is installed. The filename parameter should not contain any path information as this is determined automatically. Returns a wx.Bitmap object """ basedir = os.path.join(rcParams['datapath'], 'images') bmpFilename = os.path.normpath(os.path.join(basedir, filename)) if not os.path.exists(bmpFilename): raise IOError('Could not find bitmap file "%s"; dying' % bmpFilename) bmp = wx.Bitmap(bmpFilename) return bmp class MenuButtonWx(wx.Button): """ wxPython does not permit a menu to be incorporated directly into a toolbar. This class simulates the effect by associating a pop-up menu with a button in the toolbar, and managing this as though it were a menu. """ def __init__(self, parent): wx.Button.__init__(self, parent, _NTB_AXISMENU_BUTTON, "Axes: ", style=wx.BU_EXACTFIT) self._toolbar = parent self._menu = wx.Menu() self._axisId = [] # First two menu items never change... self._allId = wx.NewId() self._invertId = wx.NewId() self._menu.Append(self._allId, "All", "Select all axes", False) self._menu.Append(self._invertId, "Invert", "Invert axes selected", False) self._menu.AppendSeparator() self.Bind(wx.EVT_BUTTON, self._onMenuButton, id=_NTB_AXISMENU_BUTTON) self.Bind(wx.EVT_MENU, self._handleSelectAllAxes, id=self._allId) self.Bind(wx.EVT_MENU, self._handleInvertAxesSelected, id=self._invertId) def Destroy(self): self._menu.Destroy() self.Destroy() def _onMenuButton(self, evt): """Handle menu button pressed.""" if wxc.is_phoenix: x, y = self.GetPosition() w, h = self.GetSize() else: x, y = self.GetPositionTuple() w, h = self.GetSizeTuple() self.PopupMenuXY(self._menu, x, y + h - 4) # When menu returned, indicate selection in button evt.Skip() def _handleSelectAllAxes(self, evt): """Called when the 'select all axes' menu item is selected.""" if len(self._axisId) == 0: return for i in range(len(self._axisId)): self._menu.Check(self._axisId[i], True) self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def _handleInvertAxesSelected(self, evt): """Called when the invert all menu item is selected""" if len(self._axisId) == 0: return for i in range(len(self._axisId)): if self._menu.IsChecked(self._axisId[i]): self._menu.Check(self._axisId[i], False) else: self._menu.Check(self._axisId[i], True) self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def _onMenuItemSelected(self, evt): """Called whenever one of the specific axis menu items is selected""" current = self._menu.IsChecked(evt.GetId()) if current: new = False else: new = True self._menu.Check(evt.GetId(), new) # Lines above would be deleted based on svn tracker ID 2841525; # not clear whether this matters or not. self._toolbar.set_active(self.getActiveAxes()) evt.Skip() def updateAxes(self, maxAxis): """Ensures that there are entries for max_axis axes in the menu (selected by default).""" if maxAxis > len(self._axisId): for i in range(len(self._axisId) + 1, maxAxis + 1, 1): menuId = wx.NewId() self._axisId.append(menuId) self._menu.Append(menuId, "Axis %d" % i, "Select axis %d" % i, True) self._menu.Check(menuId, True) self.Bind(wx.EVT_MENU, self._onMenuItemSelected, id=menuId) elif maxAxis < len(self._axisId): for menuId in self._axisId[maxAxis:]: self._menu.Delete(menuId) self._axisId = self._axisId[:maxAxis] self._toolbar.set_active(list(xrange(maxAxis))) def getActiveAxes(self): """Return a list of the selected axes.""" active = [] for i in range(len(self._axisId)): if self._menu.IsChecked(self._axisId[i]): active.append(i) return active def updateButtonText(self, lst): """Update the list of selected axes in the menu button""" axis_txt = '' for e in lst: axis_txt += '%d,' % (e + 1) # remove trailing ',' and add to button string self.SetLabel("Axes: %s" % axis_txt[:-1]) cursord = { cursors.MOVE: wx.CURSOR_HAND, cursors.HAND: wx.CURSOR_HAND, cursors.POINTER: wx.CURSOR_ARROW, cursors.SELECT_REGION: wx.CURSOR_CROSS, } class SubplotToolWX(wx.Frame): def __init__(self, targetfig): wx.Frame.__init__(self, None, -1, "Configure subplots") toolfig = Figure((6, 3)) canvas = FigureCanvasWx(self, -1, toolfig) # Create a figure manager to manage things figmgr = FigureManager(canvas, 1, self) # Now put all into a sizer sizer = wx.BoxSizer(wx.VERTICAL) # This way of adding to sizer allows resizing sizer.Add(canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.SetSizer(sizer) self.Fit() tool = SubplotTool(targetfig, toolfig) class NavigationToolbar2Wx(NavigationToolbar2, wx.ToolBar): def __init__(self, canvas): wx.ToolBar.__init__(self, canvas.GetParent(), -1) NavigationToolbar2.__init__(self, canvas) self.canvas = canvas self._idle = True self.statbar = None self.prevZoomRect = None # for now, use alternate zoom-rectangle drawing on all # Macs. N.B. In future versions of wx it may be possible to # detect Retina displays with window.GetContentScaleFactor() # and/or dc.GetContentScaleFactor() self.retinaFix = 'wxMac' in wx.PlatformInfo def get_canvas(self, frame, fig): return FigureCanvasWx(frame, -1, fig) def _init_toolbar(self): DEBUG_MSG("_init_toolbar", 1, self) self._parent = self.canvas.GetParent() self.wx_ids = {} for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.AddSeparator() continue self.wx_ids[text] = wx.NewId() wxc._AddTool(self, self.wx_ids, text, _load_bitmap(image_file + '.png'), tooltip_text) self.Bind(wx.EVT_TOOL, getattr(self, callback), id=self.wx_ids[text]) self.Realize() def zoom(self, *args): self.ToggleTool(self.wx_ids['Pan'], False) NavigationToolbar2.zoom(self, *args) def pan(self, *args): self.ToggleTool(self.wx_ids['Zoom'], False) NavigationToolbar2.pan(self, *args) def configure_subplots(self, evt): frame = wx.Frame(None, -1, "Configure subplots") toolfig = Figure((6, 3)) canvas = self.get_canvas(frame, toolfig) # Create a figure manager to manage things figmgr = FigureManager(canvas, 1, frame) # Now put all into a sizer sizer = wx.BoxSizer(wx.VERTICAL) # This way of adding to sizer allows resizing sizer.Add(canvas, 1, wx.LEFT | wx.TOP | wx.GROW) frame.SetSizer(sizer) frame.Fit() tool = SubplotTool(self.canvas.figure, toolfig) frame.Show() def save_figure(self, *args): # Fetch the required filename and file type. filetypes, exts, filter_index = self.canvas._get_imagesave_wildcards() default_file = self.canvas.get_default_filename() dlg = wx.FileDialog(self._parent, "Save to file", "", default_file, filetypes, wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) dlg.SetFilterIndex(filter_index) if dlg.ShowModal() == wx.ID_OK: dirname = dlg.GetDirectory() filename = dlg.GetFilename() DEBUG_MSG( 'Save file dir:%s name:%s' % (dirname, filename), 3, self) format = exts[dlg.GetFilterIndex()] basename, ext = os.path.splitext(filename) if ext.startswith('.'): ext = ext[1:] if ext in ('svg', 'pdf', 'ps', 'eps', 'png') and format != ext: # looks like they forgot to set the image type drop # down, going with the extension. warnings.warn( 'extension %s did not match the selected ' 'image type %s; going with %s' % (ext, format, ext), stacklevel=0) format = ext try: self.canvas.print_figure( os.path.join(dirname, filename), format=format) except Exception as e: error_msg_wx(str(e)) def set_cursor(self, cursor): cursor = wxc.Cursor(cursord[cursor]) self.canvas.SetCursor(cursor) def release(self, event): try: del self.lastrect except AttributeError: pass def dynamic_update(self): d = self._idle self._idle = False if d: self.canvas.draw() self._idle = True def press(self, event): if self._active == 'ZOOM': if not self.retinaFix: self.wxoverlay = wx.Overlay() else: self.savedRetinaImage = self.canvas.copy_from_bbox( self.canvas.figure.gca().bbox) self.zoomStartX = event.xdata self.zoomStartY = event.ydata def release(self, event): if self._active == 'ZOOM': # When the mouse is released we reset the overlay and it # restores the former content to the window. if not self.retinaFix: self.wxoverlay.Reset() del self.wxoverlay else: del self.savedRetinaImage if self.prevZoomRect: self.prevZoomRect.pop(0).remove() self.prevZoomRect = None def draw_rubberband(self, event, x0, y0, x1, y1): if self.retinaFix: # On Macs, use the following code # wx.DCOverlay does not work properly on Retina displays. rubberBandColor = '#C0C0FF' if self.prevZoomRect: self.prevZoomRect.pop(0).remove() self.canvas.restore_region(self.savedRetinaImage) X0, X1 = self.zoomStartX, event.xdata Y0, Y1 = self.zoomStartY, event.ydata lineX = (X0, X0, X1, X1, X0) lineY = (Y0, Y1, Y1, Y0, Y0) self.prevZoomRect = self.canvas.figure.gca().plot( lineX, lineY, '-', color=rubberBandColor) self.canvas.figure.gca().draw_artist(self.prevZoomRect[0]) self.canvas.blit(self.canvas.figure.gca().bbox) return # Use an Overlay to draw a rubberband-like bounding box. dc = wx.ClientDC(self.canvas) odc = wx.DCOverlay(self.wxoverlay, dc) odc.Clear() # Mac's DC is already the same as a GCDC, and it causes # problems with the overlay if we try to use an actual # wx.GCDC so don't try it. if 'wxMac' not in wx.PlatformInfo: dc = wx.GCDC(dc) height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 if y1 < y0: y0, y1 = y1, y0 if x1 < y0: x0, x1 = x1, x0 w = x1 - x0 h = y1 - y0 rect = wx.Rect(x0, y0, w, h) rubberBandColor = '#C0C0FF' # or load from config? # Set a pen for the border color = wxc.NamedColour(rubberBandColor) dc.SetPen(wx.Pen(color, 1)) # use the same color, plus alpha for the brush r, g, b, a = color.Get(True) color.Set(r, g, b, 0x60) dc.SetBrush(wx.Brush(color)) if wxc.is_phoenix: dc.DrawRectangle(rect) else: dc.DrawRectangleRect(rect) def set_status_bar(self, statbar): self.statbar = statbar def set_message(self, s): if self.statbar is not None: self.statbar.set_function(s) def set_history_buttons(self): can_backward = (self._views._pos > 0) can_forward = (self._views._pos < len(self._views._elements) - 1) self.EnableTool(self.wx_ids['Back'], can_backward) self.EnableTool(self.wx_ids['Forward'], can_forward) class StatusBarWx(wx.StatusBar): """ A status bar is added to _FigureFrame to allow measurements and the previously selected scroll function to be displayed as a user convenience. """ def __init__(self, parent): wx.StatusBar.__init__(self, parent, -1) self.SetFieldsCount(2) self.SetStatusText("None", 1) #self.SetStatusText("Measurement: None", 2) # self.Reposition() def set_function(self, string): self.SetStatusText("%s" % string, 1) # def set_measurement(self, string): # self.SetStatusText("Measurement: %s" % string, 2) #< Additions for printing support: Matt Newville class PrintoutWx(wx.Printout): """ Simple wrapper around wx Printout class -- all the real work here is scaling the matplotlib canvas bitmap to the current printer's definition. """ def __init__(self, canvas, width=5.5, margin=0.5, title='matplotlib'): wx.Printout.__init__(self, title=title) self.canvas = canvas # width, in inches of output figure (approximate) self.width = width self.margin = margin def HasPage(self, page): # current only supports 1 page print return page == 1 def GetPageInfo(self): return (1, 1, 1, 1) def OnPrintPage(self, page): self.canvas.draw() dc = self.GetDC() (ppw, pph) = self.GetPPIPrinter() # printer's pixels per in (pgw, pgh) = self.GetPageSizePixels() # page size in pixels (dcw, dch) = dc.GetSize() if wxc.is_phoenix: (grw, grh) = self.canvas.GetSize() else: (grw, grh) = self.canvas.GetSizeTuple() # save current figure dpi resolution and bg color, # so that we can temporarily set them to the dpi of # the printer, and the bg color to white bgcolor = self.canvas.figure.get_facecolor() fig_dpi = self.canvas.figure.dpi # draw the bitmap, scaled appropriately vscale = float(ppw) / fig_dpi # set figure resolution,bg color for printer self.canvas.figure.dpi = ppw self.canvas.figure.set_facecolor('#FFFFFF') renderer = RendererWx(self.canvas.bitmap, self.canvas.figure.dpi) self.canvas.figure.draw(renderer) self.canvas.bitmap.SetWidth( int(self.canvas.bitmap.GetWidth() * vscale)) self.canvas.bitmap.SetHeight( int(self.canvas.bitmap.GetHeight() * vscale)) self.canvas.draw() # page may need additional scaling on preview page_scale = 1.0 if self.IsPreview(): page_scale = float(dcw) / pgw # get margin in pixels = (margin in in) * (pixels/in) top_margin = int(self.margin * pph * page_scale) left_margin = int(self.margin * ppw * page_scale) # set scale so that width of output is self.width inches # (assuming grw is size of graph in inches....) user_scale = (self.width * fig_dpi * page_scale) / float(grw) dc.SetDeviceOrigin(left_margin, top_margin) dc.SetUserScale(user_scale, user_scale) # this cute little number avoid API inconsistencies in wx try: dc.DrawBitmap(self.canvas.bitmap, 0, 0) except: try: dc.DrawBitmap(self.canvas.bitmap, (0, 0)) except: pass # restore original figure resolution self.canvas.figure.set_facecolor(bgcolor) self.canvas.figure.dpi = fig_dpi self.canvas.draw() return True #> ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureCanvas = FigureCanvasWx FigureManager = FigureManagerWx Toolbar = NavigationToolbar2Wx
apache-2.0
dkillick/iris
lib/iris/tests/unit/quickplot/test_contourf.py
11
2425
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the `iris.quickplot.contourf` function.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import numpy as np from iris.tests import mock from iris.tests.stock import simple_2d from iris.tests.unit.plot import TestGraphicStringCoord, MixinCoords if tests.MPL_AVAILABLE: import iris.quickplot as qplt @tests.skip_plot class TestStringCoordPlot(TestGraphicStringCoord): def test_yaxis_labels(self): qplt.contourf(self.cube, coords=('bar', 'str_coord')) self.assertPointsTickLabels('yaxis') def test_xaxis_labels(self): qplt.contourf(self.cube, coords=('str_coord', 'bar')) self.assertPointsTickLabels('xaxis') @tests.skip_plot class TestCoords(tests.IrisTest, MixinCoords): def setUp(self): # We have a 2d cube with dimensionality (bar: 3; foo: 4) self.cube = simple_2d(with_bounds=False) self.foo = self.cube.coord('foo').points self.foo_index = np.arange(self.foo.size) self.bar = self.cube.coord('bar').points self.bar_index = np.arange(self.bar.size) self.data = self.cube.data self.dataT = self.data.T mocker = mock.Mock(alpha=0, antialiased=False) self.mpl_patch = self.patch('matplotlib.pyplot.contourf', return_value=mocker) # Also need to mock the colorbar. self.patch('matplotlib.pyplot.colorbar') self.draw_func = qplt.contourf if __name__ == "__main__": tests.main()
lgpl-3.0
imk1/IMKTFBindingCode
associateRegionsToAcitveInactiveOld.py
1
11385
import sys import pybedtools as bt import os from deeplearning.mergedPeaksSummitAndMakeContinuousMat import show_value import numpy as np from sklearn.cluster import KMeans from scipy.cluster.hierarchy import linkage, cut_tree, leaves_list import random from scipy.spatial.distance import pdist from polo import optimal_leaf_ordering from igraph.drawing.colors import RainbowPalette from seaborn import heatmap import matplotlib.pyplot as plt plt.switch_backend('agg') def getActivity(chromatinState): # Determine if a chromatin state is active or inactive activeStates = ["E1", "E2", "E3", "E4", "E5", "E6", "E7", "E8", "E9", "E10", "E11", "E14", "E15"] inactiveStates = ["E12", "E13", "E16", "E17", "E18"] if chromatinState in activeStates: # The chromatin state is active return 1 return 0 def getNextRegionAndActivity(clusterFile): # Gets the next region and activity in a cluster file currentClusterLine = clusterFile.readline() if currentClusterLine != "": # Not at the end of the file currentClusterLineElements = currentClusterLine.strip().split("\t") currentClusterRegionActivity = getActivity(currentClusterLineElements[3]) currentClusterRegion =\ (currentClusterLineElements[0], int(currentClusterLineElements[1]), int(currentClusterLineElements[2]), currentClusterRegionActivity) else: currentClusterRegion = ("", -1, -1, 0) return currentClusterRegion def associateRegionsToAcitveInactive(regionFileName, clusterFileNameListFileName, outputFileName): # Find the cluster for each regionCenter # Assumes that each base has been assigned to exactly 1 cluster # ASSUMES THAT CLUSTER FILES HAVE BEEN SORTED BY CHROM, THEN START, THEN END regionList = bt.BedTool(regionFileName).sort() clusterFileNameListFile = open(clusterFileNameListFileName) clusterFileList = [] currentClusterRegionList = [] for line in clusterFileNameListFile: # Iterate through the cluster file names and open each file clusterFile = open(line.strip()) clusterFileList.append(clusterFile) currentClusterLine = clusterFile.readline() currentClusterLineElements = currentClusterLine.strip().split("\t") currentClusterRegionActivity = getActivity(currentClusterLineElements[3]) currentClusterRegion =\ (currentClusterLineElements[0], int(currentClusterLineElements[1]), int(currentClusterLineElements[2]), currentClusterRegionActivity) currentClusterRegionList.append(currentClusterRegion) if os.path.isfile(outputFileName): # Do not over-write the existing file print("ActiveInactive matrix already exists!") return regionList, len(clusterFileList) outputFile = open(outputFileName, 'w+') print("Getting cell type activity for each region!") for region in regionList: # Iterate through regions and find the cluster for each region outputFile.write("\t".join([show_value(region[0]), show_value(region[1]), show_value(region[2])])) chrom = show_value(region[0]) regionCenter = int(show_value(region[1])) + int(round((float(show_value(region[2])) - float(show_value(region[1])))/2.0)) for i in range(len(clusterFileList)): # Iterate through cluster files and find the activity of the cluster overlapping the current region center if currentClusterRegionList[i][0] == "": # All parts of the current cluster file have been seen, so record 0 and continue outputFile.write("\t" + "0") continue allClusterFileSeen = False while currentClusterRegionList[i][0] < chrom: # Iterate through the cluster file's regions until one on the same chromosome has been found if currentClusterRegionList[i][0] == "": # All parts of the current cluster file have been seen, so record 0 and stop outputFile.write("\t" + "0") allClusterFileSeen = True break currentClusterRegionList[i] = getNextRegionAndActivity(clusterFileList[i]) if allClusterFileSeen == True: # All of the current cluster has been seen, so continue continue while (currentClusterRegionList[i][2] <= regionCenter) and (currentClusterRegionList[i][0] == chrom): # Iterate through the cluster's regions until one not before regionCenter has been found currentClusterRegionList[i] = getNextRegionAndActivity(clusterFileList[i]) if currentClusterRegionList[i][0] == "": # All parts of the current cluster have been seen, so record 0 and stop outputFile.write("\t" + "0") allClusterFileSeen = True break if allClusterFileSeen == True: # All of the current cluster has been seen, so continue continue if (regionCenter >= currentClusterRegionList[i][1]) and (regionCenter < currentClusterRegionList[i][2]): # The region belongs to the region within the cluster file outputFile.write("\t" + str(currentClusterRegionList[i][3])) continue outputFile.write("\t" + "0") outputFile.write("\n") print("Got activity for " + str(regionList.count()) + " regions.") for clusterFile in clusterFileList: # Iterate through the files with the clusters and close each cluster clusterFile.close() outputFile.close() return regionList, len(clusterFileList) def clusterActiveInactive(outputFileName, heatmapFileNamePrefix, numCellTypes, regionList, maxClust, liftoverChainsFileName, cellTypesFileName, genomeFileName, \ DNaseUnionFileName, chromSizesFileName): # Cluster the binary indicators of activity print("Clustering!") activeInactiveMat = np.loadtxt(outputFileName, dtype='int16', usecols=range(3,numCellTypes+3)) cellTypesFile = open(cellTypesFileName) cellTypes = [line.strip() for line in cellTypesFile] cellTypesFile.close() DNaseUnion = bt.BedTool(DNaseUnionFileName) regionListDNaseFastaFileName = outputFileName[0:-4] + "_overlappingDNase.fa" DNaseUnion.intersect(regionList, wa=True, u = True).slop(g = chromSizesFileName, b = 200).sort().merge().sequence(fi = genomeFileName, fo = regionListDNaseFastaFileName) # Clustering rowkclust = KMeans(n_clusters=25, init='k-means++', n_init=20, max_iter=50) rowkclust.fit(activeInactiveMat) # Hierarchically cluster clusters clusterCentroidLinkage = linkage(rowkclust.cluster_centers_, method='ward', metric='euclidean') groups = cut_tree(clusterCentroidLinkage, height=0.1*max(clusterCentroidLinkage[:,2])) # Reassign clusters newClusters = np.array([groups[l] for l in rowkclust.labels_]) print(max(newClusters) + 1) optNumRowClust = max(newClusters) + 1 if optNumRowClust > maxClust: # The optimal number of clusters is too large, so change it to 15 optNumRowClust = maxClust random.seed(5) # Order Columns colClustDistMat = pdist(activeInactiveMat.transpose(), metric='euclidean') colClust = linkage(activeInactiveMat.transpose(), method='average', metric='euclidean') optimalorder = optimal_leaf_ordering(colClust, colClustDistMat) colSortInd = leaves_list(optimalorder) for numRowClust in range(5, maxClust + 1): # Iterate through the potential numbers of clusters and try each print("numRowClust is " + str(numRowClust)) rowkclust = KMeans(n_clusters=numRowClust, init='k-means++', n_init=50, max_iter=10) rowkclust.fit(activeInactiveMat) # Sort by cluster mean rowclustermeans = np.mean(rowkclust.cluster_centers_, axis = 1) plotClusters = rowkclust.labels_ rowkclustCentroidsArgSortReverse = (0-rowclustermeans).argsort() rowkclustCentroidsRanksReverse = np.empty(rowkclust.cluster_centers_.shape[0], int) rowkclustCentroidsRanksReverse[rowkclustCentroidsArgSortReverse] = np.arange(rowkclustCentroidsArgSortReverse.shape[0]) for clust in range(numRowClust): # Iterate through the clusters and replace the labels by the reverse rank of the cluster centroids plotClusters[np.where(rowkclust.labels_ == clust)] = rowkclustCentroidsRanksReverse[clust] # Order by plot cluster rowSortInd = np.argsort(plotClusters) # Plot # Order columns and rows rowSortActiveInactiveMat = activeInactiveMat[rowSortInd,:] colSortActiveInactiveMat = rowSortActiveInactiveMat[:, colSortInd] # Region cluster colors cols = RainbowPalette(n=numRowClust) # Name the heatmap file heatmapFileName = heatmapFileNamePrefix + "_" + str(numRowClust) if numRowClust == optNumRowClust: # The number of clusters is the optimal number, so add optimal to the file name heatmapFileName = heatmapFileName + "_optimal" colList = [] labList = [] for ind in range(numRowClust): # Iterate through the clusters and make the colors and labels for each if ind >= np.unique(plotClusters).shape[0]: # The current index is larger than the largest index, so skip it continue colList.extend([cols[ind] for i in range(len(np.argwhere(plotClusters == np.unique(plotClusters)[ind])))]) labList.extend([ind for i in range(len(np.argwhere(plotClusters == np.unique(plotClusters)[ind])))]) if numRowClust == optNumRowClust: # At the optimal number of clusters, so make the bed files and run Homer regionListCurrentClust = regionList.at(np.argwhere(plotClusters == np.unique(plotClusters)[ind])) regionListCurrentClustFileName = heatmapFileName + "_" + str(ind) + ".bed" regionListCurrentClust.saveas(regionListCurrentClustFileName) regionListCurrentClusthg19FileName = heatmapFileName + "_" + str(ind) + "_hg19.bed" regionListCurrentClust.liftover(liftoverChainsFileName).cut([0,1,2]).saveas(regionListCurrentClusthg19FileName) regionListCurrentClustDNaseUnionFastaFileName = heatmapFileName + "_" + str(ind) + "_DNaseUnion.fa" DNaseUnion.intersect(regionListCurrentClust, wa=True, u=True).slop(g = chromSizesFileName, b = 200).sort().merge().sequence(fi = genomeFileName, \ fo = regionListCurrentClustDNaseUnionFastaFileName) regionListCurrentClustHomerResultsDir = heatmapFileName + "_" + str(ind) + ".HomerResults" os.system(" ".join(["findMotifs.pl", regionListCurrentClustDNaseUnionFastaFileName, "fasta", \ regionListCurrentClustHomerResultsDir, "-fasta", regionListDNaseFastaFileName])) os.remove(regionListCurrentClustDNaseUnionFastaFileName) colVec = np.array(colList) labVec = np.array(labList) # Plot heatmap heatmapFileName = heatmapFileName + ".png" fig, ax = plt.subplots(figsize=(24, 14)) #plt.axis((4.1, 6.1, 7.1, 4.1)) #plt.subplots_adjust(left=2, bottom=2, right=6, top=2.1) cellTypesReordered = [cellTypes[i] for i in colSortInd] ax = heatmap(colSortActiveInactiveMat, cmap='RdBu', xticklabels=cellTypesReordered, yticklabels=labVec) fig.savefig(heatmapFileName, format="png") os.remove(regionListDNaseFastaFileName) if __name__=="__main__": regionFileName = sys.argv[1] clusterFileNameListFileName = sys.argv[2] outputFileName = sys.argv[3] clusterData = int(sys.argv[4]) regionList, numCellTypes = associateRegionsToAcitveInactive(regionFileName, clusterFileNameListFileName, outputFileName) if clusterData == 1: # Cluster the data heatmapFileNamePrefix = sys.argv[5] liftoverChainsFileName = sys.argv[6] cellTypesFileName = sys.argv[7] genomeFileName = sys.argv[8] DNaseUnionFileName = sys.argv[9] chromSizesFileName = sys.argv[10] maxClust = 15 if len(sys.argv) > 11: # The maximum number of clusters has been specified maxClust = int(sys.argv[11]) clusterActiveInactive(outputFileName, heatmapFileNamePrefix, numCellTypes, regionList, maxClust, liftoverChainsFileName, cellTypesFileName, \ genomeFileName, DNaseUnionFileName, chromSizesFileName)
mit
Parallel-in-Time/pySDC
pySDC/playgrounds/deprecated/acoustic_1d_imex/ploterrorconstants.py
1
3327
from subprocess import call import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import ScalarFormatter from pylab import rcParams fs = 8 order = np.array([]) nsteps = np.array([]) error = np.array([]) # load SDC data file = open('conv-data.txt', 'r') while True: line = file.readline() if not line: break items = str.split(line, " ", 3) order = np.append(order, int(items[0])) nsteps = np.append(nsteps, int(float(items[1]))) error = np.append(error, float(items[2])) file.close() assert np.size(order)==np.size(nsteps), 'Found different number of entries in order and nsteps' assert np.size(nsteps)==np.size(error), 'Found different number of entries in nsteps and error' N = np.size(nsteps)/3 assert isinstance(N, int), 'Number of entries not a multiple of three' # load Runge-Kutta data order_rk = np.array([]) nsteps_rk = np.array([]) error_rk = np.array([]) file = open('conv-data-rk.txt', 'r') while True: line = file.readline() if not line: break items = str.split(line, " ", 3) order_rk = np.append(order_rk, int(items[0])) nsteps_rk = np.append(nsteps_rk, int(float(items[1]))) error_rk = np.append(error_rk, float(items[2])) file.close() assert np.size(order_rk)==np.size(nsteps_rk), 'Found different number of entries in order and nsteps' assert np.size(nsteps_rk)==np.size(error_rk), 'Found different number of entries in nsteps and error' N = np.size(nsteps_rk)/3 assert isinstance(N, int), 'Number of entries not a multiple of three' ### Compute and plot error constant ### errconst_sdc = np.zeros((3,N)) errconst_rk = np.zeros((3,N)) nsteps_plot_sdc = np.zeros((3,N)) nsteps_plot_rk = np.zeros((3,N)) order_plot = np.zeros(3) for ii in range(0,3): order_plot[ii] = order[N*ii] for jj in range(0,N): p_sdc = order[N*ii+jj] err_sdc = error[N*ii+jj] nsteps_plot_sdc[ii,jj] = nsteps[N*ii+jj] dt_sdc = 1.0/float(nsteps_plot_sdc[ii,jj]) errconst_sdc[ii,jj] = err_sdc/dt_sdc**float(p_sdc) p_rk = order_rk[N*ii+jj] err_rk = error_rk[N*ii+jj] nsteps_plot_rk[ii,jj] = nsteps_rk[N*ii+jj] dt_rk = 1.0/float(nsteps_plot_rk[ii,jj]) errconst_rk[ii,jj] = err_rk/dt_rk**float(p_rk) color = [ 'r', 'b', 'g' ] shape_sdc = ['<', '^', '>'] shape_rk = ['o', 'd', 's'] rcParams['figure.figsize'] = 2.5, 2.5 fig = plt.figure() for ii in range(0,3): plt.semilogy(nsteps_plot_sdc[ii,:], errconst_sdc[ii,:], shape_sdc[ii], markersize=fs, color=color[ii], label='SDC('+str(int(order_plot[ii]))+')') plt.semilogy(nsteps_plot_rk[ii,:], errconst_rk[ii,:], shape_rk[ii], markersize=fs-2, color=color[ii], label='IMEX('+str(int(order_plot[ii]))+')') plt.legend(loc='lower left', fontsize=fs, prop={'size':fs-1}, ncol=2) plt.xlabel('Number of time steps', fontsize=fs) plt.ylabel('Estimated error constant', fontsize=fs, labelpad=2) plt.xlim([0.9*np.min(nsteps_plot_sdc), 1.1*np.max(nsteps_plot_sdc)]) plt.ylim([1e1, 1e6]) plt.yticks([1e1, 1e2, 1e3, 1e4, 1e5, 1e6],fontsize=fs) plt.xticks([20, 30, 40, 60, 80, 100], fontsize=fs) plt.gca().get_xaxis().get_major_formatter().labelOnlyBase = False plt.gca().get_xaxis().set_major_formatter(ScalarFormatter()) #plt.show() filename = 'error_constants.pdf' fig.savefig(filename,bbox_inches='tight') call(["pdfcrop", filename, filename])
bsd-2-clause
penguinmenac3/alice-ai
utilitylearning/deepqlearning.py
1
5207
import time import random from collections import deque import numpy as np import os import cv2 class Trainer(object): def __init__(self, bot, agent, model, memory_name="default"): self.bot = bot self.agent = agent self.model = model self.dt = 0.1 self.initial_observe = 1000 self.replay_mem_size = 60000 self.replay_memory = deque() self.replay_memory_bad = deque() self.batch_size = 64 self.epsilon = 0.05 self.momentum = 0.0 self.l2_decay = 0.01 self.gamma = 0.7 self.memory_name = memory_name if os.path.isfile(memory_name + ".npz"): data = dict(np.load(memory_name + ".npz"))["arr_0"][()] self.replay_memory = deque(data["replay_memory"]) self.replay_memory_bad = deque(data["replay_memory_bad"]) print() def save(self): data = {} data["replay_memory"] = list(self.replay_memory) data["replay_memory_bad"] = list(self.replay_memory_bad) np.savez(self.memory_name, data) print("Saved trainer memory.") def _add_to_replay_memory(self, state, action, reward): arr = list(self.agent.history)[1:] arr.append(state) terminal = reward < 0 hist1 = [item for sublist in list(self.agent.history) for item in sublist] hist2 = [item for sublist in arr for item in sublist] if reward >= 0: self.replay_memory.append((hist1, action, reward, hist2, terminal)) else: self.replay_memory_bad.append((hist1, action, reward, hist2, terminal)) if len(self.replay_memory) > self.replay_mem_size: self.replay_memory.popleft() if len(self.replay_memory_bad) > self.replay_mem_size: self.replay_memory_bad.popleft() def _train_step(self): minibatch = random.sample(list(self.replay_memory_bad) + list(self.replay_memory), self.batch_size) inputs = np.zeros((self.batch_size, self.model.history_size * self.model.state_size)) targets = np.zeros((inputs.shape[0], self.model.action_size)) for i in range(0, len(minibatch)): s_t = minibatch[i][0] a_t = minibatch[i][1] r = minibatch[i][2] s_t1 = minibatch[i][3] terminal = minibatch[i][4] inputs[i:i + 1] = s_t targets[i] = self.model.model.predict(np.array([s_t])) Q_sa = self.model.model.predict(np.array([s_t1])) idx = np.argmax(a_t) if terminal: targets[i, idx] = r else: targets[i, idx] = r + self.gamma * np.max(Q_sa) self.model.model.train_on_batch(inputs, targets) def train(self, plot_error=False): stats = [] if plot_error: import matplotlib.pyplot as plt plt.ion() try: t = max(0, len(self.replay_memory)) last_error = 0 state = self.bot.get_state() img = self.bot.get_video() print("Start training, stop with CTRL + C") while True: timing_start = time.time() # Let the agent pick an action. action = None if t <= self.initial_observe: action = self.agent.pick_action_one_hot(state, 1.0) else: action = self.agent.pick_action_one_hot(state, self.epsilon) # Execute the action and observe act, r = self.bot.act(self.bot.actions[np.argmax(action)], self.dt) state = self.bot.get_state() img = self.bot.get_video() # Create two entries for the replay memory self._add_to_replay_memory(state, action, r) # Do a training step if t > self.initial_observe: self._train_step() # Try to reset if we are in a simulation environment if r < 0: error_free = t - last_error stats.append(error_free) if plot_error: plt.clf() plt.gcf().canvas.set_window_title("collision free statistic") plt.ylabel("collision free steps") plt.xlabel("collision Id") plt.plot(stats) plt.pause(0.001) print("Reset: " + str(t) + ", error free: " + str(t - last_error)) self.agent.clear_history() last_error = t # Save the model if t % 1000 == 0 and t > self.initial_observe: print("save model") self.model.save() elapsed_time = time.time() - timing_start sleep_time = max(0, self.dt - elapsed_time) time.sleep(sleep_time) if plot_error: plt.pause(0.001) t += 1 except KeyboardInterrupt: print("User Interrupt: end training.") return
lgpl-3.0
JAmarel/FilmThickness
customplotting.py
1
7326
import numpy as np import matplotlib.pyplot as plt def HSM_Plot(RedIntensity,GreenIntensity,BlueIntensity,RedSTD,GreenSTD,BlueSTD,ExposureTimes): """Plots intensity values as recorded from imagej histograms vs ExposureTime. Parameters ---------- RedIntensity: (N+1,) array. Numpy array containing N+1 subarrays. Where each sub array corresponds to a different lasso'd region. Each entry in each sub array is an intensity value that corresponds to a certain exposure time. N is the number of lasso'd regions. So it has shape (N+1,) to account for extra HSM data RedSTD: (N+1,) array Same as RedIntensity, except now each entry in a sub array is the standard deviation of each intensity. Calculated from imagej histogram data. ExposureTimes: (N+1,) array Same as above. Each entry is now an exposure time. """ f, (ax1,ax2,ax3) = plt.subplots(3, 1,figsize=(8,12)) #Removing Top/Right Spine/Ticks ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') ax3.spines['right'].set_visible(False) ax3.spines['top'].set_visible(False) ax3.yaxis.set_ticks_position('left') ax3.xaxis.set_ticks_position('bottom') plt.sca(ax1) for i in np.arange(0,len(RedIntensity)): plt.errorbar(ExposureTimes[i],RedIntensity[i], yerr=RedSTD[i],ls='None',marker='None') plt.title("Red Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) plt.sca(ax2) for i in np.arange(0,len(GreenIntensity)): plt.errorbar(ExposureTimes[i],GreenIntensity[i], yerr=GreenSTD[i],ls='None',marker='None') plt.title("Green Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) plt.sca(ax3) for i in np.arange(0,len(BlueIntensity)): plt.errorbar(ExposureTimes[i],BlueIntensity[i], yerr=BlueSTD[i],ls='None',marker='None') plt.title("Blue Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) plt.tight_layout() def Line_Plot(RedIntensity,GreenIntensity,BlueIntensity,RedSTD,GreenSTD,BlueSTD,RedSlopes,GreenSlopes,BlueSlopes,ExposureTimes): """Plots intensity values as recorded from imagej histograms vs ExposureTime. Parameters ---------- RedIntensity: (N+1,) array. Numpy array containing N+1 subarrays. Where each sub array corresponds to a different lasso'd region. Each entry in each sub array is an intensity value that corresponds to a certain exposure time. N is the number of lasso'd regions. So it has shape (N+1,) to account for extra HSM data RedSTD: (N+1,) array Same as RedIntensity, except now each entry in a sub array is the standard deviation of each intensity. Calculated from imagej histogram data. ExposureTimes: (N+1,) array Same as above. Each entry is now an exposure time. """ f, (ax1,ax2,ax3) = plt.subplots(3, 1,figsize=(8,12)) #Removing Top/Right Spine/Ticks ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') ax3.spines['right'].set_visible(False) ax3.spines['top'].set_visible(False) ax3.yaxis.set_ticks_position('left') ax3.xaxis.set_ticks_position('bottom') plt.sca(ax1) for i in np.arange(0,len(RedIntensity)): plt.errorbar(ExposureTimes[i],RedIntensity[i], yerr=RedSTD[i],ls='None',marker='None') plt.title("Red Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) t = np.linspace(0,np.amax(ExposureTimes[i]),100) plt.plot(t,RedSlopes[i]*t) plt.sca(ax2) for i in np.arange(0,len(GreenIntensity)): plt.errorbar(ExposureTimes[i],GreenIntensity[i], yerr=GreenSTD[i],ls='None',marker='None') plt.title("Green Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) t = np.linspace(0,np.amax(ExposureTimes[i]),100) plt.plot(t,GreenSlopes[i]*t) plt.sca(ax3) for i in np.arange(0,len(BlueIntensity)): plt.errorbar(ExposureTimes[i],BlueIntensity[i], yerr=BlueSTD[i],ls='None',marker='None') plt.title("Blue Channel") plt.xlabel("Exposure Time (s)") plt.ylabel("Intensity [0-255]") plt.xlim(0,np.amax(ExposureTimes[i])*1.1) plt.ylim(0,255) t = np.linspace(0,np.amax(ExposureTimes[i]),100) plt.plot(t,BlueSlopes[i]*t) plt.tight_layout() def Ref(N,color): RedWaveLength = 620e-9 GreenWaveLength = 545e-9 BlueWaveLength = 463e-9 if color == 'red': y = RedWaveLength elif color =='green': y = GreenWaveLength elif color == 'blue': y = BlueWaveLength n = 1.516 #Index of Refraction a = 3.1e-9 #nm 8CB molecule length r = -.205 #reflectance at normal incidence B = 2*np.pi*N*n*a/y numerator = 2*(r**2)*(1-np.cos(2*B)) denominator = 1 - 2*(r**2)*np.cos(2*B) + r**4 return numerator/denominator def Ref_Plot(GreenRef,BlueRef,N_Guesses): #Camera response (for curve) RedWaveLength = 620e-9 GreenWaveLength = 545e-9 BlueWaveLength = 463e-9 N_Array = np.linspace(2,30,100) #This is used to plot the reflectivity curve fit f, (ax1,ax2) = plt.subplots(2, 1,figsize=(8,12)) ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.yaxis.set_ticks_position('left') ax2.xaxis.set_ticks_position('bottom') plt.sca(ax1) plt.plot(N_Array**2,Ref(N_Array,'green'),color='green'); plt.scatter(N_Guesses**2,GreenRef,color = 'green'); plt.xlim(0,(np.amax(N_Array)**2)*1.1); plt.ylim(0,np.amax(GreenRef)*2); plt.title("Green Channel Reflectivity") plt.xlabel("N$^2$") plt.ylabel("Reflectivity") plt.sca(ax2) plt.plot(N_Array**2,Ref(N_Array,'blue'),color='blue'); plt.scatter(N_Guesses**2,BlueRef,color = 'blue'); plt.xlim(0,(np.amax(N_Array)**2)*1.1); plt.ylim(0,np.amax(GreenRef)*2); plt.title("Blue Channel Reflectivity") plt.xlabel("N$^2$") plt.ylabel("Reflectivity") plt.tight_layout()
mit
modelon/PyFMI
src/common/plotting/plot_gui.py
1
73748
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2010 Modelon AB # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, version 3 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib matplotlib.interactive(True) matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg from matplotlib.figure import Figure from matplotlib import rcParams import fnmatch import re #GUI modules try: import wx import wx.lib.agw.customtreectrl as wxCustom import wx.lib.agw.aui as aui except ImportError: print("WX-Python not found. The GUI will not work.") #JModelica related imports try: from pyfmi.common.io import ResultDymolaTextual from pyfmi.common.io import ResultDymolaBinary from pyfmi.common.io import ResultCSVTextual from pyfmi.common.io import JIOError except ImportError: try: from pyjmi.common.io import ResultDymolaTextual from pyjmi.common.io import ResultDymolaBinary from pyjmi.common.io import ResultCSVTextual from pyjmi.common.io import JIOError except ImportError: print("JModelica Python package was not found.") #Import general modules import os as O ID_GRID = 15001 ID_LICENSE = 15002 ID_LABELS = 15003 ID_AXIS = 15004 ID_MOVE = 15005 ID_ZOOM = 15006 ID_RESIZE = 15007 ID_LINES = 15008 ID_CLEAR = 15009 def convert_filter(expression): """ Convert a filter based on unix filename pattern matching to a list of regular expressions. """ regexp = [] if isinstance(expression,str): regex = fnmatch.translate(expression) regexp = [re.compile(regex)] elif isinstance(expression,list): for i in expression: regex = fnmatch.translate(i) regexp.append(re.compile(regex)) else: raise Exception("Unknown input.") return regexp def match(name, filter_list): found = False for j in range(len(filter_list)): if re.match(filter_list[j], name): found = True break return found class MainGUI(wx.Frame): sizeHeightDefault=900 sizeLengthDefault=675 sizeHeightMin=100 sizeLengthMin=130 sizeTreeMin=200 sizeTreeDefault=sizeTreeMin+40 def __init__(self, parent, ID, filename=None): self.title = "JModelica.org Plot GUI" wx.Frame.__init__(self, parent, ID, self.title, wx.DefaultPosition, wx.Size(self.sizeHeightDefault, self.sizeLengthDefault)) #Handle idle events #wx.IdleEvent.SetMode(wx.IDLE_PROCESS_SPECIFIED) #Variables for the results self.ResultFiles = [] #Contains all the result files self.PlotVariables = [[]] #Contains all the variables for the different plots self.ResultIndex = 0 #Index of the result file self.PlotIndex = 0 #Index of the plot variables connected to the different plots #Settings variables self.grid = True self.zoom = True self.move = False #Create menus and status bars self.CreateStatusBar() #Create a statusbar at the bottom self.CreateMenu() #Create the normal menu #Create the main window self.verticalSplitter = wx.SplitterWindow(self, -1, style = wx.CLIP_CHILDREN | wx.SP_LIVE_UPDATE | wx.SP_3D) #Create the positioners self.leftPanel = wx.Panel(self.verticalSplitter) self.leftSizer = wx.BoxSizer(wx.VERTICAL) self.rightPanel = wx.Panel(self.verticalSplitter) self.rightSizer = wx.BoxSizer(wx.VERTICAL) #Create the panels (Tree and Plot) if wx.VERSION < (2,8,11,0): self.noteBook = aui.AuiNotebook(self.rightPanel, style= aui.AUI_NB_TOP | aui.AUI_NB_TAB_SPLIT | aui.AUI_NB_TAB_MOVE | aui.AUI_NB_SCROLL_BUTTONS | aui.AUI_NB_CLOSE_ON_ACTIVE_TAB | aui.AUI_NB_DRAW_DND_TAB) self.tree = VariableTree(self.noteBook, self.leftPanel,style = wx.SUNKEN_BORDER | wxCustom.TR_HAS_BUTTONS | wxCustom.TR_HAS_VARIABLE_ROW_HEIGHT | wxCustom.TR_HIDE_ROOT | wxCustom.TR_ALIGN_WINDOWS) else: self.noteBook = aui.AuiNotebook(self.rightPanel, agwStyle= aui.AUI_NB_TOP | aui.AUI_NB_TAB_SPLIT | aui.AUI_NB_TAB_MOVE | aui.AUI_NB_SCROLL_BUTTONS | aui.AUI_NB_CLOSE_ON_ACTIVE_TAB | aui.AUI_NB_DRAW_DND_TAB) self.tree = VariableTree(self.noteBook, self.leftPanel,style = wx.SUNKEN_BORDER, agwStyle = wxCustom.TR_HAS_BUTTONS | wxCustom.TR_HAS_VARIABLE_ROW_HEIGHT | wxCustom.TR_HIDE_ROOT | wxCustom.TR_ALIGN_WINDOWS) self.plotPanels = [PlotPanel(self.noteBook,self.grid, move=self.move, zoom=self.zoom)] self.noteBook.AddPage(self.plotPanels[0],"Plot 1") self.filterPanel = FilterPanel(self, self.leftPanel, self.tree) #Add the panels to the positioners self.leftSizer.Add(self.tree,1,wx.EXPAND) self.leftSizer.Add(self.filterPanel,0,wx.EXPAND) self.rightSizer.Add(self.noteBook,1,wx.EXPAND) self.verticalSplitter.SplitVertically(self.leftPanel, self.rightPanel,self.sizeTreeDefault) #self.verticalSplitter.SetMinimumPaneSize(self.sizeTreeMin) self.verticalSplitter.SetMinimumPaneSize(self.filterPanel.GetBestSize()[0]) #Position the main windows self.leftPanel.SetSizer(self.leftSizer) self.rightPanel.SetSizer(self.rightSizer) self.mainSizer = wx.BoxSizer() #Create the main positioner self.mainSizer.Add(self.verticalSplitter, 1, wx.EXPAND) #Add the vertical splitter self.SetSizer(self.mainSizer) #Set the positioner to the main window self.SetMinSize((self.sizeHeightMin,self.sizeLengthMin)) #Set minimum sizes #Bind the exit event from the "cross" self.Bind(wx.EVT_CLOSE, self.OnMenuExit) #Bind the tree item checked event self.tree.Bind(wxCustom.EVT_TREE_ITEM_CHECKED, self.OnTreeItemChecked) #Bind the key press event self.tree.Bind(wx.EVT_KEY_DOWN, self.OnKeyPress) #Bind the closing of a tab self.Bind(aui.EVT_AUINOTEBOOK_PAGE_CLOSE, self.OnCloseTab, self.noteBook) #Bind the changing of a tab self.Bind(aui.EVT_AUINOTEBOOK_PAGE_CHANGING, self.OnTabChanging, self.noteBook) #Bind the changed of a tab self.Bind(aui.EVT_AUINOTEBOOK_PAGE_CHANGED, self.OnTabChanged, self.noteBook) if not filename == None: self._OpenFile(filename) self.Centre(True) #Position the GUI in the centre of the screen self.Show(True) #Show the Plot GUI def CreateMenu(self): #Creating the menu filemenu = wx.Menu() helpmenu = wx.Menu() editmenu = wx.Menu() viewmenu = wx.Menu() menuBar = wx.MenuBar() #Create the menu options # Main self.menuOpen = filemenu.Append(wx.ID_OPEN, "&Open\tCtrl+O","Open a result.") self.menuSaveFig = filemenu.Append(wx.ID_SAVE, "&Save\tCtrl+S", "Save the current figure.") filemenu.AppendSeparator() #Append a seperator between Open and Exit self.menuExit = filemenu.Append(wx.ID_EXIT,"E&xit\tCtrl+X"," Terminate the program.") # Edit self.editAdd = editmenu.Append(wx.ID_ADD,"A&dd Plot","Add a plot window.") self.editClear = editmenu.Append(wx.ID_CLEAR, "Clear Plot", "Clear the current plot window.") editmenu.AppendSeparator() self.editAxisLabels = editmenu.Append(ID_AXIS,"Axis / Labels", "Edit the axis and labels of the current plot.") self.editLinesLegends = editmenu.Append(ID_LINES, "Lines / Legends", "Edit the lines and the legend of the current plot.") # View self.viewGrid = viewmenu.Append(ID_GRID,"&Grid","Show/Hide Grid.",kind=wx.ITEM_CHECK) viewmenu.AppendSeparator() #Append a seperator self.viewMove = viewmenu.Append(ID_MOVE,"Move","Use the mouse to move the plot.",kind=wx.ITEM_RADIO) self.viewZoom = viewmenu.Append(ID_ZOOM,"Zoom","Use the mouse for zooming.",kind=wx.ITEM_RADIO) viewmenu.AppendSeparator() self.viewResize = viewmenu.Append(ID_RESIZE, "Resize", "Resize the current plot.") #Check items viewmenu.Check(ID_GRID, self.grid) viewmenu.Check(ID_ZOOM, self.zoom) viewmenu.Check(ID_MOVE, self.move) # Help self.helpLicense = helpmenu.Append(ID_LICENSE, "License","Show the license.") self.helpAbout = helpmenu.Append(wx.ID_ABOUT, "&About"," Information about this program.") #Setting up the menu menuBar.Append(filemenu,"&File") #Adding the "filemenu" to the MenuBar menuBar.Append(editmenu,"&Edit") #Adding the "editmenu" to the MenuBar menuBar.Append(viewmenu,"&View") #Adding the "viewmenu" to the MenuBar menuBar.Append(helpmenu,"&Help") #Adding the "helpmenu" to the MenuBar #Binding the events self.Bind(wx.EVT_MENU, self.OnMenuOpen, self.menuOpen) self.Bind(wx.EVT_MENU, self.OnMenuSaveFig, self.menuSaveFig) self.Bind(wx.EVT_MENU, self.OnMenuExit, self.menuExit) self.Bind(wx.EVT_MENU, self.OnMenuAdd, self.editAdd) self.Bind(wx.EVT_MENU, self.OnMenuClear, self.editClear) self.Bind(wx.EVT_MENU, self.OnMenuAxisLabels, self.editAxisLabels) self.Bind(wx.EVT_MENU, self.OnMenuLinesLegends, self.editLinesLegends) self.Bind(wx.EVT_MENU, self.OnMenuResize, self.viewResize) self.Bind(wx.EVT_MENU, self.OnMenuGrid, self.viewGrid) self.Bind(wx.EVT_MENU, self.OnMenuMove, self.viewMove) self.Bind(wx.EVT_MENU, self.OnMenuZoom, self.viewZoom) self.Bind(wx.EVT_MENU, self.OnMenuLicense, self.helpLicense) self.Bind(wx.EVT_MENU, self.OnMenuAbout, self.helpAbout) self.SetMenuBar(menuBar) # Adding the MenuBar to the Frame content. #Set keyboard shortcuts hotKeysTable = wx.AcceleratorTable([(wx.ACCEL_CTRL, ord("O"), self.menuOpen.GetId()), (wx.ACCEL_CTRL, ord("S"), self.menuSaveFig.GetId()), (wx.ACCEL_CTRL, ord("X"), self.menuExit.GetId())]) self.SetAcceleratorTable(hotKeysTable) #Disable Lines and Legends self.editLinesLegends.Enable(False) def OnMenuMove(self, event): self.move = True self.zoom = False for i in range(self.noteBook.GetPageCount()): self.noteBook.GetPage(i).UpdateSettings(move = self.move, zoom = self.zoom) def OnMenuZoom(self, event): self.move = False self.zoom = True for i in range(self.noteBook.GetPageCount()): self.noteBook.GetPage(i).UpdateSettings(move = self.move, zoom = self.zoom) def OnMenuExit(self, event): self.Destroy() #Close the GUI def OnMenuAbout(self, event): dlg = wx.MessageDialog(self, 'JModelica.org Plot GUI.\n', 'About', wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def OnMenuResize(self, event): IDPlot = self.noteBook.GetSelection() self.noteBook.GetPage(IDPlot).ReSize() def OnMenuOpen(self, event): #Open the file window dlg = wx.FileDialog(self, "Open result file(s)", wildcard="Supported files (.txt, .mat, .csv)|*.txt;*.mat;*.csv|Text files (.txt)|*.txt|MATLAB files (.mat)|*.mat|Comma-Separated Values files (.csv)|*.csv|All files (*.*)|*.*", style=wx.FD_MULTIPLE) #If OK load the results if dlg.ShowModal() == wx.ID_OK: for n in dlg.GetFilenames(): self._OpenFile(O.path.join(dlg.GetDirectory(),n)) dlg.Destroy() #Destroy the popup window def OnMenuSaveFig(self, event): #Open the file window dlg = wx.FileDialog(self, "Choose a filename to save to",wildcard="Portable Network Graphics (*.png)|*.png|" \ "Encapsulated Postscript (*.eps)|*.eps|" \ "Enhanced Metafile (*.emf)|*.emf|" \ "Portable Document Format (*.pdf)|*.pdf|" \ "Postscript (*.ps)|*.ps|" \ "Raw RGBA bitmap (*.raw *.rgba)|*.raw;*.rgba|" \ "Scalable Vector Graphics (*.svg *.svgz)|*.svg;*.svgz", style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) #If OK save the figure if dlg.ShowModal() == wx.ID_OK: self.SetStatusText("Saving figure...") #Change the statusbar IDPlot = self.noteBook.GetSelection() self.noteBook.GetPage(IDPlot).Save(dlg.GetPath()) self.SetStatusText("") #Change the statusbar dlg.Destroy() #Destroy the popup window def OnMenuAdd(self, event): #Add a new list for the plot variables connect to the plot self.PlotVariables.append([]) self.PlotIndex += 1 #Add a new plot panel to the notebook self.plotPanels.append(PlotPanel(self.noteBook,self.grid,move=self.move, zoom=self.zoom)) self.noteBook.AddPage(self.plotPanels[-1],"Plot "+str(self.PlotIndex+1)) #Enable labels and axis options self.editAxisLabels.Enable(True) def OnMenuClear(self, event): #Clear the current activated plot window IDPlot = self.noteBook.GetSelection() if IDPlot != -1: plotWindow = self.noteBook.GetPage(IDPlot) #Uncheck all variables for i,var in enumerate(self.noteBook.GetPage(IDPlot).GetPlotVariables()): self.tree.CheckItem2(var[1],checked=False,torefresh=True) #Delete all variables plotWindow.DeleteAllPlotVariables() #Disable Lines and Legends self.editLinesLegends.Enable(False) plotWindow.SetDefaultSettings() plotWindow.UpdateSettings(axes=[0.0,1.0,0.0,1.0]) plotWindow.Draw() plotWindow.UpdateSettings(axes=[None,None,None,None]) def OnMenuLinesLegends(self, event): IDPlot = self.noteBook.GetSelection() plotWindow = self.noteBook.GetPage(IDPlot) #Create the axis dialog dlg = DialogLinesLegends(self,self.noteBook.GetPage(IDPlot)) #Open the dialog and update options if OK if dlg.ShowModal() == wx.ID_OK: dlg.ApplyChanges() #Apply Changes legend = dlg.GetValues() plotWindow.UpdateSettings(legendposition=legend) plotWindow.Draw() #Destroy the dialog dlg.Destroy() def OnMenuAxisLabels(self, event): IDPlot = self.noteBook.GetSelection() plotWindow = self.noteBook.GetPage(IDPlot) #Create the axis dialog dlg = DialogAxisLabels(self,self.noteBook.GetPage(IDPlot)) #Open the dialog and update options if OK if dlg.ShowModal() == wx.ID_OK: xmax,xmin,ymax,ymin,title,xlabel,ylabel,xscale,yscale = dlg.GetValues() try: xmax=float(xmax) except ValueError: xmax=None try: xmin=float(xmin) except ValueError: xmin=None try: ymax=float(ymax) except ValueError: ymax=None try: ymin=float(ymin) except ValueError: ymin=None plotWindow.UpdateSettings(axes=[xmin,xmax,ymin,ymax], title=title,xlabel=xlabel,ylabel=ylabel, xscale=xscale, yscale=yscale) plotWindow.DrawSettings() #Destroy the dialog dlg.Destroy() def OnMenuGrid(self, event): self.grid = not self.grid for i in range(self.noteBook.GetPageCount()): self.noteBook.GetPage(i).UpdateSettings(grid = self.grid) self.noteBook.GetPage(i).DrawSettings() def OnTreeItemChecked(self, event): self.SetStatusText("Drawing figure...") item = event.GetItem() #ID = self.tree.FindIndexParent(item) ID = -1 #Not used IDPlot = self.noteBook.GetSelection() if IDPlot != -1: #If there exist a plot window data = self.tree.GetPyData(item) #print "Variable: ", data["variable_id"], item #Store plot variables or "unstore" if self.tree.IsItemChecked(item): #Draw #Add to Plot panel self.noteBook.GetPage(IDPlot).AddPlotVariable(ID,item,data) data["item_checked"] = IDPlot else: #Undraw #Remove from panel self.noteBook.GetPage(IDPlot).DeletePlotVariable(data["variable_id"]) data["item_checked"] = None self.noteBook.GetPage(IDPlot).Draw() lines = self.noteBook.GetPage(IDPlot).GetLines() if len(lines) != 0: #Enable Lines and Legends self.editLinesLegends.Enable(True) else: #Disable Lines and Legends self.editLinesLegends.Enable(False) else: #Dont allow an item to be checked if there exist no plot window self.tree.CheckItem2(item,checked=False,torefresh=True) self.SetStatusText("") def OnKeyPress(self, event): keycode = event.GetKeyCode() #Get the key pressed #If the key is Delete if keycode == wx.WXK_DELETE: self.SetStatusText("Deleting Result...") ID = self.tree.FindIndexParent(self.tree.GetSelection()) data = self.tree.GetPyData(self.tree.GetSelection()) IDPlot = self.noteBook.GetSelection() if ID >= 0: #If id is less then 0, no item is selected self.ResultFiles.pop(ID) #Delete the result object from the list self.tree.DeleteParent(self.tree.GetSelection()) #Redraw for i in range(self.noteBook.GetPageCount()): self.noteBook.GetPage(i).DeletePlotVariable(global_id=data["result_id"]) self.noteBook.GetPage(i).Draw() self.SetStatusText("") def OnCloseTab(self, event): self.OnTabChanging(event) self.PlotVariables.pop(event.GetSelection()) #Delete the plot self.plotPanels.pop(event.GetSelection()) #MAYBE! #variables associated with the current plot #Disable changing of labels and axis if there is no Plot if self.noteBook.GetPageCount() == 1: self.editAxisLabels.Enable(False) self.editLinesLegends.Enable(False) def OnTabChanging(self, event): #print "Changing: ", self.noteBook.GetSelection() self.UpdateCheckedItemTree(check=False) def OnTabChanged(self,event): #print "Changed: ", self.noteBook.GetSelection() self.UpdateCheckedItemTree(check=True) def UpdateCheckedItemTree(self, check=True): #print "Update: ", self.noteBook.GetSelection() IDPlot = self.noteBook.GetSelection() #Check the items related to the previous plot if IDPlot != -1: for i,var in enumerate(self.noteBook.GetPage(IDPlot).GetPlotVariables()): self.tree.CheckItem2(var[1],checked=check,torefresh=True) lines = self.noteBook.GetPage(IDPlot).GetLines() if len(lines) != 0: #Enable Lines and Legends self.editLinesLegends.Enable(True) else: #Disable Lines and Legends self.editLinesLegends.Enable(False) def OnMenuLicense(self, event): desc = "Copyright (C) 2011 Modelon AB\n\n"\ "This program is free software: you can redistribute it and/or modify "\ "it under the terms of the GNU Lesser General Public License as published by "\ "the Free Software Foundation, version 3 of the License.\n\n"\ "This program is distributed in the hope that it will be useful, "\ "but WITHOUT ANY WARRANTY; without even the implied warranty of "\ "MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the "\ "GNU Lesser General Public License for more details.\n\n"\ "You should have received a copy of the GNU Lesser General Public License "\ "along with this program. If not, see <http://www.gnu.org/licenses/>. " dlg = wx.MessageDialog(self, desc, 'License', wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def _OpenFile(self,filename): # Extract filename and result name n = str(filename) if n.find('\\') > n.find('/'): res_name = n.split('\\')[-1] else: res_name = n.split('/')[-1] failToLoad = False self.SetStatusText("Loading "+n+"...") #Change the statusbar #Find out if the result is a textual or binary file if n.lower().endswith(".txt"): #Textual file try: self.ResultFiles.append((res_name,ResultDymolaTextual(n))) except (JIOError, IOError): self.SetStatusText("Could not load "+n+".") #Change the statusbar failToLoad = True elif n.lower().endswith(".mat"): #Binary file try: self.ResultFiles.append((res_name,ResultDymolaBinary(n))) except (TypeError, IOError): self.SetStatusText("Could not load "+n+".") #Change the statusbar failToLoad = True elif n.lower().endswith(".csv"): #Binary file try: self.ResultFiles.append((res_name,ResultCSVTextual(n))) except (TypeError, IOError, ValueError): self.SetStatusText("Could not load "+n+". Trying with delimiter ','.") #Change the statusbar try: self.ResultFiles.append((res_name,ResultCSVTextual(n,delimiter=","))) except (TypeError, IOError, ValueError): self.SetStatusText("Could not load "+n+".") #Change the statusbar failToLoad = True else: self.SetStatusText("Could not load "+n+".") #Change the statusbar failToLoad = True if failToLoad: self.SetStatusText("Could not open file '" + n + "'!\n") else: self.SetStatusText("Populating tree for " +n+"...") self.tree.AddTreeNode(self.ResultFiles[-1][1], self.ResultFiles[-1][0], self.filterPanel.checkBoxTimeVarying.GetValue(), self.filterPanel.checkBoxParametersConstants.GetValue(), self.filterPanel.GetFilter()) self.ResultIndex += 1 #Increment the index self.SetStatusText("") #Change the statusbar class VariableTree(wxCustom.CustomTreeCtrl): def __init__(self, noteBook, *args, **kwargs): super(VariableTree, self).__init__(*args, **kwargs) self.noteBook = noteBook #Add the root item self.root = self.AddRoot("Result(s)") #Root have children self.SetItemHasChildren(self.root) #Internal counter for all children self.global_id = 0 #Global ID for each loaded results (unique for each results self.local_id = 0 #Local ID for each loaded variable (unique for each variable and results) self.node_id = 0 #Node ID for each node with childrens #List of hidden children self.hidden_children = [] self.hidden_nodes = {} self.nodes = {} #Internal flags self._update_top_siblings = True def RefreshSelectedUnder(self, item): """ Refreshes the selected items under the given item. :param `item`: an instance of L{GenericTreeItem}. """ if self._freezeCount: return if item.IsSelected(): self.RefreshLine(item) children = item.GetChildren() for child in children: if child.IsSelected(): self.RefreshLine(child) # Workaround for bug in customtreectrl in wx making # this function not work there def SortChildren(self, item): children = item.GetChildren() if len(children) > 1: self._dirty = True from functools import cmp_to_key children.sort(key=cmp_to_key(self.OnCompareItems)) def AddTreeNode(self, resultObject, name,timeVarying=None,parametersConstants=None,filter=None): #Freeze the window temporarely self.Freeze() #Add a new dictionary for the nodes self.nodes[self.global_id] = {} self._update_top_siblings = True child = self.AppendItem(self.root, name, data={"result_id":self.global_id, "node_id": self.node_id}) self.SetItemHasChildren(child,True) self.nodes[self.global_id][self.node_id] = {"node":child, "node_id":self.node_id, "name":name, "parent_node":self.root, "parent_node_id": -1} self.nodes[self.global_id][-1] = {"node":child, "node_id":self.node_id, "name":name, "parent_node":self.root, "parent_node_id": -2} self.node_id = self.node_id + 1 #Increment the nodes rec = {"root":child} for item in resultObject.name: spl = item.split(".") #Python object for storing data related to the variable data={} data["timevarying"] = None #resultObject.is_variable(item) #data["traj"] = resultObject.get_variable_data(item) data["traj"] = resultObject data["name"] = item data["full_name"] = item data["result_id"] = self.global_id data["variable_id"] = self.local_id = self.local_id + 1 data["result_object"] = resultObject data["item_checked"] = None if len(spl)==1: data["parents"] = child data["child"] = item data["node_id"] = self.GetPyData(child)["node_id"] self.AppendItem(child, item,ct_type=1, data=data) else: #Handle variables of type der(---.---.x) if spl[0].startswith("der(") and spl[-1].endswith(")"): spl[0]=spl[0][4:] spl[-1] = "der("+spl[-1] tmp_str = "" tmp_str_old = "" for i in range(len(spl)-1): #See if the sub directory already been added, else add tmp_str_old = tmp_str tmp_str += spl[i] try: rec[tmp_str] except KeyError: local_data = {"result_id":self.global_id, "node_id":self.node_id} if i==0: rec[tmp_str] = self.AppendItem(child, spl[i], data=local_data) local_dict = {"node":rec[tmp_str], "node_id":self.node_id, "name":spl[i], "parent_node":child, "parent_node_id": -1} self.nodes[self.global_id][self.node_id] = local_dict else: rec[tmp_str] = self.AppendItem(rec[tmp_str_old], spl[i], data=local_data) local_dict = {"node":rec[tmp_str], "node_id":self.node_id, "name":spl[i], "parent_node":rec[tmp_str_old], "parent_node_id": self.GetPyData(rec[tmp_str_old])["node_id"]} self.nodes[self.global_id][self.node_id] = local_dict self.SetItemHasChildren(rec[tmp_str],True) self.node_id = self.node_id + 1 #Increment the nodes else: data["parents"] = rec[tmp_str] data["child"] = spl[-1] data["node_id"] = self.GetPyData(rec[tmp_str],)["node_id"] self.AppendItem(rec[tmp_str], spl[-1], ct_type=1, data=data) self.SortChildren(child) #Increment global id self.global_id = self.global_id + 1 #print "Adding: ", name, "Options: ", timeVarying, parametersConstants, filter #print "Condition: ", timeVarying == False or parametersConstants == False or filter != None #Hide nodes if options are choosen if timeVarying == False or parametersConstants == False or filter != None: self.HideNodes(timeVarying,parametersConstants,filter) #Un-Freeze the window self.Thaw() def FindLoneChildDown(self, child): """ Search for the youngest child down the tree from "child". Parameters:: child - The item from where the search should start. Returns:: child - The youngest child from the starting point. """ while True: nextItem,cookie = self.GetNextChild(child,0) if nextItem != None: child = nextItem else: break return child def FindFirstSiblingUp(self,child,itemParent): """ Search for the first sibling of "child" going up in tree. """ while child != itemParent: nextItem = self.GetNextSibling(child) if nextItem != None: return nextItem child = self.GetItemParent(child) return child def HideNodes(self, showTimeVarying=None, showParametersConstants=None, filter=None): """ Hide nodes depending on the input. Parameters:: showTimeVarying - Hides or Shows the time varying variables. showParametersConstants - Hides or Show the parameters. """ itemParent = self.GetRootItem() child,cookie = self.GetFirstChild(itemParent) found_child = child top_siblings = self.FindTopSiblings() #Hide items if any of the options are True if showTimeVarying == False or showParametersConstants == False or filter != None: while child != itemParent and child != None: already_hidden = False #Find the first youngest child found_child = self.FindLoneChildDown(child) #Find the first sibling up child = self.FindFirstSiblingUp(found_child, itemParent) data = self.GetPyData(found_child) if found_child in top_siblings: print("Found child in top siblings, ", self.GetItemText(found_child)) continue #print "Found child:", self.GetItemText(found_child) #print "Child: ", self.GetItemText(child), self.GetPyData(child), "Has Children: ", self.HasChildren(child) if data == None: print("Found (wrong) child:", self.GetItemText(found_child)) raise Exception try: data["timevarying"] except KeyError: print("Found (wrong (exception)) child:", self.GetItemText(found_child)) raise Exception if data["timevarying"] == None: data["timevarying"] = data["result_object"].is_variable(data["full_name"]) #Enable or disable depending on input to method if showTimeVarying == False and data["timevarying"]: self.HideItem(found_child, showTimeVarying) #Delete the parent if it has no children self.HideNodeItem(found_child) already_hidden = True if showParametersConstants == False and not data["timevarying"]: self.HideItem(found_child, showParametersConstants) #Delete the parent if it has no children self.HideNodeItem(found_child) already_hidden = True if not already_hidden and filter != None and not match(data["full_name"], filter): self.HideItem(found_child, show=False) #Delete the parent if it has no children self.HideNodeItem(found_child) #Re-add items if any of the options are True if showTimeVarying == True or showParametersConstants == True or filter != None: self.AddHiddenItems(showTimeVarying, showParametersConstants, filter) def FindTopSiblings(self): """ Finds all the siblings one level down from root. """ if self._update_top_siblings: itemParent = self.GetRootItem() child,cookie = self.GetFirstChild(itemParent) siblings = [] while child != None: siblings.append(child) child = self.GetNextSibling(child) self._top_siblings = siblings else: siblings = self._top_siblings self._update_top_siblings = False return siblings def AddHiddenItems(self, showTimeVarying=None, showParametersConstants=None, filter=None): #print "Adding hidden items: ", showTimeVarying, showParametersConstants, filter i = 0 while i < len(self.hidden_children): data = self.hidden_children[i] matching = False #Do not add any items! if data["timevarying"] and showTimeVarying == False or not data["timevarying"] and showParametersConstants == False: i = i+1 continue if filter != None: matching = match(data["full_name"], filter) if data["timevarying"] and showTimeVarying == True and (filter == None or filter != None and matching == True) or \ not data["timevarying"] and showParametersConstants == True and (filter == None or filter != None and matching == True): #or filter != None and match(data["full_name"], filter): if self.nodes[data["result_id"]][data["node_id"]]["node"] == None: self.AddHiddenNodes(data) #print "Adding: ", data #print "At node: ", self.nodes[data["result_id"]][data["node_id"]] item = self.AppendItem(self.nodes[data["result_id"]][data["node_id"]]["node"], data["child"],ct_type=1, data=data) if item == None: raise Exception("Something went wrong when adding the variable.") if data["item_checked"] is not None: #Item was previously checked. #print "Item was previously checked", data["item_checked"] self.noteBook.GetPage(data["item_checked"]).UpdatePlotVariableReference(-1,item,data) self.hidden_children.pop(i) i = i-1 i = i+1 def AddHiddenNodes(self, data): node = self.nodes[data["result_id"]][data["node_id"]] nodes_to_be_added = [node] while node["node"] == None and node["parent_node_id"] != -1: node = self.nodes[data["result_id"]][node["parent_node_id"]] if node["node"] != None: break nodes_to_be_added.append(node) #print "Nodes to be added: ", nodes_to_be_added for i in range(len(nodes_to_be_added)): node = nodes_to_be_added[-(i+1)] #print "Adding node: ", node, " at ", self.nodes[data["result_id"]][node["parent_node_id"]], " or ", self.nodes[data["result_id"]][-1], data local_data = {"result_id":data["result_id"], "node_id":node["node_id"]} """ if node["parent_node_id"] == -1: item = self.AppendItem(self.nodes[data["result_id"]][-1], node["name"], data=local_data) else: item = self.AppendItem(node["parent_node_id"], node["name"], data=local_data) """ item = self.AppendItem(self.nodes[data["result_id"]][node["parent_node_id"]]["node"], node["name"], data=local_data) #item = self.AppendItem(node["parent_node"], node["name"], data=local_data) self.SetItemHasChildren(item, True) self.nodes[data["result_id"]][node["node_id"]]["node"] = item #print "Node info after adding: ", self.nodes[data["result_id"]][node["node_id"]] def HideNodeItem(self, item): """ Deletes the parents that does not have any children """ parent = self.GetItemParent(item) top_siblings = self.FindTopSiblings() while self.HasChildren(parent) == False and parent not in top_siblings: old_parent = self.GetItemParent(parent) #Add the deleted nodes to the hidden list so that we can recreate the list #self.hidden_nodes.append(self.GetPyData(parent)) #self.hidden_nodes[self.GetPyData(parent)["node_id"]] = [self.GetPyData(parent), old_parent] #self.nodes[self.GetPyData(parent)["result_id"]][self.GetPyData(parent)["node_id"]][0] = None self.nodes[self.GetPyData(parent)["result_id"]][self.GetPyData(parent)["node_id"]]["node"] = None self.Delete(parent) parent = old_parent def HideItem(self, item, show): data = self.GetPyData(item) if not show: self.hidden_children.append(data) self.Delete(item) def DeleteParent(self, item): """ Delete the oldest parent of item, except root. """ if item == self.GetRootItem(): return False parentItem = self.GetItemParent(item) while parentItem != self.GetRootItem(): item = parentItem parentItem = self.GetItemParent(item) #Remove also the hidden items contained in the hidden children list data = self.GetPyData(item) i = 0 while i < len(self.hidden_children): if self.hidden_children[i]["result_id"] == data["result_id"]: self.hidden_children.pop(i) i = i-1 i = i+1 #Delete hidden nodes self.nodes.pop(data["result_id"]) self.Delete(item) #Delete the parent from the Tree def FindIndexParent(self, item): """ Find the index of the oldest parent of item from one level down from root. """ if item == self.GetRootItem(): return -1 parentItem = item item = self.GetItemParent(parentItem) while item != self.GetRootItem(): parentItem = item item = self.GetItemParent(parentItem) root = self.GetRootItem() sibling,cookie = self.GetFirstChild(root) index = 0 while parentItem != sibling: sibling = self.GetNextSibling(sibling) index += 1 return index class DialogLinesLegends(wx.Dialog): def __init__(self, parent, plotPage): wx.Dialog.__init__(self, parent, -1, "Lines and Legends") #Get the variables self.variables = plotPage.GetPlotVariables() #Get the settings settings = plotPage.GetSettings() #Get the lines lines = plotPage.GetLines() #First line line1 = lines[0] names = [i[2]["name"] for i in self.variables] lineStyles = ["-","--","-.",":"] colors = ["Auto","Blue","Green","Red","Cyan","Magenta","Yellow","Black","White"] lineStylesNames = ["Solid","Dashed","Dash Dot","Dotted"] markerStyles = ["None",'D','s','_','^','d','h','+','*',',','o','.','p','H','v','x','>','<'] markerStylesNames = ["None","Diamond","Square","Horizontal Line","Triangle Up","Thin Diamond","Hexagon 1","Plus","Star","Pixel","Circle", "Point","Pentagon","Hexagon 2", "Triangle Down", "X", "Triangle Right", "Triangle Left"] legendPositions = ['Hide','Best','Upper Right','Upper Left','Lower Left','Lower Right','Right','Center Left','Center Right','Lower Center','Upper Center','Center'] self.lineStyles = lineStyles self.markerStyles = markerStyles self.colors = colors #Create the legend dict from where to look up positions self.LegendDict = dict((item,i) for i,item in enumerate(legendPositions[1:])) self.LegendDict["Hide"] = -1 #Create the line style dict self.LineStyleDict = dict((item,i) for i,item in enumerate(lineStyles)) #Create the marker dict self.MarkerStyleDict = dict((item,i) for i,item in enumerate(markerStyles)) #Create the color dict self.ColorsDict = dict((item,i) for i,item in enumerate(colors)) mainSizer = wx.BoxSizer(wx.VERTICAL) bagSizer = wx.GridBagSizer(11, 11) plotLabelStatic = wx.StaticText(self, -1, "Label") plotStyleStatic = wx.StaticText(self, -1, "Style") plotMarkerStyleStatic = wx.StaticText(self, -1, "Style") plotLineStatic = wx.StaticText(self, -1, "Line") plotMarkerStatic = wx.StaticText(self, -1, "Marker") plotLegendStatic = wx.StaticText(self, -1, "Legend") plotPositionStatic = wx.StaticText(self, -1, "Position") plotWidthStatic = wx.StaticText(self, -1, "Width") plotColorStatic = wx.StaticText(self, -1, "Color") plotMarkerSizeStatic = wx.StaticText(self, -1, "Size") sizeWidth = 170 #Set the first line as default self.plotLines = wx.ComboBox(self, -1, size=(220, -1), choices=names, style=wx.CB_READONLY) self.plotLines.SetSelection(0) #Set the first line as default self.plotLineStyle = wx.ComboBox(self, -1, size=(sizeWidth, -1), choices=lineStylesNames, style=wx.CB_READONLY) self.plotMarkerStyle = wx.ComboBox(self, -1, size=(sizeWidth, -1), choices=markerStylesNames, style=wx.CB_READONLY) #Set the first label as default self.plotLineName = wx.TextCtrl(self, -1, "", style = wx.TE_LEFT , size =(sizeWidth,-1)) self.plotWidth = wx.TextCtrl(self, -1, "", style = wx.TE_LEFT, size=(sizeWidth,-1)) self.plotMarkerSize = wx.TextCtrl(self, -1, "", style = wx.TE_LEFT, size=(sizeWidth,-1)) self.plotColor = wx.ComboBox(self, -1, choices=colors, size=(sizeWidth,-1),style=wx.CB_READONLY) #Define the legend self.plotLegend = wx.ComboBox(self, -1, size=(sizeWidth, -1), choices=legendPositions, style=wx.CB_READONLY) self.plotLegend.SetSelection(plotPage.GetLegendLocation()+1) #Get the FONT font = plotLineStatic.GetFont() font.SetWeight(wx.BOLD) #Set the bold font to the sections plotLineStatic.SetFont(font) plotMarkerStatic.SetFont(font) plotLegendStatic.SetFont(font) bagSizer.Add(self.plotLines,(0,0),(1,2)) bagSizer.Add(plotLabelStatic,(1,0)) bagSizer.Add(self.plotLineName,(1,1)) bagSizer.Add(plotLineStatic,(2,0),(1,1)) bagSizer.Add(plotStyleStatic,(3,0)) bagSizer.Add(self.plotLineStyle,(3,1)) bagSizer.Add(plotWidthStatic,(4,0)) bagSizer.Add(self.plotWidth,(4,1)) bagSizer.Add(plotColorStatic,(5,0)) bagSizer.Add(self.plotColor,(5,1)) bagSizer.Add(plotMarkerStatic,(6,0),(1,1)) bagSizer.Add(plotMarkerStyleStatic,(7,0)) bagSizer.Add(self.plotMarkerStyle,(7,1)) bagSizer.Add(plotMarkerSizeStatic,(8,0)) bagSizer.Add(self.plotMarkerSize,(8,1)) bagSizer.Add(plotLegendStatic,(9,0),(1,1)) bagSizer.Add(plotPositionStatic,(10,0)) bagSizer.Add(self.plotLegend,(10,1)) #Create OK,Cancel and Apply buttons self.buttonOK = wx.Button(self, wx.ID_OK) self.buttonCancel = wx.Button(self, wx.ID_CANCEL) self.buttonApply = wx.Button(self, wx.ID_APPLY) buttonSizer = wx.StdDialogButtonSizer() buttonSizer.AddButton(self.buttonOK) buttonSizer.AddButton(self.buttonCancel) buttonSizer.AddButton(self.buttonApply) buttonSizer.Realize() #Add information to the sizers mainSizer.Add(bagSizer,0,wx.ALL|wx.EXPAND,20) mainSizer.Add(buttonSizer,1,wx.ALL|wx.EXPAND,10) #Set the main sizer to the panel self.SetSizer(mainSizer) #Set size mainSizer.Fit(self) #Set the first line as default self.ChangeLine(self.variables[0]) #Bind events self.Bind(wx.EVT_COMBOBOX, self.OnLineChange) self.buttonApply.Bind(wx.EVT_BUTTON, self.OnApply) def OnApply(self, event): self.ApplyChanges() def OnLineChange(self, event): if self.plotLines.FindFocus() == self.plotLines: ID = self.plotLines.GetSelection() self.ChangeLine(self.variables[ID]) def ApplyChanges(self): ID = self.plotLines.GetSelection() self.variables[ID][3].name = self.plotLineName.GetValue() self.variables[ID][3].style = self.lineStyles[self.plotLineStyle.GetSelection()] self.variables[ID][3].width = float(self.plotWidth.GetValue()) self.variables[ID][3].color = None if self.plotColor.GetSelection()==0 else self.colors[self.plotColor.GetSelection()].lower() self.variables[ID][3].marker = self.markerStyles[self.plotMarkerStyle.GetSelection()] self.variables[ID][3].markersize = float(self.plotMarkerSize.GetValue()) def ChangeLine(self, var): self.plotLineStyle.SetSelection(self.LineStyleDict[var[3].style]) self.plotMarkerStyle.SetSelection(self.MarkerStyleDict[var[3].marker]) self.plotLineName.SetValue(var[3].name) self.plotWidth.SetValue(str(var[3].width)) self.plotMarkerSize.SetValue(str(var[3].markersize)) if var[3].color == None: self.plotColor.SetSelection(0) else: self.plotColor.SetSelection(self.ColorsDict[var[3].color[0].upper()+var[3].color[1:]]) def GetValues(self): return self.LegendDict[self.plotLegend.GetValue()] class DialogAxisLabels(wx.Dialog): def __init__(self, parent, plotPage): wx.Dialog.__init__(self, parent, -1, "Axis and Labels") settings = plotPage.GetSettings() plotXAxisStatic = wx.StaticText(self, -1, "X-Axis") plotYAxisStatic = wx.StaticText(self, -1, "Y-Axis") plotXMaxStatic = wx.StaticText(self, -1, "Max",size =(50,-1)) plotXMinStatic = wx.StaticText(self, -1, "Min",size =(50,-1)) plotTitleStatic = wx.StaticText(self, -1, "Title") plotXLabelStatic = wx.StaticText(self, -1, "Label") plotXScaleStatic = wx.StaticText(self, -1, "Scale") plotYMaxStatic = wx.StaticText(self, -1, "Max",size =(50,-1)) plotYMinStatic = wx.StaticText(self, -1, "Min",size =(50,-1)) plotYLabelStatic = wx.StaticText(self, -1, "Label") plotYScaleStatic = wx.StaticText(self, -1, "Scale") font = plotXAxisStatic.GetFont() font.SetWeight(wx.BOLD) plotXAxisStatic.SetFont(font) plotYAxisStatic.SetFont(font) self.plotYAxisMin = wx.TextCtrl(self, -1, "" if settings["YAxisMin"]==None else str(settings["YAxisMin"]), style = wx.TE_LEFT , size =(150,-1)) self.plotYAxisMax = wx.TextCtrl(self, -1, "" if settings["YAxisMax"]==None else str(settings["YAxisMax"]), style = wx.TE_LEFT , size =(150,-1)) self.plotXAxisMin = wx.TextCtrl(self, -1, "" if settings["XAxisMin"]==None else str(settings["XAxisMin"]), style = wx.TE_LEFT , size =(150,-1)) self.plotXAxisMax = wx.TextCtrl(self, -1, "" if settings["XAxisMax"]==None else str(settings["XAxisMax"]), style = wx.TE_LEFT , size =(150,-1)) self.plotTitle = wx.TextCtrl(self, -1, settings["Title"], style = wx.TE_LEFT , size =(150,-1)) self.plotXLabel = wx.TextCtrl(self, -1, settings["XLabel"], style = wx.TE_LEFT , size =(150,-1)) self.plotYLabel = wx.TextCtrl(self, -1, settings["YLabel"], style = wx.TE_LEFT , size =(150,-1)) self.plotXScale = wx.ComboBox(self, -1, size=(150, -1), choices=["Linear","Log"], style=wx.CB_READONLY) self.plotYScale = wx.ComboBox(self, -1, size=(150, -1), choices=["Linear","Log"], style=wx.CB_READONLY) self.plotXScale.SetSelection(0 if settings["XScale"]=="Linear" else 1) self.plotYScale.SetSelection(0 if settings["YScale"]=="Linear" else 1) mainSizer = wx.BoxSizer(wx.VERTICAL) bagSizer = wx.GridBagSizer(10, 10) bagSizer.Add(plotTitleStatic,(0,0)) bagSizer.Add(self.plotTitle, (0,1)) bagSizer.Add(plotXAxisStatic,(1,0),(1,1)) bagSizer.Add(plotXMinStatic,(2,0)) bagSizer.Add(self.plotXAxisMin,(2,1)) bagSizer.Add(plotXMaxStatic,(3,0)) bagSizer.Add(self.plotXAxisMax,(3,1)) bagSizer.Add(plotXLabelStatic,(4,0)) bagSizer.Add(self.plotXLabel,(4,1)) bagSizer.Add(plotXScaleStatic,(5,0)) bagSizer.Add(self.plotXScale,(5,1)) bagSizer.Add(plotYAxisStatic,(6,0),(1,1)) bagSizer.Add(plotYMinStatic,(7,0)) bagSizer.Add(self.plotYAxisMin,(7,1)) bagSizer.Add(plotYMaxStatic,(8,0)) bagSizer.Add(self.plotYAxisMax,(8,1)) bagSizer.Add(plotYLabelStatic,(9,0)) bagSizer.Add(self.plotYLabel,(9,1)) bagSizer.Add(plotYScaleStatic,(10,0)) bagSizer.Add(self.plotYScale,(10,1)) bagSizer.AddGrowableCol(1) #Create OK and Cancel buttons buttonSizer = self.CreateButtonSizer(wx.CANCEL|wx.OK) #Add information to the sizers mainSizer.Add(bagSizer,0,wx.ALL|wx.EXPAND,20) mainSizer.Add(buttonSizer,1,wx.ALL|wx.EXPAND,10) #Set the main sizer to the panel self.SetSizer(mainSizer) #Set size mainSizer.Fit(self) def GetValues(self): xmax = self.plotXAxisMax.GetValue() xmin = self.plotXAxisMin.GetValue() ymax = self.plotYAxisMax.GetValue() ymin = self.plotYAxisMin.GetValue() title = self.plotTitle.GetValue() xlabel = self.plotXLabel.GetValue() ylabel = self.plotYLabel.GetValue() xscale = self.plotXScale.GetValue() yscale = self.plotYScale.GetValue() return xmax,xmin,ymax,ymin,title, xlabel, ylabel, xscale, yscale class FilterPanel(wx.Panel): def __init__(self, main, parent,tree, **kwargs): wx.Panel.__init__( self, parent, **kwargs ) #Store the parent self.main = main self.parent = parent self.tree = tree self.active_filter = False mainSizer = wx.BoxSizer(wx.VERTICAL) topBox = wx.StaticBox(self, label = "Filter") topSizer = wx.StaticBoxSizer(topBox, wx.VERTICAL) flexGrid = wx.FlexGridSizer(3, 1, 0, 10) #Create the checkboxes self.checkBoxParametersConstants = wx.CheckBox(self, -1, " Parameters / Constants")#, size=(140, -1)) self.checkBoxTimeVarying = wx.CheckBox(self, -1, " Time-Varying", size=(140, -1)) self.searchBox = wx.SearchCtrl(self, -1, "Search", size=(190, -1), style=wx.TE_PROCESS_ENTER) self.searchBox.SetToolTipString("Filter the variables using a unix filename pattern matching \n" \ '(eg. "*der*"). Can also be a list of filters separated by ";"\n' \ "See http://docs.python.org/2/library/fnmatch.html.") #Check the checkboxes self.checkBoxParametersConstants.SetValue(True) self.checkBoxTimeVarying.SetValue(True) #Add the checkboxes to the flexgrid flexGrid.Add(self.checkBoxParametersConstants) flexGrid.Add(self.checkBoxTimeVarying) flexGrid.Add(self.searchBox) flexGrid.AddGrowableCol(0) #Add information to the sizers topSizer.Add(flexGrid,1,wx.ALL|wx.EXPAND,10) mainSizer.Add(topSizer,0,wx.EXPAND|wx.ALL,10) #Set the main sizer to the panel self.SetSizer(mainSizer) #Bind events self.Bind(wx.EVT_CHECKBOX, self.OnParametersConstants, self.checkBoxParametersConstants) self.Bind(wx.EVT_CHECKBOX, self.OnTimeVarying, self.checkBoxTimeVarying) self.Bind(wx.EVT_SEARCHCTRL_SEARCH_BTN, self.OnSearch, self.searchBox) self.Bind(wx.EVT_TEXT_ENTER, self.OnSearch, self.searchBox) def GetFilter(self): if self.active_filter == True: filter = self.searchBox.GetValue().split(";") if filter[0] == "": #If the filter is empty, match all filter = ["*"] filter_list = convert_filter(filter) else: filter_list = None return filter_list def OnSearch(self, event): self.active_filter = True self.tree.HideNodes(showTimeVarying=self.checkBoxTimeVarying.GetValue(), showParametersConstants=self.checkBoxParametersConstants.GetValue(), filter=self.GetFilter()) self.main.UpdateCheckedItemTree() if self.searchBox.GetValue() == "": self.active_filter = False def OnParametersConstants(self, event): self.tree.HideNodes(showTimeVarying=self.checkBoxTimeVarying.GetValue(), showParametersConstants=self.checkBoxParametersConstants.GetValue(), filter=self.GetFilter()) self.main.UpdateCheckedItemTree() def OnTimeVarying(self, event): self.tree.HideNodes(showTimeVarying=self.checkBoxTimeVarying.GetValue(), showParametersConstants=self.checkBoxParametersConstants.GetValue(), filter=self.GetFilter()) self.main.UpdateCheckedItemTree() class Lines_Settings: def __init__(self, name=None): self.width = rcParams["lines.linewidth"] self.style = rcParams["lines.linestyle"] self.marker = rcParams["lines.marker"] self.markersize = rcParams["lines.markersize"] self.color = None self.name = name class PlotPanel(wx.Panel): def __init__(self, parent, grid=False,move=True,zoom=False, **kwargs): wx.Panel.__init__( self, parent, **kwargs ) #Initialize matplotlib self.figure = Figure(facecolor = 'white') self.canvas = FigureCanvasWxAgg(self, -1, self.figure) self.subplot = self.figure.add_subplot( 111 ) self.parent = parent self.settings = {} self.settings["Grid"] = grid self.settings["Zoom"] = zoom self.settings["Move"] = move self.SetDefaultSettings() #Set the default settings self.plotVariables = [] self._resizeflag = False self._SetSize() self.DrawSettings() #Bind events self.Bind(wx.EVT_IDLE, self.OnIdle) self.Bind(wx.EVT_SIZE, self.OnSize) #Bind event for resizing (must bind to canvas) self.canvas.Bind(wx.EVT_RIGHT_DOWN, self.OnRightDown) self.canvas.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown) self.canvas.Bind(wx.EVT_LEFT_UP, self.OnLeftUp) self.canvas.Bind(wx.EVT_LEAVE_WINDOW, self.OnLeaveWindow) self.canvas.Bind(wx.EVT_ENTER_WINDOW, self.OnEnterWindow) self.canvas.Bind(wx.EVT_MOTION, self.OnMotion) self.canvas.Bind(wx.EVT_LEFT_DCLICK, self.OnPass) self._mouseLeftPressed = False self._mouseMoved = False def SetDefaultSettings(self): self.settings["Title"] = "" self.settings["XLabel"] = "Time [s]" self.settings["YLabel"] = "" self.settings["XAxisMax"] = None self.settings["XAxisMin"] = None self.settings["YAxisMax"] = None self.settings["YAxisMin"] = None self.settings["XScale"] = "Linear" self.settings["YScale"] = "Linear" self.settings["LegendPosition"] = 0 #"Best" position def AddPlotVariable(self, ID, item, data): lineSettings = Lines_Settings(data["name"]) self.plotVariables.append([ID,item,data,lineSettings]) def GetPlotVariables(self): return self.plotVariables def DeleteAllPlotVariables(self): self.plotVariables = [] def UpdatePlotVariableReference(self, ID,item,data): self.DeletePlotVariable(local_id=data["variable_id"]) self.AddPlotVariable(ID,item,data) def DeletePlotVariable(self, local_id=None, global_id=None): if local_id != None: for i,var in enumerate(self.plotVariables): if var[2]["variable_id"] == local_id: self.plotVariables.pop(i) break if global_id != None: j = 0 while j < len(self.plotVariables): if self.plotVariables[j][2]["result_id"] == global_id: self.plotVariables.pop(j) j = j-1 j = j+1 if j==len(self.plotVariables): break def OnPass(self, event): pass def OnMotion(self, event): if self._mouseLeftPressed: #Is the mouse pressed? self._mouseMoved = True self._newPos = event.GetPosition() if self.settings["Move"]: self.DrawMove() if self.settings["Zoom"]: self.DrawRectZoom() def DrawZoom(self): try: y0 = self._figureMin[1][1]-self._lastZoomRect[1] x0 = self._lastZoomRect[0]-self._figureMin[0][0] w = self._lastZoomRect[2] h = self._lastZoomRect[3] fullW = self._figureMin[1][0]-self._figureMin[0][0] fullH = self._figureMin[1][1]-self._figureMin[0][1] if w < 0: x0 = x0 + w x0 = max(x0, 0.0) y0 = max(y0, 0.0) plotX0 = self.subplot.get_xlim()[0] plotY0 = self.subplot.get_ylim()[0] plotW = self.subplot.get_xlim()[1]-self.subplot.get_xlim()[0] plotH = self.subplot.get_ylim()[1]-self.subplot.get_ylim()[0] self.settings["XAxisMin"] = plotX0+abs(x0/fullW*plotW) self.settings["XAxisMax"] = plotX0+abs(x0/fullW*plotW)+abs(w/fullW*plotW) self.settings["YAxisMin"] = plotY0+abs(y0/fullH*plotH) self.settings["YAxisMax"] = plotY0+abs(y0/fullH*plotH)+abs(h/fullH*plotH) self.DrawRectZoom(drawNew=False) #Delete the last zoom rectangle self.DrawSettings() except AttributeError: self.DrawRectZoom(drawNew=False) #Delete the last zoom rectangle def DrawMove(self): x0,y0 = self._originalPos x1,y1 = self._newPos fullW = self._figureMin[1][0]-self._figureMin[0][0] fullH = self._figureMin[1][1]-self._figureMin[0][1] plotX0,plotY0,plotW,plotH = self._plotInfo self.settings["XAxisMin"] = plotX0+(x0-x1)/fullW*plotW self.settings["XAxisMax"] = plotX0+plotW+(x0-x1)/fullW*plotW self.settings["YAxisMin"] = plotY0+(y1-y0)/fullH*plotH self.settings["YAxisMax"] = plotY0+plotH+(y1-y0)/fullH*plotH self.DrawSettings() def DrawRectZoom(self, drawNew=True): dc = wx.ClientDC(self.canvas) dc.SetLogicalFunction(wx.XOR) wbrush =wx.Brush(wx.Colour(255,255,255), wx.TRANSPARENT) wpen =wx.Pen(wx.Colour(200, 200, 200), 1, wx.SOLID) dc.SetBrush(wbrush) dc.SetPen(wpen) dc.ResetBoundingBox() dc.BeginDrawing() y1 = min(max(self._newPos[1],self._figureMin[0][1]),self._figureMin[1][1]) y0 = min(max(self._originalPos[1],self._figureMin[0][1]),self._figureMin[1][1]) x1 = min(max(self._newPos[0],self._figureMin[0][0]),self._figureMin[1][0]) x0 = min(max(self._originalPos[0],self._figureMin[0][0]),self._figureMin[1][0]) if y1 > y0: y0, y1 = y1, y0 if x1 < y0: x0, x1 = x1, x0 w = x1 - x0 h = y1 - y0 rectZoom = int(x0), int(y0), int(w), int(h) try: self._lastZoomRect except AttributeError: pass else: dc.DrawRectangle(*self._lastZoomRect) #Erase last if drawNew: self._lastZoomRect = rectZoom dc.DrawRectangle(*rectZoom) else: try: del self._lastZoomRect except AttributeError: pass dc.EndDrawing() #dc.Destroy() def OnLeftDown(self, event): self._mouseLeftPressed = True #Mouse is pressed #Capture mouse position self._originalPos = event.GetPosition() #Capture figure size self._figureRatio = self.subplot.get_position().get_points() self._figureSize = (self.canvas.figure.bbox.width,self.canvas.figure.bbox.height) self._figureMin = [(round(self._figureSize[0]*self._figureRatio[0][0]),round(self._figureSize[1]*self._figureRatio[0][1])), (round(self._figureSize[0]*self._figureRatio[1][0]),round(self._figureSize[1]*self._figureRatio[1][1]))] #Capture current plot plotX0 = self.subplot.get_xlim()[0] plotY0 = self.subplot.get_ylim()[0] plotW = self.subplot.get_xlim()[1]-self.subplot.get_xlim()[0] plotH = self.subplot.get_ylim()[1]-self.subplot.get_ylim()[0] self._plotInfo = (plotX0, plotY0, plotW, plotH) def OnLeftUp(self, event): self._mouseLeftPressed = False #Mouse is not pressed if self._mouseMoved: self._mouseMoved = False if self.settings["Zoom"]: self.DrawZoom() if self.settings["Move"]: self.DrawMove() def OnLeaveWindow(self, event): #Change cursor if self._mouseLeftPressed: self._mouseLeftPressed = False #Mouse not pressed anymore self._mouseMoved = False if self.settings["Zoom"]: self.DrawZoom() if self.settings["Move"]: self.DrawMove() def OnEnterWindow(self, event): #Change cursor self.UpdateCursor() def OnRightDown(self, event): """ On right click, resize the plot. """ self.ReSize() def ReSize(self): self.UpdateSettings(axes=[None,None,None,None]) self.DrawSettings() def OnSize(self, event): self._resizeflag = True def OnIdle(self, event): if self._resizeflag: self._resizeflag = False self._SetSize() def _SetSize(self): pixels = tuple(self.GetClientSize()) #self.SetSize(pixels) #GENERATES INFINITELY EVENTS ON UBUNTU self.canvas.SetSize(pixels) self.figure.set_size_inches(float(pixels[0])/self.figure.get_dpi(), float(pixels[1])/self.figure.get_dpi()) #def Draw(self, variables=[]): def Draw(self): self.subplot.clear() for i in self.plotVariables: traj = i[2]["traj"].get_variable_data(i[2]["full_name"]) if i[3].color is None: #self.subplot.plot(i[2]["traj"].t, i[2]["traj"].x,label=i[3].name,linewidth=i[3].width,marker=i[3].marker,linestyle=i[3].style,markersize=i[3].markersize) self.subplot.plot(traj.t, traj.x,label=i[3].name,linewidth=i[3].width,marker=i[3].marker,linestyle=i[3].style,markersize=i[3].markersize) else: #self.subplot.plot(i[2]["traj"].t, i[2]["traj"].x,label=i[3].name,linewidth=i[3].width,marker=i[3].marker,linestyle=i[3].style,markersize=i[3].markersize,color=i[3].color) self.subplot.plot(traj.t, traj.x,label=i[3].name,linewidth=i[3].width,marker=i[3].marker,linestyle=i[3].style,markersize=i[3].markersize,color=i[3].color) self.DrawSettings() def GetLines(self): return self.subplot.get_lines() def GetLegendLocation(self): res = self.subplot.get_legend() if res is None: return -1 else: return res._loc def Save(self, filename): """ Saves the current figure. Parameters:: filename - The name of the to be saved plot. """ self.figure.savefig(filename) def DrawSettings(self): """ Draws the current settings onto the Plot. """ self.subplot.grid(self.settings["Grid"]) #Draw label settings self.subplot.set_title(self.settings["Title"]) self.subplot.set_xlabel(self.settings["XLabel"]) self.subplot.set_ylabel(self.settings["YLabel"]) #Draw Scale settings self.subplot.set_xscale(self.settings["XScale"]) self.subplot.set_yscale(self.settings["YScale"]) if len(self.plotVariables) != 0 and self.settings["LegendPosition"] != -1: self.subplot.legend(loc=self.settings["LegendPosition"]) #Draw axis settings if self.settings["XAxisMin"] != None: #self.subplot.set_xlim(left=self.settings["XAxisMin"]) self.subplot.set_xlim(xmin=self.settings["XAxisMin"]) if self.settings["XAxisMax"] != None: #self.subplot.set_xlim(right=self.settings["XAxisMax"]) self.subplot.set_xlim(xmax=self.settings["XAxisMax"]) if self.settings["XAxisMax"] == None and self.settings["XAxisMin"] == None: self.subplot.set_xlim(None,None) self.subplot.set_autoscalex_on(True) #self.subplot.autoscale(axis="x") self.subplot.autoscale_view(scalex=True) if self.settings["YAxisMin"] != None: #self.subplot.set_ylim(bottom=self.settings["YAxisMin"]) self.subplot.set_ylim(ymin=self.settings["YAxisMin"]) if self.settings["YAxisMax"] != None: #self.subplot.set_ylim(top=self.settings["YAxisMax"]) self.subplot.set_ylim(ymax=self.settings["YAxisMax"]) if self.settings["YAxisMax"] == None and self.settings["YAxisMin"] == None: self.subplot.set_ylim(None,None) self.subplot.set_autoscaley_on(True) #self.subplot.autoscale(axis="y") #METHOD DOES NOT EXIST ON VERSION LESS THAN 1.0 self.subplot.autoscale_view(scaley=True) #Draw self.canvas.draw() def UpdateSettings(self, grid=None, title=None, xlabel=None, ylabel=None, axes=None, move=None, zoom=None, xscale=None, yscale=None, legendposition=None): """ Updates the settings dict. """ if grid !=None: self.settings["Grid"] = grid if title !=None: self.settings["Title"] = title if xlabel !=None: self.settings["XLabel"] = xlabel if ylabel !=None: self.settings["YLabel"] = ylabel if axes != None: self.settings["XAxisMin"]=axes[0] self.settings["XAxisMax"]=axes[1] self.settings["YAxisMin"]=axes[2] self.settings["YAxisMax"]=axes[3] if move != None: self.settings["Move"] = move if zoom != None: self.settings["Zoom"] = zoom if xscale != None: self.settings["XScale"] = xscale if yscale != None: self.settings["YScale"] = yscale if legendposition != None: self.settings["LegendPosition"] = legendposition def UpdateCursor(self): if self.settings["Move"]: cursor = wx.StockCursor(wx.CURSOR_HAND) self.canvas.SetCursor(cursor) if self.settings["Zoom"]: cursor = wx.StockCursor(wx.CURSOR_CROSS) self.canvas.SetCursor(cursor) def GetSettings(self): """ Returns the settigns of the current plot. """ return self.settings def startGUI(filename=None): """ Starts GUI. If a filename is provided, that file is loaded into the GUI on startup. """ #Start GUI app = wx.App(False) gui = MainGUI(None, -1,filename) app.MainLoop() if __name__ == '__main__': startGUI()
lgpl-3.0
hlin117/statsmodels
statsmodels/tsa/statespace/tests/test_kalman.py
19
22530
""" Tests for _statespace module Author: Chad Fulton License: Simplified-BSD References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. Hamilton, James D. 1994. Time Series Analysis. Princeton, N.J.: Princeton University Press. """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os try: from scipy.linalg.blas import find_best_blas_type except ImportError: # Shim for SciPy 0.11, derived from tag=0.11 scipy.linalg.blas _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'} def find_best_blas_type(arrays): dtype, index = max( [(ar.dtype, i) for i, ar in enumerate(arrays)]) prefix = _type_conv.get(dtype.char, 'd') return (prefix, dtype, None) from statsmodels.tsa.statespace.sarimax import SARIMAX from statsmodels.tsa.statespace import _statespace as ss from .results import results_kalman_filter from numpy.testing import assert_almost_equal, assert_allclose from nose.exc import SkipTest prefix_statespace_map = { 's': ss.sStatespace, 'd': ss.dStatespace, 'c': ss.cStatespace, 'z': ss.zStatespace } prefix_kalman_filter_map = { 's': ss.sKalmanFilter, 'd': ss.dKalmanFilter, 'c': ss.cKalmanFilter, 'z': ss.zKalmanFilter } current_path = os.path.dirname(os.path.abspath(__file__)) class Clark1987(object): """ Clark's (1987) univariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, conserve_memory=0, loglikelihood_burn=0): self.true = results_kalman_filter.uc_uni self.true_states = pd.DataFrame(self.true['states']) # GDP, Quarterly, 1947.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP'] ) data['lgdp'] = np.log(data['GDP']) # Parameters self.conserve_memory = conserve_memory self.loglikelihood_burn = loglikelihood_burn # Observed data self.obs = np.array(data['lgdp'], ndmin=2, dtype=dtype, order="F") # Measurement equation self.k_endog = k_endog = 1 # dimension of observed data # design matrix self.design = np.zeros((k_endog, 4, 1), dtype=dtype, order="F") self.design[:, :, 0] = [1, 1, 0, 0] # observation intercept self.obs_intercept = np.zeros((k_endog, 1), dtype=dtype, order="F") # observation covariance matrix self.obs_cov = np.zeros((k_endog, k_endog, 1), dtype=dtype, order="F") # Transition equation self.k_states = k_states = 4 # dimension of state space # transition matrix self.transition = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") self.transition[([0, 0, 1, 1, 2, 3], [0, 3, 1, 2, 1, 3], [0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1] # state intercept self.state_intercept = np.zeros((k_states, 1), dtype=dtype, order="F") # selection matrix self.selection = np.asfortranarray(np.eye(k_states)[:, :, None], dtype=dtype) # state covariance matrix self.state_cov = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") # Initialization: Diffuse priors self.initial_state = np.zeros((k_states,), dtype=dtype, order="F") self.initial_state_cov = np.asfortranarray(np.eye(k_states)*100, dtype=dtype) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, phi_1, phi_2) = np.array( self.true['parameters'], dtype=dtype ) self.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, sigma_w**2 ] # Initialization: modification # Due to the difference in the way Kim and Nelson (1999) and Durbin # and Koopman (2012) define the order of the Kalman filter routines, # we need to modify the initial state covariance matrix to match # Kim and Nelson's results, since the *Statespace models follow Durbin # and Koopman. self.initial_state_cov = np.asfortranarray( np.dot( np.dot(self.transition[:, :, 0], self.initial_state_cov), self.transition[:, :, 0].T ) ) def init_filter(self): # Use the appropriate Statespace model prefix = find_best_blas_type((self.obs,)) cls = prefix_statespace_map[prefix[0]] # Instantiate the statespace model self.model = cls( self.obs, self.design, self.obs_intercept, self.obs_cov, self.transition, self.state_intercept, self.selection, self.state_cov ) self.model.initialize_known(self.initial_state, self.initial_state_cov) # Initialize the appropriate Kalman filter cls = prefix_kalman_filter_map[prefix[0]] self.filter = cls(self.model, conserve_memory=self.conserve_memory, loglikelihood_burn=self.loglikelihood_burn) def run_filter(self): # Filter the data self.filter() # Get results self.result = { 'loglike': lambda burn: np.sum(self.filter.loglikelihood[burn:]), 'state': np.array(self.filter.filtered_state), } def test_loglike(self): assert_almost_equal( self.result['loglike'](self.true['start']), self.true['loglike'], 5 ) def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], 4 ) class TestClark1987Single(Clark1987): """ Basic single precision test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987Single, self).__init__( dtype=np.float32, conserve_memory=0 ) self.init_filter() self.run_filter() def test_loglike(self): assert_allclose( self.result['loglike'](self.true['start']), self.true['loglike'], rtol=1e-3 ) def test_filtered_state(self): assert_allclose( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], atol=1e-2 ) assert_allclose( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], atol=1e-2 ) assert_allclose( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], atol=1e-2 ) class TestClark1987Double(Clark1987): """ Basic double precision test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Double, self).__init__( dtype=float, conserve_memory=0 ) self.init_filter() self.run_filter() class TestClark1987SingleComplex(Clark1987): """ Basic single precision complex test for the loglikelihood and filtered states. """ def __init__(self): raise SkipTest('Not implemented') super(TestClark1987SingleComplex, self).__init__( dtype=np.complex64, conserve_memory=0 ) self.init_filter() self.run_filter() def test_loglike(self): assert_allclose( self.result['loglike'](self.true['start']), self.true['loglike'], rtol=1e-3 ) def test_filtered_state(self): assert_allclose( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], atol=1e-2 ) assert_allclose( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], atol=1e-2 ) assert_allclose( self.result['state'][3][self.true['start']:], self.true_states.iloc[:, 2], atol=1e-2 ) class TestClark1987DoubleComplex(Clark1987): """ Basic double precision complex test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987DoubleComplex, self).__init__( dtype=complex, conserve_memory=0 ) self.init_filter() self.run_filter() class TestClark1987Conserve(Clark1987): """ Memory conservation test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.init_filter() self.run_filter() class Clark1987Forecast(Clark1987): """ Forecasting test for the loglikelihood and filtered states. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1987Forecast, self).__init__( dtype, conserve_memory ) self.nforecast = nforecast # Add missing observations to the end (to forecast) self._obs = self.obs self.obs = np.array(np.r_[self.obs[0, :], [np.nan]*nforecast], ndmin=2, dtype=dtype, order="F") def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][3][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) class TestClark1987ForecastDouble(Clark1987Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDouble, self).__init__() self.init_filter() self.run_filter() class TestClark1987ForecastDoubleComplex(Clark1987Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastDoubleComplex, self).__init__( dtype=complex ) self.init_filter() self.run_filter() class TestClark1987ForecastConserve(Clark1987Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.init_filter() self.run_filter() class TestClark1987ConserveAll(Clark1987): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1987ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08 ) self.loglikelihood_burn = self.true['start'] self.init_filter() self.run_filter() def test_loglike(self): assert_almost_equal( self.result['loglike'](0), self.true['loglike'], 5 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.result['state'][0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.result['state'][1][-1], self.true_states.iloc[end-1, 1], 4 ) class Clark1989(object): """ Clark's (1989) bivariate unobserved components model of real GDP (as presented in Kim and Nelson, 1999) Tests two-dimensional observation data. Test data produced using GAUSS code described in Kim and Nelson (1999) and found at http://econ.korea.ac.kr/~cjkim/SSMARKOV.htm See `results.results_kalman_filter` for more information. """ def __init__(self, dtype=float, conserve_memory=0, loglikelihood_burn=0): self.true = results_kalman_filter.uc_bi self.true_states = pd.DataFrame(self.true['states']) # GDP and Unemployment, Quarterly, 1948.1 - 1995.3 data = pd.DataFrame( self.true['data'], index=pd.date_range('1947-01-01', '1995-07-01', freq='QS'), columns=['GDP', 'UNEMP'] )[4:] data['GDP'] = np.log(data['GDP']) data['UNEMP'] = (data['UNEMP']/100) # Observed data self.obs = np.array(data, ndmin=2, dtype=dtype, order="C").T # Parameters self.k_endog = k_endog = 2 # dimension of observed data self.k_states = k_states = 6 # dimension of state space self.conserve_memory = conserve_memory self.loglikelihood_burn = loglikelihood_burn # Measurement equation # design matrix self.design = np.zeros((k_endog, k_states, 1), dtype=dtype, order="F") self.design[:, :, 0] = [[1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1]] # observation intercept self.obs_intercept = np.zeros((k_endog, 1), dtype=dtype, order="F") # observation covariance matrix self.obs_cov = np.zeros((k_endog, k_endog, 1), dtype=dtype, order="F") # Transition equation # transition matrix self.transition = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") self.transition[([0, 0, 1, 1, 2, 3, 4, 5], [0, 4, 1, 2, 1, 2, 4, 5], [0, 0, 0, 0, 0, 0, 0, 0])] = [1, 1, 0, 0, 1, 1, 1, 1] # state intercept self.state_intercept = np.zeros((k_states, 1), dtype=dtype, order="F") # selection matrix self.selection = np.asfortranarray(np.eye(k_states)[:, :, None], dtype=dtype) # state covariance matrix self.state_cov = np.zeros((k_states, k_states, 1), dtype=dtype, order="F") # Initialization: Diffuse priors self.initial_state = np.zeros((k_states,), dtype=dtype) self.initial_state_cov = np.asfortranarray(np.eye(k_states)*100, dtype=dtype) # Update matrices with given parameters (sigma_v, sigma_e, sigma_w, sigma_vl, sigma_ec, phi_1, phi_2, alpha_1, alpha_2, alpha_3) = np.array( self.true['parameters'], dtype=dtype ) self.design[([1, 1, 1], [1, 2, 3], [0, 0, 0])] = [ alpha_1, alpha_2, alpha_3 ] self.transition[([1, 1], [1, 2], [0, 0])] = [phi_1, phi_2] self.obs_cov[1, 1, 0] = sigma_ec**2 self.state_cov[ np.diag_indices(k_states)+(np.zeros(k_states, dtype=int),)] = [ sigma_v**2, sigma_e**2, 0, 0, sigma_w**2, sigma_vl**2 ] # Initialization: modification # Due to the difference in the way Kim and Nelson (1999) and Drubin # and Koopman (2012) define the order of the Kalman filter routines, # we need to modify the initial state covariance matrix to match # Kim and Nelson's results, since the *Statespace models follow Durbin # and Koopman. self.initial_state_cov = np.asfortranarray( np.dot( np.dot(self.transition[:, :, 0], self.initial_state_cov), self.transition[:, :, 0].T ) ) def init_filter(self): # Use the appropriate Statespace model prefix = find_best_blas_type((self.obs,)) cls = prefix_statespace_map[prefix[0]] # Instantiate the statespace model self.model = cls( self.obs, self.design, self.obs_intercept, self.obs_cov, self.transition, self.state_intercept, self.selection, self.state_cov ) self.model.initialize_known(self.initial_state, self.initial_state_cov) # Initialize the appropriate Kalman filter cls = prefix_kalman_filter_map[prefix[0]] self.filter = cls(self.model, conserve_memory=self.conserve_memory, loglikelihood_burn=self.loglikelihood_burn) def run_filter(self): # Filter the data self.filter() # Get results self.result = { 'loglike': lambda burn: np.sum(self.filter.loglikelihood[burn:]), 'state': np.array(self.filter.filtered_state), } def test_loglike(self): assert_almost_equal( # self.result['loglike'](self.true['start']), self.result['loglike'](0), self.true['loglike'], 2 ) def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][4][self.true['start']:], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.result['state'][5][self.true['start']:], self.true_states.iloc[:, 3], 4 ) class TestClark1989(Clark1989): """ Basic double precision test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989, self).__init__(dtype=float, conserve_memory=0) self.init_filter() self.run_filter() class TestClark1989Conserve(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self): super(TestClark1989Conserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.init_filter() self.run_filter() class Clark1989Forecast(Clark1989): """ Memory conservation test for the loglikelihood and filtered states with two-dimensional observation vector. """ def __init__(self, dtype=float, nforecast=100, conserve_memory=0): super(Clark1989Forecast, self).__init__(dtype, conserve_memory) self.nforecast = nforecast # Add missing observations to the end (to forecast) self._obs = self.obs self.obs = np.array( np.c_[ self._obs, np.r_[[np.nan, np.nan]*nforecast].reshape(2, nforecast) ], ndmin=2, dtype=dtype, order="F" ) self.init_filter() self.run_filter() def test_filtered_state(self): assert_almost_equal( self.result['state'][0][self.true['start']:-self.nforecast], self.true_states.iloc[:, 0], 4 ) assert_almost_equal( self.result['state'][1][self.true['start']:-self.nforecast], self.true_states.iloc[:, 1], 4 ) assert_almost_equal( self.result['state'][4][self.true['start']:-self.nforecast], self.true_states.iloc[:, 2], 4 ) assert_almost_equal( self.result['state'][5][self.true['start']:-self.nforecast], self.true_states.iloc[:, 3], 4 ) class TestClark1989ForecastDouble(Clark1989Forecast): """ Basic double forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDouble, self).__init__() self.init_filter() self.run_filter() class TestClark1989ForecastDoubleComplex(Clark1989Forecast): """ Basic double complex forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastDoubleComplex, self).__init__( dtype=complex ) self.init_filter() self.run_filter() class TestClark1989ForecastConserve(Clark1989Forecast): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ForecastConserve, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 ) self.init_filter() self.run_filter() class TestClark1989ConserveAll(Clark1989): """ Memory conservation forecasting test for the loglikelihood and filtered states. """ def __init__(self): super(TestClark1989ConserveAll, self).__init__( dtype=float, conserve_memory=0x01 | 0x02 | 0x04 | 0x08, ) # self.loglikelihood_burn = self.true['start'] self.loglikelihood_burn = 0 self.init_filter() self.run_filter() def test_loglike(self): assert_almost_equal( self.result['loglike'](0), self.true['loglike'], 2 ) def test_filtered_state(self): end = self.true_states.shape[0] assert_almost_equal( self.result['state'][0][-1], self.true_states.iloc[end-1, 0], 4 ) assert_almost_equal( self.result['state'][1][-1], self.true_states.iloc[end-1, 1], 4 ) assert_almost_equal( self.result['state'][4][-1], self.true_states.iloc[end-1, 2], 4 ) assert_almost_equal( self.result['state'][5][-1], self.true_states.iloc[end-1, 3], 4 )
bsd-3-clause
aymeric-spiga/mcd-python
perso/inimeso/inimeso5.py
1
4426
#! /usr/bin/env python ### AS 10/05/2012. A python script to prepare initial state for idealized mesoscale runs. ### use : ensure mcd class is working. fill in input_coord. execute inimeso. from string import split ; import numpy as np ; import matplotlib.pyplot as mpl from mcd import mcd rho_dust = 2500. # Mars dust density (kg.m-3) grav = 3.72 ksi = 3. / 4. / rho_dust / grav nueff = 0.5 ### MCD INSTANCE and SETTINGS (actually, default. but one never knows) query = mcd() ; query.zkey = 3 ; query.hrkey = 1 #query.toversion5(version="5.2") ### GET COORDINATES lines = open("input_coord", "r").readlines() query.lon = float(split(lines[0])[0]) ; query.lat = float(split(lines[1])[0]) query.xdate = float(split(lines[2])[0]) ; query.loct = float(split(lines[3])[0]) query.dust = float(split(lines[6])[0]) query.printcoord() ### OPEN FILES TO BE WRITTEN sounding = open("input_sounding", "w") ; additional = open("input_therm", "w") ; more = open("input_more", "w") dust = open("input_dust", "w") ; water = open("input_water", "w") ### GET and WRITE SURFACE VALUES query.xz = 0.1 ; query.update() ; query.printmeanvar() wvapor = query.extvar[42] #1.5*1e-3 wice = query.extvar[44] #0.0 sounding.write( "%10.2f%12.2f%12.2f\n" % (query.pres/100.,query.temp*(610./query.pres)**(1.0/3.9),(wvapor+wice)*1e3) ) more.write( "%10.2f%10.2f" % (query.extvar[1],query.extvar[14]) ) ; more.close() ### GET and WRITE VERTICAL PROFILE #closesurf = [0.1,5,10,20,50,100] closesurf = [0.1,0.5,1,2,5,10,20,50,100] query.profile( tabperso = np.append(closesurf,np.linspace(200.,float(split(lines[4])[0])*1000.,float(split(lines[5])[0]))) ) for iz in range(len(query.prestab)): wvapor = query.extvartab[iz,42] #1.5*1e-3 wice = query.extvartab[iz,44] #0.0 sounding.write( "%10.2f%12.2f%12.2f%12.2f%12.2f\n" % ( \ query.extvartab[iz,2],query.temptab[iz]*(610./query.prestab[iz])**(1.0/3.9),\ (wvapor+wice)*1e3,\ query.zonwindtab[iz],query.merwindtab[iz]) ) additional.write( "%12.2f%12.2f%18.6e%18.6e%12.2f\n" % ( \ query.extvartab[iz,53],query.extvartab[iz,8],\ query.prestab[iz],query.denstab[iz],query.temptab[iz]) ) water.write( "%18.6e%18.6e\n" % (wvapor*1e3,wice*1e3) ) ### DUST PROFILES q = query.extvartab[iz,38] # extvar(38)= Dust mass mixing ratio (kg/kg) reff = query.extvartab[iz,39] # extvar(39)= Dust effective radius (m) print q,reff N = (grav*ksi*((1+nueff)**3)/np.pi)*q/(reff**3) dust.write( "%18.6e%18.6e\n" % (q,N) ) ### FINISH sounding.close() ; additional.close() ; dust.close() ; water.close() query.plot1d(["p","t","u","v","h2ovap","h2oice"]) ; mpl.show() ##### ESTIMATE CCNs #dustq,dustn = np.loadtxt("input_dust",unpack=True) ############################################################################# ############################################################################# ##fqdust = np.squeeze(query.extvartab[:,38]) #fwice = np.squeeze(query.extvartab[:,44]) ##### ##### I: fwice, fqdust --> O: finter ##### ##import numpy as np #from scipy.interpolate import InterpolatedUnivariateSpline ### remove profile points with a cloud #x = np.arange(fwice.size) #w = np.where(fwice < np.mean(fwice)/10.) ### spline-interpolate with remaining points #yyq = dustq[w] #xxq = x[w] #splq = InterpolatedUnivariateSpline(xxq, yyq) #yyn = dustn[w] #xxn = x[w] #spln = InterpolatedUnivariateSpline(xxn, yyn) ### get interpolated profile ### -- a good match for qdust + qccn ### -- treat negative values because of spline #finterq = splq(x) - dustq #finterq[np.where(finterq < 0.)] = -finterq[np.where(finterq < 0.)] #fintern = spln(x) - dustn #fintern[np.where(fintern < 0.)] = -fintern[np.where(fintern < 0.)] ### plot #mpl.figure() #mpl.plot(yyn,xxn,'bo') #mpl.plot(dustn,x) #mpl.plot(fintern,x) #mpl.figure() #mpl.plot(yyq,xxq,'bo') #mpl.plot(dustq,x) #mpl.plot(finterq,x) #mpl.figure() #mpl.plot(fwice,x,'b.') #mpl.show() ############################################################################# ############################################################################# # #ccn = open("input_ccn", "w") #for iz in range(len(query.prestab)): # print iz,dustq[iz],finterq[iz] # #ccn.write( "%18.6e%18.6e\n" % (finterq[iz],fintern[iz]) ) # ccn.write( "%18.6e%18.6e\n" % (np.max(finterq),np.max(fintern)) ) #ccn.close()
gpl-2.0
wolfiex/DSMACC-testing
dsmacc/examples/cosine_similarity.py
1
1825
import tensorflow as tf import numpy as np def compute_cosine_distances(a, b): # x shape is n_a * dim # y shape is n_b * dim # results shape is n_a * n_b normalize_a = tf.nn.l2_normalize(a,1) normalize_b = tf.nn.l2_normalize(b,1) distance = 1 - tf.matmul(normalize_a, normalize_b, transpose_b=True) return distance input_matrix = np.array([[1, 1, 1], [0, 2, 1], [0, 0, 1], [0, 0, 1]], dtype = 'float32') a = np.array([[2, 0, 1, 1, 0, 2, 1, 1],[2, 0, 1, 1, 0, 2, 1, 1],[2, 0, 1, 1, 0, 2, 1, 1]], dtype = 'float32') b = np.array([[2, 0, 1, 1, 0, 1, 1, 1],[9, 0, 1, 1, 0, 2, 1, 1],[2, 0, 1, 1, 0, 2, 1, 1]], dtype = 'float32') a = b = input_matrix a = np.array([[2, 0, 1, 1, 0, 2, 1, 1]], dtype = 'float32') b = np.array([[2, 0, 1, 1, 0, 3, 1, 1]], dtype = 'float32') with tf.Session() as sess: e = sess.run(compute_cosine_distances(a,b)) print e print '' from sklearn.metrics.pairwise import cosine_distances print(cosine_distances(a,b)) def compute_cosine_distances(a, b): # x shape is n_a * dim # y shape is n_b * dim # results shape is n_a * n_b normalize_a = tf.nn.l2_normalize(a,1) normalize_b = tf.nn.l2_normalize(b,1) distance = 1 - tf.matmul(normalize_a, normalize_b, transpose_b=True) return distance a = np.array([[2, 0, 1]], dtype = 'float32') b = np.array([[1, 0, 8]], dtype = 'float32') with tf.Session() as sess: e = sess.run(compute_cosine_distances(tf.convert_to_tensor(a),tf.convert_to_tensor(b))) print e a = np.array([[.2, 0, .1]], dtype = 'float32') b = np.array([[.1, 0, .1]], dtype = 'float32') with tf.Session() as sess: e = sess.run(compute_cosine_distances(tf.convert_to_tensor(a),tf.convert_to_tensor(b))) print e print 'fi'
gpl-3.0
sixy6e/geospatial-hdf5
examples/sieve_example.py
1
2912
#!/usr/bin/env python import numpy from scipy import ndimage import pandas from geoh5 import kea from geoh5.kea import common as kc # https://github.com/sixy6e/image-processing from image_processing.segmentation import Segments """ Once completed open the file in tuiview to see the colourised segments and the raster attribute table. """ def main(): """ Create a segmented array. Compute basic stats for each segment: (min, max, mean, standard deviation, total, area) Write the segmented image and the raster attribute table. The sieving filter will remove segements containing < 30 pixels. """ # data dimensions and datatype dims = (1000, 1000) dtype = 'int32' # create some random data and segment via value > 5000 seg_data = numpy.random.randint(0, 10001, dims).astype(dtype) nlabels = ndimage.label(seg_data > 5000, output=seg_data) # create some random data to calculate stats against data = numpy.random.ranf(dims) # create a segments class object seg = Segments(seg_data, include_zero=True) # initial number of segments print "Number of segments: {}".format(seg.n_segments) # remove segments containing < 30 pixels seg.sieve(30) print "Number of segments: {}".format(seg.n_segments) # basic stats (min, max, mean, standard deviation, total, area) stats_table = seg.basic_statistics(data, dataframe=True) stats_table.set_index("Segment_IDs", inplace=True) # join via segment id df = pandas.DataFrame({"Histogram": seg.histogram}) stats_table = df.join(stats_table, how='outer') nrows = stats_table.shape[0] # assign random colours to each segment stats_table.insert(1, "Red", numpy.random.randint(0, 256, (nrows))) stats_table.insert(2, "Green", numpy.random.randint(0, 256, (nrows))) stats_table.insert(3, "Blue", numpy.random.randint(0, 256, (nrows))) stats_table.insert(4, "Alpha", 255) # set the background data to (0, 0, 0); black cols = ['Red', 'Green', 'Blue'] stats_table.loc[0, cols] = 0 # define 1 output band and add another band later kwargs = {'width': dims[1], 'height': dims[0], 'count': 1, 'compression': 4, 'chunks': (100, 100), 'blocksize': 100, 'dtype': dtype} with kea.open('sieve-example.kea', 'w', **kwargs) as src: src.write(seg.array, 1) # define the layer type as thematic (labelled, classified etc) src.write_layer_type(1, kc.LayerType.thematic) # write the stats table as an attribute table usage = {"Red": "Red", "Green": "Green", "Blue": "Blue", "Alpha": "Alpha", "Histogram": "PixelCount"} src.write_rat(stats_table, 1, usage=usage) if __name__ == '__main__': main()
mit
Adai0808/scikit-learn
sklearn/ensemble/weight_boosting.py
97
40773
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _check_sample_weight(self): if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) self._check_sample_weight() def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
SPIhub/hummingbird
scripts/masking/mask.py
2
3250
#!/usr/bin/env python import sys,argparse import numpy import os import time, datetime import h5py import scipy.misc import configobj def get_valid_stacks(f_names): f_names_valid = [] for fn in f_names: with h5py.File(fn,"r") as f: if "mean" in f.keys(): f_names_valid.append(fn) return f_names_valid def get_dims(f_name): with h5py.File(f_name,"r") as f: s = numpy.shape(f["mean"]) list(s).pop(0) return tuple(s) def get_max_mask(f_names, ds_name, threshold): d = [] for fn in f_names: with h5py.File(fn, "r") as f: d.append(numpy.array(f[ds_name])) return (numpy.mean(d,axis=0) < threshold) def get_min_mask(f_names, ds_name, threshold): d = [] for fn in f_names: with h5py.File(fn, "r") as f: d.append(numpy.array(f[ds_name])) return (numpy.mean(d,axis=0) > threshold) def get_badpixelmask(f_name): if f_name[-3:] == ".h5": with h5py.File(f_name, "r"): m = numpy.array(f["/data/data"]) elif f_name[-4:] == ".png": m = scipy.misc.imread(f_name,flatten=True) / 255. return m if __name__ == "__main__": parser = argparse.ArgumentParser(description='Hummingbird mask tool. Creates mask from stack files in current directory and given configuration file.') parser.add_argument('config', type=str, help="Configuration file") parser.add_argument('-l', '--link', type=str, help="Creates symbolic link to the H5 mask from given path") if(len(sys.argv) == 1): parser.print_help() args = parser.parse_args() C = configobj.ConfigObj(args.config) files = os.listdir(".") files = [f for f in files if len(f) > 3] files = [f for f in files if f[-3:] == ".h5"] files = get_valid_stacks(files) if len(files) == 0: sys.exit(0) s = get_dims(files[0]) mask = numpy.ones(shape=s, dtype="bool") if C["mean_max"].lower() != 'none': mask *= get_max_mask(files, "mean", float(C["mean_max"])) if C["std_max"].lower() != 'none': mask *= get_max_mask(files, "std", float(C["std_max"])) if C["median_max"].lower() != 'none': mask *= get_max_mask(files, "median", float(C["median_max"])) if C["mean_min"].lower() != 'none': mask *= get_min_mask(files, "mean", float(C["mean_min"])) if C["std_min"].lower() != 'none': mask *= get_min_mask(files, "std", float(C["std_min"])) if C["median_min"].lower() != 'none': mask *= get_min_mask(files, "median", float(C["median_min"])) if C["badpixelmask"].lower() != 'none': mask *= get_badpixelmask(C["badpixelmask"]) fn_root = files[-1].split("/")[-1][:-3] outdir = C["outdir"] os.system("mkdir -p %s" % outdir) if bool(C["output_png"].lower()): import matplotlib.pyplot as pypl pypl.imsave("%s/mask_%s.png" % (outdir,fn_root), mask, cmap="binary_r", vmin=0, vmax=1) with h5py.File("%s/mask_%s.h5" % (outdir,fn_root), "w") as f: f["data/data"] = mask os.system("cp %s %s/mask_%s.conf" % (args.config,outdir,fn_root)) if args.link: os.system("ln -s -f %s/mask_%s.h5 %s" % (outdir, fn_root, args.link))
bsd-2-clause
q1ang/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
harpolea/pyro2
analysis/plotvar.py
1
2438
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import argparse from util import io import mesh.patch as patch # plot a single variable from an output file # # Usage: ./plotvar.py filename variable def makeplot(plotfile, variable, outfile, width=6.5, height=5.25, log=False, compact=False, quiet=False): sim = io.read(plotfile) if isinstance(sim, patch.CellCenterData2d): myd = sim else: myd = sim.cc_data myg = myd.grid plt.figure(num=1, figsize=(width, height), dpi=100, facecolor='w') var = myd.get_var(variable) if log: var = np.log10(var) plt.imshow(np.transpose(var.v()), interpolation="nearest", origin="lower", extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax]) if not compact: plt.colorbar() plt.xlabel("x") plt.ylabel("y") if compact: plt.axis("off") plt.subplots_adjust(bottom=0.0, top=1.0, left=0.0, right=1.0) plt.savefig(outfile) else: plt.savefig(outfile, bbox_inches="tight") if not quiet: plt.show() def get_args(): parser = argparse.ArgumentParser() parser.add_argument("-o", type=str, default="plot.png", metavar="plot.png", help="output file name") parser.add_argument("--log", action="store_true", help="plot log of variable") parser.add_argument("--compact", action="store_true", help="remove axes and border") parser.add_argument("--quiet", action="store_true", help="don't show the figure") parser.add_argument("-W", type=float, default=6.5, metavar="width", help="plot width (inches)") parser.add_argument("-H", type=float, default=5.25, metavar="height", help="plot height (inches)") parser.add_argument("plotfile", type=str, nargs=1, help="the plotfile you wish to plot") parser.add_argument("variable", type=str, nargs=1, help="the name of the solver used to run the simulation") args = parser.parse_args() return args if __name__ == "__main__": args = get_args() makeplot(args.plotfile[0], args.variable[0], args.o, width=args.W, height=args.H, log=args.log, compact=args.compact, quiet=args.quiet)
bsd-3-clause
CI-WATER/TethysCluster
utils/scimage_11_10.py
2
15717
#!/usr/bin/env python """ This script is meant to be run inside of a ubuntu cloud image available at uec-images.ubuntu.com:: $ EC2_UBUNTU_IMG_URL=http://uec-images.ubuntu.com/oneiric/current $ wget $EC2_UBUNTU_IMG_URL/oneiric-server-cloudimg-amd64.tar.gz or:: $ wget $EC2_UBUNTU_IMG_URL/oneiric-server-cloudimg-i386.tar.gz After downloading a Ubuntu cloud image the next step is to extract the image:: $ tar xvzf oneiric-server-cloudimg-amd64.tar.gz Then resize it to 10GB:: $ e2fsck -f oneiric-server-cloudimg-amd64.img $ resize2fs oneiric-server-cloudimg-amd64.img 10G Next you need to mount the image:: $ mkdir /tmp/img-mount $ mount oneiric-server-cloudimg-amd64.img /tmp/img-mount $ mount -t proc none /tmp/img-mount/proc $ mount -o bind /dev /tmp/img-mount/dev Copy /etc/resolv.conf and /etc/mtab to the image:: $ cp /etc/resolv.conf /tmp/img-mount/etc/resolv.conf $ grep -v rootfs /etc/mtab > /tmp/img-mount/etc/mtab Next copy this script inside the image:: $ cp /path/to/scimage.py /tmp/img-mount/root/scimage.py Finally chroot inside the image and run this script: $ chroot /tmp/img-mount /bin/bash $ cd $HOME $ python scimage.py """ import os import sys import glob import shutil import fileinput import subprocess import multiprocessing SRC_DIR = "/usr/local/src" APT_SOURCES_FILE = "/etc/apt/sources.list" BUILD_UTILS_PKGS = "build-essential devscripts debconf debconf-utils " BUILD_UTILS_PKGS += "python-setuptools python-pip python-nose" CLOUD_CFG_FILE = '/etc/cloud/cloud.cfg' GRID_SCHEDULER_GIT = 'git://github.com/jtriley/gridscheduler.git' CLOUDERA_ARCHIVE_KEY = 'http://archive.cloudera.com/debian/archive.key' CLOUDERA_APT = 'http://archive.cloudera.com/debian maverick-cdh3 contrib' CONDOR_APT = 'http://www.cs.wisc.edu/condor/debian/development lenny contrib' NUMPY_SCIPY_SITE_CFG = """\ [DEFAULT] library_dirs = /usr/lib include_dirs = /usr/include:/usr/include/suitesparse [blas_opt] libraries = ptf77blas, ptcblas, atlas [lapack_opt] libraries = lapack, ptf77blas, ptcblas, atlas [amd] amd_libs = amd [umfpack] umfpack_libs = umfpack [fftw] libraries = fftw3 """ STARCLUSTER_MOTD = """\ #!/bin/sh cat<<"EOF" _ _ _ __/\_____| |_ __ _ _ __ ___| |_ _ ___| |_ ___ _ __ \ / __| __/ _` | '__/ __| | | | / __| __/ _ \ '__| /_ _\__ \ || (_| | | | (__| | |_| \__ \ || __/ | \/ |___/\__\__,_|_| \___|_|\__,_|___/\__\___|_| TethysCluster Ubuntu 11.10 AMI Software Tools for Academics and Researchers (STAR) Homepage: http://web.mit.edu/tethyscluster Documentation: http://web.mit.edu/tethyscluster/docs/latest Code: https://github.com/jtriley/TethysCluster Mailing list: [email protected] This AMI Contains: * Custom-Compiled Atlas, Numpy, Scipy, etc * Open Grid Scheduler (OGS) queuing system * Condor workload management system * OpenMPI compiled with Open Grid Scheduler support * IPython 0.12 with parallel support * and more! (use 'dpkg -l' to show all installed packages) Open Grid Scheduler/Condor cheat sheet: * qstat/condor_q - show status of batch jobs * qhost/condor_status- show status of hosts, queues, and jobs * qsub/condor_submit - submit batch jobs (e.g. qsub -cwd ./jobscript.sh) * qdel/condor_rm - delete batch jobs (e.g. qdel 7) * qconf - configure Open Grid Scheduler system Current System Stats: EOF landscape-sysinfo | grep -iv 'graph this data' """ CLOUD_INIT_CFG = """\ user: ubuntu disable_root: 0 preserve_hostname: False # datasource_list: [ "NoCloud", "OVF", "Ec2" ] cloud_init_modules: - bootcmd - resizefs - set_hostname - update_hostname - update_etc_hosts - rsyslog - ssh cloud_config_modules: - mounts - ssh-import-id - locale - set-passwords - grub-dpkg - timezone - puppet - chef - mcollective - disable-ec2-metadata - runcmd cloud_final_modules: - rightscale_userdata - scripts-per-once - scripts-per-boot - scripts-per-instance - scripts-user - keys-to-console - final-message apt_sources: - source: deb $MIRROR $RELEASE multiverse - source: deb %(CLOUDERA_APT)s - source: deb-src %(CLOUDERA_APT)s - source: deb %(CONDOR_APT)s """ % dict(CLOUDERA_APT=CLOUDERA_APT, CONDOR_APT=CONDOR_APT) def run_command(cmd, ignore_failure=False, failure_callback=None, get_output=False): kwargs = {} if get_output: kwargs.update(dict(stdout=subprocess.PIPE, stderr=subprocess.PIPE)) p = subprocess.Popen(cmd, shell=True, **kwargs) output = [] if get_output: line = None while line != '': line = p.stdout.readline() if line != '': output.append(line) print line, for line in p.stderr.readlines(): if line != '': output.append(line) print line, retval = p.wait() if retval != 0: errmsg = "command '%s' failed with status %d" % (cmd, retval) if failure_callback: ignore_failure = failure_callback(retval) if not ignore_failure: raise Exception(errmsg) else: sys.stderr.write(errmsg + '\n') if get_output: return retval, ''.join(output) return retval def apt_command(cmd): dpkg_opts = "Dpkg::Options::='--force-confnew'" cmd = "apt-get -o %s -y --force-yes %s" % (dpkg_opts, cmd) cmd = "DEBIAN_FRONTEND='noninteractive' " + cmd run_command(cmd) def apt_install(pkgs): apt_command('install %s' % pkgs) def chdir(directory): opts = glob.glob(directory) isdirlist = [o for o in opts if os.path.isdir(o)] if len(isdirlist) > 1: raise Exception("more than one dir matches: %s" % directory) os.chdir(isdirlist[0]) def _fix_atlas_rules(rules_file='debian/rules'): for line in fileinput.input(rules_file, inplace=1): if 'ATLAS=None' not in line: print line, def configure_apt_sources(): srcfile = open(APT_SOURCES_FILE) contents = srcfile.readlines() srcfile.close() srclines = [] for line in contents: if not line.strip() or line.startswith('#'): continue parts = line.split() if parts[0] == 'deb': parts[0] = 'deb-src' srclines.append(' '.join(parts).strip()) srcfile = open(APT_SOURCES_FILE, 'w') srcfile.write(''.join(contents)) srcfile.write('\n'.join(srclines) + '\n') srcfile.write('deb %s\n' % CLOUDERA_APT) srcfile.write('deb-src %s\n' % CLOUDERA_APT) srcfile.write('deb %s\n' % CONDOR_APT) srcfile.close() run_command('gpg --keyserver keyserver.ubuntu.com --recv-keys 0F932C9C') run_command('curl -s %s | sudo apt-key add -' % CLOUDERA_ARCHIVE_KEY) apt_install('debian-archive-keyring') def upgrade_packages(): apt_command('update') apt_command('upgrade') def install_build_utils(): """docstring for configure_build""" apt_install(BUILD_UTILS_PKGS) def install_gridscheduler(): chdir(SRC_DIR) apt_command('build-dep gridengine') if os.path.isfile('gridscheduler-scbuild.tar.gz'): run_command('tar xvzf gridscheduler-scbuild.tar.gz') run_command('mv gridscheduler /opt/sge6-fresh') return apt_install('git') run_command('git clone %s' % GRID_SCHEDULER_GIT) sts, out = run_command('readlink -f `which java`', get_output=True) java_home = out.strip().split('/jre')[0] chdir(os.path.join(SRC_DIR, 'gridscheduler', 'source')) run_command('git checkout -t -b develop origin/develop') env = 'JAVA_HOME=%s' % java_home run_command('%s ./aimk -only-depend' % env) run_command('%s scripts/zerodepend' % env) run_command('%s ./aimk depend' % env) run_command('%s ./aimk -no-secure -no-gui-inst' % env) sge_root = '/opt/sge6-fresh' os.mkdir(sge_root) env += ' SGE_ROOT=%s' % sge_root run_command('%s scripts/distinst -all -local -noexit -y -- man' % env) def install_condor(): chdir(SRC_DIR) run_command("rm /var/lock") apt_install('condor') run_command('ln -s /etc/condor/condor_config /etc/condor_config.local') run_command('mkdir /var/lib/condor/log') run_command('mkdir /var/lib/condor/run') run_command('chown -R condor:condor /var/lib/condor/log') run_command('chown -R condor:condor /var/lib/condor/run') def install_torque(): chdir(SRC_DIR) apt_install('torque-server torque-mom torque-client') def install_pydrmaa(): chdir(SRC_DIR) run_command('pip install drmaa') def install_atlas(): """docstring for install_atlas""" chdir(SRC_DIR) apt_command('build-dep atlas') if glob.glob("*atlas*.deb"): run_command('dpkg -i *atlas*.deb') return apt_command('source atlas') chdir('atlas-*') run_command('fakeroot debian/rules custom') run_command('dpkg -i ../*atlas*.deb') def install_numpy(): """docstring for install_numpy""" chdir(SRC_DIR) apt_command('build-dep python-numpy') if glob.glob('*numpy*.deb'): run_command('dpkg -i *numpy*.deb') return apt_command('source python-numpy') chdir('python-numpy*') sitecfg = open('site.cfg', 'w') sitecfg.write(NUMPY_SCIPY_SITE_CFG) sitecfg.close() _fix_atlas_rules() def _deb_failure_callback(retval): if not glob.glob('../*numpy*.deb'): return False return True run_command('dpkg-buildpackage -rfakeroot -b', failure_callback=_deb_failure_callback) run_command('dpkg -i ../*numpy*.deb') def install_scipy(): """docstring for install_scipy""" chdir(SRC_DIR) apt_command('build-dep python-scipy') if glob.glob('*scipy*.deb'): run_command('dpkg -i *scipy*.deb') return apt_command('source python-scipy') chdir('python-scipy*') sitecfg = open('site.cfg', 'w') sitecfg.write(NUMPY_SCIPY_SITE_CFG) sitecfg.close() _fix_atlas_rules() def _deb_failure_callback(retval): if not glob.glob('../*numpy*.deb'): return False return True run_command('dpkg-buildpackage -rfakeroot -b', failure_callback=_deb_failure_callback) run_command('dpkg -i ../*scipy*.deb') def install_openmpi(): chdir(SRC_DIR) apt_command('build-dep libopenmpi-dev') apt_install('blcr-util') if glob.glob('*openmpi*.deb'): run_command('dpkg -i *openmpi*.deb') return apt_command('source libopenmpi-dev') chdir('openmpi*') for line in fileinput.input('debian/rules', inplace=1): print line, if '--enable-heterogeneous' in line: print ' --with-sge \\' def _deb_failure_callback(retval): if not glob.glob('../*openmpi*.deb'): return False return True run_command('dpkg-buildpackage -rfakeroot -b', failure_callback=_deb_failure_callback) run_command('dpkg -i ../*openmpi*.deb') sts, out = run_command('ompi_info | grep -i grid', get_output=True) if 'gridengine' not in out: raise Exception("failed to build openmpi with Grid Engine support") def install_hadoop(): chdir(SRC_DIR) hadoop_pkgs = ['namenode', 'datanode', 'tasktracker', 'jobtracker', 'secondarynamenode'] pkgs = ['hadoop-0.20'] + ['hadoop-0.20-%s' % pkg for pkg in hadoop_pkgs] apt_install(' '.join(pkgs)) run_command('easy_install dumbo') def install_ipython(): chdir(SRC_DIR) apt_install('libzmq-dev') run_command('pip install pyzmq==2.1.9') run_command('pip install ipython tornado pygments') mjax_install = 'from IPython.external.mathjax import install_mathjax' mjax_install += '; install_mathjax()' run_command("python -c '%s'" % mjax_install) def configure_motd(): for f in glob.glob('/etc/update-motd.d/*'): os.unlink(f) motd = open('/etc/update-motd.d/00-tethyscluster', 'w') motd.write(STARCLUSTER_MOTD) motd.close() os.chmod(motd.name, 0755) def configure_cloud_init(): """docstring for configure_cloud_init""" cloudcfg = open('/etc/cloud/cloud.cfg', 'w') cloudcfg.write(CLOUD_INIT_CFG) cloudcfg.close() def configure_bash(): completion_line_found = False for line in fileinput.input('/etc/bash.bashrc', inplace=1): if 'bash_completion' in line and line.startswith('#'): print line.replace('#', ''), completion_line_found = True elif completion_line_found: print line.replace('#', ''), completion_line_found = False else: print line, aliasfile = open('/root/.bash_aliases', 'w') aliasfile.write("alias ..='cd ..'\n") aliasfile.close() def setup_environ(): num_cpus = multiprocessing.cpu_count() os.environ['MAKEFLAGS'] = '-j%d' % (num_cpus + 1) os.environ['DEBIAN_FRONTEND'] = "noninteractive" def install_nfs(): chdir(SRC_DIR) run_command('initctl reload-configuration') apt_install('nfs-kernel-server') run_command('ln -s /etc/init.d/nfs-kernel-server /etc/init.d/nfs') def install_default_packages(): # stop mysql for interactively asking for password preseedf = '/tmp/mysql-preseed.txt' mysqlpreseed = open(preseedf, 'w') preseeds = """\ mysql-server mysql-server/root_password select mysql-server mysql-server/root_password seen true mysql-server mysql-server/root_password_again select mysql-server mysql-server/root_password_again seen true """ mysqlpreseed.write(preseeds) mysqlpreseed.close() run_command('debconf-set-selections < %s' % mysqlpreseed.name) run_command('rm %s' % mysqlpreseed.name) pkgs = "python-dev git vim mercurial subversion cvs encfs " pkgs += "openmpi-bin libopenmpi-dev python-django " pkgs += "keychain screen tmux zsh ksh csh tcsh python-mpi4py " pkgs += "python-virtualenv python-imaging python-boto python-matplotlib " pkgs += "unzip rar unace build-essential gfortran ec2-api-tools " pkgs += "ec2-ami-tools mysql-server mysql-client apache2 " pkgs += "libapache2-mod-wsgi sysv-rc-conf pssh emacs cython irssi " pkgs += "python-distutils-extra htop vim-scripts python-ctypes python-pudb" apt_install(pkgs) def configure_init(): for script in ['nfs-kernel-server', 'hadoop', 'condor', 'apache', 'mysql']: run_command('find /etc/rc* -iname \*%s\* -delete' % script) def cleanup(): run_command('rm /etc/resolv.conf') run_command('rm /etc/mtab') run_command('rm -rf /root/*') exclude = ['/root/.bashrc', '/root/.profile', '/root/.bash_aliases'] for dot in glob.glob("/root/.*"): if dot not in exclude: run_command('rm -rf %s' % dot) for path in glob.glob('/usr/local/src/*'): if os.path.isdir(path): shutil.rmtree(path) run_command('rm -f /var/cache/apt/archives/*.deb') run_command('rm -f /var/cache/apt/archives/partial/*') for f in glob.glob('/etc/profile.d'): if 'byobu' in f: run_command('rm %s' % f) def main(): """docstring for main""" if os.getuid() != 0: sys.stderr.write('you must be root to run this script\n') return setup_environ() configure_motd() configure_cloud_init() configure_bash() configure_apt_sources() upgrade_packages() install_build_utils() install_gridscheduler() install_condor() #install_torque() install_pydrmaa() install_atlas() install_numpy() install_scipy() install_ipython() install_openmpi() install_hadoop() install_nfs() install_default_packages() configure_init() cleanup() if __name__ == '__main__': main()
gpl-3.0
cgnorthcutt/rankpruning
tutorial_and_testing/CIFAR_MNIST_testing.py
1
9829
# coding: utf-8 # In[ ]: from __future__ import print_function import numpy as np from datetime import datetime as dt from sklearn.linear_model import LogisticRegression import pickle import sys import os import errno from rankpruning import RankPruning, other_pnlearning_methods from util import get_dataset, downsample, get_metrics, make_sure_path_exists # In[ ]: def get_model(key = None, rh1 = None, rh0 = None, clf = None): models = { "Rank Pruning" : RankPruning(clf = clf), "Baseline" : other_pnlearning_methods.BaselineNoisyPN(clf = clf), "True Classifier": clf, "Rank Pruning (noise rates given)": RankPruning(rh1, rh0, clf = clf), "Elk08 (noise rates given)": other_pnlearning_methods.Elk08(e1 = 1 - rh1, clf = clf), "Liu16 (noise rates given)": other_pnlearning_methods.Liu16(rh1, rh0, clf = clf), "Nat13 (noise rates given)": other_pnlearning_methods.Nat13(rh1, rh0, clf = clf), } try: model = models[key] except: model = None return model # In[ ]: def run_test( dataset, clf_type, epochs, true_rh1, downsample_ratio, ordered_models_keys, list_of_images = range(10), suppress_error = False, verbose = False, pi1 = 0.0, one_vs_rest = True, cv_n_folds = 3, early_stopping = True, pulearning = None, ): # Cast types to ensure consistency for 1 and 1.0, 0 and 0.0 true_rh1 = float(true_rh1) downsample_ratio = float(downsample_ratio) pi1 = float(pi1) # Load MNIST or CIFAR data (X_train_original, y_train_original), (X_test_original, y_test_original) = get_dataset(dataset = dataset) X_train_original, y_train_original = downsample(X_train_original, y_train_original, downsample_ratio) # Initialize models and result storage metrics = {key:[] for key in ordered_models_keys} data_all = {"metrics": metrics, "calculated": {}, "errors": {}} start_time = dt.now() # Run through the ten images class of 0, 1, ..., 9 for image in list_of_images: if one_vs_rest: # X_train and X_test will not be modified. All data will be used. Adjust pointers. X_train = X_train_original X_test = X_test_original # Relabel the image data. Make label 1 only for given image. y_train = np.array(y_train_original == image, dtype=int) y_test = np.array(y_test_original == image, dtype=int) else: # one_vs_other # Reducing the dataset to just contain our image and image = 4 other_image = 4 if image != 4 else 7 X_train = X_train_original[(y_train_original == image) | (y_train_original == other_image)] y_train = y_train_original[(y_train_original == image) | (y_train_original == other_image)] X_test = X_test_original[(y_test_original == image) | (y_test_original == other_image)] y_test = y_test_original[(y_test_original == image) | (y_test_original == other_image)] # Relabel the data. Make label 1 only for given image. y_train = np.array(y_train == image, dtype=int) y_test = np.array(y_test == image, dtype=int) print() print("Evaluating image:", image) print("Number of positives in y:", sum(y_train)) print() sys.stdout.flush() s = y_train * (np.cumsum(y_train) < (1 - true_rh1) * sum(y_train)) # In the presence of mislabeled negative (negative incorrectly labeled positive): # pi1 is the fraction of mislabeled negative in the labeled set: num_mislabeled = int(sum(y_train) * (1 - true_rh1) * pi1 / (1 - pi1)) if num_mislabeled > 0: negative_set = s[y_train==0] mislabeled = np.random.choice(len(negative_set), num_mislabeled, replace = False) negative_set[mislabeled] = 1 s[y_train==0] = negative_set print("image = {0}".format(image)) print("Training set: total = {0}, positives = {1}, negatives = {2}, P_noisy = {3}, N_noisy = {4}" .format(len(X_train), sum(y_train), len(y_train)-sum(y_train), sum(s), len(s)-sum(s))) print("Testing set: total = {0}, positives = {1}, negatives = {2}" .format(len(X_test), sum(y_test), len(y_test) - sum(y_test))) # Fit different models for PU learning for key in ordered_models_keys: fit_start_time = dt.now() print("\n\nFitting {0} classifier. Default classifier is {1}.".format(key, clf_type)) if clf_type == "logreg": clf = LogisticRegression() elif clf_type == "cnn": from classifier_cnn import CNN from keras import backend as K K.clear_session() clf = CNN( dataset_name = dataset, num_category = 2, epochs = epochs, early_stopping = early_stopping, verbose = 1, ) else: raise ValueError("clf_type must be either logreg or cnn for this testing file.") ps1 = sum(s) / float(len(s)) py1 = sum(y_train) / float(len(y_train)) true_rh0 = pi1 * ps1 / float(1 - py1) model = get_model( key = key, rh1 = true_rh1, rh0 = true_rh0, clf = clf, ) try: if key == "True Classifier": model.fit(X_train, y_train) elif key in ["Rank Pruning", "Rank Pruning (noise rates given)", "Liu16 (noise rates given)"]: model.fit(X_train, s, pulearning = pulearning, cv_n_folds = cv_n_folds) elif key in ["Nat13 (noise rates given)"]: model.fit(X_train, s, pulearning = pulearning) else: # Elk08, Baseline model.fit(X_train, s) pred = model.predict(X_test) # Produces only P(y=1|x) for pulearning models because they are binary pred_prob = model.predict_proba(X_test) pred_prob = pred_prob[:,1] if key == "True Classifier" else pred_prob # Compute metrics metrics_dict = get_metrics(pred, pred_prob, y_test) elapsed = (dt.now() - fit_start_time).total_seconds() if verbose: print("\n{0} Model Performance at image {1}:\n=================\n".format(key, image)) print("Time Required", elapsed) print("AUC:", metrics_dict["AUC"]) print("Error:", metrics_dict["Error"]) print("Precision:", metrics_dict["Precision"]) print("Recall:", metrics_dict["Recall"]) print("F1 score:", metrics_dict["F1 score"]) print("rh1:", model.rh1 if hasattr(model, 'rh1') else None) print("rh0:", model.rh0 if hasattr(model, 'rh0') else None) print() metrics_dict["image"] = image metrics_dict["time_seconds"] = elapsed metrics_dict["rh1"] = model.rh1 if hasattr(model, 'rh1') else None metrics_dict["rh0"] = model.rh0 if hasattr(model, 'rh0') else None # Append dictionary of error and loss metrics if key not in data_all["metrics"]: data_all["metrics"][key] = [metrics_dict] else: data_all["metrics"][key].append(metrics_dict) data_all["calculated"][(key, image)] = True except Exception as e: msg = "Error in {0}, image {1}, rh1 {2}, m {3}: {4}\n".format(key, image, true_rh1, pi1, e) print(msg) make_sure_path_exists("failed_models/") with open("failed_models/" + key + ".txt", "ab") as f: f.write(msg) if suppress_error: continue else: raise return data_all # In[ ]: try: image_index = int(sys.argv[1]) except: image_index = None try: model_index = int(sys.argv[2]) except: model_index = None image_list = range(10) ordered_models_keys = [ "Rank Pruning", "Rank Pruning (noise rates given)", "Elk08 (noise rates given)", "Nat13 (noise rates given)", "Liu16 (noise rates given)", "Baseline", "True Classifier", ] if image_index is not None: # Select only the single element # otherwise all images are tested. image_list = [image_list[image_index]] if model_index is not None: # Select only the single model # otherwise all models are tested. ordered_models_keys = [ordered_models_keys[model_index]] for image in image_list: for pi1, true_rh1 in [(0.5, 0.5), (0.25, 0.25), (0.5, 0.0), (0.0, 0.5)]: for model in ordered_models_keys: # Parameter settings: dataset = "mnist" # choose between mnist and cifar downsample_ratio = 0.5 # What fraction of data to keep for speed increase # clf specific settings: clf_type = "logreg" # "logreg" or "cnn" epochs = 50 cv_n_folds = 3 early_stopping = True # Other settings (currently need not change): suppress_error = False verbose = True one_vs_rest = True # Default is True, False -> test one vs other pulearning = (pi1 == 0) print("[***]", "true_rh1 =", true_rh1) print("[***]", "image =", image) print("[***]", "pi1 =", pi1) print("[***]", "downsample_ratio =", downsample_ratio) print("[***] {0} TEST: One vs.".format(dataset), "Rest" if one_vs_rest else "Other") data_all = run_test( dataset = dataset, clf_type = clf_type, epochs = epochs, true_rh1 = true_rh1, downsample_ratio = downsample_ratio, ordered_models_keys = [model], list_of_images = [image], suppress_error = suppress_error, verbose = verbose, pi1 = pi1, one_vs_rest = one_vs_rest, cv_n_folds = cv_n_folds, early_stopping = early_stopping, pulearning = pulearning, ) print("Completed: model", model, "and image", image) # Before we store results, create folder if needed. make_sure_path_exists("data/") pickle.dump(data_all, open("data/metrics_{0}_{1}_{2}_epochs_rh1_{3}_downsample_{4}_model_{5}_image_{6}_pi1_{7}.p".format(dataset, clf_type, epochs, true_rh1, downsample_ratio, model, image, pi1),"wb"))
mit
GoogleCloudPlatform/datacatalog-connectors-rdbms
google-datacatalog-rdbms-connector/tests/google/datacatalog_connectors/rdbms/scrape/base_metadata_enricher_test.py
1
3636
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import pandas as pd from google.datacatalog_connectors.rdbms.scrape import base_metadata_enricher from google.datacatalog_connectors.commons_test import utils class BaseMetadataEnricherTestCase(unittest.TestCase): __MODULE_PATH = os.path.dirname(os.path.abspath(__file__)) def test_enrich_schemas_metadata_with_csv_should_return_objects(self): enrich_metadata_dict = {'entry_prefix': 'mycompany'} metadata_definition = \ utils.Utils.convert_json_to_object( self.__MODULE_PATH, 'metadata_definition.json') scraped_dataframe = pd.read_csv( utils.Utils.get_resolved_file_name(self.__MODULE_PATH, 'sqlserver_full_dump.csv')) enriched_dataframe = base_metadata_enricher.BaseMetadataEnricher( metadata_definition, enrich_metadata_dict).enrich(scraped_dataframe) self.assertEqual(7, len(enriched_dataframe)) self.assertTrue( enriched_dataframe['schema_name'][0].startswith('mycompany')) self.assertTrue( enriched_dataframe['table_name'][0].startswith('mycompany')) def test_enrich_with_pattern_schemas_metadata_with_csv_should_return_objects( # noqa: E501 self): enrich_metadata_dict = { 'entry_prefix': 'mycompany', 'entry_id_pattern_for_prefix': '^[^a-zA-Z_]+.*$' } metadata_definition = \ utils.Utils.convert_json_to_object( self.__MODULE_PATH, 'metadata_definition.json') scraped_dataframe = pd.read_csv( utils.Utils.get_resolved_file_name( self.__MODULE_PATH, 'sqlserver_full_dump_invalid_asset_names.csv')) enriched_dataframe = base_metadata_enricher.BaseMetadataEnricher( metadata_definition, enrich_metadata_dict).enrich(scraped_dataframe) self.assertEqual(10, len(enriched_dataframe)) self.assertFalse( enriched_dataframe['schema_name'][6].startswith('mycompany')) self.assertFalse( enriched_dataframe['table_name'][6].startswith('mycompany')) self.assertTrue( enriched_dataframe['schema_name'][7].startswith('mycompany')) self.assertTrue( enriched_dataframe['table_name'][7].startswith('mycompany')) self.assertTrue( enriched_dataframe['column_name'][7].startswith('mycompany')) self.assertFalse( enriched_dataframe['schema_name'][8].startswith('mycompany')) self.assertFalse( enriched_dataframe['table_name'][8].startswith('mycompany')) self.assertTrue( enriched_dataframe['schema_name'][9].startswith('mycompany')) self.assertTrue( enriched_dataframe['table_name'][9].startswith('mycompany')) self.assertFalse( enriched_dataframe['column_name'][9].startswith('mycompany'))
apache-2.0
hrjn/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
69
6473
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. The distribution of robust distances. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(np.int) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) lw = 2 plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", lw=lw, color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", lw=lw, color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", lw=lw, color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size // 5 + 1)], err_cov_emp_full.mean(1)[:(x_size // 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)], err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
RAJSD2610/SDNopenflowSwitchAnalysis
ece671/Instantplot.py
1
1749
import os import pandas as pd import matplotlib.pyplot as plt import seaborn path= os.path.expanduser("~/Desktop/ece671/SwitchAnalysis/PlotDump") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) t=[] i=0 def file_len(fname): with open(fname) as f: for i, l in enumerate(f): pass return i + 1 while i<(num_files/2) : # df+=[] j=i+1 path ="/home/vetri/Desktop/ece671/SwitchAnalysis/PlotDump/ftotal."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<0: y=0 t.append(y) i+=1 print(t) path= os.path.expanduser("~/Desktop/ece671/SwitchAnalysis/PlotDump") num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.join(path, f))]) print(num_files) i=0 j=0 f=[] while i<(num_files/2): j=i+1 path ="/home/vetri/Desktop/ece671/SwitchAnalysis/PlotDump/fpersec."+str(j)+".csv" y = file_len(path) # except: pass #df.append(pd.read_csv(path,header=None)) # a+=[] #y=len(df[i].index)-1 #1 row added by default so that table has a entry if y<=1: y=0 f.append(y) i+=1 print(f) plt.plot(list(range(1,len(t)+1)),t, '.-',label="traffic type and timeout") plt.title("Total Flows Present after 1st flow") plt.xlabel("time(s)") plt.ylabel("flows") #plt.frameon=True plt.legend() plt.show() plt.plot(list(range(1,len(f)+1)),f, '.-',label="traffic type and timeout") plt.title("Flows programmed per sec") plt.xlabel("time(s)") plt.ylabel("flows") #plt.frameon=True plt.legend() plt.show()
gpl-3.0
kashif/scikit-learn
sklearn/datasets/samples_generator.py
3
56503
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Initialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
Ademan/NumPy-GSoC
numpy/lib/recfunctions.py
58
34495
""" Collection of utilities to manipulate structured arrays. Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience. """ import sys import itertools import numpy as np import numpy.ma as ma from numpy import ndarray, recarray from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords from numpy.lib._iotools import _is_string_like _check_fill_value = np.ma.core._check_fill_value __all__ = ['append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ] def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.0), (2, 20.0), (0, 0.0)], dtype=[('A', '<i4'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output def get_names(adtype): """ Returns the field names of the input datatype as a tuple. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names(np.empty((1,), dtype=int)) is None True >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None True >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None def flatten_descr(ndtype): """ Flatten a structured data-type description. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) """ names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr) def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields as keys and a list of parent fields as values. This function is used to simplify access to fields nested in other fields. Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion). Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> rfn.get_fieldstructure(ndtype) ... # XXX: possible regression, order of BBA and BBB is swapped {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname, ] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: # if (lastparent[-1] != lastname): lastparent.append(lastname) elif lastname: lastparent = [lastname, ] parents[name] = lastparent or [] return parents or None def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if hasattr(element, '__iter__') and not isinstance(element, basestring): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays. Parameters ---------- seqarray : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter=([fill_value] * (len(seqarrays) - 1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = itertools.repeat(fill_value) iters = [itertools.chain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in itertools.izip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).iteritems(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output def merge_arrays(seqarrays, fill_value= -1, flatten=False, usemask=False, asrecarray=False): """ Merge arrays field by field. Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value = (999999, 1e+20), dtype = [('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]), ... np.array([10., 20., 30.])), ... usemask=False, asrecarray=True) rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('a', '<i4'), ('f1', '<f8')]) Notes ----- * Without a mask, the missing value will be filled with something, * depending on what its corresponding type: -1 for integers -1.0 for floating point numbers '-' for characters '-1' for strings True for boolean values * XXX: I just obtained these values empirically """ # Only one item in the input sequence ? if (len(seqarrays) == 1): seqarrays = np.asanyarray(seqarrays[0]) # Do we have a single ndarary as input ? if isinstance(seqarrays, (ndarray, np.void)): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): # Minimal processing needed: just make sure everythng's a-ok seqarrays = seqarrays.ravel() # Make sure we have named fields if not seqdtype.names: seqdtype = [('', seqdtype)] # Find what type of array we must return if usemask: if asrecarray: seqtype = MaskedRecords else: seqtype = MaskedArray elif asrecarray: seqtype = recarray else: seqtype = ndarray return seqarrays.view(dtype=seqdtype, type=seqtype) else: seqarrays = (seqarrays,) else: # Make sure we have arrays in the input sequence seqarrays = map(np.asanyarray, seqarrays) # Find the sizes of the inputs and their maximum sizes = tuple(a.size for a in seqarrays) maxlength = max(sizes) # Get the dtype of the output (flattening if needed) newdtype = zip_descr(seqarrays, flatten=flatten) # Initialize the sequences for data and mask seqdata = [] seqmask = [] # If we expect some kind of MaskedArray, make a special loop. if usemask: for (a, n) in itertools.izip(seqarrays, sizes): nbmissing = (maxlength - n) # Get the data and mask data = a.ravel().__array__() mask = ma.getmaskarray(a).ravel() # Get the filling value (if needed) if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: fval = np.array(fval, dtype=a.dtype, ndmin=1) fmsk = np.ones((1,), dtype=mask.dtype) else: fval = None fmsk = True # Store an iterator padding the input to the expected length seqdata.append(itertools.chain(data, [fval] * nbmissing)) seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) # Create an iterator for the data data = tuple(izip_records(seqdata, flatten=flatten)) output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), mask=list(izip_records(seqmask, flatten=flatten))) if asrecarray: output = output.view(MaskedRecords) else: # Same as before, without the mask we don't need... for (a, n) in itertools.izip(seqarrays, sizes): nbmissing = (maxlength - n) data = a.ravel().__array__() if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] else: fval = np.array(fval, dtype=a.dtype, ndmin=1) else: fval = None seqdata.append(itertools.chain(data, [fval] * nbmissing)) output = np.fromiter(tuple(izip_records(seqdata, flatten=flatten)), dtype=newdtype, count=maxlength) if asrecarray: output = output.view(recarray) # And we're done... return output def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped. Nested fields are supported. Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype (`asrecarray=False`) Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> rfn.drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> rfn.drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names, ] else: drop_names = set(drop_names) # def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype # newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None # output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True) def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append((newname, _recursive_rename_fields(current, namemapper))) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype) def append_fields(base, names, data=None, dtypes=None, fill_value= -1, usemask=True, asrecarray=False): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. """ # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): err_msg = "The number of arrays does not match the number of names" raise ValueError(err_msg) elif isinstance(names, basestring): names = [names, ] data = [data, ] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] elif not hasattr(dtypes, '__iter__'): dtypes = [dtypes, ] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, "\ "a single dtype or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False) def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields Parameters ---------- seqarrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> x = np.array([1, 2,]) >>> rfn.stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], ... dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = rfn.stack_arrays((z,zz)) >>> test masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0) ('c', 30.0, 300.0)], mask = [(False, False, True) (False, False, True) (False, False, False) (False, False, False) (False, False, False)], fill_value = ('N/A', 1e+20, 1e+20), dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')]) """ if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" % \ (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray) def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = [('a', int)] >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) ... # XXX: judging by the output, the ignoremask flag has no effect """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`. The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm. Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates... """ # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError("The 'jointype' argument should be in 'inner', "\ "'outer' or 'leftouter' (got '%s' instead)" % jointype) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key,) # Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s' % name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s' % name) # Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() (nb1, nb2) = (len(r1), len(r2)) (r1names, r2names) = (r1.dtype.names, r2.dtype.names) # Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key]) # Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = names.index(name) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx + 1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names: f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn + r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names: f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs) def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray. See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
bsd-3-clause
chkvch/on_GP
reos_water.py
1
2818
import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import RegularGridInterpolator class eos: def __init__(self, path_to_data=None): if not path_to_data: import os path_to_data = os.environ['ongp_data_path'] path = '%s/reos_water_pt.dat' % path_to_data # Nadine 22 Sep 2015: Fifth column is entropy in kJ/g/K+offset self.names = 'logrho', 'logt', 'logp', 'logu', 'logs' #, 'chit', 'chirho', 'gamma1' self.data = np.genfromtxt(path, names=self.names, usecols=(0, 1, 2, 3, 4)) self.logpvals = np.unique(self.data['logp']) self.logtvals = np.unique(self.data['logt']) self.logpmin = min(self.logpvals) self.logpmax = max(self.logpvals) self.logtmin = min(self.logtvals) self.logtmax = max(self.logtvals) self.nptsp = len(self.logpvals) self.nptst = len(self.logtvals) self.logrho_on_pt = np.zeros((self.nptsp, self.nptst)) self.logu_on_pt = np.zeros((self.nptsp, self.nptst)) self.logs_on_pt = np.zeros((self.nptsp, self.nptst)) # self.chit_on_pt = np.zeros((self.nptsp, self.nptst)) # self.chirho_on_pt = np.zeros((self.nptsp, self.nptst)) # self.gamma1_on_pt = np.zeros((self.nptsp, self.nptst)) for i, logpval in enumerate(self.logpvals): data_this_logp = self.data[self.data['logp'] == logpval] for j, logtval in enumerate(self.logtvals): data_this_logp_logt = data_this_logp[data_this_logp['logt'] == logtval] self.logrho_on_pt[i, j] = data_this_logp_logt['logrho'] self.logu_on_pt[i, j] = data_this_logp_logt['logu'] self.logs_on_pt[i, j] = data_this_logp_logt['logs'] # self.chit_on_pt[i, j] = data_this_logp_logt['chit'] # self.chirho_on_pt[i, j] = data_this_logp_logt['chirho'] # self.gamma1_on_pt[i, j] = data_this_logp_logt['gamma1'] pt_basis = (self.logpvals, self.logtvals) self._get_logrho = RegularGridInterpolator(pt_basis, self.logrho_on_pt, bounds_error=False) self._get_logu = RegularGridInterpolator(pt_basis, self.logu_on_pt) self._get_logs = RegularGridInterpolator(pt_basis, self.logs_on_pt) # self._get_chit = RegularGridInterpolator(pt_basis, self.chit_on_pt) # self._get_chirho = RegularGridInterpolator(pt_basis, self.chirho_on_pt) # self._get_gamma1 = RegularGridInterpolator(pt_basis, self.gamma1_on_pt) def get_logrho(self, logp, logt): return self._get_logrho((logp, logt)) def get_logu(self, logp, logt): return self._get_logu((logp, logt)) def get_logs(self, logp, logt): return self._get_logs((logp, logt)) # + 10. # kJ/g/K to erg/g/K
gpl-2.0
wangqingbaidu/aliMusic
analysis/artist_14_15_16.py
1
4331
# -*- coding: UTF-8 -*- ''' Authorized by vlon Jang Created on Jun 19, 2016 Email:[email protected] From Institute of Computing Technology All Rights Reserved. ''' import pandas as pd import numpy as np import pymysql import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt import random mysql_cn= pymysql.connect(host='10.25.0.118', port=3306,user='root', passwd='111111', db='music') def get_min_error_res(play_res): res_sum = 0 res_sum_2 = 0 for res in play_res: if res < 1: continue res_sum += 1.0/res res_sum_2 += 1.0/(res*res) if res_sum == 0: return 0 return res_sum / res_sum_2 def get_min_error_mean_results(queryType = None): """ in_filename: artist_id, times, ds """ assert queryType keys = ['artist_id', 'times', 'ds'] artist = {} # data = pd.read_csv(in_filename, header = None, names = keys) data = None if queryType == 16: data = pd.read_sql(''' select artist_id, plays, ds from artist_play where ds >= '20150815' and ds <= '20150830' ''', mysql_cn) elif queryType == 15: data = pd.read_sql(''' select artist_id, plays, ds from artist_play where ds >= '20150816' and ds <= '20150830' ''', mysql_cn) elif queryType == 14: data = pd.read_sql(''' select artist_id, plays, ds from artist_play where ds >= '20150817' and ds <= '20150830' ''', mysql_cn) else: assert False data.columns = keys days = set() for _, row in data.iterrows(): artist_id = row[keys[0]] if artist_id not in artist: artist[artist_id] = [] artist[artist_id].append(row[keys[1]]) days.add(row[keys[2]]) days = [day for day in days] sorted(days) results = [] for artist_id, times in artist.iteritems(): min_error_res = int(get_min_error_res(times)) for day in days: results.append([artist_id, min_error_res, day]) df = pd.DataFrame(results) df.columns = ['artist_id', 'plays', 'ds'] df.pop('ds') df = df.groupby(by='artist_id')['plays'].mean().reset_index() df.columns = ['artist_id', 'plays'] df = df.sort_values(by = 'artist_id') return df def analysis(): avg_14 = pd.read_sql(''' SELECT artist_id, avg(plays) as plays FROM artist_play WHERE ds >= '20150817' AND ds <= '20150830' GROUP BY artist_id order by artist_id; ''', mysql_cn) avg_15 = pd.read_sql(''' SELECT artist_id, avg(plays) as plays FROM artist_play WHERE ds >= '20150816' AND ds <= '20150830' GROUP BY artist_id order by artist_id; ''', mysql_cn) avg_16 = pd.read_sql(''' SELECT artist_id, avg(plays) as plays FROM artist_play WHERE ds >= '20150815' AND ds <= '20150830' GROUP BY artist_id order by artist_id; ''', mysql_cn) print avg_14.iloc[[74,78]] me_14 = get_min_error_mean_results(14) me_15 = get_min_error_mean_results(15) me_16 = get_min_error_mean_results(16) dropIndex = [78, 74] avg_14 = avg_14.drop(dropIndex) me_14 = me_14.drop(dropIndex) avg_15 = avg_15.drop(dropIndex) me_15 = me_15.drop(dropIndex) avg_16 = avg_16.drop(dropIndex) me_16 = me_16.drop(dropIndex) avg = [avg_14, avg_15, avg_16] me = [me_14, me_15, me_16] s = [avg_15, me_14] s = [me_14['plays']/ x['plays'] for x in s] x = pd.DataFrame(me_14['plays']/ avg_15['plays']) print x x.columns = ['plays'] x = x.sort_values(by = 'plays') print x.iloc[49] df_show = pd.concat(s, axis = 1, ignore_index=True) df_show.columns = ['me_14', # 'me_15', # 'me_16', 'avg_14', # 'avg_15', # 'avg_16' ] # df_show.columns = ['avg_14', 'me_14'] df_show.plot() plt.show() # fig = plt.gcf() # fig.savefig('./img/compare_plays.png') mysql_cn.close() if __name__ == '__main__': analysis()
gpl-3.0
SXBK/kaggle
mercedes-benz/stack-0.56.py
1
6009
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np from sklearn.base import BaseEstimator,TransformerMixin, ClassifierMixin from sklearn.preprocessing import LabelEncoder import xgboost as xgb import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.linear_model import ElasticNetCV, LassoLarsCV from sklearn.ensemble import GradientBoostingRegressor, ExtraTreesRegressor, RandomForestRegressor from sklearn.pipeline import make_pipeline, make_union from sklearn.utils import check_array from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor from sklearn.random_projection import GaussianRandomProjection from sklearn.random_projection import SparseRandomProjection from sklearn.decomposition import PCA, FastICA from sklearn.decomposition import TruncatedSVD from sklearn.metrics import r2_score class StackingEstimator(BaseEstimator, TransformerMixin): def __init__(self, estimator): self.estimator = estimator def fit(self, X, y=None, **fit_params): self.estimator.fit(X, y, **fit_params) return self def transform(self, X): X = check_array(X) X_transformed = np.copy(X) # add class probabilities as a synthetic feature if issubclass(self.estimator.__class__, ClassifierMixin) and hasattr(self.estimator, 'predict_proba'): X_transformed = np.hstack((self.estimator.predict_proba(X), X)) # add class prodiction as a synthetic feature X_transformed = np.hstack((np.reshape(self.estimator.predict(X), (-1, 1)), X_transformed)) return X_transformed train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') for c in train.columns: if train[c].dtype == 'object': lbl = LabelEncoder() lbl.fit(list(train[c].values) + list(test[c].values)) train[c] = lbl.transform(list(train[c].values)) test[c] = lbl.transform(list(test[c].values)) n_comp = 12 # tSVD tsvd = TruncatedSVD(n_components=n_comp, random_state=420) tsvd_results_train = tsvd.fit_transform(train.drop(["y"], axis=1)) tsvd_results_test = tsvd.transform(test) # PCA pca = PCA(n_components=n_comp, random_state=420) pca2_results_train = pca.fit_transform(train.drop(["y"], axis=1)) pca2_results_test = pca.transform(test) # ICA ica = FastICA(n_components=n_comp, random_state=420) ica2_results_train = ica.fit_transform(train.drop(["y"], axis=1)) ica2_results_test = ica.transform(test) # GRP grp = GaussianRandomProjection(n_components=n_comp, eps=0.1, random_state=420) grp_results_train = grp.fit_transform(train.drop(["y"], axis=1)) grp_results_test = grp.transform(test) # SRP srp = SparseRandomProjection(n_components=n_comp, dense_output=True, random_state=420) srp_results_train = srp.fit_transform(train.drop(["y"], axis=1)) srp_results_test = srp.transform(test) #save columns list before adding the decomposition components usable_columns = list(set(train.columns) - set(['y'])) # Append decomposition components to datasets # 注释掉这一块增添数据的内容后, r2 下降, score下降0.13 for i in range(1, n_comp + 1): train['pca_' + str(i)] = pca2_results_train[:, i - 1] test['pca_' + str(i)] = pca2_results_test[:, i - 1] train['ica_' + str(i)] = ica2_results_train[:, i - 1] test['ica_' + str(i)] = ica2_results_test[:, i - 1] train['tsvd_' + str(i)] = tsvd_results_train[:, i - 1] test['tsvd_' + str(i)] = tsvd_results_test[:, i - 1] train['grp_' + str(i)] = grp_results_train[:, i - 1] test['grp_' + str(i)] = grp_results_test[:, i - 1] train['srp_' + str(i)] = srp_results_train[:, i - 1] test['srp_' + str(i)] = srp_results_test[:, i - 1] #usable_columns = list(set(train.columns) - set(['y'])) y_train = train['y'].values y_mean = np.mean(y_train) id_test = test['ID'].values #finaltrainset and finaltestset are data to be used only the stacked model (does not contain PCA, SVD... arrays) finaltrainset = train[usable_columns].values finaltestset = test[usable_columns].values '''Train the xgb model then predict the test data''' xgb_params = { 'n_trees': 520, 'eta': 0.0045, 'max_depth': 4, 'subsample': 0.93, 'objective': 'reg:linear', 'eval_metric': 'rmse', 'base_score': y_mean, # base prediction = mean(target) 'silent': 1 } # NOTE: Make sure that the class is labeled 'class' in the data file dtrain = xgb.DMatrix(train.drop('y', axis=1), y_train) dtest = xgb.DMatrix(test) num_boost_rounds = 1250 # train model model = xgb.train(dict(xgb_params, silent=0), dtrain, num_boost_round=num_boost_rounds) y_pred = model.predict(dtest) '''Train the stacked models then predict the test data''' stacked_pipeline = make_pipeline( StackingEstimator(estimator=LassoLarsCV(normalize=True)), StackingEstimator(estimator=GradientBoostingRegressor(learning_rate=0.001, loss="huber", max_depth=3, max_features=0.55, min_samples_leaf=18, min_samples_split=14, subsample=0.7)), LassoLarsCV(), #StackingEstimator(RandomForestRegressor(max_depth=5, min_samples_split=4, n_estimators=20)), #StackingEstimator(ExtraTreesRegressor(n_estimators=20, n_jobs=-1, criterion='mse')), #LassoLarsCV(), ) stacked_pipeline.fit(finaltrainset, y_train) results = stacked_pipeline.predict(finaltestset) '''R2 Score on the entire Train data when averaging''' print('R2 score on train data:') print(r2_score(y_train,stacked_pipeline.predict(finaltrainset)*0.2855 + model.predict(dtrain)*0.7145)) '''Average the preditionon test data of both models then save it on a csv file''' sub = pd.DataFrame() sub['ID'] = id_test sub['y'] = y_pred*0.75 + results*0.25 sub.to_csv('stacked-models.csv', index=False) # Any results you write to the current directory are saved as output.
gpl-3.0
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/tests/test_backend_pdf.py
10
2894
# -*- encoding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import six import io import os import numpy as np from matplotlib import cm, rcParams from matplotlib import pyplot as plt from matplotlib.testing.decorators import (image_comparison, knownfailureif, cleanup) if 'TRAVIS' not in os.environ: @image_comparison(baseline_images=['pdf_use14corefonts'], extensions=['pdf']) def test_use14corefonts(): rcParams['pdf.use14corefonts'] = True rcParams['font.family'] = 'sans-serif' rcParams['font.size'] = 8 rcParams['font.sans-serif'] = ['Helvetica'] rcParams['pdf.compression'] = 0 text = '''A three-line text positioned just above a blue line and containing some French characters and the euro symbol: "Merci pépé pour les 10 €"''' @cleanup def test_type42(): rcParams['pdf.fonttype'] = 42 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(io.BytesIO()) @cleanup def test_multipage_pagecount(): from matplotlib.backends.backend_pdf import PdfPages with PdfPages(io.BytesIO()) as pdf: assert pdf.get_pagecount() == 0 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(pdf, format="pdf") assert pdf.get_pagecount() == 1 pdf.savefig() assert pdf.get_pagecount() == 2 @cleanup def test_multipage_keep_empty(): from matplotlib.backends.backend_pdf import PdfPages from tempfile import NamedTemporaryFile ### test empty pdf files # test that an empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name assert os.path.exists(filename) os.remove(filename) # test if an empty pdf is deleting itself afterwards with keep_empty=False with PdfPages(filename, keep_empty=False) as pdf: pass assert not os.path.exists(filename) ### test pdf files with content, they should never be deleted fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) # test that a non-empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename) # test that a non-empty pdf is left behind with keep_empty=False with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp, keep_empty=False) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename)
mit
ojengwa/sympy
sympy/plotting/plot.py
3
62386
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division from inspect import getargspec from itertools import chain from collections import Callable import warnings from sympy import sympify, Expr, Tuple, Dummy from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): global _show _show = False ############################################################################## # The public interface ############################################################################## class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] def append(self, *args): """Adds one more graph to the figure.""" if len(args) == 1 and isinstance(args[0], BaseSeries): self._series.append(*args) else: self._series.append(Series(*args)) def extend(self, arg): """Adds the series from another plot or a list of series.""" if isinstance(arg, Plot): self._series.extend(arg._series) else: self._series.extend(arg) ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes #Different from is_contour as the colormap in backend will be #different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) arity = len(getargspec(c)[0]) if arity == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a sympy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ np = import_module('numpy') #Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif p[1] is None and q[1] is None: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) #Sample further if one of the end points in None( i.e. a complex #value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) f_start = f(self.start) f_end = f(self.end) sample([self.start, f_start], [self.end, f_end], 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ #Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) #Sample further if one of the end points in None( ie a complex #value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) arity = len(getargspec(c)[0]) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" #The code is mostly repetition of SurfaceOver2DRange. #XXX: Presently not used in any of those functions. #XXX: Add contour plot and use this seties. is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent ## don't have to check for the success of importing matplotlib in each case; ## we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) are_3D = [s.is_3D for s in self.parent._series] self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif not any(are_3D): self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111) self.ax.spines['left'].set_position('zero') self.ax.spines['right'].set_color('none') self.ax.spines['bottom'].set_position('zero') self.ax.spines['top'].set_color('none') self.ax.spines['left'].set_smart_bounds(True) self.ax.spines['bottom'].set_smart_bounds(True) self.ax.xaxis.set_ticks_position('bottom') self.ax.yaxis.set_ticks_position('left') elif all(are_3D): ## mpl_toolkits.mplot3d is necessary for ## projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') def process_series(self): parent = self.parent for s in self.parent._series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) self.ax.add_collection(collection) elif s.is_contour: self.ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) self.ax.add_collection(collection) x, y, z = s.get_points() self.ax.set_xlim((min(x), max(x))) self.ax.set_ylim((min(y), max(y))) self.ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = self.ax.plot_surface(x, y, z, cmap=self.cm.jet, rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: #Smart bounds have to be set to False for implicit plots. self.ax.spines['left'].set_smart_bounds(False) self.ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: #interval math plotting x, y = _matplotlib_list(points[0]) self.ax.fill(x, y, facecolor='b', edgecolor='None' ) else: # use contourf or contour depending on whether it is # an inequality or equality. #XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", "blue"]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': self.ax.contour(xarray, yarray, zarray, contours=(0, 0), fill=False, cmap=colormap) else: self.ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(self.ax, Axes3D): self.ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(self.ax, Axes3D): self.ax.set_yscale(parent.yscale) if parent.xlim: self.ax.set_xlim(parent.xlim) if parent.ylim: self.ax.set_ylim(parent.ylim) if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check self.ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(self.ax, Axes3D): pass elif val == 'center': self.ax.spines['left'].set_position('center') self.ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = self.ax.get_xlim() yl, yh = self.ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' self.ax.spines['left'].set_position(pos_left) self.ax.spines['bottom'].set_position(pos_bottom) else: self.ax.spines['left'].set_position(('data', val[0])) self.ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: self.ax.set_axis_off() if parent.legend: self.ax.legend() self.ax.legend_.set_visible(parent.legend) if parent.margin: self.ax.set_xmargin(parent.margin) self.ax.set_ymargin(parent.margin) if parent.title: self.ax.set_title(parent.title) if parent.xlabel: self.ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: self.ax.set_ylabel(parent.ylabel, position=(0, 1)) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.plt.show() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.average(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.average(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1: ], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') vector_a = x - y vector_b = z - y dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for ``LineOver1DRangeSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x - axis. ``ylabel`` : str. Label for the y - axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x - axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y - axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x - axis limits. ``ylim`` : tuple of two floats, denoting the y - axis limits. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries. """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x - axis. ``ylabel`` : str. Label for the y - axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x - axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y - axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x - axis limits. ``ylim`` : tuple of two floats, denoting the y - axis limits. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x,y,u,v = symbols('x y u v') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set.union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set.union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: #Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: #Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
bsd-3-clause
ElBell/VTDairyDB
manage.py
1
10171
import sys, os from main import app from flask_script import Manager, Server, Command, Option from flask_security.utils import encrypt_password from models import db, populate_db, StatusData, GrowthData, LifeData, GrowthDataAverages from main import app import random from datetime import date, datetime import pandas from tqdm import tqdm from dateutil import parser from sqlalchemy import desc class ResetDB(Command): """Drops all tables and recreates them""" def run(self, **kwargs): db.drop_all() db.create_all() class PopulateDB(Command): option_list = ( Option('--file', '-f', dest='user_data_file', default='scripts/user_data.csv'), ) """Fills in predefined data into DB""" def run(self, user_data_file, **kwargs): print("Complete") populate_db() def parse_float(val): try: float(val) return float(val) except ValueError: if val in (".", ""): return None print(val) raise Exception class ConvertAll(Command): def run(self): for animal in GrowthData.query.all(): animal.weight = animal.weight*0.453592 if isinstance(animal.weight, (int, float)) else None animal.height = animal.height*2.54 if isinstance(animal.height, (int, float)) else None animal.lifetime_adg = animal.lifetime_adg*0.453592 if isinstance(animal.lifetime_adg, (int, float)) else None animal.monthly_adg = animal.monthly_adg*0.453592 if isinstance(animal.monthly_adg, (int, float)) else None animal.monthly_height_change = (animal.monthly_height_change/10) * 25.4 if isinstance(animal.monthly_height_change, (int, float)) else None db.session.commit() print("GrowthData converted") for animal in LifeData.query.all(): animal.bwt = animal.bwt*0.453592 if isinstance(animal.bwt, (int, float)) else None db.session.commit() print("LifeData converted") class ProcessLifeData(Command): option_list = ( Option('--file', '-f', dest='full_filename', default='data/lifeData.csv'), ) def run(self, full_filename): data = pandas.read_csv(full_filename) data = data.dropna() # Removes the first two rows of not data data = data.ix[4:] # Labels the columns as follows (so columns MUST BE IN THIS ORDER) data.columns = ['FID', 'EID', 'Breed', 'DOB'] #app.logger.info(data) for index, row in data.iterrows(): life = LifeData.query.filter_by(fid=row['FID']).first() if life is None: life = LifeData(fid=row['FID'], eid=row['EID'], breed=row['Breed'], dob=parser.parse(row['DOB'])) db.session.add(life) else: life.dob=parser.parse(row['DOB']) life.breed=row['Breed'] life.eid=row['EID'] # Add won't happen without it db.session.commit() class ProcessGrowthData(Command): option_list = ( Option('--file', '-f', dest='full_filename', default='data/growthData.xlsx'), ) def run(self, full_filename): data = pandas.read_excel(full_filename) data = data.set_index('Index') status_data, growth_data_old, growth_data_new = data.ix[:, :6], data.ix[:, 6:158], data.ix[:, 158:] # print(growth_data_old.index) for index, row in tqdm(status_data.iterrows()): status = StatusData(fid=int(index), status=row['Status'], status_date=None if pandas.isnull(row['Date']) else row['Date']) db.session.add(status) life = LifeData.query.filter_by(fid=int(index)).first() if life is None: life = LifeData(fid=int(index), bwt=row['BWt'], dob=row['Birthdate'], breed=row['Brd'], estimate=True if type(row['Estimate']) is unicode else False) db.session.add(life) else: if life.bwt is None: life.bwt = row['BWt'] life.dob = row['Birthdate'] life.breed = row['Brd'] life.estimate = True if type(row['Estimate']) is unicode else False db.session.commit() growth_data_old.columns = pandas.MultiIndex.from_tuples([(c[:-1], c[-1]) for c in growth_data_old.columns]) for row_name, row in tqdm(growth_data_old.iterrows()): row = row.where((pandas.notnull(row)), None) for date_name, weight_data in row.unstack().iterrows(): weight = weight_data['W'] if type(weight_data['W']) == int or type(weight_data['W']) == float else None date = weight_data['D'] if type(weight_data['D']) != pandas.tslib.NaTType else None location = weight_data['L'] if type(weight_data['L']) != pandas.tslib.NaTType else None height = weight_data['H'] if type(weight_data['H']) != pandas.tslib.NaTType else None # print(row_name, weight, date, location, height) if weight is None: continue measurement = GrowthData.new(fid=int(row_name), date=date, weight=weight, height=parse_float(height) if height is not None else height, location=location) db.session.add(measurement) # print("Adding weighing "+str(row_name)+", "+date_name+":", weight_data.get('D', date_name), weight_data['L'], weight_data['W'], weight_data['H']) db.session.commit() growth_data_new.columns = pandas.MultiIndex.from_tuples([(c[:-1], c[-1]) for c in growth_data_new.columns]) for row_name, row in tqdm(growth_data_new.iterrows()): row = row.where((pandas.notnull(row)), None) for date_name, weight_data in row.unstack().iterrows(): date = datetime.strptime(date_name, '%y%m%d').date() weight = weight_data['W'] if type(weight_data['W']) == int or type(weight_data['W']) == float else None location = weight_data['L'] if type(weight_data['L']) != pandas.tslib.NaTType else None bcs = weight_data['C'] # print(type(bcs)) height = weight_data['H'] if type(weight_data['H']) != pandas.tslib.NaTType else None #print(row_name, weight, date, location, height) if weight is None: continue measurement = GrowthData.new(fid=int(row_name), bcs=parse_float(bcs) if bcs is not None else bcs, location=location, date=date, weight=weight, height=parse_float(height) if height is not None else height) db.session.add(measurement) # print("Adding weighing "+str(row_name)+", "+date_name+":", weight_data['C'], weight_data.get('D', date_name), weight_data['L'], weight_data['W'], weight_data['H']) db.session.commit() class CalculateGrowthAverageData(Command): def run(self): fids = db.session.query(GrowthData.fid).distinct() for fid in tqdm(fids): fid_data = db.session.query(GrowthData).filter(GrowthData.fid == fid.fid).order_by(desc(GrowthData.date)).all() today = fid_data[0] growth_averages = GrowthDataAverages.query.filter_by(fid=int(fid.fid)).first() life_data = LifeData.query.filter_by(fid=int(fid.fid)).first() if len(fid_data) > 1: previous = fid_data[1] time_dif = today.date - previous.date time_dif = time_dif.days monthly_weight_dif = float(today.weight - previous.weight) monthly_adg = float(monthly_weight_dif/time_dif) if previous.height is not None and today.height is not None: monthly_height_dif = float(today.height - previous.height) monthly_height_change = float(monthly_height_dif/time_dif) else: monthly_height_change = None age = today.date - life_data.dob age = age.days lifetime_weight_dif = float(today.weight - life_data.bwt) lifetime_adg = float(lifetime_weight_dif/age) if growth_averages is None: growth_averages = GrowthDataAverages(fid=int(fid.fid), most_recent_date=today.date, monthly_adg=monthly_adg, age=age, lifetime_adg=lifetime_adg, monthly_height_change=monthly_height_change) db.session.add(growth_averages) else: growth_averages.most_recent_date = today.date growth_averages.monthly_adg = monthly_adg growth_averages.age = age growth_averages.lifetime_adg = lifetime_adg growth_averages.monthly_height_change = monthly_height_change else: time_dif = 0 db.session.commit() class DisplayDB(Command): def run(self, **kwargs): from sqlalchemy import MetaData from sqlalchemy_schemadisplay3 import create_schema_graph connection = app.config['SQLALCHEMY_DATABASE_URI'] filename='dbschema.png' graph = create_schema_graph(metadata=MetaData(connection), show_datatypes=False, # The image would get nasty big if we'd show the datatypes show_indexes=False, # ditto for indexes rankdir='BT', # From left to right (instead of top to bottom) font='Helvetica', concentrate=False # Don't try to join the relation lines together ) graph.write_png(filename) # write out the file manager = Manager(app) # Server commands context #manager.add_command("secure", Server(ssl_context=context)) # Database Commands manager.add_command("reset_db", ResetDB()) manager.add_command("populate_db", PopulateDB()) manager.add_command("display_db", DisplayDB()) manager.add_command("process_growth_data", ProcessGrowthData()) manager.add_command("process_life_data", ProcessLifeData()) manager.add_command("convert_all", ConvertAll()) manager.add_command("calculate_growth_averages", CalculateGrowthAverageData()) if __name__ == "__main__": manager.run()
gpl-3.0
amandersillinois/landlab
tests/components/species_evolution/test_zone_objects.py
3
14279
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for SpeciesEvolver zone objects.""" import numpy as np import pandas as pd import pytest from landlab import RasterModelGrid from landlab.components import SpeciesEvolver from landlab.components.species_evolution import ZoneController, ZoneTaxon, zone as zn @pytest.fixture() def zone_example_grid(): mg = RasterModelGrid((5, 7), 2) z = mg.add_zeros("node", "topographic__elevation") return mg, z def zone_func(grid): z = grid.at_node["topographic__elevation"] return z == 1 def zone_func_with_vars(grid, var1, var2): z = grid.at_node["topographic__elevation"] return np.all([z == 1, grid.x_of_node > var1, grid.y_of_node > var2], 0) def test_none_to_none(zone_example_grid): mg, z = zone_example_grid sc = ZoneController(mg, zone_func) sc.run_one_step(1) np.testing.assert_array_equal(len(sc.zones), 0) def test_none_to_one(zone_example_grid): mg, z = zone_example_grid # No zones exist at time 0. se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) np.testing.assert_equal(len(sc.zones), 0) expected_df = pd.DataFrame( { "time": [0], "zones": [0], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) # Create a zone for time 1. z[[9, 10, 11, 12]] = 1 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 1) np.testing.assert_equal(sc.zones[0]._conn_type, zn.Connection.NONE_TO_ONE) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [0, 1], "fragmentations": [np.nan, 0], "captures": [np.nan, 0], "area_captured_sum": [np.nan, 0], "area_captured_max": [np.nan, 0], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(se.record_data_frame.taxa.sum(), 0) def test_one_to_none(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) np.testing.assert_equal(len(sc.zones), 1) zone = sc.zones[0] expected_df = pd.DataFrame( { "time": [0], "zones": [1], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) # No zones for time 1. z[:] = 0 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 0) np.testing.assert_equal(zone._conn_type, zn.Connection.ONE_TO_NONE) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [1, 0], "fragmentations": [np.nan, 0], "captures": [np.nan, 0], "area_captured_sum": [np.nan, 0], "area_captured_max": [np.nan, 0], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(se.record_data_frame.taxa.sum(), 1) def test_one_to_one(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) np.testing.assert_equal(len(sc.zones), 1) zone = sc.zones[0] expected_df = pd.DataFrame( { "time": [0], "zones": [1], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) # Modify elevation, although there is still one zone in time 1. z[[11, 12]] = 0 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 1) np.testing.assert_equal(zone, sc.zones[0]) np.testing.assert_equal(sc.zones[0]._conn_type, zn.Connection.ONE_TO_ONE) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [1, 1], "fragmentations": [np.nan, 0], "captures": [np.nan, 0], "area_captured_sum": [np.nan, 0], "area_captured_max": [np.nan, 0], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects(time=1)), 1) def test_one_to_many(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) expected_df = pd.DataFrame( { "time": [0], "zones": [1], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects(time=0)), 1) # Break the zone in two for time 1. z[11] = 0 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 2) np.testing.assert_equal( set([z._conn_type for z in sc.zones]), set([None, zn.Connection.ONE_TO_MANY]) ) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [1, 2], "fragmentations": [np.nan, 2], "captures": [np.nan, 0], "area_captured_sum": [np.nan, 0], "area_captured_max": [np.nan, 0], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects()), 2) def test_many_to_one(zone_example_grid): mg, z = zone_example_grid # Create two zones for time 0. z[[8, 9, 10, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) expected_df = pd.DataFrame( { "time": [0], "zones": [2], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects(time=0)), 2) # Modify elevation such that two zones each overlap the original two zones. z[11] = 1 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 1) np.testing.assert_equal(sc.zones[0]._conn_type, zn.Connection.MANY_TO_ONE) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [2, 1], "fragmentations": [np.nan, 0], "captures": [np.nan, 1], "area_captured_sum": [np.nan, 12], "area_captured_max": [np.nan, 12], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects(time=1)), 2) def test_many_to_many(zone_example_grid): mg, z = zone_example_grid # Create two zones for time 0. z[[10, 12, 17, 19, 24, 26]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) expected_df = pd.DataFrame( { "time": [0], "zones": [2], "fragmentations": [np.nan], "captures": [np.nan], "area_captured_sum": [np.nan], "area_captured_max": [np.nan], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects(time=0)), 2) # Modify elevation such that two zones each overlap the original two zones. z[[17, 19]] = 0 z[[11, 25]] = 1 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(sc.zones), 2) for zone in sc.zones: np.testing.assert_equal(zone._conn_type, zn.Connection.MANY_TO_MANY) expected_df = pd.DataFrame( { "time": [0, 1], "zones": [2, 2], "fragmentations": [np.nan, 0], "captures": [np.nan, 2], "area_captured_sum": [np.nan, 24], "area_captured_max": [np.nan, 12], } ) pd.testing.assert_frame_equal(sc.record_data_frame, expected_df, check_like=True) np.testing.assert_equal(len(se.get_extant_taxon_objects()), 4) def test_one_to_many_to_one(zone_example_grid): mg, z = zone_example_grid z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1, time_to_allopatric_speciation=1) se.track_taxa(taxa) z[11] = 0 sc.run_one_step(1) se.run_one_step(1) z[11] = 1 sc.run_one_step(1) se.run_one_step(1) np.testing.assert_equal(len(se.get_extant_taxon_objects()), 1) def test_min_area(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. z[[9, 11, 12]] = 1 sc = ZoneController(mg, zone_func, minimum_area=5) np.testing.assert_equal(len(sc.zones), 1) def test_neighborhood_structure(zone_example_grid): mg, z = zone_example_grid z[[10, 16]] = 1 sc = ZoneController(mg, zone_func) np.testing.assert_equal(len(sc.zones), 1) sc = ZoneController(mg, zone_func, neighborhood_structure="D4") np.testing.assert_equal(len(sc.zones), 2) np.testing.assert_raises( ValueError, ZoneController, mg, zone_func, neighborhood_structure="D" ) def test_zone_func_kwargs(zone_example_grid): mg, z = zone_example_grid z[mg.core_nodes] = 1 sc = ZoneController(mg, zone_func_with_vars, var1=1, var2=2) expected_mask = np.array( [ False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, True, True, True, True, False, False, True, True, True, True, True, False, False, False, False, False, False, False, False, ] ) np.testing.assert_array_equal(sc.zones[0].mask, expected_mask) z[-2:] = 0 expected_mask[-2:] = False sc.run_one_step(10) np.testing.assert_array_equal(sc.zones[0].mask, expected_mask) def test_zone_taxon_range_mask(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. ids = [9, 10, 11, 12] z[ids] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1) se.track_taxa(taxa) expected_mask = np.zeros(mg.number_of_nodes, bool) expected_mask[ids] = True np.testing.assert_array_equal(taxa[0].range_mask, expected_mask) # Remove extent so taxa range mask is all False. z[ids] = 0 sc.run_one_step(1) se.run_one_step(1) expected_mask = np.zeros(mg.number_of_nodes, bool) np.testing.assert_array_equal(taxa[0].range_mask, expected_mask) def test_time_to_allopatric_speciation(zone_example_grid): mg, z = zone_example_grid # Create a zone for time 0. z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1, time_to_allopatric_speciation=20) se.track_taxa(taxa) z[[11]] = 0 while len(se.taxa_data_frame) == 1: sc.run_one_step(10) se.run_one_step(10) expected_df = pd.DataFrame( { "pid": [np.nan, 0], "type": 2 * [ZoneTaxon.__name__], "t_first": [0, 30], "t_final": 2 * [np.nan], }, index=[0, 1], ) expected_df.index.name = "tid" expected_df["pid"] = expected_df["pid"].astype("Int64") expected_df["t_final"] = expected_df["t_final"].astype("Int64") pd.testing.assert_frame_equal(se.taxa_data_frame, expected_df, check_like=True) def test_pseudoextinction(zone_example_grid): mg, z = zone_example_grid z[[9, 10, 11, 12]] = 1 se = SpeciesEvolver(mg) sc = ZoneController(mg, zone_func) taxa = sc.populate_zones_uniformly(1, persists_post_speciation=False) se.track_taxa(taxa) z[11] = 0 sc.run_one_step(1) se.run_one_step(1) expected_df = pd.DataFrame( { "pid": [np.nan, 0, 0], "type": 3 * [ZoneTaxon.__name__], "t_first": [0, 1, 1], "t_final": [1, np.nan, np.nan], }, index=[0, 1, 2], ) expected_df.index.name = "tid" expected_df["pid"] = expected_df["pid"].astype("Int64") expected_df["t_final"] = expected_df["t_final"].astype("Int64") pd.testing.assert_frame_equal(se.taxa_data_frame, expected_df, check_like=True) expected_df = pd.DataFrame( { "time": [0, 1], "taxa": [1, 2], "speciations": [np.nan, 2], "extinctions": [np.nan, 0], "pseudoextinctions": [np.nan, 1], } ) pd.testing.assert_frame_equal(se.record_data_frame, expected_df, check_like=True)
mit
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Coupled_Contact/Dynamic_Loading_Single_Foundation_System_Under_Compression/CoupledHardContact/k_1e-4/Plot_Current.py
7
4125
#!/usr/bin/env python #!/usr/bin/python import h5py from matplotlib import pylab import matplotlib.pylab as plt import sys from matplotlib.font_manager import FontProperties import math import numpy as np #!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 30}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=28 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=28 Pore_Pressure = []; Solid_Displacement_u = []; Solid_Displacement_uPU = []; Fluid_Displacement_uPU = []; Time = []; # Plot the figure. Add labels and titles. plt.figure() ax = plt.subplot(111) ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Stress [Pa] ") # Loading Stage # ######################################################################### thefile = "Soil_Foundation_System_Surface_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] upU_p = finput["/Model/Nodes/Generalized_Displacements"][3,:] upU_u = finput["/Model/Nodes/Generalized_Displacements"][2,:] upU_U = finput["/Model/Nodes/Generalized_Displacements"][6,:] u_u = finput["/Model/Nodes/Generalized_Displacements"][79,:] sigma_zz_ = finput["/Model/Elements/Gauss_Outputs"][14,:] Pore_Pressure = np.append(Pore_Pressure,upU_p); Solid_Displacement_u = np.append(Solid_Displacement_u , u_u); Solid_Displacement_uPU = np.append(Solid_Displacement_uPU, upU_u); Fluid_Displacement_uPU = np.append(Fluid_Displacement_uPU, upU_U); Time = np.append(Time, times); # Consolidation Stage # ######################################################################### thefile = "Soil_Foundation_System_Consolidation.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = times[-1] + finput["time"][:] upU_p = finput["/Model/Nodes/Generalized_Displacements"][3,:] upU_u = finput["/Model/Nodes/Generalized_Displacements"][2,:] upU_U = finput["/Model/Nodes/Generalized_Displacements"][6,:] u_u = finput["/Model/Nodes/Generalized_Displacements"][79,:] sigma_zz_ = finput["/Model/Elements/Gauss_Outputs"][14,:] Pore_Pressure = np.append(Pore_Pressure,upU_p); Solid_Displacement_u = np.append(Solid_Displacement_u , u_u); Solid_Displacement_uPU = np.append(Solid_Displacement_uPU, upU_u); Fluid_Displacement_uPU = np.append(Fluid_Displacement_uPU, upU_U); Time = np.append(Time, times); ##### Start Plotting ax.semilogx(Time,Pore_Pressure,'b',linewidth=2,label=r'Pore Pressure $p$'); ax.hold(True); ax.hold(True); # max_yticks = 5 # yloc = plt.MaxNLocator(max_yticks) # ax.yaxis.set_major_locator(yloc) # max_xticks = 5 # yloc = plt.MaxNLocator(max_xticks) # ax.xaxis.set_major_locator(yloc) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.35), ncol=2, fancybox=True, shadow=True, prop={'size': 24}) pylab.savefig("Current_Excess_Pore_Pressure.pdf", bbox_inches='tight') ##### Drainage Condition ##### ax.hold(False); fig = plt.figure(); ax = plt.subplot(111) ax.semilogx(Time,Solid_Displacement_uPU*1e8,'k',linewidth=3,label=r'$upU\_u$'); ax.hold(True); ax.semilogx(Time,Fluid_Displacement_uPU*1e8,'b',linewidth=10,label=r'$upU\_U$'); ax.hold(True); ax.semilogx(Time,Solid_Displacement_u*1e8,'r',linewidth=3,label=r'$u\_u$'); ax.hold(True); ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Displacement $\times 1e^{-8}$ [m] ") ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=4, fancybox=True, shadow=True, prop={'size': 24}) # max_yticks = 5 # yloc = plt.MaxNLocator(max_yticks) # ax.yaxis.set_major_locator(yloc) # max_xticks = 5 # yloc = plt.MaxNLocator(max_xticks) # ax.xaxis.set_major_locator(yloc) pylab.savefig("Current_Displacement_At_Interface", bbox_inches='tight') # plt.show()
cc0-1.0
nikitasingh981/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
103
2017
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matplotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
isb-cgc/ISB-CGC-data-proc
tcga_etl_pipeline/maf/part2/transform.py
1
11107
""" Script to merge Oncotator file """ #### -*- coding: utf-8 -*- import sys import time import pandas as pd import json import check_duplicates from bigquery_etl.utils import gcutils from bigquery_etl.extract.gcloud_wrapper import GcsConnector from bigquery_etl.utils.logging_manager import configure_logging from bigquery_etl.extract.utils import convert_file_to_dataframe from bigquery_etl.transform.tools import cleanup_dataframe, remove_duplicates from bigquery_etl.execution import process_manager log_filename = 'etl_maf_part2.log' log_name = 'etl_maf_part2.log' log = configure_logging(log_name, log_filename) #-------------------------------------- # Format Oncotator output before merging #-------------------------------------- def format_oncotator_columns(df): df.columns = map(lambda x: x.replace('1000', '_1000'), df.columns) df.columns = map(lambda x: x.replace('gencode', 'GENCODE'), df.columns) df.columns = map(lambda x: '_'.join([''.join(i[0].upper() + i[1:]) for i in x.split('_')]), df.columns) # adjust columns replace_columns = { 'Tumor_Sample_Barcode' : 'Tumor_AliquotBarcode' ,'Matched_Norm_Sample_Barcode' : 'Normal_AliquotBarcode' ,'Match_Norm_Seq_Allele1' : 'Normal_Seq_Allele1' ,'Match_Norm_Seq_Allele2' : 'Normal_Seq_Allele2' ,'Match_Norm_Validation_Allele1' : 'Normal_Validation_Allele1' ,'Match_Norm_Validation_Allele2' : 'Normal_Validation_Allele2' ,'Gc_Content' : 'GC_Content' ,'CDNA_Change' : 'cDNA_Change' } for i in replace_columns: df.columns = map(lambda x: x.replace(i, replace_columns[i]), df.columns) return df #------------------------------------------ # this adds news columns and does a few checks on the columns #------------------------------------------ def add_columns(df, sample_code2letter, study): ## Add new columns df['Tumor_SampleBarcode'] = df['Tumor_AliquotBarcode'].map(lambda x: '-'.join(x.split('-')[0:4])) df['Tumor_ParticipantBarcode'] = df['Tumor_AliquotBarcode'].map(lambda x: '-'.join(x.split('-')[0:3])) df['Tumor_SampleTypeLetterCode'] = df['Tumor_AliquotBarcode'].map(lambda x: sample_code2letter[x.split('-')[3][0:2]]) df['Normal_SampleBarcode'] = df['Normal_AliquotBarcode'].map(lambda x: '-'.join(x.split('-')[0:4])) df['Normal_ParticipantBarcode'] = df['Normal_AliquotBarcode'].map(lambda x: '-'.join(x.split('-')[0:3])) df['Normal_SampleTypeLetterCode'] = df['Normal_AliquotBarcode'].map(lambda x: sample_code2letter[x.split('-')[3][0:2]]) df['Center'] = df['Center'].map(lambda x: ';'.join(sorted(x.split(';'))) if ';' in x else x) df['Study'] = study df['NCBI_Build'] = 37 # --------------------------------------------- # Checks # --------------------------------------------- # check patient_id tumor_patient_id_bool = (df['Tumor_ParticipantBarcode'] == df['Normal_ParticipantBarcode']) df = df[tumor_patient_id_bool] if not df[~tumor_patient_id_bool].empty: log.error('ERROR: did not find all tumors paired with normal samples') raise ValueError('ERROR: did not find all tumors paired with normal samples') # tumor barcode 14th character must be 0 tumor_sample_codes = map(lambda x: x.split('-')[3][0], df['Tumor_AliquotBarcode']) if '0' not in tumor_sample_codes and len(tumor_sample_codes) > 0: log.error('ERROR: tumor barcode 14th character must be 0') raise ValueError('ERROR: tumor barcode 14th character must be 0') # normal barcode 14th character must be 1 norm_sample_codes = map(lambda x: x.split('-')[3][0], df['Normal_AliquotBarcode']) if '1' not in norm_sample_codes and len(norm_sample_codes) > 0: log.error('ERROR: normal barcode 14th character must be 1') raise ValueError('ERROR: normal barcode 14th character must be 1') df['ParticipantBarcode'] = df['Tumor_ParticipantBarcode'] del df['Tumor_ParticipantBarcode'] del df['Normal_ParticipantBarcode'] return df #---------------------------------------- # this is the main function to process oncotator MAF files # 1. this merges the different files by disease type # 2. selects the columns to load into BigQuery # 3. format the oncotator columns # 4. adds new columns # 5. removes any duplicate aliqouts #---------------------------------------- def process_oncotator_output(project_id, bucket_name, data_library, bq_columns, sample_code2letter, oncotator_object_path, oncotator_object_output_path): study = data_library['Study'].iloc[0] # this needed to stop pandas from converting them to FLOAT dtype = { "Transcript_Exon" : "object" ,"NCBI_Build" : "object" ,"COSMIC_Total_Alterations_In_Gene" : "object" ,"CCLE_ONCOMAP_Total_Mutations_In_Gene" : "object" ,"HGNC_HGNC_ID" : "object" ,"UniProt_AApos" : "object" ,"Transcript_Position" : "object" ,"HGNC_OMIM_ID_Supplied_By_NCBI" : "object" } file_count = 0 # create an empty dataframe. we use this to merge dataframe disease_bigdata_df = pd.DataFrame() # iterate over the selected files for oncotator_file in data_library['filename']: file_count+= 1 log.info('-'*10 + "{0}: Processing file {1}".format(file_count, oncotator_file) + '-'*10) try: # covert the file to a dataframe filename = oncotator_object_path + oncotator_file gcs = GcsConnector(project_id, bucket_name) log.info('%s: converting %s to dataframe' % (study, filename)) df = gcutils.convert_blob_to_dataframe(gcs, project_id, bucket_name, filename, log = log) log.info('%s: done converting %s to dataframe' % (study, filename)) except RuntimeError as re: log.warning('%s: problem cleaning dataframe for %s: %s' % (study, filename, re)) except Exception as e: log.exception('%s: problem converting to dataframe for %s: %s' % (study, filename, e)) raise e if df.empty: log.warning('%s: empty dataframe for file: %s' % (study, oncotator_file)) continue #------------------------------ # different operations on the frame #------------------------------ # get only the required BigQuery columns df = df[bq_columns] # format oncotator columns; name changes etc df = format_oncotator_columns(df) # add new columns df = add_columns(df, sample_code2letter, study) disease_bigdata_df = disease_bigdata_df.append(df, ignore_index = True) log.info('-'*10 + "{0}: Finished file({3}) {1}. rows: {2}".format(file_count, oncotator_file, len(df), study) + '-'*10) # this is a merged dataframe if not disease_bigdata_df.empty: # remove duplicates; various rules; see check duplicates) log.info('\tcalling check_duplicates to collapse aliquots with %s rows' % (len(disease_bigdata_df))) disease_bigdata_df = check_duplicates.remove_maf_duplicates(disease_bigdata_df, sample_code2letter, log) log.info('\tfinished check_duplicates to collapse aliquots with %s rows' % (len(disease_bigdata_df))) # enforce unique mutation--previous # unique_mutation = ['Chromosome', 'Start_Position', 'End_Position', 'Tumor_Seq_Allele1', 'Tumor_Seq_Allele2', 'Tumor_AliquotBarcode'] # enforce unique mutation unique_mutation = ['Hugo_Symbol', 'Entrez_Gene_Id', 'Chromosome', 'Start_Position', 'End_Position', 'Reference_Allele', 'Tumor_Seq_Allele1', 'Tumor_Seq_Allele2', 'Tumor_AliquotBarcode'] # merge mutations from multiple centers log.info('\tconsolidate the centers for duplicate mutations into list for %s' % (study)) seencenters = set() def concatcenters(df_group): if len(df_group) > 1: centers = list(set(df_group['Center'].tolist())) uniquecenters = set() delim = config['maf']['center_delim'] for center in centers: fields = center.split(delim) for field in fields: uniquecenters.add(field) sortedunique = delim.join(sorted(list(uniquecenters))) df_group.loc[:,'Center'] = sortedunique if sortedunique not in seencenters: log.info('unique centers: %s' % sortedunique) seencenters.add(sortedunique) return df_group disease_bigdata_df = disease_bigdata_df.groupby(unique_mutation).apply(concatcenters) log.info('\tfinished consolidating centers for duplicate mutations for %s' % (study)) # enforce unique mutation log.info('\tcalling remove_duplicates to collapse mutations with %s rows for %s' % (len(disease_bigdata_df), study)) disease_bigdata_df = remove_duplicates(disease_bigdata_df, unique_mutation) log.info('\tfinished remove_duplicates to collapse mutations with %s rows for %s' % (len(disease_bigdata_df), study)) # convert the disease_bigdata_df to new-line JSON and upload the file uploadpath = oncotator_object_output_path + "{0}.json".format(study) log.info('%s: uploading %s to GCS' % (study, uploadpath)) gcs.convert_df_to_njson_and_upload(disease_bigdata_df, uploadpath) log.info('%s: done uploading %s to GCS' % (study, uploadpath)) else: log.warning('Empty dataframe for %s in %s!' % (oncotator_file, study)) return True if __name__ == '__main__': log.info('start maf part2 pipeline') config = json.load(open(sys.argv[1])) project_id = config['project_id'] bucket_name = config['buckets']['open'] sample_code2letter = config['sample_code2letter'] # get disease_codes/studies( TODO this must be changed to get the disease code from the file name) df = convert_file_to_dataframe(open(sys.argv[2])) df = cleanup_dataframe(df) studies = list(set(df['Study'].tolist())) # get bq columns ( this allows the user to select the columns # , without worrying about the index, case-sensitivenes etc selected_columns = pd.read_table(sys.argv[3], names=['bq_columns']) transposed = selected_columns.T transposed.columns = transposed.loc['bq_columns'] transposed = cleanup_dataframe(transposed) bq_columns = transposed.columns.values # submit threads by disease code pm = process_manager.ProcessManager(max_workers=33, db='maf.db', table='task_queue_status', log=log) for idx, df_group in df.groupby(['Study']): future = pm.submit(process_oncotator_output, project_id, bucket_name, df_group, bq_columns, sample_code2letter, config['maf']['oncotator_object_path'], config['maf']['oncotator_object_output_path']) #process_oncotator_output( project_id, bucket_name, df_group, bq_columns, sample_code2letter) time.sleep(0.2) pm.start() log.info('finished maf part2 pipeline')
apache-2.0
bh107/bohrium
bridge/bh107/bh107/random.py
2
19401
# -*- coding: utf-8 -*- import os import datetime import numpy as np from . import bharray, _dtype_util, util from .ufuncs import ufunc_dict from bohrium_api import _bh_api class RandomState: def __init__(self, seed=None): """Container for the Random123 pseudo-random number generator. `RandomState` exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument `size` that defaults to ``None``. If `size` is ``None``, then a single value is generated and returned. If `size` is an integer, then a 1-D array filled with generated values is returned. If `size` is a tuple, then an array with that shape is filled and returned. Parameters ---------- seed : int, optional Random seed initializing the pseudo-random number generator. Can be an integer or ``None`` (the default). If `seed` is ``None``, then `RandomState` will try to read data from ``/dev/urandom`` (or the Windows analogue) if available or seed from the clock otherwise. """ self.key = None self.index = None self.has_gauss = None self.seed(seed) def seed(self, seed=None): """Seed the generator. This method is called when `RandomState` is initialized. It can be called again to re-seed the generator. For details, see `RandomState`. Parameters ---------- seed : int or array_like, optional Seed for `RandomState`. See Also -------- RandomState """ if seed is None: try: self.key = np.uint32(hash(os.urandom(8))) except NotImplementedError: self.key = np.uint32(hash(datetime.datetime.now())) else: self.key = np.uint32(seed) self.index = 0 self.has_gauss = False def get_state(self): """Return a tuple representing the internal state of the generator. For more details, see `set_state`. Returns ------- out : tuple(str, np.uint64, np.uint32) The returned tuple has the following items: 1. the string 'Random123'. 2. an integer ``index``. 3. an integer ``key``. See Also -------- set_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in Bohrium. If the internal state is manually altered, the user should know exactly what he/she is doing. """ return ('Random123', self.index, self.key) def set_state(self, state): """Set the internal state of the generator from a tuple. For use if one has reason to manually (re-)set the internal state of the "Mersenne Twister"[1]_ pseudo-random number generating algorithm. Parameters ---------- state : tuple(str, np.uint64, np.uint32) The returned tuple has the following items: 1. the string 'Random123'. 2. an integer ``index``. 3. an integer ``key``. Returns ------- out : None Returns 'None' on success. See Also -------- get_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in Bohrium. If the internal state is manually altered, the user should know exactly what he/she is doing. """ if len(state) != 3: raise ValueError("state must contain 3 elements") if state[0] != 'Random123': raise ValueError("algorithm must be 'Random123'") try: self.index = state[1] self.key = state[2] except TypeError: raise ValueError("state is not a valid Random123 state") def random123(self, shape): """New array of uniform pseudo numbers based on the random123 philox2x32 algorithm. NB: dtype is np.uint64 always Parameters ---------- shape : int or tuple of ints Defines the shape of the returned array of random floats. Returns ------- out : Array of uniform pseudo numbers """ if np.isscalar(shape): shape = (shape,) length = util.total_size(shape) flat = bharray.BhArray(length, np.uint64) if length > 0: _bh_api.random123(flat._bhc_handle, self.index, self.key) self.index += flat.nelem return flat.reshape(shape) def random_sample(self, shape): """Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- shape : int or tuple of ints Defines the shape of the returned array of random floats. Returns ------- out : BhArray of floats Array of random floats of shape `shape`. Examples -------- >>> np.random.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) """ # Generate random numbers as uint r_uint = self.random123(shape) # Convert random numbers to float in the interval [0.0, 1.0) and return. return r_uint.astype(np.float64) / np.iinfo(np.uint64).max def randint(self, low, high=None, shape=None): """Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). shape : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : BhArray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) """ if high is None: high = low low = 0 if low >= high: raise ValueError("low >= high") diff = high - low return self.random123(shape) % diff + low def uniform(self, low=0.0, high=1.0, shape=None): """Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. shape : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : BhArray Drawn samples, with shape `shape`. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \\frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. same as: random_sample(size) * (high - low) + low Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, normed=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() """ return self.random_sample(shape).astype(np.float64) * (high - low) + low def rand(self, *shape): """Random values in a given shape. Create an array of the given shape and propagate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned. Returns ------- out : BhArray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Notes ----- This is a convenience function. If you want an interface that takes a shape-tuple as the first argument, refer to np.random.random_sample . Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random """ return self.random_sample(shape) def random_integers(self, low, high=None, shape=None): """Return random integers between `low` and `high`, inclusive. Return random integers from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). shape : tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : BhArray of ints `size`-shaped array of random integers from the appropriate distribution. See Also -------- random.randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (bh107.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 >>> type(np.random.random_integers(5)) <type 'int'> >>> np.random.random_integers(5, size=(3.,2.)) array([[5, 4], [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, normed=True) >>> plt.show() """ if high is None: high = low low = 1 return self.randint(low, high + 1, shape) def standard_exponential(self, shape=None): """ Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- shape : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : BhArray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) """ # We use -log(1-U) since U is [0, 1) */ return -1 * ufunc_dict['log'](1 - self.random_sample(shape)) def exponential(self, scale=1.0, shape=None): """ Exponential distribution. Its probability density function is .. math:: f(x; \\frac{1}{\\beta}) = \\frac{1}{\\beta} \\exp(-\\frac{x}{\\beta}), for ``x > 0`` and 0 elsewhere. :math:`\\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\\lambda = 1/\\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float The scale parameter, :math:`\\beta = 1/\\lambda`. shape : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Returns ------- out : BhArray Drawn samples. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] "Poisson Process", Wikipedia, http://en.wikipedia.org/wiki/Poisson_process .. [3] "Exponential Distribution, Wikipedia, http://en.wikipedia.org/wiki/Exponential_distribution """ if scale <= 0: raise ValueError("The `scale` must be greater than zero") return self.standard_exponential(shape) * scale def random(self, shape=None): """Return random floats in the half-open interval [0.0, 1.0). Alias for `random_sample` """ return self.random_sample(shape) def sample(self, shape=None): """Return random floats in the half-open interval [0.0, 1.0). Alias for `random_sample` """ return self.random_sample(shape) def ranf(self, shape=None): """Return random floats in the half-open interval [0.0, 1.0). Alias for `random_sample` """ return self.random_sample(shape) def random_of_dtype(self, dtype, shape=None): """Return random array of `dtype`. The values are in the interval of the `dtype`. Parameters ---------- dtype : data-type The desired data-type for the array. shape : int or tuple of ints Defines the shape of the returned array of random floats. Returns ------- out : BhArray of floats Array of random floats of shape `shape`. """ dtype = _dtype_util.obj_to_dtype(dtype) if dtype is np.bool: res = self.random_integers(0, 1, shape) elif dtype in [np.int8, np.uint8]: res = self.random_integers(1, 3, shape) elif dtype is np.int16: res = self.random_integers(1, 5, shape) elif dtype is np.uint16: res = self.random_integers(1, 6, shape) elif dtype in [np.float32, np.float64]: res = self.random_sample(shape) elif dtype in [np.complex64, np.complex128]: res = self.random_sample(shape=shape) + self.random_sample(shape=shape) * 1j else: res = self.random_integers(1, 8, shape) if len(res.shape) == 0: # Make sure scalars is arrays. res = bharray.BhArray.from_object(res) res.shape = shape return res.astype(dtype) # The default random object _inst = RandomState() seed = _inst.seed get_state = _inst.get_state set_state = _inst.set_state random_sample = _inst.random_sample random = _inst.random sample = _inst.sample ranf = _inst.ranf randint = _inst.randint uniform = _inst.uniform rand = _inst.rand random_integers = _inst.random_integers standard_exponential = _inst.standard_exponential exponential = _inst.exponential random_of_dtype = _inst.random_of_dtype
apache-2.0
IshankGulati/scikit-learn
sklearn/metrics/cluster/unsupervised.py
11
10179
"""Unsupervised evaluation metrics.""" # Authors: Robert Layton <[email protected]> # Arnaud Fouchet <[email protected]> # Thierry Guillemot <[email protected]> # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ...utils import check_X_y from ...utils.fixes import bincount from ..pairwise import pairwise_distances from ...preprocessing import LabelEncoder def check_number_of_labels(n_labels, n_samples): if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ if sample_size is not None: X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <https://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ X, labels = check_X_y(X, labels, accept_sparse=['csc', 'csr']) le = LabelEncoder() labels = le.fit_transform(labels) check_number_of_labels(len(le.classes_), X.shape[0]) distances = pairwise_distances(X, metric=metric, **kwds) unique_labels = le.classes_ n_samples_per_label = bincount(labels, minlength=len(unique_labels)) # For sample i, store the mean distance of the cluster to which # it belongs in intra_clust_dists[i] intra_clust_dists = np.zeros(distances.shape[0], dtype=distances.dtype) # For sample i, store the mean distance of the second closest # cluster in inter_clust_dists[i] inter_clust_dists = np.inf + intra_clust_dists for curr_label in range(len(unique_labels)): # Find inter_clust_dist for all samples belonging to the same # label. mask = labels == curr_label current_distances = distances[mask] # Leave out current sample. n_samples_curr_lab = n_samples_per_label[curr_label] - 1 if n_samples_curr_lab != 0: intra_clust_dists[mask] = np.sum( current_distances[:, mask], axis=1) / n_samples_curr_lab # Now iterate over all other labels, finding the mean # cluster distance that is closest to every sample. for other_label in range(len(unique_labels)): if other_label != curr_label: other_mask = labels == other_label other_distances = np.mean( current_distances[:, other_mask], axis=1) inter_clust_dists[mask] = np.minimum( inter_clust_dists[mask], other_distances) sil_samples = inter_clust_dists - intra_clust_dists sil_samples /= np.maximum(intra_clust_dists, inter_clust_dists) # score 0 for clusters of size 1, according to the paper sil_samples[n_samples_per_label.take(labels) == 1] = 0 return sil_samples def calinski_harabaz_score(X, labels): """Compute the Calinski and Harabaz score. The score is defined as ratio between the within-cluster dispersion and the between-cluster dispersion. Read more in the :ref:`User Guide <calinski_harabaz_index>`. Parameters ---------- X : array-like, shape (``n_samples``, ``n_features``) List of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like, shape (``n_samples``,) Predicted labels for each sample. Returns ------- score : float The resulting Calinski-Harabaz score. References ---------- .. [1] `T. Calinski and J. Harabasz, 1974. "A dendrite method for cluster analysis". Communications in Statistics <http://www.tandfonline.com/doi/abs/10.1080/03610927408827101>`_ """ X, labels = check_X_y(X, labels) le = LabelEncoder() labels = le.fit_transform(labels) n_samples, _ = X.shape n_labels = len(le.classes_) check_number_of_labels(n_labels, n_samples) extra_disp, intra_disp = 0., 0. mean = np.mean(X, axis=0) for k in range(n_labels): cluster_k = X[labels == k] mean_k = np.mean(cluster_k, axis=0) extra_disp += len(cluster_k) * np.sum((mean_k - mean) ** 2) intra_disp += np.sum((cluster_k - mean_k) ** 2) return (1. if intra_disp == 0. else extra_disp * (n_samples - n_labels) / (intra_disp * (n_labels - 1.)))
bsd-3-clause
wdurhamh/statsmodels
statsmodels/sandbox/nonparametric/tests/ex_gam_am_new.py
34
2606
# -*- coding: utf-8 -*- """Example for gam.AdditiveModel and PolynomialSmoother This example was written as a test case. The data generating process is chosen so the parameters are well identified and estimated. Created on Fri Nov 04 13:45:43 2011 Author: Josef Perktold """ from __future__ import print_function from statsmodels.compat.python import lrange, zip import time import numpy as np #import matplotlib.pyplot as plt from numpy.testing import assert_almost_equal from scipy import stats from statsmodels.sandbox.gam import AdditiveModel from statsmodels.sandbox.gam import Model as GAM #? from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.regression.linear_model import OLS, WLS np.random.seed(8765993) #seed is chosen for nice result, not randomly #other seeds are pretty off in the prediction #DGP: simple polynomial order = 3 sigma_noise = 0.5 nobs = 1000 #1000 #with 1000, OLS and Additivemodel aggree in params at 2 decimals lb, ub = -3.5, 4#2.5 x1 = np.linspace(lb, ub, nobs) x2 = np.sin(2*x1) x = np.column_stack((x1/x1.max()*2, x2)) exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1) idx = lrange((order+1)*2) del idx[order+1] exog_reduced = exog[:,idx] #remove duplicate constant y_true = exog.sum(1) / 2. z = y_true #alias check d = x y = y_true + sigma_noise * np.random.randn(nobs) example = 1 if example == 1: m = AdditiveModel(d) m.fit(y) y_pred = m.results.predict(d) for ss in m.smoothers: print(ss.params) res_ols = OLS(y, exog_reduced).fit() print(res_ols.params) #assert_almost_equal(y_pred, res_ols.fittedvalues, 3) if example > 0: import matplotlib.pyplot as plt plt.figure() plt.plot(exog) y_pred = m.results.mu# + m.results.alpha #m.results.predict(d) plt.figure() plt.subplot(2,2,1) plt.plot(y, '.', alpha=0.25) plt.plot(y_true, 'k-', label='true') plt.plot(res_ols.fittedvalues, 'g-', label='OLS', lw=2, alpha=-.7) plt.plot(y_pred, 'r-', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel') counter = 2 for ii, xx in zip(['z', 'x1', 'x2'], [z, x[:,0], x[:,1]]): sortidx = np.argsort(xx) #plt.figure() plt.subplot(2, 2, counter) plt.plot(xx[sortidx], y[sortidx], '.', alpha=0.25) plt.plot(xx[sortidx], y_true[sortidx], 'k.', label='true', lw=2) plt.plot(xx[sortidx], y_pred[sortidx], 'r.', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel ' + ii) counter += 1 plt.show()
bsd-3-clause
alongwithyou/auto-sklearn
autosklearn/models/models.py
5
10413
import numpy as np import scipy as sp from sklearn.linear_model import Ridge, RidgeClassifier, LogisticRegression from sklearn.naive_bayes import BernoulliNB from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor, BaggingClassifier, BaggingRegressor, RandomForestClassifier from sklearn.pipeline import Pipeline from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from autosklearn.constants import * import operator import copy class MyAutoML: ''' Rough sketch of a class that "solves" the AutoML problem. We illustrate various type of data that will be encountered in the challenge can be handled. Also, we make sure that the model regularly outputs predictions on validation and test data, such that, if the execution of the program is interrupted (timeout) there are still results provided by the program. The baseline methods chosen are not optimized and do not provide particularly good results. In particular, no special effort was put into dealing with missing values and categorical variables. The constructor selects a model based on the data information passed as argument. This is a form of model selection "filter". We anticipate that the participants may compute a wider range of statistics to perform filter model selection. We also anticipate that the participants will conduct cross-validation experiments to further select amoung various models and hyper-parameters of the model. They might walk trough "model space" systematically (e.g. with grid search), heuristically (e.g. with greedy strategies), or stochastically (random walks). This example does not bother doing that. We simply use a growing ensemble of models to improve predictions over time. We use ensemble methods that vote on an increasing number of classifiers. For efficiency, we use WARM START that re-uses already trained base predictors, when available. IMPORTANT: This is just a "toy" example: - if was checked only on the phase 0 data at the time of release - not all cases are considered - this could easily break on datasets from further phases - this is very inefficient (most ensembles_statistics have no "warm start" option, hence we do a lot of unnecessary calculations) - there is no preprocessing ''' def __init__(self, info, verbose=True, debug_mode=False): self.label_num=info['label_num'] self.target_num=info['target_num'] self.task = info['task'] self.metric = info['metric'] self.postprocessor = None self.seed = 1 #self.postprocessor = MultiLabelEnsemble(LogisticRegression(), balance=True) # To calibrate proba self.postprocessor = MultiLabelEnsemble(LogisticRegression(), balance=False) # To calibrate proba if debug_mode>=2: self.name = "RandomPredictor" self.model = RandomPredictor(self.target_num) self.predict_method = self.model.predict_proba return if info['task']==REGRESSION: if info['is_sparse']==True: self.name = "BaggingRidgeRegressor" self.model = BaggingRegressor(base_estimator=Ridge(), n_estimators=1, verbose=verbose, random_state=self.seed) # unfortunately, no warm start... else: self.name = "GradientBoostingRegressor" self.model = GradientBoostingRegressor(n_estimators=1, verbose=verbose, warm_start = True, random_state=self.seed) self.predict_method = self.model.predict # Always predict probabilities else: if info['has_categorical']: # Out of lazziness, we do not convert categorical variables... self.name = "RandomForestClassifier" self.model = RandomForestClassifier(n_estimators=1, verbose=verbose, random_state=self.seed) # unfortunately, no warm start... elif info['is_sparse']: self.name = "BaggingNBClassifier" self.model = BaggingClassifier(base_estimator=BernoulliNB(), n_estimators=1, verbose=verbose, random_state=self.seed) # unfortunately, no warm start... else: self.name = "GradientBoostingClassifier" self.model = eval(self.name + "(n_estimators=1, verbose=" + str(verbose) + ", min_samples_split=10, random_state=1, warm_start = True)") if info['task']==MULTILABEL_CLASSIFICATION: self.model = MultiLabelEnsemble(self.model) self.predict_method = self.model.predict_proba def __repr__(self): return "MyAutoML : " + self.name def __str__(self): return "MyAutoML : \n" + str(self.model) def fit(self, X, Y): self.model.fit(X,Y) # Train a calibration model postprocessor if self.task != REGRESSION and self.postprocessor!=None: Yhat = self.predict_method(X) self.postprocessor.fit(Yhat, Y) return self def predict(self, X): prediction = self.predict_method(X) # Calibrate proba if self.task != REGRESSION and self.postprocessor!=None: prediction = self.postprocessor.predict_proba(prediction) # Keep only 2st column because the second one is 1-first if self.target_num==1 and len(prediction.shape)>1 and prediction.shape[1]>1: prediction = prediction[:,1] # Make sure the normalization is correct if self.task==MULTICLASS_CLASSIFICATION: eps = 1e-15 norma = np.sum(prediction, axis=1) for k in range(prediction.shape[0]): prediction[k,:] /= sp.maximum(norma[k], eps) return prediction class MultiLabelEnsemble: ''' MultiLabelEnsemble(predictorInstance, balance=False) Like OneVsRestClassifier: Wrapping class to train multiple models when several objectives are given as target values. Its predictor may be an ensemble. This class can be used to create a one-vs-rest classifier from multiple 0/1 labels to treat a multi-label problem or to create a one-vs-rest classifier from a categorical target variable. Arguments: predictorInstance -- A predictor instance is passed as argument (be careful, you must instantiate the predictor class before passing the argument, i.e. end with (), e.g. LogisticRegression(). balance -- True/False. If True, attempts to re-balance classes in training data by including a random sample (without replacement) s.t. the largest class has at most 2 times the number of elements of the smallest one. Example Usage: mymodel = MultiLabelEnsemble (GradientBoostingClassifier(), True)''' def __init__(self, predictorInstance, balance=False): self.predictors = [predictorInstance] self.n_label = 1 self.n_target = 1 self.n_estimators = 1 # for predictors that are ensembles_statistics of estimators self.balance=balance def __repr__(self): return "MultiLabelEnsemble" def __str__(self): return "MultiLabelEnsemble : \n" + "\tn_label={}\n".format(self.n_label) + "\tn_target={}\n".format(self.n_target) + "\tn_estimators={}\n".format(self.n_estimators) + str(self.predictors[0]) def fit(self, X, Y): if len(Y.shape)==1: Y = np.array([Y]).transpose() # Transform vector into column matrix # This is NOT what we want: Y = Y.reshape( -1, 1 ), because Y.shape[1] out of range self.n_target = Y.shape[1] # Num target values = num col of Y self.n_label = len(set(Y.ravel())) # Num labels = num classes (categories of categorical var if n_target=1 or n_target if labels are binary ) # Create the right number of copies of the predictor instance if len(self.predictors)!=self.n_target: predictorInstance = self.predictors[0] self.predictors = [predictorInstance] for i in range(1,self.n_target): self.predictors.append(copy.copy(predictorInstance)) # Fit all predictors np.random.seed(1) for i in range(self.n_target): # Update the number of desired prodictos if hasattr(self.predictors[i], 'n_estimators'): self.predictors[i].n_estimators=self.n_estimators # Subsample if desired if self.balance: pos = Y[:,i]>0 neg = Y[:,i]<=0 if sum(pos)<sum(neg): chosen = pos not_chosen = neg else: chosen = neg not_chosen = pos num = sum(chosen) idx=filter(lambda(x): x[1]==True, enumerate(not_chosen)) idx=np.array(zip(*idx)[0]) np.random.shuffle(idx) chosen[idx[0:min(num, len(idx))]]=True # Train with chosen samples self.predictors[i].fit(X[chosen,:],Y[chosen,i]) else: self.predictors[i].fit(X,Y[:,i]) return def predict_proba(self, X): prediction = self.predictors[0].predict_proba(X) if self.n_label==2: # Keep only 1 prediction, 1st column = (1 - 2nd column) prediction = prediction[:,1] for i in range(1,self.n_target): # More than 1 target, we assume that labels are binary new_prediction = self.predictors[i].predict_proba(X)[:,1] prediction = np.column_stack((prediction, new_prediction)) return prediction class RandomPredictor: ''' Make random predictions.''' def __init__(self, target_num): self.target_num=target_num return def __repr__(self): return "RandomPredictor" def __str__(self): return "RandomPredictor" def fit(self, X, Y): if len(Y.shape)>1: assert(self.target_num==Y.shape[1]) return self def predict_proba(self, X): prediction = np.random.rand(X.shape[0],self.target_num) return prediction
bsd-3-clause
glouppe/scikit-learn
sklearn/tests/test_multiclass.py
14
21802
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.utils.multiclass import check_classification_targets, type_of_target from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_check_classification_targets(): # Test that check_classification_target return correct type. #5782 y = np.array([0.0, 1.1, 2.0, 3.0]) msg = type_of_target(y) assert_raise_message(ValueError, msg, check_classification_targets, y) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): clf = OneVsRestClassifier(base_clf).fit(X, y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs)
bsd-3-clause
INCF/pybids
bids/variables/collections.py
1
23588
"""Classes and functions related to the management of sets of BIDSVariables.""" from copy import copy import warnings import re from collections import OrderedDict from itertools import chain import fnmatch import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype from .variables import (SparseRunVariable, SimpleVariable, DenseRunVariable, merge_variables, BIDSVariable) from bids.utils import listify, matches_entities class BIDSVariableCollection(object): """A container for one or more variables extracted from variable files at a single level of analysis. Parameters ---------- variables : list A list of BIDSVariables or SimpleVariables. Notes ----- Variables in the list must all share the same analysis level, which must be one of 'session', 'subject', or 'dataset' level. For run-level Variables, use the BIDSRunVariableCollection. """ def __init__(self, variables): if not variables: raise ValueError("No variables were provided") SOURCE_TO_LEVEL = { 'events': 'run', 'physio': 'run', 'stim': 'run', 'regressors': 'run', 'scans': 'session', 'sessions': 'subject', 'participants': 'dataset' } var_levels = set([SOURCE_TO_LEVEL[v.source] if v.source in SOURCE_TO_LEVEL else v.source for v in variables]) # TODO: relax this requirement & allow implicit merging between levels if len(var_levels) > 1: raise ValueError("A Collection cannot be initialized from " "variables at more than one level of analysis. " "Levels found in input variables: %s" % var_levels) elif not var_levels: raise ValueError( "None of the provided variables matched any of the known levels, which are: %s" % (', '.join(sorted(SOURCE_TO_LEVEL.values()))) ) self.level = list(var_levels)[0] variables = self.merge_variables(variables) self.variables = {v.name: v for v in variables} self._index_entities() # Container for variable groups (see BIDS-StatsModels spec)--maps from # group names to lists of variables. self.groups = {} @staticmethod def merge_variables(variables, **kwargs): """Concatenates Variables along row axis. Parameters ---------- variables : list List of Variables to merge. Variables can have different names (and all Variables that share a name will be concatenated together). Returns ------- list A list of Variables. """ var_dict = OrderedDict() for v in variables: if v.name not in var_dict: var_dict[v.name] = [] var_dict[v.name].append(v) return [merge_variables(vars_, **kwargs) for vars_ in list(var_dict.values())] def to_df(self, variables=None, format='wide', fillna=np.nan, entities=True, timing=True): """Merge variables into a single pandas DataFrame. Parameters ---------- variables : list of str or BIDSVariable Optional list of variables or variable names to retain. If strings are passed, each one gives the name of a variable in the current collection. If BIDSVariables are passed, they will be used as-is. If None, all variables are returned. Strings and BIDSVariables cannot be mixed in the list. format : {'wide', 'long'} Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique entity combination, and each variable is in a separate column. In 'long' format, each row is a unique combination of entities and variable names, and a single 'amplitude' column provides the value. fillna : value Replace missing values with the specified value. entities : bool Whether or not to include a column for each entity. timing : bool Whether or not to include onset and duration columns. Returns ------- :obj:`pandas.DataFrame` A pandas DataFrame. """ if variables is None: variables = list(self.variables.keys()) # Can receive already-selected Variables from sub-classes if not isinstance(variables[0], BIDSVariable): variables = [v for v in self.variables.values() if v.name in variables] # Convert all variables to separate DFs. # Note: bad things can happen if we pass the conditions, entities, and # timing flags through to the individual variables and then do # concat/reshaping operations. So instead, we set them all to True # temporarily, do what we need to, then drop them later if needed. dfs = [v.to_df(True, True, timing=True) for v in variables] # Always concatenate along row axis (for format='wide', we'll pivot). df = pd.concat(dfs, axis=0, sort=True) ind_cols = list(set(df.columns) - {'condition', 'amplitude'}) ent_cols = list(set(ind_cols) - {'onset', 'duration'}) if format == 'long': df = df.reset_index(drop=True).fillna(fillna) else: df['amplitude'] = df['amplitude'].fillna('n/a') df = df.pivot_table(index=ind_cols, columns='condition', values='amplitude', aggfunc='first') df = df.reset_index().replace('n/a', fillna) df.columns.name = None # Drop any columns we don't want if not timing: df.drop(['onset', 'duration'], axis=1, inplace=True) if not entities: df.drop(ent_cols, axis=1, inplace=True) return df @classmethod def from_df(cls, data, entities=None, source='contrast'): """Create a Collection from a pandas DataFrame. Parameters ---------- df : :obj:`pandas.DataFrame` The DataFrame to convert to a Collection. Each column will be converted to a SimpleVariable. entities : :obj:`pandas.DataFrame` An optional second DataFrame containing entity information. source : str The value to set as the source for all Variables. Returns ------- BIDSVariableCollection """ variables = [] for col in data.columns: _data = pd.DataFrame(data[col].values, columns=['amplitude']) if entities is not None: _data = pd.concat([_data, entities], axis=1, sort=True) variables.append(SimpleVariable(name=col, data=_data, source=source)) return BIDSVariableCollection(variables) def clone(self): """Returns a shallow copy of the current instance, except that all variables are deep-cloned. """ clone = copy(self) clone.variables = {k: v.clone() for (k, v) in self.variables.items()} return clone def _index_entities(self): """Sets current instance's entities based on the existing index. Notes ----- Only entity key/value pairs common to all rows in all contained Variables are returned. E.g., if a Collection contains Variables extracted from runs 1, 2 and 3 from subject '01', the returned dict will be {'subject': '01'}; the runs will be excluded as they vary across the Collection contents. """ all_ents = pd.DataFrame.from_records( [v.entities for v in self.variables.values()]) constant = all_ents.apply(lambda x: x.nunique() == 1) if constant.empty: self.entities = {} else: keep = all_ents.columns[constant] ents = {k: all_ents[k].dropna().iloc[0] for k in keep} self.entities = {k: v for k, v in ents.items() if pd.notnull(v)} def __getitem__(self, var): if var in self.variables: return self.variables[var] keys = list(self.variables.keys()) raise ValueError("No variable named '{}' found in this collection. " "Available names are {}.".format(var, keys)) def __setitem__(self, var, obj): # Ensure name matches collection key, but raise warning if needed. if obj.name != var: warnings.warn("The provided key to use in the collection ('%s') " "does not match the passed Column object's existing " "name ('%s'). The Column name will be set to match " "the provided key." % (var, obj.name)) obj.name = var self.variables[var] = obj def match_variables(self, pattern, return_type='name', match_type='unix'): """Return columns whose names match the provided pattern. Parameters ---------- pattern : str, list One or more regex patterns to match all variable names against. return_type : {'name', 'variable'} What to return. Must be one of: 'name': Returns a list of names of matching variables. 'variable': Returns a list of Variable objects whose names match. match_type : str Matching approach to use. Either 'regex' (full-blown regular expression matching) or 'unix' (unix-style pattern matching via the fnmatch module). Returns ------- A list of all matching variables or variable names """ pattern = listify(pattern) results = [] for patt in pattern: if match_type.lower().startswith('re'): patt = re.compile(patt) vars_ = [v for v in self.variables.keys() if patt.search(v)] else: vars_ = fnmatch.filter(list(self.variables.keys()), patt) if return_type.startswith('var'): vars_ = [self.variables[v] for v in vars_] results.extend(vars_) return results class BIDSRunVariableCollection(BIDSVariableCollection): """A container for one or more RunVariables--i.e., Variables that have a temporal dimension. Parameters ---------- variables : list A list of SparseRunVariable and/or DenseRunVariable. sampling_rate : float Sampling rate (in Hz) to use when working with dense representations of variables. If None, defaults to 10. Notes ----- Variables in the list must all be at the 'run' level. For other levels (session, subject, or dataset), use the BIDSVariableCollection. """ def __init__(self, variables, sampling_rate=None): # Don't put the default value in signature because None is passed from # several places and we don't want multiple conflicting defaults. if sampling_rate: if isinstance(sampling_rate, str): raise ValueError("Sampling rate must be numeric.") self.sampling_rate = sampling_rate or 10 super(BIDSRunVariableCollection, self).__init__(variables) def get_dense_variables(self, variables=None): """Returns a list of all stored DenseRunVariables.""" if variables is None: variables = set(self.variables.keys()) return [v for v in self.variables.values() if isinstance(v, DenseRunVariable) and v.name in variables] def get_sparse_variables(self, variables=None): """Returns a list of all stored SparseRunVariables.""" if variables is None: variables = set(self.variables.keys()) return [v for v in self.variables.values() if isinstance(v, SparseRunVariable) and v.name in variables] def all_dense(self): return len(self.get_dense_variables()) == len(self.variables) def all_sparse(self): return len(self.get_sparse_variables()) == len(self.variables) def _get_sampling_rate(self, sampling_rate): """Parse sampling rate argument and return appropriate value.""" if sampling_rate is None: return self.sampling_rate if isinstance(sampling_rate, (float, int)): return sampling_rate if sampling_rate == 'TR': trs = {var.run_info[0].tr for var in self.variables.values()} if not trs: raise ValueError("Repetition time unavailable; specify " "sampling_rate in Hz explicitly or set to" " 'highest'.") elif len(trs) > 1: raise ValueError("Non-unique Repetition times found " "({!r}); specify sampling_rate explicitly" .format(trs)) return 1. / trs.pop() if sampling_rate.lower() == 'highest': dense_vars = self.get_dense_variables() # If no dense variables are available, fall back on instance SR if not dense_vars: return self.sampling_rate var_srs = [v.sampling_rate for v in dense_vars] if len(var_srs) == 1: return var_srs[0] return max(*var_srs) raise ValueError("Invalid sampling_rate value '{}' provided. Must be " "a float, None, 'TR', or 'highest'." .format(sampling_rate)) def _densify_and_resample(self, sampling_rate=None, variables=None, resample_dense=False, force_dense=False, in_place=False, kind='linear'): sampling_rate = self._get_sampling_rate(sampling_rate) _dense, _sparse = [], [] # Filter variables and sort by class for name, var in self.variables.items(): if variables is not None and name not in variables: continue if isinstance(var, DenseRunVariable): _dense.append(var) else: _sparse.append(var) _variables = {} if force_dense: for v in _sparse: if is_numeric_dtype(v.values): _variables[v.name] = v.to_dense(sampling_rate) if resample_dense: for v in _dense: _variables[v.name] = v.resample(sampling_rate, kind=kind) coll = self if in_place else self.clone() if in_place: coll.variables.update(_variables) else: coll.variables = _variables coll.sampling_rate = sampling_rate return coll def to_dense(self, sampling_rate=None, variables=None, in_place=False, kind='linear'): """ Convert all contained SparseRunVariables to DenseRunVariables. Parameters ---------- sampling_rate : None, {'TR', 'highest'}, float Sampling rate to use when densifying sparse variables. If None, uses the currently stored instance value. If 'TR', the repetition time is used, if available, to select the sampling rate (1/TR). If 'highest', all variables are resampled to the highest sampling rate of any of the existing dense variables. The sampling rate may also be specified explicitly in Hz as a float. variables : list Optional list of names of Variables to resample. If None, all variables are resampled. in_place : bool When True, all variables are overwritten in-place. When False, returns resampled versions of all variables. kind : str Argument to pass to scipy's interp1d; indicates the kind of interpolation approach to use. See interp1d docs for valid values. Returns ------- A BIDSVariableCollection (if in_place is False). Notes ----- Categorical variables are ignored. """ return self._densify_and_resample(sampling_rate, variables, resample_dense=False, in_place=in_place, kind=kind, force_dense=True) def resample(self, sampling_rate=None, variables=None, force_dense=False, in_place=False, kind='linear'): """Resample all dense variables (and optionally, sparse ones) to the specified sampling rate. Parameters ---------- sampling_rate : int or float Target sampling rate (in Hz). If None, uses the instance value. variables : list Optional list of names of Variables to resample. If None, all variables are resampled. force_dense : bool if True, all sparse variables will be forced to dense. in_place : bool When True, all variables are overwritten in-place. When False, returns resampled versions of all variables. kind : str Argument to pass to scipy's interp1d; indicates the kind of interpolation approach to use. See interp1d docs for valid values. Returns ------- A BIDSVariableCollection (if in_place is False). """ return self._densify_and_resample(sampling_rate, variables, force_dense=force_dense, in_place=in_place, kind=kind, resample_dense=True) def to_df(self, variables=None, format='wide', fillna=np.nan, sampling_rate='highest', include_sparse=True, include_dense=True, entities=True, timing=True): """Merge columns into a single pandas DataFrame. Parameters ---------- variables : list Optional list of variable names to retain; if None, all variables are written out. format : str Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. fillna : value Replace missing values with the specified value. sampling_rate : float Specifies the sampling rate to use for all variables in the event that resampling needs to be performed (i.e., if some variables are sparse, or if dense variables have different sampling rates). Must be one of 'TR', 'highest', None, or a float (specifying the rate in Hz). If None, uses the instance sampling rate (10 Hz by default). include_sparse : bool Whether or not to include sparse variables in the output. include_dense : bool Whether or not to include dense variables in the output. entities : bool Whether or not to include a column for each entity. timing : bool Whether or not to include onset and duration columns. Returns ------- :obj:`pandas.DataFrame` A pandas DataFrame. Notes ----- The precise format of the resulting DataFrame depends on the variables contained in the current instance. If all variables are sparse, the output will also be sparse--i.e., the events in the DataFrame may have non-uniform timing. If at least one dense variable is present, and the user has not explicitly excluded dense variables (by setting include_dense=False), all selected variables will be implicitly converted to dense using the specified `sampling_rate` (if provided). To avoid unexpected behavior, we recommend converting mixed collections to all-dense form explicitly via the `to_dense()` or `resample()` methods before calling `to_df()`. """ if not include_sparse and not include_dense: raise ValueError("You can't exclude both dense and sparse " "variables! That leaves nothing!") _vars = [] if include_sparse: _vars += self.get_sparse_variables(variables) if include_dense: _vars += self.get_dense_variables(variables) if not _vars: raise ValueError("No variables were selected for output.") # If all variables are sparse/simple, we can pass them as-is. Otherwise # we first force all variables to dense via .resample(). if all(isinstance(v, SimpleVariable) for v in _vars): variables = _vars else: sampling_rate = sampling_rate or self.sampling_rate var_names = [v.name for v in _vars] collection = self.resample(sampling_rate, variables=var_names, force_dense=include_sparse) variables = list(collection.variables.values()) return super().to_df(variables, format, fillna, entities=entities, timing=timing) def merge_collections(collections, sampling_rate='highest', output_level=None): """Merge two or more collections at the same level of analysis. Parameters ---------- collections : list List of Collections to merge. sampling_rate : int or str Sampling rate to use if it becomes necessary to resample DenseRunVariables. Either an integer or 'highest' (see merge_variables docstring for further explanation). output_level : str, optional Assign a new level (e.g., 'run', 'subject', etc.) to the merged collection. If None, the current level is retained. Returns ------- BIDSVariableCollection or BIDSRunVariableCollection Result type depends on the type of the input collections. """ collections = listify(collections) if len(collections) == 1: return collections[0] levels = set([c.level for c in collections]) if len(levels) > 1: raise ValueError("At the moment, it's only possible to merge " "Collections at the same level of analysis. You " "passed collections at levels: %s." % levels) variables = list(chain(*[c.variables.values() for c in collections])) cls = collections[0].__class__ variables = cls.merge_variables(variables, sampling_rate=sampling_rate) if isinstance(collections[0], BIDSRunVariableCollection): # 'auto' was renamed to 'highest' circa 0.10, but check for both if sampling_rate in {'auto', 'highest'}: rates = [var.sampling_rate for var in variables if isinstance(var, DenseRunVariable)] sampling_rate = rates[0] if rates else None return cls(variables, sampling_rate) # For non-run collections, we may need to set a different output level coll = cls(variables) if output_level is not None: coll.level = output_level return coll
mit
Omkar20895/climate
ocw/plotter.py
5
48622
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tempfile import TemporaryFile import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm from matplotlib import rcParams, cm from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap from mpl_toolkits.axes_grid1 import ImageGrid import scipy.stats.mstats as mstats import numpy as np import numpy.ma as ma import ocw.utils as utils # Set the default colormap to coolwarm mpl.rc('image', cmap='coolwarm') def set_cmap(name): ''' Sets the default colormap (eg when setting cmap=None in a function) See: http://matplotlib.org/examples/pylab_examples/show_colormaps.html for a list of possible colormaps. Appending '_r' to a matplotlib colormap name will give you a reversed version of it. :param name: The name of the colormap. :type name: :mod:`string` ''' # The first line is redundant but it prevents the user from setting # the cmap rc value improperly cmap = plt.get_cmap(name) mpl.rc('image', cmap=cmap.name) def _nice_intervals(data, nlevs): ''' Purpose:: Calculates nice intervals between each color level for colorbars and contour plots. The target minimum and maximum color levels are calculated by taking the minimum and maximum of the distribution after cutting off the tails to remove outliers. Input:: data - an array of data to be plotted nlevs - an int giving the target number of intervals Output:: clevs - A list of floats for the resultant colorbar levels ''' # Find the min and max levels by cutting off the tails of the distribution # This mitigates the influence of outliers data = data.ravel() mn = mstats.scoreatpercentile(data, 5) mx = mstats.scoreatpercentile(data, 95) # if min less than 0 and or max more than 0 put 0 in center of color bar if mn < 0 and mx > 0: level = max(abs(mn), abs(mx)) mnlvl = -1 * level mxlvl = level # if min is larger than 0 then have color bar between min and max else: mnlvl = mn mxlvl = mx # hack to make generated intervals from mpl the same for all versions autolimit_mode = mpl.rcParams.get('axes.autolimit_mode') if autolimit_mode: mpl.rc('axes', autolimit_mode='round_numbers') locator = mpl.ticker.MaxNLocator(nlevs) clevs = locator.tick_values(mnlvl, mxlvl) if autolimit_mode: mpl.rc('axes', autolimit_mode=autolimit_mode) # Make sure the bounds of clevs are reasonable since sometimes # MaxNLocator gives values outside the domain of the input data clevs = clevs[(clevs >= mnlvl) & (clevs <= mxlvl)] return clevs def _best_grid_shape(nplots, oldshape): ''' Purpose:: Calculate a better grid shape in case the user enters more columns and rows than needed to fit a given number of subplots. Input:: nplots - an int giving the number of plots that will be made oldshape - a tuple denoting the desired grid shape (nrows, ncols) for arranging the subplots originally requested by the user. Output:: newshape - the smallest possible subplot grid shape needed to fit nplots ''' nrows, ncols = oldshape size = nrows * ncols diff = size - nplots if diff < 0: raise ValueError( 'gridshape=(%d, %d): Cannot fit enough subplots for data' % (nrows, ncols)) else: # If the user enters an excessively large number of # rows and columns for gridshape, automatically # correct it so that it fits only as many plots # as needed while diff >= nrows: ncols -= 1 size = nrows * ncols diff = size - nplots # Don't forget to remove unnecessary columns too if ncols == 1: nrows = nplots newshape = nrows, ncols return newshape def _fig_size(gridshape, aspect=None): ''' Purpose:: Calculates the figure dimensions from a subplot gridshape Input:: gridshape - Tuple denoting the subplot gridshape aspect - Float denoting approximate aspect ratio of each subplot (width / height). Default is 8.5 / 5.5 Output:: width - float for width of the figure in inches height - float for height of the figure in inches ''' if aspect is None: aspect = 8.5 / 5.5 # Default figure size is 8.5" x 5.5" if nrows == ncols # and then adjusted by given aspect ratio nrows, ncols = gridshape if nrows >= ncols: # If more rows keep width constant width, height = (aspect * 5.5), 5.5 * (nrows // ncols) else: # If more columns keep height constant width, height = (aspect * 5.5) * (ncols // nrows), 5.5 return width, height def draw_taylor_diagram(results, names, refname, fname, fmt='png', gridshape=(1, 1), ptitle='', subtitles=None, pos='upper right', frameon=True, radmax=1.5, legend_size=13): ''' Draw a Taylor diagram. :param results: An Nx2 array containing normalized standard deviations, correlation coefficients, and names of evaluation results. :type results: :class:`numpy.ndarray` :param names: A list of names for each evaluated dataset :type names: :class:`list` of :mod:`string` :param refname: The name of the reference dataset. :type refname: :mod:`string` :param fname: The filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output plot. :type fmt: :mod:`string` :param gridshape: (Optional) Tuple denoting the desired grid shape (num_rows, num_cols) for arranging the subplots. :type gridshape: A :class:`tuple` of the form (num_rows, num_cols) :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param subtitles: (Optional) list of strings specifying the title for each subplot. :type subtitles: :class:`list` of :mod:`string` :param pos: (Optional) string or tuple of floats used to set the position of the legend. Check the `Matplotlib docs <http://matplotlib.org/api/legend_api.html#matplotlib.legend.Legend>`_ for additional information. :type pos: :mod:`string` or :func:`tuple` of :class:`float` :param frameon: (Optional) boolean specifying whether to draw a frame around the legend box. :type frameon: :class:`bool` :param radmax: (Optional) float to adjust the extent of the axes in terms of standard deviation. :type radmax: :class:`float` :param legend_size: (Optional) float to control the font size of the legend :type legend_size: :class:`float` ''' # Handle the single plot case. if results.ndim == 2: results = results.reshape(1, *results.shape) # Make sure gridshape is compatible with input data nplots = results.shape[0] gridshape = _best_grid_shape(nplots, gridshape) # Set up the figure fig = plt.figure() fig.set_size_inches((8.5, 11)) fig.dpi = 300 for i, data in enumerate(results): rect = gridshape + (i + 1,) # Convert rect to string form as expected by TaylorDiagram constructor rect = str(rect[0]) + str(rect[1]) + str(rect[2]) # Create Taylor Diagram object dia = TaylorDiagram(1, fig=fig, rect=rect, label=refname, radmax=radmax) for i, (stddev, corrcoef) in enumerate(data): dia.add_sample(stddev, corrcoef, marker='$%d$' % (i + 1), ms=6, label=names[i]) if subtitles is not None: dia._ax.set_title(subtitles[i]) # Add legend legend = fig.legend(dia.samplePoints, [p.get_label() for p in dia.samplePoints], handlelength=0., prop={'size': legend_size}, numpoints=1, loc=pos) legend.draw_frame(frameon) plt.subplots_adjust(wspace=0) # Add title and save the figure fig.suptitle(ptitle) plt.tight_layout(.05, .05) fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_subregions(subregions, lats, lons, fname, fmt='png', ptitle='', parallels=None, meridians=None, subregion_masks=None): ''' Draw subregion domain(s) on a map. :param subregions: The subregion objects to plot on the map. :type subregions: :class:`list` of subregion objects (Bounds objects) :param lats: Array of latitudes values. :type lats: :class:`numpy.ndarray` :param lons: Array of longitudes values. :type lons: :class:`numpy.ndarray` :param fname: The filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param parallels: (Optional) :class:`list` of :class:`int` or :class:`float` for the parallels to be drawn. See the `Basemap documentation <http://matplotlib.org/basemap/users/graticule.html>`_ for additional information. :type parallels: :class:`list` of :class:`int` or :class:`float` :param meridians: (Optional) :class:`list` of :class:`int` or :class:`float` for the meridians to be drawn. See the `Basemap documentation <http://matplotlib.org/basemap/users/graticule.html>`_ for additional information. :type meridians: :class:`list` of :class:`int` or :class:`float` :param subregion_masks: (Optional) :class:`dict` of :class:`bool` arrays for each subregion for giving finer control of the domain to be drawn, by default the entire domain is drawn. :type subregion_masks: :class:`dict` of :class:`bool` arrays ''' # Set up the figure fig = plt.figure() fig.set_size_inches((8.5, 11.)) fig.dpi = 300 ax = fig.add_subplot(111) # Determine the map boundaries and construct a Basemap object lonmin = lons.min() lonmax = lons.max() latmin = lats.min() latmax = lats.max() m = Basemap(projection='cyl', llcrnrlat=latmin, urcrnrlat=latmax, llcrnrlon=lonmin, urcrnrlon=lonmax, resolution='l', ax=ax) # Draw the borders for coastlines and countries m.drawcoastlines(linewidth=1) m.drawcountries(linewidth=.75) m.drawstates() # Create default meridians and parallels. The interval between # them should be 1, 5, 10, 20, 30, or 40 depending on the size # of the domain length = max((latmax - latmin), (lonmax - lonmin)) / 5 if length <= 1: dlatlon = 1 elif length <= 5: dlatlon = 5 else: dlatlon = np.round(length, decimals=-1) if meridians is None: meridians = np.r_[ np.arange(0, -180, -dlatlon)[::-1], np.arange(0, 180, dlatlon)] if parallels is None: parallels = np.r_[np.arange(0, -90, -dlatlon) [::-1], np.arange(0, 90, dlatlon)] # Draw parallels / meridians m.drawmeridians(meridians, labels=[0, 0, 0, 1], linewidth=.75, fontsize=10) m.drawparallels(parallels, labels=[1, 0, 0, 1], linewidth=.75, fontsize=10) # Set up the color scaling cmap = plt.cm.rainbow norm = mpl.colors.BoundaryNorm(np.arange(1, len(subregions) + 3), cmap.N) # Process the subregions for i, reg in enumerate(subregions): if subregion_masks is not None and reg.name in subregion_masks.keys(): domain = (i + 1) * subregion_masks[reg.name] else: domain = (i + 1) * np.ones((2, 2)) nlats, nlons = domain.shape domain = ma.masked_equal(domain, 0) reglats = np.linspace(reg.lat_min, reg.lat_max, nlats) reglons = np.linspace(reg.lon_min, reg.lon_max, nlons) reglons, reglats = np.meshgrid(reglons, reglats) # Convert to to projection coordinates. Not really necessary # for cylindrical projections but keeping it here in case we need # support for other projections. x, y = m(reglons, reglats) # Draw the subregion domain m.pcolormesh(x, y, domain, cmap=cmap, norm=norm, alpha=.5) # Label the subregion xm, ym = x.mean(), y.mean() m.plot(xm, ym, marker='$%s$' % ("R" + str(i + 1)), markersize=12, color='k') # Add the title ax.set_title(ptitle) # Save the figure fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def _get_colors(num_colors): """ matplotlib will recycle colors after a certain number. This can make line type charts confusing as colors will be reused. This function provides a distribution of colors across the default color map to better approximate uniqueness. :param num_colors: The number of unique colors to generate. :return: A color map with num_colors. """ cmap = plt.get_cmap() return [cmap(1. * i / num_colors) for i in range(num_colors)] def draw_time_series(results, times, labels, fname, fmt='png', gridshape=(1, 1), xlabel='', ylabel='', ptitle='', subtitles=None, label_month=False, yscale='linear', aspect=None, cycle_colors=True, cmap=None): ''' Draw a time series plot. :param results: 3D array of time series data. :type results: :class:`numpy.ndarray` :param times: List of Python datetime objects used by Matplotlib to handle axis formatting. :type times: :class:`list` of :class:`datetime.datetime` :param labels: List of names for each data being plotted. :type labels: :class:`list` of :mod:`string` :param fname: Filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param gridshape: (Optional) tuple denoting the desired grid shape (num_rows, num_cols) for arranging the subplots. :type gridshape: :func:`tuple` of the form (num_rows, num_cols) :param xlabel: (Optional) x-axis title. :type xlabel: :mod:`string` :param ylabel: (Optional) y-axis title. :type ylabel: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param subtitles: (Optional) list of titles for each subplot. :type subtitles: :class:`list` of :mod:`string` :param label_month: (Optional) flag to toggle drawing month labels on the x-axis. :type label_month: :class:`bool` :param yscale: (Optional) y-axis scale value, 'linear' for linear and 'log' for log base 10. :type yscale: :mod:`string` :param aspect: (Optional) approximate aspect ratio of each subplot (width / height). Default is 8.5 / 5.5 :type aspect: :class:`float` :param cycle_colors: (Optional) flag to toggle whether to allow matlibplot to re-use colors when plotting or force an evenly distributed range. :type cycle_colors: :class:`bool` :param cmap: (Optional) string or :class:`matplotlib.colors.LinearSegmentedColormap` instance denoting the colormap. This must be able to be recognized by `Matplotlib's get_cmap function <http://matplotlib.org/api/cm_api.html#matplotlib.cm.get_cmap>`_. Maps like rainbow and spectral with wide spectrum of colors are nice choices when used with the cycle_colors option. tab20, tab20b, and tab20c are good if the plot has less than 20 datasets. :type cmap: :mod:`string` or :class:`matplotlib.colors.LinearSegmentedColormap` ''' if cmap is not None: set_cmap(cmap) # Handle the single plot case. if results.ndim == 2: results = results.reshape(1, *results.shape) # Make sure gridshape is compatible with input data nplots = results.shape[0] gridshape = _best_grid_shape(nplots, gridshape) # Set up the figure width, height = _fig_size(gridshape) fig = plt.figure() fig.set_size_inches((width, height)) fig.dpi = 300 # Make the subplot grid grid = ImageGrid(fig, 111, nrows_ncols=gridshape, axes_pad=0.3, share_all=True, add_all=True, ngrids=nplots, label_mode='L', aspect=False, cbar_mode='single', cbar_location='bottom', cbar_size=.05, cbar_pad=.20 ) # Make the plots for i, ax in enumerate(grid): data = results[i] if not cycle_colors: ax.set_prop_cycle('color', _get_colors(data.shape[0])) if label_month: xfmt = mpl.dates.DateFormatter('%b') xloc = mpl.dates.MonthLocator() ax.xaxis.set_major_formatter(xfmt) ax.xaxis.set_major_locator(xloc) # Set the y-axis scale ax.set_yscale(yscale) # Set up list of lines for legend lines = [] ymin, ymax = 0, 0 # Plot each line for tSeries in data: line = ax.plot_date(times, tSeries, '') lines.extend(line) cmin, cmax = tSeries.min(), tSeries.max() ymin = min(ymin, cmin) ymax = max(ymax, cmax) # Add a bit of padding so lines don't touch bottom and top of the plot ymin = ymin - ((ymax - ymin) * 0.1) ymax = ymax + ((ymax - ymin) * 0.1) ax.set_ylim((ymin, ymax)) # Set the subplot title if desired if subtitles is not None: ax.set_title(subtitles[i], fontsize='small') # Create a master axes rectangle for figure wide labels fax = fig.add_subplot(111, frameon=False) fax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') fax.set_ylabel(ylabel) fax.set_title(ptitle, fontsize=16) fax.title.set_y(1.04) # Create the legend using a 'fake' colorbar axes. This lets us have a nice # legend that is in sync with the subplot grid cax = ax.cax cax.set_frame_on(False) cax.set_xticks([]) cax.set_yticks([]) cax.legend((lines), labels, loc='upper center', ncol=10, fontsize='small', mode='expand', frameon=False) # Note that due to weird behavior by axes_grid, it is more convenient to # place the x-axis label relative to the colorbar axes instead of the # master axes rectangle. cax.set_title(xlabel, fontsize=12) cax.title.set_y(-1.5) # Rotate the x-axis tick labels for ax in grid: for xtick in ax.get_xticklabels(): xtick.set_ha('right') xtick.set_rotation(30) # Save the figure fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_barchart(results, yvalues, fname, ptitle='', fmt='png', xlabel='', ylabel=''): ''' Draw a barchart. :param results: 1D array of data. :type results: :class:`numpy.ndarray` :param yvalues: List of y-axis labels :type times: :class:`list` :param fname: Filename of the plot. :type fname: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param xlabel: (Optional) x-axis title. :type xlabel: :mod:`string` :param ylabel: (Optional) y-axis title. :type ylabel: :mod:`string` ''' y_pos = list(range(len(yvalues))) fig = plt.figure() fig.set_size_inches((11., 8.5)) fig.dpi = 300 ax = plt.subplot(111) plt.barh(y_pos, results, align="center", height=0.8, linewidth=0) plt.yticks(y_pos, yvalues) plt.tick_params(axis="both", which="both", bottom="on", top="off", labelbottom="on", left="off", right="off", labelleft="on") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ymin = min(y_pos) ymax = max(y_pos) ymin = min((ymin - ((ymax - ymin) * 0.1) / 2), 0.5) ymax = ymax + ((ymax - ymin) * 0.1) ax.set_ylim((ymin, ymax)) plt.xlabel(xlabel) plt.tight_layout() # Save the figure fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_marker_on_map(lat, lon, fname, fmt='png', location_name=' ', gridshape=(1, 1)): '''Draw a marker on a map. :param lat: Latitude for plotting a marker. :type lat: :class:`float` :param lon: Longitude for plotting a marker. :type lon: :class:`float` :param fname: The filename of the plot. :type fname: :class:`string` :param fmt: (Optional) Filetype for the output. :type fmt: :class:`string` :param location_name: (Optional) A label for the map marker. :type location_name: :class:`string` ''' fig = plt.figure() fig.dpi = 300 ax = fig.add_subplot(111) m = Basemap(projection='cyl', resolution='c', llcrnrlat=lat - 30, urcrnrlat=lat + 30, llcrnrlon=lon - 60, urcrnrlon=lon + 60) m.drawcoastlines(linewidth=1) m.drawcountries(linewidth=1) m.drawmapboundary(fill_color='aqua') m.fillcontinents(color='coral', lake_color='aqua') m.ax = ax xpt, ypt = m(lon, lat) m.plot(xpt, ypt, 'bo') # plot a blue dot there # put some text next to the dot, offset a little bit # (the offset is in map projection coordinates) plt.text(xpt + 0.5, ypt + 1.5, location_name + '\n(lon: %5.1f, lat: %3.1f)' % (lon, lat)) fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_contour_map(dataset, lats, lons, fname, fmt='png', gridshape=(1, 1), clabel='', ptitle='', subtitles=None, cmap=None, clevs=None, nlevs=10, parallels=None, meridians=None, extend='neither', aspect=8.5 / 2.5): ''' Draw a multiple panel contour map plot. :param dataset: 3D array of data to be plotted with shape (nT, nLat, nLon). :type dataset: :class:`numpy.ndarray` :param lats: Array of latitudes values. :type lats: :class:`numpy.ndarray` :param lons: Array of longitudes :type lons: :class:`numpy.ndarray` :param fname: The filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param gridshape: (Optional) tuple denoting the desired grid shape (num_rows, num_cols) for arranging the subplots. :type gridshape: :func:`tuple` of the form (num_rows, num_cols) :param clabel: (Optional) colorbar title. :type clabel: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param subtitles: (Optional) list of titles for each subplot. :type subtitles: :class:`list` of :mod:`string` :param cmap: (Optional) string or :class:`matplotlib.colors.LinearSegmentedColormap` instance denoting the colormap. This must be able to be recognized by `Matplotlib's get_cmap function <http://matplotlib.org/api/cm_api.html#matplotlib.cm.get_cmap>`_. :type cmap: :mod:`string` or :class:`matplotlib.colors.LinearSegmentedColormap` :param clevs: (Optional) contour levels values. :type clevs: :class:`list` of :class:`int` or :class:`float` :param nlevs: (Optional) target number of contour levels if clevs is None. :type nlevs: :class:`int` :param parallels: (Optional) list of ints or floats for the parallels to be drawn. See the `Basemap documentation <http://matplotlib.org/basemap/users/graticule.html>`_ for additional information. :type parallels: :class:`list` of :class:`int` or :class:`float` :param meridians: (Optional) list of ints or floats for the meridians to be drawn. See the `Basemap documentation <http://matplotlib.org/basemap/users/graticule.html>`_ for additional information. :type meridians: :class:`list` of :class:`int` or :class:`float` :param extend: (Optional) flag to toggle whether to place arrows at the colorbar boundaries. Default is 'neither', but can also be 'min', 'max', or 'both'. Will be automatically set to 'both' if clevs is None. :type extend: :mod:`string` ''' # Handle the single plot case. Meridians and Parallels are not labeled for # multiple plots to save space. if dataset.ndim == 2 or (dataset.ndim == 3 and dataset.shape[0] == 1): if dataset.ndim == 2: dataset = dataset.reshape(1, *dataset.shape) mlabels = [0, 0, 0, 1] plabels = [1, 0, 0, 1] else: mlabels = [0, 0, 0, 0] plabels = [0, 0, 0, 0] # Make sure gridshape is compatible with input data nplots = dataset.shape[0] gridshape = _best_grid_shape(nplots, gridshape) # Set up the figure fig = plt.figure() fig.set_size_inches((8.5, 11.)) fig.dpi = 300 # Make the subplot grid grid = ImageGrid(fig, 111, nrows_ncols=gridshape, axes_pad=0.3, share_all=True, add_all=True, ngrids=nplots, label_mode='L', cbar_mode='single', cbar_location='bottom', cbar_size=.15, cbar_pad='0%' ) # Determine the map boundaries and construct a Basemap object lonmin = lons.min() lonmax = lons.max() latmin = lats.min() latmax = lats.max() m = Basemap(projection='cyl', llcrnrlat=latmin, urcrnrlat=latmax, llcrnrlon=lonmin, urcrnrlon=lonmax, resolution='l') # Convert lats and lons to projection coordinates if lats.ndim == 1 and lons.ndim == 1: lons, lats = np.meshgrid(lons, lats) # Calculate contour levels if not given if clevs is None: # Cut off the tails of the distribution # for more representative contour levels clevs = _nice_intervals(dataset, nlevs) extend = 'both' cmap = plt.get_cmap(cmap) # Create default meridians and parallels. The interval between # them should be 1, 5, 10, 20, 30, or 40 depending on the size # of the domain length = max((latmax - latmin), (lonmax - lonmin)) / 5 if length <= 1: dlatlon = 1 elif length <= 5: dlatlon = 5 else: dlatlon = np.round(length, decimals=-1) if meridians is None: meridians = np.r_[ np.arange(0, -180, -dlatlon)[::-1], np.arange(0, 180, dlatlon)] if parallels is None: parallels = np.r_[np.arange(0, -90, -dlatlon) [::-1], np.arange(0, 90, dlatlon)] x, y = m(lons, lats) for i, ax in enumerate(grid): # Load the data to be plotted data = dataset[i] m.ax = ax # Draw the borders for coastlines and countries m.drawcoastlines(linewidth=1) m.drawcountries(linewidth=.75) # Draw parallels / meridians m.drawmeridians(meridians, labels=mlabels, linewidth=.75, fontsize=10) m.drawparallels(parallels, labels=plabels, linewidth=.75, fontsize=10) # Draw filled contours cs = m.contourf(x, y, data, cmap=cmap, levels=clevs, extend=extend) # Add title if subtitles is not None: ax.set_title(subtitles[i], fontsize='small') # Add colorbar cbar = fig.colorbar(cs, cax=ax.cax, drawedges=True, orientation='horizontal', extendfrac='auto') cbar.set_label(clabel) cbar.set_ticks(clevs) cbar.ax.tick_params(labelsize=6) cbar.ax.xaxis.set_ticks_position('none') cbar.ax.yaxis.set_ticks_position('none') # This is an ugly hack to make the title show up at the correct height. # Basically save the figure once to achieve tight layout and calculate # the adjusted heights of the axes, then draw the title slightly above # that height and save the figure again fig.savefig(TemporaryFile(), bbox_inches='tight', dpi=fig.dpi) ymax = 0 for ax in grid: bbox = ax.get_position() ymax = max(ymax, bbox.ymax) # Add figure title fig.suptitle(ptitle, y=ymax + .06, fontsize=16) fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_portrait_diagram(results, rowlabels, collabels, fname, fmt='png', gridshape=(1, 1), xlabel='', ylabel='', clabel='', ptitle='', subtitles=None, cmap=None, clevs=None, nlevs=10, extend='neither', aspect=None): ''' Draw a portrait diagram plot. :param results: 3D array of the fields to be plotted. The second dimension should correspond to the number of rows in the diagram and the third should correspond to the number of columns. :type results: :class:`numpy.ndarray` :param rowlabels: Labels for each row. :type rowlabels: :class:`list` of :mod:`string` :param collabels: Labels for each row. :type collabels: :class:`list` of :mod:`string` :param fname: Filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param gridshape: (Optional) tuple denoting the desired grid shape (num_rows, num_cols) for arranging the subplots. :type gridshape: :func:`tuple` of the form (num_rows, num_cols) :param xlabel: (Optional) x-axis title. :type xlabel: :mod:`string` :param ylabel: (Optional) y-ayis title. :type ylabel: :mod:`string` :param clabel: (Optional) colorbar title. :type clabel: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param subtitles: (Optional) list of titles for each subplot. :type subtitles: :class:`list` of :mod:`string` :param cmap: (Optional) string or :class:`matplotlib.colors.LinearSegmentedColormap` instance denoting the colormap. This must be able to be recognized by `Matplotlib's get_cmap function <http://matplotlib.org/api/cm_api.html#matplotlib.cm.get_cmap>`_. :type cmap: :mod:`string` or :class:`matplotlib.colors.LinearSegmentedColormap` :param clevs: (Optional) contour levels values. :type clevs: :class:`list` of :class:`int` or :class:`float` :param nlevs: Optional target number of contour levels if clevs is None. :type nlevs: :class:`int` :param extend: (Optional) flag to toggle whether to place arrows at the colorbar boundaries. Default is 'neither', but can also be 'min', 'max', or 'both'. Will be automatically set to 'both' if clevs is None. :type extend: :mod:`string` :param aspect: (Optional) approximate aspect ratio of each subplot (width / height). Default is 8.5 / 5.5 :type aspect: :class:`float` ''' # Handle the single plot case. if results.ndim == 2: results = results.reshape(1, *results.shape) nplots = results.shape[0] # Make sure gridshape is compatible with input data gridshape = _best_grid_shape(nplots, gridshape) # Row and Column labels must be consistent with the shape of # the input data too prows, pcols = results.shape[1:] if len(rowlabels) != prows or len(collabels) != pcols: raise ValueError( 'rowlabels and collabels must have %d and %d elements respectively' % (prows, pcols)) # Set up the figure width, height = _fig_size(gridshape) fig = plt.figure() fig.set_size_inches((width, height)) fig.dpi = 300 # Make the subplot grid grid = ImageGrid(fig, 111, nrows_ncols=gridshape, axes_pad=0.4, share_all=True, aspect=False, add_all=True, ngrids=nplots, label_mode='all', cbar_mode='single', cbar_location='bottom', cbar_size=.15, cbar_pad='3%' ) # Calculate colorbar levels if not given if clevs is None: # Cut off the tails of the distribution # for more representative colorbar levels clevs = _nice_intervals(results, nlevs) extend = 'both' cmap = plt.get_cmap(cmap) norm = mpl.colors.BoundaryNorm(clevs, cmap.N) # Do the plotting for i, ax in enumerate(grid): data = results[i] cs = ax.matshow(data, cmap=cmap, aspect='auto', origin='lower', norm=norm) # Add grid lines ax.xaxis.set_ticks(np.arange(data.shape[1] + 1)) ax.yaxis.set_ticks(np.arange(data.shape[0] + 1)) x = (ax.xaxis.get_majorticklocs() - .5) y = (ax.yaxis.get_majorticklocs() - .5) ax.vlines(x, y.min(), y.max()) ax.hlines(y, x.min(), x.max()) # Configure ticks ax.xaxis.tick_bottom() ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') ax.set_xticklabels(collabels, fontsize='xx-small') ax.set_yticklabels(rowlabels, fontsize='xx-small') # Add axes title if subtitles is not None: ax.text(0.5, 1.04, subtitles[i], va='center', ha='center', transform=ax.transAxes, fontsize='small') # Create a master axes rectangle for figure wide labels fax = fig.add_subplot(111, frameon=False) fax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') fax.set_ylabel(ylabel) fax.set_title(ptitle, fontsize=16) fax.title.set_y(1.04) # Add colorbar cax = ax.cax cbar = fig.colorbar(cs, cax=cax, norm=norm, boundaries=clevs, drawedges=True, extend=extend, orientation='horizontal', extendfrac='auto') cbar.set_label(clabel) cbar.set_ticks(clevs) cbar.ax.tick_params(labelsize=6) cbar.ax.xaxis.set_ticks_position('none') cbar.ax.yaxis.set_ticks_position('none') # Note that due to weird behavior by axes_grid, it is more convenient to # place the x-axis label relative to the colorbar axes instead of the # master axes rectangle. cax.set_title(xlabel, fontsize=12) cax.title.set_y(1.5) # Save the figure fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() class TaylorDiagram(object): """ Taylor diagram helper class Plot model standard deviation and correlation to reference (data) sample in a single-quadrant polar plot, with r=stddev and theta=arccos(correlation). This class was released as public domain by the original author Yannick Copin. You can find the original Gist where it was released at: https://gist.github.com/ycopin/3342888 """ def __init__(self, refstd, radmax=1.5, fig=None, rect=111, label='_'): """Set up Taylor diagram axes, i.e. single quadrant polar plot, using mpl_toolkits.axisartist.floating_axes. refstd is the reference standard deviation to be compared to. """ from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes as FA import mpl_toolkits.axisartist.grid_finder as GF self.refstd = refstd # Reference standard deviation tr = PolarAxes.PolarTransform() # Correlation labels rlocs = np.concatenate((np.arange(10) / 10., [0.95, 0.99])) tlocs = np.arccos(rlocs) # Conversion to polar angles gl1 = GF.FixedLocator(tlocs) # Positions tf1 = GF.DictFormatter(dict(zip(tlocs, map(str, rlocs)))) # Standard deviation axis extent self.smin = 0 self.smax = radmax * self.refstd ghelper = FA.GridHelperCurveLinear(tr, extremes=(0, np.pi / 2, # 1st quadrant self.smin, self.smax), grid_locator1=gl1, tick_formatter1=tf1, ) if fig is None: fig = plt.figure() ax = FA.FloatingSubplot(fig, rect, grid_helper=ghelper) fig.add_subplot(ax) # Adjust axes ax.axis["top"].set_axis_direction("bottom") # "Angle axis" ax.axis["top"].toggle(ticklabels=True, label=True) ax.axis["top"].major_ticklabels.set_axis_direction("top") ax.axis["top"].label.set_axis_direction("top") ax.axis["top"].label.set_text("Correlation") ax.axis["left"].set_axis_direction("bottom") # "X axis" ax.axis["left"].label.set_text("Standard deviation") ax.axis["right"].set_axis_direction("top") # "Y axis" ax.axis["right"].toggle(ticklabels=True) ax.axis["right"].major_ticklabels.set_axis_direction("left") ax.axis["bottom"].set_visible(False) # Useless # Contours along standard deviations ax.grid(False) self._ax = ax # Graphical axes self.ax = ax.get_aux_axes(tr) # Polar coordinates # Add reference point and stddev contour # print "Reference std:", self.refstd l, = self.ax.plot([0], self.refstd, 'k*', ls='', ms=10, label=label) t = np.linspace(0, np.pi / 2) r = np.zeros_like(t) + self.refstd self.ax.plot(t, r, 'k--', label='_') # Collect sample points for latter use (e.g. legend) self.samplePoints = [l] def add_sample(self, stddev, corrcoef, *args, **kwargs): """Add sample (stddev,corrcoeff) to the Taylor diagram. args and kwargs are directly propagated to the Figure.plot command.""" l, = self.ax.plot(np.arccos(corrcoef), stddev, *args, **kwargs) # (theta,radius) self.samplePoints.append(l) return l def add_rms_contours(self, levels=5, **kwargs): """Add constant centered RMS difference contours.""" rs, ts = np.meshgrid(np.linspace(self.smin, self.smax), np.linspace(0, np.pi / 2)) # Compute centered RMS difference rms = np.sqrt(self.refstd**2 + rs**2 - 2 * self.refstd * rs * np.cos(ts)) contours = self.ax.contour(ts, rs, rms, levels, **kwargs) def add_stddev_contours(self, std, corr1, corr2, **kwargs): """Add a curved line with a radius of std between two points [std, corr1] and [std, corr2]""" t = np.linspace(np.arccos(corr1), np.arccos(corr2)) r = np.zeros_like(t) + std return self.ax.plot(t, r, 'red', linewidth=2) def add_contours(self, std1, corr1, std2, corr2, **kwargs): """Add a line between two points [std1, corr1] and [std2, corr2]""" t = np.linspace(np.arccos(corr1), np.arccos(corr2)) r = np.linspace(std1, std2) return self.ax.plot(t, r, 'red', linewidth=2) def draw_histogram(dataset_array, data_names, fname, fmt='png', nbins=10): ''' Purpose:: Draw a histogram for the input dataset. :param dataset_array: A list of data values [data1, data2, ....]. :type dataset_array: :class:`list` of :class:`float` :param data_names: A list of data names ['name1','name2',....]. :type data_names: :class:`list` of :class:`string` :param fname: The filename of the plot. :type fname: :class:`string` :param fmt: (Optional) Filetype for the output. :type fmt: :class:`string` :param bins: (Optional) Number of bins. :type bins: :class:`integer` ''' fig = plt.figure() fig.dpi = 300 ndata = len(dataset_array) data_min = 500. data_max = 0. for data in dataset_array: data_min = np.min([data_min, data.min()]) data_max = np.max([data_max, data.max()]) bins = np.linspace(np.round(data_min), np.round(data_max + 1), nbins) for idata, data in enumerate(dataset_array): ax = fig.add_subplot(ndata, 1, idata + 1) ax.hist(data, bins, alpha=0.5, label=data_names[idata], normed=True) leg = ax.legend() leg.get_frame().set_alpha(0.5) ax.set_xlim([data_min - (data_max - data_min) * 0.15, data_max + (data_max - data_min) * 0.15]) fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) def fill_US_states_with_color(regions, fname, fmt='png', ptitle='', colors=False, values=None, region_names=None): ''' Fill the States over the contiguous US with colors :param regions: The list of subregions(lists of US States) to be filled with different colors. :type regions: :class:`list` :param fname: The filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param colors: (Optional) : If True, each region will be filled with different colors without using values :type colors: :class:`bool` :param values: (Optional) : If colors==False, color for each region scales an associated element in values :type values: :class:`numpy.ndarray` ''' nregion = len(regions) if colors: cmap = plt.cm.rainbow if not (values is None): cmap = plt.cm.seismic max_abs = np.abs(values).max() # Set up the figure fig = plt.figure() fig.set_size_inches((8.5, 11.)) fig.dpi = 300 ax = fig.add_subplot(111) # create the map m = Basemap(llcrnrlon=-127,llcrnrlat=22,urcrnrlon=-65,urcrnrlat=52, ax=ax) for iregion, region in enumerate(regions): shapes = utils.shapefile_boundary('us_states', region) patches=[] lats=np.empty(0) lons=np.empty(0) for shape in shapes: patches.append(Polygon(np.array(shape), True)) lons = np.append(lons, shape[:,0]) lats = np.append(lats, shape[:,1]) if colors: color_to_fill=cmap((iregion+0.5)/nregion) if not (values is None): value = values[iregion] color_to_fill = cmap(0.5+np.sign(value)*abs(value)/max_abs*0.45) ax.add_collection(PatchCollection(patches, facecolor=color_to_fill)) if region_names: ax.text(lons.mean(), lats.mean(), region_names[iregion], ha='center', va='center', fontsize=10) m.drawcountries(linewidth=0.) # Add the title ax.set_title(ptitle) # Save the figure fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight', dpi=fig.dpi) fig.clf() def draw_plot_to_compare_trends(obs_data, ens_data, model_data, fname, fmt='png', ptitle='', data_labels=None, xlabel='', ylabel=''): ''' Fill the States over the contiguous US with colors :param obs_data: An array of observed trend and standard errors for regions :type obs_data: :class:'numpy.ndarray' :param ens_data: An array of trend and standard errors from a multi-model ensemble for regions :type ens_data: : class:'numpy.ndarray' :param model_data: An array of trends from models for regions :type model_data: : class:'numpy.ndarray' :param fname: The filename of the plot. :type fname: :mod:`string` :param fmt: (Optional) filetype for the output. :type fmt: :mod:`string` :param ptitle: (Optional) plot title. :type ptitle: :mod:`string` :param data_labels: (Optional) names of the regions :type data_labels: :mod:`list` :param xlabel: (Optional) a label for x-axis :type xlabel: :mod:`string` :param ylabel: (Optional) a label for y-axis :type ylabel: :mod:`string` ''' nregions = obs_data.shape[1] # Set up the figure fig = plt.figure() fig.set_size_inches((8.5, 11.)) fig.dpi = 300 ax = fig.add_subplot(111) b_plot = ax.boxplot(model_data, widths=np.repeat(0.2, nregions), positions=np.arange(nregions)+1.3) plt.setp(b_plot['medians'], color='black') plt.setp(b_plot['whiskers'], color='black') plt.setp(b_plot['boxes'], color='black') plt.setp(b_plot['fliers'], color='black') ax.errorbar(np.arange(nregions)+0.8, obs_data[0,:], yerr=obs_data[1,:], fmt='o', color='r', ecolor='r') ax.errorbar(np.arange(nregions)+1., ens_data[0,:], yerr=ens_data[1,:], fmt='o', color='b', ecolor='b') ax.set_xticks(np.arange(nregions)+1) ax.set_xlim([0, nregions+1]) if data_labels: ax.set_xticklabels(data_labels) fig.savefig('%s.%s' % (fname, fmt), bbox_inches='tight') def draw_precipitation_JPDF (plot_data, plot_level, x_ticks, x_names,y_ticks,y_names, output_file, title=None, diff_plot=False, cmap = cm.BrBG, cbar_ticks=[0.01, 0.10, 0.5, 2, 5, 25], cbar_label=['0.01', '0.10', '0.5', '2', '5', '25']): ''' :param plot_data: a numpy array of data to plot (dimY, dimX) :type plot_data: :class:'numpy.ndarray' :param plot_level: levels to plot :type plot_level: :class:'numpy.ndarray' :param x_ticks: x values where tick makrs are located :type x_ticks: :class:'numpy.ndarray' :param x_names: labels for the ticks on x-axis (dimX) :type x_names: :class:'list' :param y_ticks: y values where tick makrs are located :type y_ticks: :class:'numpy.ndarray' :param y_names: labels for the ticks on y-axis (dimY) :type y_names: :class:'list' :param output_file: name of output png file :type output_file: :mod:'string' :param title: (Optional) title of the plot :type title: :mod:'string' :param diff_plot: (Optional) if true, a difference plot will be generated :type diff_plot: :mod:'bool' :param cbar_ticks: (Optional) tick marks for the color bar :type cbar_ticks: :class:'list' :param cbar_label: (Optional) lables for the tick marks of the color bar :type cbar_label: :class:'list' ''' if diff_plot: cmap = cm.RdBu_r fig = plt.figure() sb = fig.add_subplot(111) dimY, dimX = plot_data.shape plot_data2 = np.zeros([dimY,dimX]) # sectioned array for plotting # fontsize rcParams['axes.labelsize'] = 8 rcParams['xtick.labelsize'] = 8 rcParams['ytick.labelsize'] = 8 # assign the values in plot_level to plot_data for iy in range(dimY): for ix in range(dimX): if plot_data[iy,ix] <= np.min(plot_level): plot_data2[iy,ix] = -1. else: plot_data2[iy,ix] = plot_level[np.where(plot_level <= plot_data[iy,ix])].max() sb.set_xticks(x_ticks) sb.set_xticklabels(x_names) sb.set_yticks(y_ticks) sb.set_yticklabels(y_names) norm = BoundaryNorm(plot_level[1:], cmap.N) a=sb.pcolor(plot_data2, edgecolors = 'k', linewidths=0.5, cmap = cmap, norm = norm) a.cmap.set_under('w') sb.set_xlabel('Spell duration [hrs]') sb.set_ylabel('Peak rainfall [mm/hr]') cax = fig.add_axes([0.2, -0.06, 0.6, 0.02]) cbar = plt.colorbar(a, cax=cax, orientation = 'horizontal', extend='both') cbar.set_ticks(cbar_ticks) cbar.set_ticklabels(cbar_label) if title: fig.suptitle(title) fig.savefig(output_file, dpi=600,bbox_inches='tight')
apache-2.0
raghavrv/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
4
2433
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner # ############################################################################# # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) # ############################################################################# # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
RobinD42/pyside
doc/inheritance_diagram.py
10
12497
# -*- coding: utf-8 -*- r""" sphinx.ext.inheritance_diagram ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. :copyright: Copyright 2010-2011 by the PySide team. :license: BSD, see LICENSE for details. """ import os import re import sys import inspect try: from hashlib import md5 except ImportError: from md5 import md5 from docutils import nodes from docutils.parsers.rst import directives from sphinx.ext.graphviz import render_dot_html, render_dot_latex from sphinx.util.compat import Directive class_sig_re = re.compile(r'''^([\w.]*\.)? # module names (\w+) \s* $ # class/final module name ''', re.VERBOSE) class InheritanceException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, currmodule, show_builtins=False, parts=0): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names classes = self._import_classes(class_names, currmodule) self.class_info = self._class_info(classes, show_builtins, parts) if not self.class_info: raise InheritanceException('No classes found for ' 'inheritance diagram') def _import_class_or_module(self, name, currmodule): """ Import a class using its fully-qualified *name*. """ try: path, base = class_sig_re.match(name).groups() except (AttributeError, ValueError): raise InheritanceException('Invalid class or module %r specified ' 'for inheritance diagram' % name) fullname = (path or '') + base path = (path and path.rstrip('.') or '') # two possibilities: either it is a module, then import it try: __import__(fullname) todoc = sys.modules[fullname] except ImportError: # else it is a class, then import the module if not path: if currmodule: # try the current module path = currmodule else: raise InheritanceException( 'Could not import class %r specified for ' 'inheritance diagram' % base) try: __import__(path) todoc = getattr(sys.modules[path], base) except (ImportError, AttributeError): raise InheritanceException( 'Could not import class or module %r specified for ' 'inheritance diagram' % (path + '.' + base)) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise InheritanceException('%r specified for inheritance diagram is ' 'not a class or module' % name) def _import_classes(self, class_names, currmodule): """Import a list of classes.""" classes = [] for name in class_names: classes.extend(self._import_class_or_module(name, currmodule)) return classes def _class_info(self, classes, show_builtins, parts): """Return name and bases for all classes that are ancestors of *classes*. *parts* gives the number of dotted name parts that is removed from the displayed node names. """ all_classes = {} builtins = __builtins__.values() def recurse(cls): if not show_builtins and cls in builtins: return nodename = self.class_name(cls, parts) fullname = self.class_name(cls, 0) baselist = [] all_classes[cls] = (nodename, fullname, baselist) for base in cls.__bases__: if not show_builtins and base in builtins: continue if base.__name__ == "Object" and base.__module__ == "Shiboken": continue baselist.append(self.class_name(base, parts)) if base not in all_classes: recurse(base) for cls in classes: recurse(cls) return all_classes.values() def class_name(self, cls, parts=0): """Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = '%s.%s' % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [fullname for (_, fullname, _) in self.class_info] # These are the default attrs for graphviz default_graph_attrs = { 'rankdir': 'LR', 'size': '"8.0, 12.0"', } default_node_attrs = { 'shape': 'box', 'fontsize': 10, 'height': 0.25, 'fontname': 'Vera Sans, DejaVu Sans, Liberation Sans, ' 'Arial, Helvetica, sans', 'style': '"setlinewidth(0.5)"', } default_edge_attrs = { 'arrowsize': 0.5, 'style': '"setlinewidth(0.5)"', } def _format_node_attrs(self, attrs): return ','.join(['%s=%s' % x for x in attrs.items()]) def _format_graph_attrs(self, attrs): return ''.join(['%s=%s;\n' % x for x in attrs.items()]) def generate_dot(self, name, urls={}, env=None, graph_attrs={}, node_attrs={}, edge_attrs={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *name* is the name of the graph. *urls* is a dictionary mapping class names to HTTP URLs. *graph_attrs*, *node_attrs*, *edge_attrs* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_attrs = self.default_graph_attrs.copy() n_attrs = self.default_node_attrs.copy() e_attrs = self.default_edge_attrs.copy() g_attrs.update(graph_attrs) n_attrs.update(node_attrs) e_attrs.update(edge_attrs) if env: g_attrs.update(env.config.inheritance_graph_attrs) n_attrs.update(env.config.inheritance_node_attrs) e_attrs.update(env.config.inheritance_edge_attrs) res = [] res.append('digraph %s {\n' % name) res.append(self._format_graph_attrs(g_attrs)) for name, fullname, bases in self.class_info: # Write the node this_node_attrs = n_attrs.copy() url = urls.get(fullname) if url is not None: this_node_attrs['URL'] = '"%s"' % url res.append(' "%s" [%s];\n' % (name, self._format_node_attrs(this_node_attrs))) # Write the edges for base_name in bases: res.append(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_attrs(e_attrs))) res.append('}\n') return ''.join(res) class inheritance_diagram(nodes.General, nodes.Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass class InheritanceDiagram(Directive): """ Run when the inheritance_diagram directive is first encountered. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = { 'parts': directives.nonnegative_int, } def run(self): node = inheritance_diagram() node.document = self.state.document env = self.state.document.settings.env class_names = self.arguments[0].split() class_role = env.get_domain('py').role('class') # Store the original content for use as a hash node['parts'] = self.options.get('parts', 0) node['content'] = ', '.join(class_names) # Create a graph starting with the list of classes try: graph = InheritanceGraph( class_names, env.temp_data.get('py:module'), parts=node['parts']) except InheritanceException, err: return [node.document.reporter.warning(err.args[0], line=self.lineno)] # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = class_role( 'class', ':class:`%s`' % name, name, 0, self.state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_visit_inheritance_diagram(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') dotcode = graph.generate_dot(name, urls, env=self.builder.env) render_dot_html(self, node, dotcode, [], 'inheritance', 'inheritance', alt='Inheritance diagram of ' + node['content']) raise nodes.SkipNode def latex_visit_inheritance_diagram(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash dotcode = graph.generate_dot(name, env=self.builder.env, graph_attrs={'size': '"6.0,6.0"'}) render_dot_latex(self, node, dotcode, [], 'inheritance') raise nodes.SkipNode def skip(self, node): raise nodes.SkipNode def setup(app): app.setup_extension('sphinx.ext.graphviz') app.add_node( inheritance_diagram, latex=(latex_visit_inheritance_diagram, None), html=(html_visit_inheritance_diagram, None), text=(skip, None), man=(skip, None)) app.add_directive('inheritance-diagram', InheritanceDiagram) app.add_config_value('inheritance_graph_attrs', {}, False), app.add_config_value('inheritance_node_attrs', {}, False), app.add_config_value('inheritance_edge_attrs', {}, False),
lgpl-2.1
neuroidss/nupic.research
projects/sequence_classification/run_encoder_only.py
11
7720
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Run sequence classification experiment with simple encoder model 1. Encode each element with RDSE encoder 2. Calculate prediction using kNN based on average overalap distance 3. Search for the optimal encoder resolution """ import pickle import time import matplotlib.pyplot as plt import multiprocessing from util_functions import * import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 plt.ion() def runEncoderOverDataset(encoder, dataset): activeColumnsData = [] for i in range(dataset.shape[0]): activeColumnsTrace = [] for element in dataset[i, :]: encoderOutput = encoder.encode(element) activeColumns = set(np.where(encoderOutput > 0)[0]) activeColumnsTrace.append(activeColumns) activeColumnsData.append(activeColumnsTrace) return activeColumnsData def calcualteEncoderModelWorker(taskQueue, resultQueue, *args): while True: nextTask = taskQueue.get() print "Next task is : ", nextTask if nextTask is None: break nBuckets = nextTask["nBuckets"] accuracyColumnOnly = calculateEncoderModelAccuracy(nBuckets, *args) resultQueue.put({nBuckets: accuracyColumnOnly}) print "Column Only model, Resolution: {} Accuracy: {}".format( nBuckets, accuracyColumnOnly) return def calculateEncoderModelAccuracy(nBuckets, numCols, w, trainData, trainLabel): maxValue = np.max(trainData) minValue = np.min(trainData) resolution = (maxValue - minValue) / nBuckets encoder = RandomDistributedScalarEncoder(resolution, w=w, n=numCols) activeColumnsTrain = runEncoderOverDataset(encoder, trainData) distMatColumnTrain = calculateDistanceMatTrain(activeColumnsTrain) meanAccuracy, outcomeColumn = calculateAccuracy(distMatColumnTrain, trainLabel, trainLabel) accuracyColumnOnly = np.mean(outcomeColumn) return accuracyColumnOnly def searchForOptimalEncoderResolution(nBucketList, trainData, trainLabel, numCols, w): numCPU = multiprocessing.cpu_count() numWorker = numCPU # Establish communication queues taskQueue = multiprocessing.JoinableQueue() resultQueue = multiprocessing.Queue() for nBuckets in nBucketList: taskQueue.put({"nBuckets": nBuckets}) for _ in range(numWorker): taskQueue.put(None) jobs = [] for i in range(numWorker): print "Start process ", i p = multiprocessing.Process(target=calcualteEncoderModelWorker, args=(taskQueue, resultQueue, numCols, w, trainData, trainLabel)) jobs.append(p) p.daemon = True p.start() while not taskQueue.empty(): time.sleep(0.1) accuracyVsResolution = np.zeros((len(nBucketList,))) while not resultQueue.empty(): exptResult = resultQueue.get() nBuckets = exptResult.keys()[0] accuracyVsResolution[nBucketList.index(nBuckets)] = exptResult[nBuckets] return accuracyVsResolution if __name__ == "__main__": # datasetName = "SyntheticData" # dataSetList = listDataSets(datasetName) datasetName = 'UCR_TS_Archive_2015' dataSetList = listDataSets(datasetName) # dataSetList = ["synthetic_control"] for dataName in dataSetList: trainData, trainLabel, testData, testLabel = loadDataset(dataName, datasetName) numTest = len(testLabel) numTrain = len(trainLabel) sequenceLength = len(trainData[0]) classList = np.unique(trainLabel) if max(numTrain, numTest) * sequenceLength > 600 * 600: print "skip this large dataset for now" continue print print "Processing {}".format(dataName) print "Train Sample # {}, Test Sample # {}".format(numTrain, numTest) print "Sequence Length {} Class # {}".format(sequenceLength, len(classList)) try: searchResolution = pickle.load( open('results/optimalEncoderResolution/{}'.format(dataName), 'r')) continue except: print "Search encoder parameters for this dataset" EuclideanDistanceMat = calculateEuclideanDistanceMat(testData, trainData) outcomeEuclidean = [] for i in range(testData.shape[0]): predictedClass = one_nearest_neighbor(trainData, trainLabel, testData[i,:]) correct = 1 if predictedClass == testLabel[i] else 0 outcomeEuclidean.append(correct) # print "{} out of {} done outcome: {}".format(i, testData.shape[0], correct) print print "Euclidean model accuracy: {}".format(np.mean(outcomeEuclidean)) print accuracyEuclideanDist = np.mean(outcomeEuclidean) # # Use SDR overlap instead of Euclidean distance print "Running Encoder model" from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder maxValue = np.max(trainData) minValue = np.min(trainData) numCols = 2048 w = 41 try: searchResolution = pickle.load( open('results/optimalEncoderResolution/{}'.format(dataName), 'r')) optimalResolution = searchResolution['optimalResolution'] except: nBucketList = range(20, 200, 10) accuracyVsResolution = searchForOptimalEncoderResolution( nBucketList, trainData, trainLabel, numCols, w) optNumBucket = nBucketList[np.argmax(np.array(accuracyVsResolution))] optimalResolution = (maxValue - minValue)/optNumBucket searchResolution = { 'nBucketList': nBucketList, 'accuracyVsResolution': accuracyVsResolution, 'optimalResolution': optimalResolution } # save optimal resolution for future use outputFile = open('results/optimalEncoderResolution/{}'.format(dataName), 'w') pickle.dump(searchResolution, outputFile) outputFile.close() print "optimal bucket # {}".format((maxValue - minValue)/optimalResolution) encoder = RandomDistributedScalarEncoder(optimalResolution, w=w, n=numCols) print "encoding train data ..." activeColumnsTrain = runEncoderOverDataset(encoder, trainData) print "encoding test data ..." activeColumnsTest = runEncoderOverDataset(encoder, testData) print "calculate column distance matrix ..." distMatColumnTest = calculateDistanceMat(activeColumnsTest, activeColumnsTrain) meanAccuracy, outcomeColumn = calculateAccuracy(distMatColumnTest, trainLabel, testLabel) accuracyColumnOnly = np.mean(outcomeColumn) print print "Column Only model, Accuracy: {}".format(accuracyColumnOnly) expResults = {'accuracyEuclideanDist': accuracyEuclideanDist, 'accuracyColumnOnly': accuracyColumnOnly, 'EuclideanDistanceMat': EuclideanDistanceMat, 'distMatColumnTest': distMatColumnTest} outputFile = open('results/modelPerformance/{}_columnOnly'.format(dataName), 'w') pickle.dump(expResults, outputFile) outputFile.close()
agpl-3.0
ryanraaum/african-mtdna
popdata_sources/beleza2005/process.py
1
1365
from oldowan.mtconvert import seq2sites, sites2seq, str2sites from string import translate import pandas as pd import sys import csv sys.path.append('../../scripts') from utils import * ## load metadata metadata = pd.read_csv('metadata.csv', index_col=0) region = range2region('16024-16569;1-340') hids = [] hvr1 = [] hvr2 = [] sites = [] with open('beleza2005.csv', 'rU') as f: reader = csv.reader(f) reader.next() # skip past header for row in reader: for i in range(int(row[1])): hids.append(row[0]) hvr1.append(str2sites(row[2], add16k=True)) hvr2.append(str2sites(row[3])) for i in range(len(hids)): sites.append(hvr1[i] + hvr2[i]) ## Validate variant sites passed_validation = True for i in range(len(hids)): seq = sites2seq(sites[i], region) mysites = seq2sites(seq) if not sites[i] == mysites: if not translate(seq, None, '-') == translate(sites2seq(mysites, region), None, '-'): passed_validation = False print i if passed_validation: counter = 0 prefix = metadata.ix[0,'NewPrefix'] with open('processed.csv', 'w') as f: for i in range(len(hids)): counter = counter + 1 newid = prefix + str(counter).zfill(3) seq = sites2seq(sites[i], region) seq = translate(seq, None, '-') mysites = seq2sites(seq) mysites = ' '.join([str(x) for x in mysites]) f.write('%s,%s,%s\n' % (newid, hids[i], mysites))
cc0-1.0
moorepants/BicycleID
bicycleid/plot.py
1
8746
import numpy as np from matplotlib import rc import matplotlib.figure as mpfig import matplotlib.backends.backend_gtk as mpgtk from dtk import control import bicycleparameters as bp class CoefficientPlot(object): equations = [r'\dot{\phi}', r'\dot{\delta}', r'\ddot{\phi}', r'\ddot{\delta}'] states = [r'\phi', r'\delta', r'\dot{\phi}', r'\dot{\delta}'] xlabel = r'$v$ $\frac{m}{s}$' xlim = (1.0, 10.0) ylim = np.array([[-10., 30.], [-60., 0.], [-4., 2.], [-3., 3.], [-0.5, 0.5], [-50., 300.], [-175., 40.], [-50., 50.], [-40., 20.], [-5., 15.]]) riderNames = ['Charlie', 'Jason', 'Luke'] def __init__(self): rc('figure.subplot', wspace=0.4, hspace=0.4) self.figure = mpfig.Figure(figsize=(6, 4), dpi=60) self.axes = {} self.title = self.figure.suptitle('') for i in range(2, 4): for j in range(4): label = 'a' + str(i + 1) + str(j + 1) ax = self.figure.add_subplot(2, 5, 5 * (i - 2) + j + 1) self.axes[label] = ax ax.set_title('$a_{' + self.equations[i] + self.states[j] + '}$') ax.set_xlabel(self.xlabel) ax.set_xlim(self.xlim) ax.set_ylim(self.ylim[5 * (i - 2) + j]) for i, p in zip(range(2, 4), [5, 10]): label = 'b' + str(i + 1) + str(1) ax = self.figure.add_subplot(2, 5, p) self.axes[label] = ax ax.set_title('$b_{' + self.equations[i] + r'T_\delta' + '}$') ax.set_xlabel(self.xlabel) ax.set_xlim(self.xlim) ax.set_ylim(self.ylim[p - 1]) self.lines = {} for label, ax in self.axes.items(): self.lines[label + '-exp'] = ax.plot(self.xlim, [1., 1.], '.', markersize=2)[0] for rider in self.riderNames: self.lines[label + '-mod-' + rider] = ax.plot(self.xlim, [1., 1.])[0] self.canvas = mpgtk.FigureCanvasGTK(self.figure) self.canvas.show() def update_graph(self, exp, mod): """Sets the data in the plot with respect to the provided experimental and model data sets. Parameters ---------- exp : pandas.DataFrame A data frame containing the experimental data. mod : dictionary A dictionary of pandas.DataFrame objects containing the data for each rider. """ self.title.set_text('Number of experiments: {}'.format(len(exp))) for name, line in self.lines.items(): try: label, typ, rider = name.split('-') except ValueError: label, typ = name.split('-') if typ == 'exp': line.set_data(exp['ActualSpeed'], exp[label]) elif typ == 'mod': try: line.set_data(mod[rider]['Speed'], mod[rider][label]) except KeyError: line.set_data([np.nan], [np.nan]) class BodePlot(object): inputNames = [r'$T_\delta$'] outputNames = [r'$\phi$', r'$\delta$'] stateNames = [r'$\phi$', r'$\delta$', r'$\dot{\phi}$', r'$\dot{\delta}$'] systemNames = ['Experimental Mean', 'Experimental Upper Uncertainty', 'Experimental Lower Uncertainty', 'Charlie', 'Jason', 'Luke'] colors = ['b', 'b', 'b', 'r', 'g', 'm'] linestyles = ['-', '--', '--', '-', '-', '-'] def __init__(self, w): A = np.array([[ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ], [ 8.24494689, -3.53782098, -0.06418077, -0.53855055], [ 18.84406429, 31.38819183, 3.50835159, -7.18282895]]) B = np.array([[ 0. ], [ 0. ], [-0.1018712 ], [ 5.56864583]]) C = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.]]) D = np.zeros((2, 1)) self.systems = [] for name in self.systemNames: self.systems.append(control.StateSpace(A, B, C, D, name=name, inputNames=self.inputNames, outputNames=self.outputNames, stateNames=self.stateNames)) self.w = w self.bode = control.Bode(w, *self.systems, colors=self.colors, linestyles=self.linestyles) self.bode.mag_phase() self.bode.plot() self.canvases = [] for fig in self.bode.figs: canvas = mpgtk.FigureCanvasGTK(fig) self.canvases.append(canvas) canvas.show() def update_graph(self, bodeData, models): """Updates the Bode plot based on the provided data. Parameters ---------- bodeData : tuple The mean and standard deviation of the magnitude and phase and the mean speed for the set of runs. models : dictionary A dictionary of models for each rider. """ meanMag, stdMag, meanPhase, stdPhase, meanSpeed, stdSpeed = bodeData meanMagPlus = meanMag + stdMag meanMagMinus = meanMag - stdMag # steer torque to roll angle phiPlot = self.bode.figs[0] phiPlot.magAx.lines[0].set_ydata(meanMag[:, 0, 0]) phiPlot.magAx.lines[1].set_ydata(meanMagPlus[:, 0, 0]) phiPlot.magAx.lines[2].set_ydata(meanMagMinus[:, 0, 0]) phiPlot.magAx.set_ylim((-100, 50)) phiPlot.phaseAx.lines[0].set_ydata(meanPhase[:, 0, 0]) phiPlot.phaseAx.lines[1].set_ydata(meanPhase[:, 0, 0] + stdPhase[:, 0, 0]) phiPlot.phaseAx.lines[2].set_ydata(meanPhase[:, 0, 0] - stdPhase[:, 0, 0]) phiPlot.phaseAx.set_ylim((-360, 0)) # steer torque to steer angle deltaPlot = self.bode.figs[1] deltaPlot.magAx.lines[0].set_ydata(meanMag[:, 1, 0]) deltaPlot.magAx.lines[1].set_ydata(meanMagPlus[:, 1, 0]) deltaPlot.magAx.lines[2].set_ydata(meanMagMinus[:, 1, 0]) deltaPlot.magAx.set_ylim((-100, 50)) deltaPlot.phaseAx.lines[0].set_ydata(meanPhase[:, 1, 0]) deltaPlot.phaseAx.lines[1].set_ydata(meanPhase[:, 1, 0] + stdPhase[:, 1, 0]) deltaPlot.phaseAx.lines[2].set_ydata(meanPhase[:, 1, 0] - stdPhase[:, 1, 0]) deltaPlot.phaseAx.set_ylim((-360, 0)) for rider in ['Charlie', 'Jason', 'Luke']: try: mod = models[rider] except KeyError: # if the rider isn't there, don't plot the lines lenW = len(deltaPlot.magAx.lines[0].get_xdata()) mag = np.nan * np.ones((lenW, 2)) phase = np.nan * np.ones((lenW, 2)) else: mag, phase = mod.magnitude_phase(meanSpeed, self.w) mag = 20. * np.log10(mag) phase = np.rad2deg(phase) for i, p in enumerate(phase.T): if p[0] > 0.: phase[:, i] = phase[:, i] - 360. phiPlot.magAx.lines[self.systemNames.index(rider)].set_ydata(mag[:, 0]) phiPlot.phaseAx.lines[self.systemNames.index(rider)].set_ydata(phase[:, 0]) deltaPlot.magAx.lines[self.systemNames.index(rider)].set_ydata(mag[:, 1]) deltaPlot.phaseAx.lines[self.systemNames.index(rider)].set_ydata(phase[:, 1]) class RootLociPlot(object): def __init__(self, models, expSpeed, eig, speed): # the plot should have eigenvalues for each rider in a different color # and plot dots for the eigenvalues from the model self.fig = bp.plot_eigenvalues([mod.bicycle for mod in models.values()], speed) # plot eigenvalues of the experimental models self.ax = self.fig.axes[0] self.ax.set_ylim((-10., 10.)) #self.real = self.ax.plot(expSpeed, np.real(eig), '.k') self.real = [] for eigs in eig.T: eigWithImag = abs(np.imag(eigs)) > 1e-10 self.real.append(self.ax.scatter(expSpeed, np.real(eigs), c=eigWithImag)) self.imag = self.ax.plot(expSpeed, abs(np.imag(eig)), 'ob') self.canvas = mpgtk.FigureCanvasGTK(self.fig) self.canvas.show() def update_plot(self, speed, eig): for i, line in enumerate(self.real): xy = np.vstack((speed, np.real(eig[:, i]))).T line.set_offsets(xy) for i, line in enumerate(self.imag): line.set_data(speed, abs(np.imag(eig[:, i])))
bsd-2-clause
luo66/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
297
1247
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import pylab as pl from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) pl.figure('scikit-learn parallel %s benchmark results' % func.__name__) pl.plot(sample_sizes, one_core, label="one core") pl.plot(sample_sizes, multi_core, label="multi core") pl.xlabel('n_samples') pl.ylabel('Time (s)') pl.title('Parallel %s' % func.__name__) pl.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) pl.show()
bsd-3-clause
project-asap/IReS-Platform
asap-tools/monitoring/lib/tools.py
1
2356
__author__ = 'cmantas' import matplotlib.pyplot as plt from ast import literal_eval from time import time, sleep from json import load, dumps from os.path import isfile try: plt.style.use('fivethirtyeight') except: # print "You could get prettier graphs with matplotlib > 1.4" pass from matplotlib.pyplot import figure, show def myplot(*args, **kwargs): if "title" in kwargs: title = kwargs["title"] del(kwargs["title"]) plt.title(title) if "xlabel" in kwargs: xlabel = kwargs["xlabel"] del(kwargs["xlabel"]) plt.xlabel(xlabel) if "ylabel" in kwargs: ylabel = kwargs["ylabel"] del(kwargs["ylabel"]) plt.ylabel(ylabel) plt.grid(True) # plt.grid(which='both') # plt.grid(which='minor', alpha=0.2) plt.plot(*args, **kwargs) plt.legend(loc = 'upper left') def mycast(a): """ given a string, it returns its casted value to the correct type or the string itself if it can't be evaluated if the input is a list or a dict it recursively calls itself on the input collection's (keys and) values :param a: the input string :return: the evaluated 'casted' result """ if isinstance(a, dict): return dict(map(lambda (k, v): (mycast(k),mycast(v)), a.iteritems())) elif isinstance(a, list): return map(mycast, a) else: try: return literal_eval(a) except: return a def wait_for_file(filepath, timeout): """ Keep waiting for a file to appear unless a timeout is reached :param filepath: :param timeout: the time needed to give up (default: 3sec) :return: void """ end_time= time() + timeout #wait while not isfile(filepath) and time()<end_time: sleep(0.2) # if after wait no file then trouble if not isfile(filepath): print "ERROR: waited for monitoring data file, but timed out" exit() def _collect_json(metrics_file, timeout=3): try: # wait for the metrics file to be created (timeout secs) if timeout: wait_for_file(metrics_file, timeout) # collect the saved metrics from metrics file with open(metrics_file) as f: metrics = load(f) return metrics except: #print 'Could not collect the metrics' return {}
apache-2.0
arabenjamin/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
249
2211
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() plt.plot(coef[:, feature_to_plot], 'k', label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
CallaJun/hackprince
indico/matplotlib/tests/test_streamplot.py
9
2067
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from numpy.testing import assert_array_almost_equal import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison, cleanup import matplotlib.transforms as mtransforms def velocity_field(): Y, X = np.mgrid[-3:3:100j, -3:3:100j] U = -1 - X**2 + Y V = 1 + X - Y**2 return X, Y, U, V @image_comparison(baseline_images=['streamplot_colormap_test_image']) def test_colormap(): X, Y, U, V = velocity_field() plt.streamplot(X, Y, U, V, color=U, density=0.6, linewidth=2, cmap=plt.cm.autumn) plt.colorbar() @image_comparison(baseline_images=['streamplot_linewidth_test_image']) def test_linewidth(): X, Y, U, V = velocity_field() speed = np.sqrt(U*U + V*V) lw = 5*speed/speed.max() df = 25. / 30. # Compatibility factor for old test image plt.streamplot(X, Y, U, V, density=[0.5 * df, 1. * df], color='k', linewidth=lw) @image_comparison(baseline_images=['streamplot_masks_and_nans_test_image']) def test_masks_and_nans(): X, Y, U, V = velocity_field() mask = np.zeros(U.shape, dtype=bool) mask[40:60, 40:60] = 1 U = np.ma.array(U, mask=mask) U[:20, :20] = np.nan with np.errstate(invalid='ignore'): plt.streamplot(X, Y, U, V, color=U, cmap=plt.cm.Blues) @cleanup def test_streamplot_limits(): ax = plt.axes() x = np.linspace(-5, 10, 20) y = np.linspace(-2, 4, 10) y, x = np.meshgrid(y, x) trans = mtransforms.Affine2D().translate(25, 32) + ax.transData plt.barbs(x, y, np.sin(x), np.cos(y), transform=trans) # The calculated bounds are approximately the bounds of the original data, # this is because the entire path is taken into account when updating the # datalim. assert_array_almost_equal(ax.dataLim.bounds, (20, 30, 15, 6), decimal=1) if __name__=='__main__': import nose nose.runmodule()
lgpl-3.0
drewUCL/Greengraph
Greengraph/test/test_graph.py
1
3209
from nose.tools import assert_almost_equal, assert_in, assert_equal, assert_false, assert_true from ..graph import Greengraph from ..map import Map from matplotlib import image as img #change import os import yaml import numpy import geopy import requests import mock @mock.patch.object(geopy.geocoders, 'GoogleV3') def test_Greengraph(mock_geocoders): ''' Description: A function to test the initialisation of Greengraph Data Source: Within Function ''' userInput = Greengraph('London','Glasgow') mock_geocoders.assert_equal(userInput.start, 'London') mock_geocoders.assert_equal(userInput.end, 'Glasgow') @mock.patch.object(geopy.geocoders.GoogleV3, 'geocode') def test_geolocate(mock_geocode): ''' Description: A function to test multiple locations and analyse the return of geolocate Data Source: YAML ''' tObject = Greengraph(0.0,0.0) #initiate the Greengraph object to access geolocate with open(os.path.join(os.path.dirname(__file__),'fixtures','graph_test_data.yaml')) as data: test_data = yaml.load(data)['test_geolocate'] for point in test_data: city = point.pop('city') latitude = point.pop('latitude') longitude = point.pop('longitude') mock_geocode.assert_equal(tObject.geolocate(city),(latitude,longitude)) def test_location_sequence(): ''' Description: A function to test the order of co-ordinates used to generate a path that will allow the image to be generated and then decomposed to analyse the green pixel density. Data Source: YAML ''' tObject = Greengraph(0.0,0.0) #initiate the Greengraph object to access geolocate with open(os.path.join(os.path.dirname(__file__),'fixtures','graph_test_data.yaml')) as data: test_data = yaml.load(data)['test_location_sequence'] for point in test_data: tFrom = point.pop('from_point') tTo = point.pop('to_point') tSteps = point.pop('steps') tLocationMatrix = point.pop('location_matrix') tResult = tObject.location_sequence(tObject.geolocate(tFrom),tObject.geolocate(tTo),tSteps) for row in range(0,len(tResult)): for element in range(0,len(tResult[row])): assert_almost_equal(tResult[row][element],tLocationMatrix[row][element]) @mock.patch.object(img, 'imread') @mock.patch.object(requests, 'get') @mock.patch.object(Greengraph, 'geolocate') @mock.patch.object(Map, 'count_green') def test_green_between( mock_geolocate, mock_count_green, mock_imread, mock_get ): ''' Description: This function tests and Mocks the behavour Data Source: YAML ''' with open(os.path.join(os.path.dirname(__file__),'fixtures','graph_test_data.yaml')) as data: test_data = yaml.load(data)['test_green_between'] for point in test_data: tFrom = point.pop('from_point') tFromCoord = point.pop('from_locations') tTo = point.pop('to_point') tToCoord = point.pop('to_location') tSteps = point.pop('steps') tReturnVector = point.pop('green_vector') #Mock geoloacte and count_green as we only want to test an isolated event of green_between mock_count_green.side_effect = [tFromCoord,tToCoord] mock_geolocate.side_effect = tReturnVector #Get test pixel result gPixel = Greengraph(tFrom,tTo).green_between(tSteps) assert_equal(tReturnVector,gPixel)
mit
Lawrence-Liu/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
IssamLaradji/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
34
2573
import unittest import nose import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less from .test_gmm import GMMTester np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp if __name__ == '__main__': nose.runmodule()
bsd-3-clause
charanpald/wallhack
wallhack/modelselect/ProcessResults.py
1
20493
import numpy import logging import sys import scipy.stats from sandbox.util.Latex import Latex from sandbox.util.PathDefaults import PathDefaults from exp.modelselect.ModelSelectUtils import ModelSelectUtils import matplotlib matplotlib.use("GTK3Agg") import matplotlib.pyplot as plt #Produce latex tables from the benchmark results logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def getIdealWins(errors, testErrors, p=0.01): """ Figure out whether the ideal error obtained using the test set is an improvement over model selection using CV. """ winsShape = list(errors.shape[1:-1]) winsShape.append(3) stdWins = numpy.zeros(winsShape, numpy.int) for i in range(len(sampleSizes)): for j in range(foldsSet.shape[0]): s1 = errors[:, i, j, 0] s2 = testErrors[:, i] s1Mean = numpy.mean(s1) s2Mean = numpy.mean(s2) t, prob = scipy.stats.wilcoxon(s1, s2) if prob < p: if s1Mean > s2Mean: stdWins[i, j, 2] = 1 elif s1Mean < s2Mean: stdWins[i, j, 0] = 1 else: print("Test draw samplesize:" + str(sampleSizes[i]) + " folds " + str(foldsSet[j])) stdWins[i, j, 1] = 1 return stdWins def getWins(errors, p = 0.01): """ Want to compute the number of wins/ties/losses versus CV """ #Shape is realisations, len(sampleSizes), foldsSet.shape[0], numMethods winsShape = list(errors.shape[1:]) winsShape.append(3) stdWins = numpy.zeros(winsShape, numpy.int) meanErrors = numpy.mean(errors, 0) for i in range(len(sampleSizes)): for j in range(foldsSet.shape[0]): for k in range(meanErrors.shape[2]): s1 = errors[:, i, j, 0] s2 = errors[:, i, j, k] s1Mean = numpy.mean(s1) s2Mean = numpy.mean(s2) t, prob = scipy.stats.wilcoxon(s1, s2) if prob < p: if s1Mean > s2Mean: if k==4 and j==0: print("PenVF win \\alpha=1.0, samplesize:" + str(sampleSizes[i]) + " folds " + str(foldsSet[j])) if k==1 and j==0: print("PenVF+ win samplesize:" + str(sampleSizes[i]) + " folds " + str(foldsSet[j])) stdWins[i, j, k, 2] = 1 elif s1Mean < s2Mean: if k==4 and j==0: print("PenVF loss \\alpha=1.0, samplesize:" + str(sampleSizes[i]) + " folds " + str(foldsSet[j])) if k==1 and j==0: print("PenVF+ loss samplesize:" + str(sampleSizes[i]) + " folds " + str(foldsSet[j])) stdWins[i, j, k, 0] = 1 else: stdWins[i, j, k, 1] = 1 return stdWins def getRowNames(cvScalings, idealError=False): """ Return a lost of the method types. """ rowNames = [""] for j in range(sampleSizes.shape[0]): rowNames.append("Std" + " $m=" + str(sampleSizes[j]) + "$") rowNames.append("PenVF+" + " $m=" + str(sampleSizes[j]) + "$") for k in range(cvScalings.shape[0]): rowNames.append("PenVF" + " $m=" + str(sampleSizes[j]) + "$ $\\alpha=" + str(cvScalings[k]) + "$") if idealError: rowNames.append("Test $m=" + str(sampleSizes[j]) + "$") return rowNames def getLatexTable(measures, cvScalings, idealMeasures): rowNames = getRowNames(cvScalings, True) table = Latex.array1DToRow(foldsSet) + "\\\\ \n" for j in range(sampleSizes.shape[0]): meanMeasures = numpy.mean(measures, 0) stdMeasures = numpy.std(measures, 0) table += Latex.array2DToRows(meanMeasures[j, :, :].T, stdMeasures[j, :, :].T) + "\n" meanIdealMeasures = numpy.mean(idealMeasures, 0) stdIdealMeasures = numpy.std(idealMeasures, 0) table += Latex.array2DToRows(numpy.ones((1, len(foldsSet)))*meanIdealMeasures[j], numpy.ones((1, len(foldsSet)))*stdIdealMeasures[j]) + "\n" table = Latex.addRowNames(rowNames, table) return table, meanMeasures, stdMeasures def summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix, gridResultsSuffix="GridResults"): """ Print the errors for all results plus a summary. """ numMethods = (1+(cvScalings.shape[0]+1)) numDatasets = len(datasetNames) overallErrors = numpy.zeros((numDatasets, len(sampleMethods), sampleSizes.shape[0], foldsSet.shape[0], numMethods)) overallStdWins = numpy.zeros((len(sampleMethods), len(sampleSizes), foldsSet.shape[0], numMethods+1, 3), numpy.int) overallErrorsPerSampMethod = numpy.zeros((numDatasets, len(sampleMethods), len(sampleSizes), numMethods), numpy.float) table1 = "" table2 = "" table3 = "" for i in range(len(datasetNames)): table3Error = numpy.zeros((2, len(sampleMethods))) table3Stds = numpy.zeros((2, len(sampleMethods))) for j in range(len(sampleMethods)): print("="*50 + "\n" + datasetNames[i] + "-" + sampleMethods[j] + "\n" + "="*50 ) outfileName = outputDir + datasetNames[i] + sampleMethods[j] + fileNameSuffix + ".npz" try: data = numpy.load(outfileName) errors = data["arr_0"] params = data["arr_1"] meanErrorGrids = data["arr_2"] stdErrorGrids = data["arr_3"] meanApproxGrids = data["arr_4"] stdApproxGrids = data["arr_5"] #Load ideal results outfileName = outputDir + datasetNames[i] + gridResultsSuffix + ".npz" data = numpy.load(outfileName) idealErrors = data["arr_0"] errorTable, meanErrors, stdErrors = getLatexTable(errors, cvScalings, idealErrors) wins = getWins(errors) idealWins = getIdealWins(errors, idealErrors) excessError = numpy.zeros(errors.shape) for k in range(errors.shape[1]): excessError[:, k, :, :] = errors[:, k, :, :] - numpy.tile(errors[:, k, :, 0, numpy.newaxis], (1, 1, numMethods)) meanExcessError = numpy.mean(excessError, 0) stdExcessError = numpy.std(excessError, 0) excessErrorTable, meanExcessErrors, stdExcessErrors = getLatexTable(excessError, cvScalings, idealErrors) overallErrorsPerSampMethod[i, j, :, :] = numpy.mean(meanErrors, 1) overallErrors[i, j, :, :, :] = meanExcessError overallStdWins[j, :, :, 0:-1, :] += wins overallStdWins[j, :, :, -1, :] += idealWins print(errorTable) #print("Min error is: " + str(numpy.min(meanErrors))) #print("Max error is: " + str(numpy.max(meanErrors))) #print("Mean error is: " + str(numpy.mean(meanErrors)) + "\n") #This is a table with V=10, alpha=1 and CV sampling sliceFoldIndex = 0 print(meanErrors[0, 1, 0]) numSliceMethods = 3 table1Error = numpy.zeros(len(sampleSizes)*numSliceMethods) table1Std = numpy.zeros(len(sampleSizes)*numSliceMethods) for k in range(len(sampleSizes)): table1Error[k*numSliceMethods] = meanErrors[k, sliceFoldIndex, 0] table1Error[k*numSliceMethods+1] = meanErrors[k, sliceFoldIndex, 1] table1Error[k*numSliceMethods+2] = meanErrors[k, sliceFoldIndex, 4] table1Std[k*numSliceMethods] = stdErrors[k, sliceFoldIndex, 0] table1Std[k*numSliceMethods+1] = stdErrors[k, sliceFoldIndex, 1] table1Std[k*numSliceMethods+2] = stdErrors[k, sliceFoldIndex, 4] if j == 0: table1 += datasetNames[i] + " & " + Latex.array2DToRows(numpy.array([table1Error]), numpy.array([table1Std])) + "\n" #See how alpha varies with V=10, CV sampling table2Error = numpy.zeros(range(numMethods-2)) table2Std = numpy.zeros(range(numMethods-2)) for s in range(len(sampleSizes)): table2Error = meanErrors[s, sliceFoldIndex, 2:] table2Std = stdErrors[s, sliceFoldIndex, 2:] if j == 0: table2 += datasetNames[i] + " $m=" + str(sampleSizes[s]) + "$ & " + Latex.array2DToRows(numpy.array([table2Error]), numpy.array([table2Std])) + "\n" """ #See how each sample method effects CV and pen alpha=1 fourFoldIndex = 4 hundredMIndex = 1 table3Error[0, j] = meanErrors[hundredMIndex, fourFoldIndex, 0] table3Error[1, j] = meanErrors[hundredMIndex, fourFoldIndex, 3] table3Stds[0, j] = stdErrors[hundredMIndex, fourFoldIndex, 0] table3Stds[1, j] = stdErrors[hundredMIndex, fourFoldIndex, 3] """ except IOError: print("Failed to open file: " + outfileName) table3 += Latex.addRowNames([datasetNames[i] + " Std ", datasetNames[i] + " PenVF "], Latex.array2DToRows(table3Error, table3Stds)) datasetMeanErrors = Latex.listToRow(sampleMethods) + "\n" for j in range(len(sampleSizes)): datasetMeanErrors += Latex.array2DToRows(overallErrorsPerSampMethod[i, :, j, :].T) + "\n" datasetMeanErrors = Latex.addRowNames(getRowNames(cvScalings), datasetMeanErrors) print(datasetMeanErrors) print("="*50 + "\n" + "Sliced Tables" + "\n" + "="*50) print(table1 + "\n") print(table2 + "\n") print(table3) print("="*50 + "\n" + "Overall" + "\n" + "="*50) overallMeanErrors = numpy.mean(overallErrors, 0) overallStdErrors = numpy.std(overallErrors, 0) for i in range(len(sampleMethods)): print("-"*20 + sampleMethods[i] + "-"*20) overallErrorTable = Latex.array1DToRow(foldsSet) + "\\\\ \n" overallWinsTable = Latex.array1DToRow(foldsSet) + " & Total & " +Latex.array1DToRow(foldsSet) + " & Total \\\\ \n" rowNames = getRowNames(cvScalings) for j in range(sampleSizes.shape[0]): overallErrorTable += Latex.array2DToRows(overallMeanErrors[i, j, :, :].T, overallStdErrors[i, j, :, :].T, bold=overallMeanErrors[i, j, :, :].T<0) + "\n" tiesWins = numpy.r_[overallStdWins[i, j, :, :, 0], overallStdWins[i, j, :, :, 1], overallStdWins[i, j, :, :, 2]] overallWinsTable += Latex.array2DToRows(tiesWins.T) + "\n" overallErrorTable = Latex.addRowNames(rowNames, overallErrorTable) rowNames = getRowNames(cvScalings, True) overallWinsTable = Latex.addRowNames(rowNames, overallWinsTable) print(Latex.latexTable(overallWinsTable, "Wins for " + sampleMethods[i], True)) print(Latex.latexTable(overallErrorTable.replace("0.", "."), "Excess errors for " + sampleMethods[i], True)) #print(overallWinsTable) #print(overallErrorTable) #Now print the mean errors for all datasets datasetMeanErrors = Latex.listToRow(sampleMethods) + "\n" overallErrorsPerSampMethod = numpy.mean(overallErrorsPerSampMethod[:, :, :, :], 0) for j in range(len(sampleSizes)): datasetMeanErrors += Latex.array2DToRows(overallErrorsPerSampMethod[:, j, :].T) + "\n" datasetMeanErrors = Latex.addRowNames(getRowNames(cvScalings), datasetMeanErrors) print(datasetMeanErrors) def plotResults(datasetName, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix): """ Plots the errors for a particular dataset on a bar graph. """ for k in range(len(sampleMethods)): outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz" data = numpy.load(outfileName) errors = data["arr_0"] meanMeasures = numpy.mean(errors, 0) for i in range(sampleSizes.shape[0]): plt.figure(k*len(sampleMethods) + i) plt.title("n="+str(sampleSizes[i]) + " " + sampleMethods[k]) for j in range(errors.shape[3]): plt.plot(foldsSet, meanMeasures[i, :, j]) plt.xlabel("Folds") plt.ylabel('Error') labels = ["VFCV", "PenVF+"] labels.extend(["VFP s=" + str(x) for x in cvScalings]) plt.legend(tuple(labels)) plt.show() def plotAlphas(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix): """ Plot the variation in the error with alpha for penalisation. """ for i, datasetName in enumerate(datasetNames): #plt.figure(i) for k in range(len(sampleMethods)): outfileName = outputDir + datasetName + sampleMethods[k] + fileNameSuffix + ".npz" data = numpy.load(outfileName) errors = data["arr_0"] meanMeasures = numpy.mean(errors, 0) foldInd = 4 for i in range(sampleSizes.shape[0]): plt.plot(cvScalings, meanMeasures[i, foldInd, 2:8], next(linecycler), label="m="+str(sampleSizes[i])) plt.xlabel("Alpha") plt.ylabel('Error') xmin, xmax = cvScalings[0], cvScalings[-1] plt.xlim((xmin,xmax)) plt.legend(loc="upper left") plt.show() def plotPenalty(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix): """ Plot the approximated versus ideal penalty. """ gammas = numpy.array(numpy.round(2**numpy.arange(1, 7.5, 0.5)-1), dtype=numpy.int) for i, datasetName in enumerate(datasetNames): outfileName = outputDir + datasetNames[i] + "GridResults.npz" data = numpy.load(outfileName) meanIdealPenGrids = data["arr_4"] for k in range(len(sampleMethods)): outfileName = outputDir + datasetNames[i] + sampleMethods[k] + "Results.npz" data = numpy.load(outfileName) meanApproxGrids = data["arr_4"] foldInd = 0 methodInd1 = 1 methodInd2 = 4 for i in range(sampleSizes.shape[0]-1): plt.figure(i) linecycler = cycle(lines) idealGrid = meanIdealPenGrids[i, :] approxGrid1 = meanApproxGrids[i, foldInd, methodInd1, :] approxGrid2 = meanApproxGrids[i, foldInd, methodInd2, :] plt.plot(numpy.log2(gammas), idealGrid, next(linecycler), label="Ideal " ) plt.plot(numpy.log2(gammas), approxGrid1, next(linecycler), label="PenVF+ " ) plt.plot(numpy.log2(gammas), approxGrid2, next(linecycler), label="PenVF " ) plt.xlabel("log(t)") plt.ylabel('Penalty') plt.legend(loc="upper left") plt.show() def plotErrorGrids(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix): """ Plot the ideal, CV, PenVF errors. """ gammas = numpy.array(numpy.round(2**numpy.arange(1, 7.5, 0.5)-1), dtype=numpy.int) for i, datasetName in enumerate(datasetNames): plt.figure(i) outfileName = outputDir + datasetNames[i] + "GridResults.npz" data = numpy.load(outfileName) meanIdealErrorGrids = data["arr_2"] for k in range(len(sampleMethods)): outfileName = outputDir + datasetNames[i] + sampleMethods[k] + "Results.npz" data = numpy.load(outfileName) meanErrorGrids = data["arr_2"] foldInd = 0 methodInd1 = 0 methodInd2 = 1 methodInd3 = 4 for i in range(sampleSizes.shape[0]-2): idealGrid = meanIdealErrorGrids[i, :] print() print("min ideal = " + str(gammas[numpy.argmin(idealGrid)])) print("min VFCV = " + str(gammas[numpy.argmin(meanErrorGrids[i, foldInd, methodInd1, :])])) print("min PenVF+ = " + str(gammas[numpy.argmin(meanErrorGrids[i, foldInd, methodInd2, :])])) print("min PenVF = " + str(gammas[numpy.argmin(meanErrorGrids[i, foldInd, methodInd3, :])])) approxGrid1 = meanErrorGrids[i, foldInd, methodInd1, :] approxGrid2 = meanErrorGrids[i, foldInd, methodInd2, :] approxGrid3 = meanErrorGrids[i, foldInd, methodInd3, :] plt.plot(numpy.log2(gammas), idealGrid, next(linecycler), label="Ideal ") plt.plot(numpy.log2(gammas), approxGrid1, next(linecycler), label="CV " ) plt.plot(numpy.log2(gammas), approxGrid2, next(linecycler), label="PenVF+ " ) plt.plot(numpy.log2(gammas), approxGrid3, next(linecycler), label="PenVF " ) plt.xlabel("log(t)") plt.ylabel('Error') plt.legend(loc="lower left") plt.show() showCART = True showSVR = False from itertools import cycle lines = ["k-","k--","k-.","k:","k-x", "k-+"] linecycler = cycle(lines) if showSVR: outputDir = PathDefaults.getOutputDir() + "modelPenalisation/regression/SVR/" sampleSizes = numpy.array([50, 100, 200]) sampleMethods = ["CV"] cvScalings = numpy.arange(0.6, 1.61, 0.2) foldsSet = numpy.arange(2, 13, 2) datasetNames = ModelSelectUtils.getRegressionDatasets() fileNameSuffix = 'Results' summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) plotDatasetNames = [datasetNames[7]] plotAlphas(plotDatasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) sampleSizes = numpy.array([25, 50, 100]) sampleMethods = ["CV"] cvScalings = numpy.arange(0.6, 1.61, 0.2) foldsSet = numpy.arange(10, 51, 10) datasetNames = ModelSelectUtils.getRegressionDatasets() fileNameSuffix = "ResultsExt" summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix, "GridResultsExt") if showCART: outputDir = PathDefaults.getOutputDir() + "modelPenalisation/regression/CART/" #First output the fine grained results sampleSizes = numpy.array([50, 100, 200]) sampleMethods = ["CV"] cvScalings = numpy.arange(0.6, 1.61, 0.2) foldsSet = numpy.arange(2, 13, 2) datasetNames = ModelSelectUtils.getRegressionDatasets() fileNameSuffix = 'Results' summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) print(datasetNames) plotDatasetNames = [datasetNames[7]] plotAlphas(plotDatasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) #plotDatasetNames = [datasetNames[0]] #plotPenalty(plotDatasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) #plotDatasetNames = [datasetNames[0]] #plotErrorGrids(plotDatasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) #plotResults("add10", sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix) #Now run some extended results sampleSizes = numpy.array([500]) sampleMethods = ["CV"] cvScalings = numpy.arange(0.6, 1.61, 0.2) foldsSet = numpy.arange(2, 13, 2) datasetNames = ModelSelectUtils.getRegressionDatasets() fileNameSuffix = "ResultsExt" summary(datasetNames, sampleSizes, foldsSet, cvScalings, sampleMethods, fileNameSuffix, "GridResultsExt")
gpl-3.0
JosmanPS/scikit-learn
sklearn/learning_curve.py
110
13467
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <example_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <example_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
AndreasMadsen/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io_test.py
11
2404
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(tf.test.TestCase): def testPandasInputFn(self): if not HAS_PANDAS: return index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y_noindex = pd.Series(np.arange(-32, -28)) y = pd.Series(np.arange(-32, -28), index=index) with self.test_session() as session: with self.assertRaises(ValueError): failing_input_fn = pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = input_fn() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(session, coord=coord) res = session.run([features, target]) self.assertAllEqual(res[0]['index'], [100, 101]) self.assertAllEqual(res[0]['a'], [0, 1]) self.assertAllEqual(res[0]['b'], [32, 33]) self.assertAllEqual(res[1], [-32, -31]) session.run([features, target]) with self.assertRaises(errors.OutOfRangeError): session.run([features, target]) coord.request_stop() coord.join(threads) if __name__ == '__main__': tf.test.main()
apache-2.0
hainm/statsmodels
examples/python/regression_plots.py
33
9585
## Regression Plots from __future__ import print_function from statsmodels.compat import lzip import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.formula.api import ols ### Duncan's Prestige Dataset #### Load the Data # We can use a utility function to load any R dataset available from the great <a href="http://vincentarelbundock.github.com/Rdatasets/">Rdatasets package</a>. prestige = sm.datasets.get_rdataset("Duncan", "car", cache=True).data prestige.head() prestige_model = ols("prestige ~ income + education", data=prestige).fit() print(prestige_model.summary()) #### Influence plots # Influence plots show the (externally) studentized residuals vs. the leverage of each observation as measured by the hat matrix. # # Externally studentized residuals are residuals that are scaled by their standard deviation where # # $$var(\\hat{\epsilon}_i)=\hat{\sigma}^2_i(1-h_{ii})$$ # # with # # $$\hat{\sigma}^2_i=\frac{1}{n - p - 1 \;\;}\sum_{j}^{n}\;\;\;\forall \;\;\; j \neq i$$ # # $n$ is the number of observations and $p$ is the number of regressors. $h_{ii}$ is the $i$-th diagonal element of the hat matrix # # $$H=X(X^{\;\prime}X)^{-1}X^{\;\prime}$$ # # The influence of each point can be visualized by the criterion keyword argument. Options are Cook's distance and DFFITS, two measures of influence. fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.influence_plot(prestige_model, ax=ax, criterion="cooks") # As you can see there are a few worrisome observations. Both contractor and reporter have low leverage but a large residual. <br /> # RR.engineer has small residual and large leverage. Conductor and minister have both high leverage and large residuals, and, <br /> # therefore, large influence. #### Partial Regression Plots # Since we are doing multivariate regressions, we cannot just look at individual bivariate plots to discern relationships. <br /> # Instead, we want to look at the relationship of the dependent variable and independent variables conditional on the other <br /> # independent variables. We can do this through using partial regression plots, otherwise known as added variable plots. <br /> # # In a partial regression plot, to discern the relationship between the response variable and the $k$-th variabe, we compute <br /> # the residuals by regressing the response variable versus the independent variables excluding $X_k$. We can denote this by <br /> # $X_{\sim k}$. We then compute the residuals by regressing $X_k$ on $X_{\sim k}$. The partial regression plot is the plot <br /> # of the former versus the latter residuals. <br /> # # The notable points of this plot are that the fitted line has slope $\beta_k$ and intercept zero. The residuals of this plot <br /> # are the same as those of the least squares fit of the original model with full $X$. You can discern the effects of the <br /> # individual data values on the estimation of a coefficient easily. If obs_labels is True, then these points are annotated <br /> # with their observation label. You can also see the violation of underlying assumptions such as homooskedasticity and <br /> # linearity. fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.plot_partregress("prestige", "income", ["income", "education"], data=prestige, ax=ax) ax = fig.axes[0] ax.set_xlim(-2e-15, 1e-14) ax.set_ylim(-25, 30); fix, ax = plt.subplots(figsize=(12,14)) fig = sm.graphics.plot_partregress("prestige", "income", ["education"], data=prestige, ax=ax) # As you can see the partial regression plot confirms the influence of conductor, minister, and RR.engineer on the partial relationship between income and prestige. The cases greatly decrease the effect of income on prestige. Dropping these cases confirms this. subset = ~prestige.index.isin(["conductor", "RR.engineer", "minister"]) prestige_model2 = ols("prestige ~ income + education", data=prestige, subset=subset).fit() print(prestige_model2.summary()) # For a quick check of all the regressors, you can use plot_partregress_grid. These plots will not label the <br /> # points, but you can use them to identify problems and then use plot_partregress to get more information. fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_partregress_grid(prestige_model, fig=fig) #### Component-Component plus Residual (CCPR) Plots # The CCPR plot provides a way to judge the effect of one regressor on the <br /> # response variable by taking into account the effects of the other <br /> # independent variables. The partial residuals plot is defined as <br /> # $\text{Residuals} + B_iX_i \text{ }\text{ }$ versus $X_i$. The component adds $B_iX_i$ versus <br /> # $X_i$ to show where the fitted line would lie. Care should be taken if $X_i$ <br /> # is highly correlated with any of the other independent variables. If this <br /> # is the case, the variance evident in the plot will be an underestimate of <br /> # the true variance. fig, ax = plt.subplots(figsize=(12, 8)) fig = sm.graphics.plot_ccpr(prestige_model, "education", ax=ax) # As you can see the relationship between the variation in prestige explained by education conditional on income seems to be linear, though you can see there are some observations that are exerting considerable influence on the relationship. We can quickly look at more than one variable by using plot_ccpr_grid. fig = plt.figure(figsize=(12, 8)) fig = sm.graphics.plot_ccpr_grid(prestige_model, fig=fig) #### Regression Plots # The plot_regress_exog function is a convenience function that gives a 2x2 plot containing the dependent variable and fitted values with confidence intervals vs. the independent variable chosen, the residuals of the model vs. the chosen independent variable, a partial regression plot, and a CCPR plot. This function can be used for quickly checking modeling assumptions with respect to a single regressor. fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_regress_exog(prestige_model, "education", fig=fig) #### Fit Plot # The plot_fit function plots the fitted values versus a chosen independent variable. It includes prediction confidence intervals and optionally plots the true dependent variable. fig, ax = plt.subplots(figsize=(12, 8)) fig = sm.graphics.plot_fit(prestige_model, "education", ax=ax) ### Statewide Crime 2009 Dataset # Compare the following to http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter4/statareg_self_assessment_answers4.htm # # Though the data here is not the same as in that example. You could run that example by uncommenting the necessary cells below. #dta = pd.read_csv("http://www.stat.ufl.edu/~aa/social/csv_files/statewide-crime-2.csv") #dta = dta.set_index("State", inplace=True).dropna() #dta.rename(columns={"VR" : "crime", # "MR" : "murder", # "M" : "pctmetro", # "W" : "pctwhite", # "H" : "pcths", # "P" : "poverty", # "S" : "single" # }, inplace=True) # #crime_model = ols("murder ~ pctmetro + poverty + pcths + single", data=dta).fit() dta = sm.datasets.statecrime.load_pandas().data crime_model = ols("murder ~ urban + poverty + hs_grad + single", data=dta).fit() print(crime_model.summary()) #### Partial Regression Plots fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_partregress_grid(crime_model, fig=fig) fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.plot_partregress("murder", "hs_grad", ["urban", "poverty", "single"], ax=ax, data=dta) #### Leverage-Resid<sup>2</sup> Plot # Closely related to the influence_plot is the leverage-resid<sup>2</sup> plot. fig, ax = plt.subplots(figsize=(8,6)) fig = sm.graphics.plot_leverage_resid2(crime_model, ax=ax) #### Influence Plot fig, ax = plt.subplots(figsize=(8,6)) fig = sm.graphics.influence_plot(crime_model, ax=ax) #### Using robust regression to correct for outliers. # Part of the problem here in recreating the Stata results is that M-estimators are not robust to leverage points. MM-estimators should do better with this examples. from statsmodels.formula.api import rlm rob_crime_model = rlm("murder ~ urban + poverty + hs_grad + single", data=dta, M=sm.robust.norms.TukeyBiweight(3)).fit(conv="weights") print(rob_crime_model.summary()) #rob_crime_model = rlm("murder ~ pctmetro + poverty + pcths + single", data=dta, M=sm.robust.norms.TukeyBiweight()).fit(conv="weights") #print(rob_crime_model.summary()) # There aren't yet an influence diagnostics as part of RLM, but we can recreate them. (This depends on the status of [issue #888](https://github.com/statsmodels/statsmodels/issues/808)) weights = rob_crime_model.weights idx = weights > 0 X = rob_crime_model.model.exog[idx] ww = weights[idx] / weights[idx].mean() hat_matrix_diag = ww*(X*np.linalg.pinv(X).T).sum(1) resid = rob_crime_model.resid resid2 = resid**2 resid2 /= resid2.sum() nobs = int(idx.sum()) hm = hat_matrix_diag.mean() rm = resid2.mean() from statsmodels.graphics import utils fig, ax = plt.subplots(figsize=(12,8)) ax.plot(resid2[idx], hat_matrix_diag, 'o') ax = utils.annotate_axes(range(nobs), labels=rob_crime_model.model.data.row_labels[idx], points=lzip(resid2[idx], hat_matrix_diag), offset_points=[(-5,5)]*nobs, size="large", ax=ax) ax.set_xlabel("resid2") ax.set_ylabel("leverage") ylim = ax.get_ylim() ax.vlines(rm, *ylim) xlim = ax.get_xlim() ax.hlines(hm, *xlim) ax.margins(0,0)
bsd-3-clause
xapharius/HadoopML
Engine/src/examples/linear_regression.py
2
1979
import numpy as np from algorithms.linearRegression.LinearRegressionFactory import LinearRegressionFactory from algorithms.linearRegression.scipy_linreg import SciPyLinReg from algorithms.linearRegression.scipy_linreg_factory import SciPyLinRegFactory from datahandler.numerical.NumericalDataHandler import NumericalDataHandler from engine.constants.run_type import * from engine.engine import Engine from validator.PredictionValidator import PredictionValidator import matplotlib.pyplot as plt if __name__ == '__main__': print("=== Linear Regression Example ===") nr_params = 11 nr_label_dim = 1 run_type = LOCAL data_file = 'hdfs:///user/linda/ml/data/winequality-red.csv' if run_type == HADOOP else '../data/wine-quality/winequality-red.csv' input_scalling = None target_scalling = None print( "\n data: " + data_file + "\n params: " + str(nr_params) + "\n label dim: " + str(nr_label_dim) + "\n run type: " + run_type + "\n input scalling: " + str(input_scalling) + "\n target scalling: " + str(target_scalling) + "\n" ) # 1. define algorithm # regression = LinearRegressionFactory(nr_params) regression = SciPyLinRegFactory(SciPyLinReg.RIDGE) # 2. set data handler (pre-processing, normalization, data set creation) data_handler = NumericalDataHandler(nr_params, nr_label_dim, input_scalling=input_scalling, target_scalling=target_scalling) # 3. run engine = Engine(regression, data_file, data_handler=data_handler, verbose=True) trained_alg = engine.start(_run_type=run_type) # 4. validate result validation_stats = engine.validate(trained_alg, PredictionValidator(), _run_type=run_type) targets = np.array(validation_stats['targets']) pred = np.array(validation_stats['pred']) plt.plot(targets, 'go') plt.plot(pred, 'r+') plt.show()
mit
Richert/BrainNetworks
CMC/analysis/EIC_criticality.py
1
1745
import matplotlib.pyplot as plt from CMC.config import EIC import numpy as np # parameters ############ T = 10000.0 # simulation time (s) dt = 1e-1 # integration step-size (s) Ne = 100 # number of excitatory neurons Ni = 20 # number of inhibitory neurons # connectivities ################ W_ee = np.random.uniform(0., 1.0, size=(Ne, Ne)) # connections between excitatory neurons W_ee = (W_ee >= 0.9) * 1.0 W_ii = np.zeros((Ni, Ni)) # connections between inhibitory neurons W_ei = np.random.uniform(0., 1.0, size=(Ne, Ni)) # connections from inhibitory to excitatory neurons W_ie = np.random.uniform(0., 1.0, size=(Ni, Ne)) # connections from excitatory to inhibitory neurons # input steps = int(T/dt) Ie = 500.0 + np.random.randn(steps, Ne) * 50.0 * np.sqrt(dt) # input current for excitatory neurons Ii = 440.0 + np.random.randn(steps, Ni) * 44.0 * np.sqrt(dt) # input current for inhibitory neurons # ei-circuit setup and simulation ################################# net = EIC(W_ee=W_ee, W_ii=W_ii, W_ei=W_ei, W_ie=W_ie, k=200.0, dt=dt) # setup of network v, s = net.run(T=T, I_e=Ie, I_i=Ii) # network simulation spikes = [np.argwhere(s_tmp > 0).squeeze() for s_tmp in s.T] # spike extraction # plotting ########## fig, axes = plt.subplots(ncols=2, figsize=(15, 8)) axes[0].plot(v[:-1]) # plot membrane potentials axes[0].set_ylim(-80.0, 20.0) try: axes[1].eventplot(spikes, colors='k', lineoffsets=1, linelengths=1) # plot spikes axes[1].set_xlim(0, steps) except TypeError: pass plt.tight_layout() plt.show()
apache-2.0
Jimmy-Morzaria/scikit-learn
setup.py
7
6416
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # License: 3-clause BSD descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = '[email protected]' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if (filename.endswith('.so') or filename.endswith('.pyd') or filename.endswith('.dll') or filename.endswith('.pyc')): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: from numpy.distutils.core import setup metadata['configuration'] = configuration setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
mwaskom/seaborn
examples/heat_scatter.py
2
1187
""" Scatterplot heatmap ------------------- _thumb: .5, .5 """ import seaborn as sns sns.set_theme(style="whitegrid") # Load the brain networks dataset, select subset, and collapse the multi-index df = sns.load_dataset("brain_networks", header=[0, 1, 2], index_col=0) used_networks = [1, 5, 6, 7, 8, 12, 13, 17] used_columns = (df.columns .get_level_values("network") .astype(int) .isin(used_networks)) df = df.loc[:, used_columns] df.columns = df.columns.map("-".join) # Compute a correlation matrix and convert to long-form corr_mat = df.corr().stack().reset_index(name="correlation") # Draw each cell as a scatter point with varying size and color g = sns.relplot( data=corr_mat, x="level_0", y="level_1", hue="correlation", size="correlation", palette="vlag", hue_norm=(-1, 1), edgecolor=".7", height=10, sizes=(50, 250), size_norm=(-.2, .8), ) # Tweak the figure to finalize g.set(xlabel="", ylabel="", aspect="equal") g.despine(left=True, bottom=True) g.ax.margins(.02) for label in g.ax.get_xticklabels(): label.set_rotation(90) for artist in g.legend.legendHandles: artist.set_edgecolor(".7")
bsd-3-clause
HyperloopTeam/FullOpenMDAO
lib/python2.7/site-packages/mpl_toolkits/gtktools.py
8
19346
""" Some gtk specific tools and widgets * rec2gtk : put record array in GTK treeview - requires gtk Example usage import matplotlib.mlab as mlab import mpl_toolkits.gtktools as gtktools r = mlab.csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = mlab.FormatFloat(2), change = mlab.FormatPercent(2), cost = mlab.FormatThousands(2), ) exceltools.rec2excel(r, 'test.xls', formatd=formatd) mlab.rec2csv(r, 'test.csv', formatd=formatd) import gtk scroll = gtktools.rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import copy import gtk, gobject import numpy as npy import matplotlib.cbook as cbook import matplotlib.mlab as mlab def error_message(msg, parent=None, title=None): """ create an error message dialog with string msg. Optionally set the parent widget and dialog title """ dialog = gtk.MessageDialog( parent = None, type = gtk.MESSAGE_ERROR, buttons = gtk.BUTTONS_OK, message_format = msg) if parent is not None: dialog.set_transient_for(parent) if title is not None: dialog.set_title(title) else: dialog.set_title('Error!') dialog.show() dialog.run() dialog.destroy() return None def simple_message(msg, parent=None, title=None): """ create a simple message dialog with string msg. Optionally set the parent widget and dialog title """ dialog = gtk.MessageDialog( parent = None, type = gtk.MESSAGE_INFO, buttons = gtk.BUTTONS_OK, message_format = msg) if parent is not None: dialog.set_transient_for(parent) if title is not None: dialog.set_title(title) dialog.show() dialog.run() dialog.destroy() return None def gtkformat_factory(format, colnum): """ copy the format, perform any overrides, and attach an gtk style attrs xalign = 0. cell = None """ if format is None: return None format = copy.copy(format) format.xalign = 0. format.cell = None def negative_red_cell(column, cell, model, thisiter): val = model.get_value(thisiter, colnum) try: val = float(val) except: cell.set_property('foreground', 'black') else: if val<0: cell.set_property('foreground', 'red') else: cell.set_property('foreground', 'black') if isinstance(format, mlab.FormatFloat) or isinstance(format, mlab.FormatInt): format.cell = negative_red_cell format.xalign = 1. elif isinstance(format, mlab.FormatDate): format.xalign = 1. return format class SortedStringsScrolledWindow(gtk.ScrolledWindow): """ A simple treeview/liststore assuming all columns are strings. Supports ascending/descending sort by clicking on column header """ def __init__(self, colheaders, formatterd=None): """ xalignd if not None, is a dict mapping col header to xalignent (default 1) formatterd if not None, is a dict mapping col header to a ColumnFormatter """ gtk.ScrolledWindow.__init__(self) self.colheaders = colheaders self.seq = None # not initialized with accts self.set_shadow_type(gtk.SHADOW_ETCHED_IN) self.set_policy(gtk.POLICY_AUTOMATIC, gtk.POLICY_AUTOMATIC) types = [gobject.TYPE_STRING] * len(colheaders) model = self.model = gtk.ListStore(*types) treeview = gtk.TreeView(self.model) treeview.show() treeview.get_selection().set_mode(gtk.SELECTION_MULTIPLE) treeview.set_rules_hint(True) class Clicked: def __init__(self, parent, i): self.parent = parent self.i = i self.num = 0 def __call__(self, column): ind = [] dsu = [] for rownum, thisiter in enumerate(self.parent.iters): val = model.get_value(thisiter, self.i) try: val = float(val.strip().rstrip('%')) except ValueError: pass if mlab.safe_isnan(val): val = npy.inf # force nan to sort uniquely dsu.append((val, rownum)) dsu.sort() if not self.num%2: dsu.reverse() vals, otherind = list(zip(*dsu)) ind.extend(otherind) self.parent.model.reorder(ind) newiters = [] for i in ind: newiters.append(self.parent.iters[i]) self.parent.iters = newiters[:] for i, thisiter in enumerate(self.parent.iters): key = tuple([self.parent.model.get_value(thisiter, j) for j in range(len(colheaders))]) self.parent.rownumd[i] = key self.num+=1 if formatterd is None: formatterd = dict() formatterd = formatterd.copy() for i, header in enumerate(colheaders): renderer = gtk.CellRendererText() if header not in formatterd: formatterd[header] = ColumnFormatter() formatter = formatterd[header] column = gtk.TreeViewColumn(header, renderer, text=i) renderer.set_property('xalign', formatter.xalign) renderer.set_property('editable', True) renderer.connect("edited", self.position_edited, i) column.connect('clicked', Clicked(self, i)) column.set_property('clickable', True) if formatter.cell is not None: column.set_cell_data_func(renderer, formatter.cell) treeview.append_column(column) self.formatterd = formatterd self.lastcol = column self.add(treeview) self.treeview = treeview self.clear() def position_edited(self, renderer, path, newtext, position): #print path, position self.model[path][position] = newtext def clear(self): self.iterd = dict() self.iters = [] # an ordered list of iters self.rownumd = dict() # a map from rownum -> symbol self.model.clear() self.datad = dict() def flat(self, row): seq = [] for i,val in enumerate(row): formatter = self.formatterd.get(self.colheaders[i]) seq.extend([i,formatter.tostr(val)]) return seq def __delete_selected(self, *unused): # untested keyd = dict([(thisiter, key) for key, thisiter in self.iterd.values()]) for row in self.get_selected(): key = tuple(row) thisiter = self.iterd[key] self.model.remove(thisiter) del self.datad[key] del self.iterd[key] self.iters.remove(thisiter) for i, thisiter in enumerate(self.iters): self.rownumd[i] = keyd[thisiter] def delete_row(self, row): key = tuple(row) thisiter = self.iterd[key] self.model.remove(thisiter) del self.datad[key] del self.iterd[key] self.rownumd[len(self.iters)] = key self.iters.remove(thisiter) for rownum, thiskey in list(six.iteritems(self.rownumd)): if thiskey==key: del self.rownumd[rownum] def add_row(self, row): thisiter = self.model.append() self.model.set(thisiter, *self.flat(row)) key = tuple(row) self.datad[key] = row self.iterd[key] = thisiter self.rownumd[len(self.iters)] = key self.iters.append(thisiter) def update_row(self, rownum, newrow): key = self.rownumd[rownum] thisiter = self.iterd[key] newkey = tuple(newrow) self.rownumd[rownum] = newkey del self.datad[key] del self.iterd[key] self.datad[newkey] = newrow self.iterd[newkey] = thisiter self.model.set(thisiter, *self.flat(newrow)) def get_row(self, rownum): key = self.rownumd[rownum] return self.datad[key] def get_selected(self): selected = [] def foreach(model, path, iter, selected): selected.append(model.get_value(iter, 0)) self.treeview.get_selection().selected_foreach(foreach, selected) return selected def rec2gtk(r, formatd=None, rownum=0, autowin=True): """ formatd is a dictionary mapping dtype name -> mlab.Format instances This function creates a SortedStringsScrolledWindow (derived from gtk.ScrolledWindow) and returns it. if autowin is True, a gtk.Window is created, attached to the SortedStringsScrolledWindow instance, shown and returned. If autowin=False, the caller is responsible for adding the SortedStringsScrolledWindow instance to a gtk widget and showing it. """ if formatd is None: formatd = dict() formats = [] for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = mlab.defaultformatd.get(dt.type, mlab.FormatObj()) #print 'gtk fmt factory', i, name, format, type(format) format = gtkformat_factory(format, i) formatd[name] = format colheaders = r.dtype.names scroll = SortedStringsScrolledWindow(colheaders, formatd) ind = npy.arange(len(r.dtype.names)) for row in r: scroll.add_row(row) if autowin: win = gtk.Window() win.set_default_size(800,600) #win.set_geometry_hints(scroll) win.add(scroll) win.show_all() scroll.win = win return scroll class RecListStore(gtk.ListStore): """ A liststore as a model of an editable record array. attributes: * r - the record array with the edited values * formatd - the list of mlab.FormatObj instances, with gtk attachments * stringd - a dict mapping dtype names to a list of valid strings for the combo drop downs * callbacks - a matplotlib.cbook.CallbackRegistry. Connect to the cell_changed with def mycallback(liststore, rownum, colname, oldval, newval): print('verify: old=%s, new=%s, rec=%s'%(oldval, newval, liststore.r[rownum][colname])) cid = liststore.callbacks.connect('cell_changed', mycallback) """ def __init__(self, r, formatd=None, stringd=None): """ r is a numpy record array formatd is a dict mapping dtype name to mlab.FormatObj instances stringd, if not None, is a dict mapping dtype names to a list of valid strings for a combo drop down editor """ if stringd is None: stringd = dict() if formatd is None: formatd = mlab.get_formatd(r) self.stringd = stringd self.callbacks = cbook.CallbackRegistry(['cell_changed']) self.r = r self.headers = r.dtype.names self.formats = [gtkformat_factory(formatd.get(name, mlab.FormatObj()),i) for i,name in enumerate(self.headers)] # use the gtk attached versions self.formatd = formatd = dict(zip(self.headers, self.formats)) types = [] for format in self.formats: if isinstance(format, mlab.FormatBool): types.append(gobject.TYPE_BOOLEAN) else: types.append(gobject.TYPE_STRING) self.combod = dict() if len(stringd): types.extend([gobject.TYPE_INT]*len(stringd)) keys = list(six.iterkeys(stringd)) keys.sort() valid = set(r.dtype.names) for ikey, key in enumerate(keys): assert(key in valid) combostore = gtk.ListStore(gobject.TYPE_STRING) for s in stringd[key]: combostore.append([s]) self.combod[key] = combostore, len(self.headers)+ikey gtk.ListStore.__init__(self, *types) for row in r: vals = [] for formatter, val in zip(self.formats, row): if isinstance(formatter, mlab.FormatBool): vals.append(val) else: vals.append(formatter.tostr(val)) if len(stringd): # todo, get correct index here? vals.extend([0]*len(stringd)) self.append(vals) def position_edited(self, renderer, path, newtext, position): position = int(position) format = self.formats[position] rownum = int(path) colname = self.headers[position] oldval = self.r[rownum][colname] try: newval = format.fromstr(newtext) except ValueError: msg = cbook.exception_to_str('Error converting "%s"'%newtext) error_message(msg, title='Error') return self.r[rownum][colname] = newval self[path][position] = format.tostr(newval) self.callbacks.process('cell_changed', self, rownum, colname, oldval, newval) def position_toggled(self, cellrenderer, path, position): position = int(position) format = self.formats[position] newval = not cellrenderer.get_active() rownum = int(path) colname = self.headers[position] oldval = self.r[rownum][colname] self.r[rownum][colname] = newval self[path][position] = newval self.callbacks.process('cell_changed', self, rownum, colname, oldval, newval) class RecTreeView(gtk.TreeView): """ An editable tree view widget for record arrays """ def __init__(self, recliststore, constant=None): """ build a gtk.TreeView to edit a RecListStore constant, if not None, is a list of dtype names which are not editable """ self.recliststore = recliststore gtk.TreeView.__init__(self, recliststore) combostrings = set(recliststore.stringd.keys()) if constant is None: constant = [] constant = set(constant) for i, header in enumerate(recliststore.headers): formatter = recliststore.formatd[header] coltype = recliststore.get_column_type(i) if coltype==gobject.TYPE_BOOLEAN: renderer = gtk.CellRendererToggle() if header not in constant: renderer.connect("toggled", recliststore.position_toggled, i) renderer.set_property('activatable', True) elif header in combostrings: renderer = gtk.CellRendererCombo() renderer.connect("edited", recliststore.position_edited, i) combostore, listind = recliststore.combod[header] renderer.set_property("model", combostore) renderer.set_property('editable', True) else: renderer = gtk.CellRendererText() if header not in constant: renderer.connect("edited", recliststore.position_edited, i) renderer.set_property('editable', True) if formatter is not None: renderer.set_property('xalign', formatter.xalign) tvcol = gtk.TreeViewColumn(header) self.append_column(tvcol) tvcol.pack_start(renderer, True) if coltype == gobject.TYPE_STRING: tvcol.add_attribute(renderer, 'text', i) if header in combostrings: combostore, listind = recliststore.combod[header] tvcol.add_attribute(renderer, 'text-column', listind) elif coltype == gobject.TYPE_BOOLEAN: tvcol.add_attribute(renderer, 'active', i) if formatter is not None and formatter.cell is not None: tvcol.set_cell_data_func(renderer, formatter.cell) self.connect("button-release-event", self.on_selection_changed) #self.set_grid_lines(gtk.TREE_VIEW_GRID_LINES_BOTH) self.get_selection().set_mode(gtk.SELECTION_BROWSE) self.get_selection().set_select_function(self.on_select) def on_select(self, *args): return False def on_selection_changed(self, *args): (path, col) = self.get_cursor() ren = col.get_cell_renderers()[0] if isinstance(ren, gtk.CellRendererText): self.set_cursor_on_cell(path, col, ren, start_editing=True) def edit_recarray(r, formatd=None, stringd=None, constant=None, autowin=True): """ create a RecListStore and RecTreeView and return them. If autowin is True, create a gtk.Window, insert the treeview into it, and return it (return value will be (liststore, treeview, win) See RecListStore and RecTreeView for a description of the keyword args """ liststore = RecListStore(r, formatd=formatd, stringd=stringd) treeview = RecTreeView(liststore, constant=constant) if autowin: win = gtk.Window() win.add(treeview) win.show_all() return liststore, treeview, win else: return liststore, treeview if __name__=='__main__': import datetime import gtk import numpy as np import matplotlib.mlab as mlab N = 10 today = datetime.date.today() dates = [today+datetime.timedelta(days=i) for i in range(N)] # datetimes weekdays = [d.strftime('%a') for d in dates] # strings gains = np.random.randn(N) # floats prices = np.random.rand(N)*1e7 # big numbers up = gains>0 # bools clientid = list(xrange(N)) # ints r = np.rec.fromarrays([clientid, dates, weekdays, gains, prices, up], names='clientid,date,weekdays,gains,prices,up') # some custom formatters formatd = mlab.get_formatd(r) formatd['date'] = mlab.FormatDate('%Y-%m-%d') formatd['prices'] = mlab.FormatMillions(precision=1) formatd['gain'] = mlab.FormatPercent(precision=2) # use a drop down combo for weekdays stringd = dict(weekdays=['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) constant = ['clientid'] # block editing of this field liststore = RecListStore(r, formatd=formatd, stringd=stringd) treeview = RecTreeView(liststore, constant=constant) def mycallback(liststore, rownum, colname, oldval, newval): print('verify: old=%s, new=%s, rec=%s'%(oldval, newval, liststore.r[rownum][colname])) liststore.callbacks.connect('cell_changed', mycallback) win = gtk.Window() win.set_title('with full customization') win.add(treeview) win.show_all() # or you just use the defaults r2 = r.copy() ls, tv, win2 = edit_recarray(r2) win2.set_title('with all defaults') gtk.main()
gpl-2.0
lewisc/spark-tk
regression-tests/sparktkregtests/testcases/dicom/dicom_filter_test.py
13
10428
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """tests dicom.filter functionality""" import unittest from sparktkregtests.lib import sparktk_test import os import dicom import numpy import random from lxml import etree import datetime class DicomFilterTest(sparktk_test.SparkTKTestCase): def setUp(self): """import dicom data for testing""" super(DicomFilterTest, self).setUp() self.dataset = self.get_file("dicom_uncompressed") self.dicom = self.context.dicom.import_dcm(self.dataset) self.xml_directory = "../../../datasets/dicom/dicom_uncompressed/xml/" self.image_directory = "../../../datasets/dicom/dicom_uncompressed/imagedata/" self.query = ".//DicomAttribute[@keyword='KEYWORD']/Value/text()" self.count = self.dicom.metadata.count() def test_filter_one_key(self): """test filter with basic filter function""" # extract a key-value pair from the first row metadata for our use first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # ask dicom to filter using our key-value filter function self.dicom.filter(self._filter_key_values({ "PatientID" : patient_id })) # we generate our own result to compare to dicom's expected_result = self._filter({ "PatientID" : patient_id }) # ensure results match self._compare_dicom_with_expected_result(expected_result) def test_filter_multi_key(self): """test filter with basic filter function mult keyval pairs""" # first we extract key-value pairs from the first row's metadata # for our own use to generate a key-val dictionary first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml.xpath(self.query.replace("KEYWORD", "PatientID"))[0] sopi_id = xml.xpath(self.query.replace("KEYWORD", "SOPInstanceUID"))[0] key_val = { "PatientID" : patient_id, "SOPInstanceUID" : sopi_id } # we use our filter function and ask dicom to filter self.dicom.filter(self._filter_key_values(key_val)) # here we generate our own result expected_result = self._filter(key_val) # compare expected result to what dicom gave us self._compare_dicom_with_expected_result(expected_result) def test_filter_zero_matching_records(self): """test filter with filter function returns none""" # we give dicom a filter function which filters by # key-value and give it a key-value pair which will # return 0 records pandas = self.dicom.metadata.to_pandas() self.dicom.filter(self._filter_key_values({ "PatientID" : -6 })) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_nothing(self): """test filter with filter function filters nothing""" # this filter function will return all records self.dicom.filter(self._filter_nothing()) self.assertEqual(self.dicom.metadata.count(), self.count) def test_filter_everything(self): """test filter function filter everything""" # filter_everything filter out all of the records self.dicom.filter(self._filter_everything()) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_timestamp_range(self): """test filter with timestamp range function""" # we will test filter with a function which takes a begin and end # date and returns all records with a study date between them # we will set begin date to 15 years ago and end date to 5 years ago begin_date = datetime.datetime.now() - datetime.timedelta(days=15*365) end_date = datetime.datetime.now() - datetime.timedelta(days=5*365) # here we will generate our own result by filtering for records # which meet our criteria expected_result = [] pandas = self.dicom.metadata.to_pandas() # iterate through the rows and append all records with # a study date between our begin and end date for index, row in pandas.iterrows(): ascii_row = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(ascii_row) study_date = xml_root.xpath(self.query.replace("KEYWORD", "StudyDate"))[0] datetime_study_date = datetime.datetime.strptime(study_date, "%Y%m%d") if datetime_study_date > begin_date and datetime_study_date < end_date: expected_result.append(ascii_row) # now we ask dicom to use our filter function below to return # all records with a StudyDate within our specified range self.dicom.filter(self._filter_timestamp_range(begin_date, end_date)) # ensure that expected result matches actual self._compare_dicom_with_expected_result(expected_result) def test_return_type_str(self): """test filter with function that returns strings""" self.dicom.filter(self._filter_return_string()) self.assertEqual(3, self.dicom.metadata.count()) def test_return_type_int(self): """test filter wtih function that returns ints""" self.dicom.filter(self._filter_return_int()) self.assertEqual(3, self.dicom.metadata.count()) def test_filter_has_bugs(self): """test filter with a broken filter function""" with self.assertRaisesRegexp(Exception, "this filter is broken!"): self.dicom.filter(self._filter_has_bugs()) self.dicom.metadata.count() def test_filter_invalid_param(self): """test filter with an invalid param type""" # should fail because filter takes a function not a keyvalue pair with self.assertRaisesRegexp(Exception, "'dict' object is not callable"): self.dicom.filter({ "PatientID" : "bla" }) self.dicom.metadata.count() def test_filter_invalid_function(self): """test filter with function which takes more than one param""" with self.assertRaisesRegexp(Exception, "takes exactly 2 arguments"): self.dicom.filter(self._filter_invalid()) self.dicom.metadata.count() def _filter_key_values(self, key_val): """filter by key-value""" def _filter_key_value(row): metadata = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(metadata) for key in key_val: xml_element_value = xml_root.xpath(".//DicomAttribute[@keyword='" + key + "']/Value/text()")[0] if xml_element_value != key_val[key]: return False else: return True return _filter_key_value def _filter_nothing(self): """returns all records""" def _filter_nothing(row): return True return _filter_nothing def _filter_everything(self): """returns no records""" def _filter_everything(row): return False return _filter_everything def _filter_timestamp_range(self, begin_date, end_date): """return records within studydate date range""" def _filter_timestamp_range(row): metadata = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(metadata) timestamp = xml_root.xpath(".//DicomAttribute[@keyword='StudyDate']/Value/text()")[0] timestamp = datetime.datetime.strptime(timestamp, "%Y%m%d") if begin_date < timestamp and timestamp < end_date: return True else: return False return _filter_timestamp_range def _filter_return_string(self): """filter function which returns str""" def _filter_return_string(row): return "True" return _filter_return_string def _filter_return_int(self): """filter function returns int""" def _filter_return_int(row): return -1 return _filter_return_int def _filter_has_bugs(self): """broken filter function""" def _filter_has_bugs(row): raise Exception("this filter is broken!") return _filter_has_bugs def _filter_invalid(self): """filter function takes 2 params""" # filter is invalid because it takes # 2 parameters def _filter_invalid(index, row): return True return _filter_invalid def _filter(self, keywords): """filter records by key value pair""" # here we are generating the expected result matching_records = [] pandas_metadata = self.dicom.metadata.to_pandas()["metadata"] for row in pandas_metadata: ascii_xml = row.encode("ascii", "ignore") xml = etree.fromstring(row.encode("ascii", "ignore")) for keyword in keywords: this_row_keyword_value = xml.xpath(self.query.replace("KEYWORD", keyword)) if this_row_keyword_value == keyword: matching_records.append(ascii_xml) return matching_records def _compare_dicom_with_expected_result(self, expected_result): """compare expected result with actual result""" pandas_result = self.dicom.metadata.to_pandas()["metadata"] for expected, actual in zip(expected_result, pandas_result): actual_ascii = actual.encode("ascii", "ignore") self.assertEqual(actual_ascii, expected) if __name__ == "__main__": unittest.main()
apache-2.0
UASLab/ImageAnalysis
scripts/sandbox/lbp.py
1
8814
#!/usr/bin/python3 import argparse import cv2 import math import os import random import numpy as np import matplotlib.pyplot as plt import classifier texture_and_color = False # goal_step = 160 # this is a tuning dial parser = argparse.ArgumentParser(description='local binary patterns test.') parser.add_argument('--image', required=True, help='image name') parser.add_argument('--scale', type=float, default=0.4, help='scale image before processing') parser.add_argument('--model', help='saved learning model name') args = parser.parse_args() rgb = cv2.imread(args.image, flags=cv2.IMREAD_ANYCOLOR|cv2.IMREAD_ANYDEPTH|cv2.IMREAD_IGNORE_ORIENTATION) tmodel = classifier.Classifier() if args.model: tmodel.init_model(args.model + ".fit", args.model + ".data") else: texture_mode = init_model() tmodel.compute_lbp(rgb) tmodel.compute_grid() # gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY) # if False: # lab = cv2.cvtColor(rgb, cv2.COLOR_BGR2LAB) # l, a, b = cv2.split(lab) # # cv2 hue range: 0 - 179 # # target_hue_value = 0 # red = 0 # # t1 = np.mod((hue.astype('float') + 90), 180) # # print('t1:', np.min(t1), np.max(t1)) # # #cv2.imshow('t1', cv2.resize(t1, (int(w*args.scale), int(h*args.scale)))) # # dist = np.abs(90 - t1) # # print('dist:', np.min(dist), np.max(dist)) # # t2 = 255 - (dist*dist) * (255 / 90) # # t2[t2<0] = 0 # # weight = (hue.astype('float')/255) * (sat.astype('float')/255) # # index = (t2 * weight).astype('uint8') # index = a # elif False: # hsv = cv2.cvtColor(rgb, cv2.COLOR_BGR2HSV) # hue, sat, val = cv2.split(hsv) # # cv2 hue range: 0 - 179 # target_hue_value = 0 # red = 0 # t1 = np.mod((hue.astype('float') + 90), 180) # print('t1:', np.min(t1), np.max(t1)) # #cv2.imshow('t1', cv2.resize(t1, (int(w*args.scale), int(h*args.scale)))) # dist = np.abs(90 - t1) # print('dist:', np.min(dist), np.max(dist)) # t2 = 255 - (dist*dist) * (255 / 90) # t2[t2<0] = 0 # weight = (hue.astype('float')/255) * (sat.astype('float')/255) # index = (t2 * weight).astype('uint8') # #index = hue # elif False: # # very dark pixels can map out noisily # g, b, r = cv2.split(rgb) # g[g==0] = 1 # r[r==0] = 1 # ng = g.astype('float') / 255.0 # nr = r.astype('float') / 255.0 # index = (nr - ng) / (nr + ng) # print("range:", np.min(index), np.max(index)) # #index[index<0.5] = -1.0 # index = ((0.5 * index + 0.5) * 255).astype('uint8') # elif True: # # very dark pixels can map out noisily # g, b, r = cv2.split(rgb) # g[g==0] = 1 # protect against divide by zero # ratio = (r / g).astype('float') * 0.25 # # knock out the low end # lum = gray.astype('float') / 255 # lumf = lum / 0.15 # lumf[lumf>1] = 1 # ratio *= lumf # #ratio[ratio<0.5] = 0 # ratio[ratio>1] = 1 # gray = (ratio*255).astype('uint8') # index = gray # print("range:", np.min(index), np.max(index)) (h, w) = tmodel.index.shape[:2] # cv2.imshow('index', cv2.resize(tmodel.index, (int(w*args.scale), int(h*args.scale)))) scale_orig = cv2.resize(rgb, (int(w*args.scale), int(h*args.scale))) scale = scale_orig.copy() gscale = cv2.cvtColor(scale, cv2.COLOR_BGR2GRAY) # def gen_classifier(lbp, index, r1, r2, c1, c2): # lbp_region = lbp[r1:r2,c1:c2] # (hist, _) = np.histogram(lbp_region.ravel(), # bins=np.arange(0, numPoints + 3), # range=(0, numPoints + 2)) # if texture_and_color: # index_region = index[r1:r2,c1:c2] # (index_hist, _) = np.histogram(index_region.ravel(), # bins=64, # range=(0, 255)) # #index_hist[0] = 0 # hist = np.concatenate((hist, index_hist), axis=None) # if False: # # dist histogram # plt.figure() # y_pos = np.arange(len(hist)) # plt.bar(y_pos, hist, align='center', alpha=0.5) # plt.xticks(y_pos, range(len(hist))) # plt.ylabel('count') # plt.title('classifier') # plt.show() # return hist def draw(image, r1, r2, c1, c2, color, width): cv2.rectangle(image, (int(c1*args.scale), int(r1*args.scale)), (int((c2)*args.scale)-1, int((r2)*args.scale)-1), color=color, thickness=width) def draw_prediction(image, cell_list, selected_cell, show_grid, alpha=0.25): #colors_hex = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', # '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] colors_hex = ['#2ca02c', '#ff6f0e', '#9467bd', '#1f77b4', '#d62728', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] colors = [] for c in colors_hex: r = int(c[1:3], 16) g = int(c[3:5], 16) b = int(c[5:7], 16) colors.append( (r, g, b) ) overlay = image.copy() for key in cell_list: cell = cell_list[key] (r1, r2, c1, c2) = cell["region"] if show_grid == "user" and cell["user"] != None: index = ord(cell["user"]) - ord('0') color = colors[index] draw(overlay, r1, r2, c1, c2, color, cv2.FILLED) elif show_grid == "prediction" and cell["prediction"] != None: index = ord(cell["prediction"][0]) - ord('0') if index > 0 and abs(cell["score"][0]) > 0.25: color = colors[index] draw(overlay, r1, r2, c1, c2, color, cv2.FILLED) result = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0) if show_grid == "prediction": overlay = result.copy() for key in cell_list: cell = cell_list[key] (r1, r2, c1, c2) = cell["region"] if cell["user"] != None: color = colors[ord(cell["user"]) - ord('0')] draw(overlay, r1, r2, c1, c2, color, 2) result = cv2.addWeighted(overlay, alpha, result, 1 - alpha, 0) if selected_cell != None: (r1, r2, c1, c2) = cell_list[selected_cell]["region"] draw(result, r1, r2, c1, c2, (255,255,255), 2) return result selected_cell = None show_grid = "user" win = 'scale' scale = draw_prediction(scale_orig, tmodel.cells, selected_cell, show_grid) cv2.imshow(win, scale) def onmouse(event, x, y, flags, param): global selected_cell if event == cv2.EVENT_LBUTTONDOWN: # show region detail key = tmodel.find_key(int(x/args.scale), int(y/args.scale)) selected_cell = key (r1, r2, c1, c2) = tmodel.cells[key]["region"] rgb_region = rgb[r1:r2,c1:c2] cv2.imshow('region', cv2.resize(rgb_region, ( (r2-r1)*3, (c2-c1)*3) )) scale = draw_prediction(scale_orig, tmodel.cells, selected_cell, show_grid) cv2.imshow(win, scale) elif event == cv2.EVENT_RBUTTONDOWN: key = tmodel.find_key(int(x/args.scale), int(y/args.scale)) #if cell_list[key]["user"] == None: # cell_list[key]["user"] = "yes" #elif cell_list[key]["user"] == "yes": # cell_list[key]["user"] = "no" #else: # cell_list[key]["user"] = None scale = draw_prediction(scale_orig, tmodel.cells, selected_cell, show_grid) cv2.imshow(win, scale) cv2.setMouseCallback(win, onmouse) # work list work_list = list(tmodel.cells.keys()) random.shuffle(work_list) index = 0 while index < len(work_list): key = work_list[index] selected_cell = key scale = draw_prediction(scale_orig, tmodel.cells, selected_cell, show_grid) (r1, r2, c1, c2) = tmodel.cells[key]["region"] print(r1, r2, c1, c2) rgb_region = rgb[r1:r2,c1:c2] cv2.imshow('gray', gscale) cv2.imshow('scale', scale) cv2.imshow('region', cv2.resize(rgb_region, ( (r2-r1)*3, (c2-c1)*3) )) keyb = cv2.waitKey() if keyb >= ord('0') and keyb <= ord('9'): tmodel.cells[selected_cell]["user"] = chr(keyb) if key == selected_cell: index += 1 elif keyb == ord(' '): # pass this cell index += 1 elif keyb == ord('g'): if show_grid == "user": show_grid = "prediction" elif show_grid == "prediction": show_grid = "none" elif show_grid == "none": show_grid = "user" elif keyb == ord('f'): tmodel.update_model() tmodel.update_prediction() elif keyb == ord('q'): quit() # if False: # # dist histogram # plt.figure() # y_pos = np.arange(len(hist)) # plt.bar(y_pos, hist, align='center', alpha=0.5) # plt.xticks(y_pos, range(len(hist))) # plt.ylabel('count') # plt.title('total distance histogram') # plt.show()
mit
ocelot-collab/ocelot
demos/ebeam/linac_orbit_correction.py
1
2262
""" Linac Orbit Correction. S.Tomin. 09.2019 """ from ocelot import * from ocelot.gui.accelerator import * import dogleg_lattice as dl from ocelot.cpbd.orbit_correction import * from ocelot.cpbd.response_matrix import * import seaborn as sns import logging logging.basicConfig(level=logging.INFO) method = MethodTM() method.global_method = SecondTM # introduce misalignment dl.qi_77_i1.dx = -100e-6 dl.qi_77_i1.dy = 100e-6 dl.qi_85_i1.dx = 100e-6 dl.qi_85_i1.dy = -100e-6 lat = MagneticLattice(dl.cell, method=method) tws = twiss(lat, tws0=dl.tws0) plot_opt_func(lat, tws, top_plot=["Dy"]) plt.show() orb = Orbit(lat) method = LinacRmatrixRM(lattice=orb.lat, hcors=orb.hcors, vcors=orb.vcors, bpms=orb.bpms) #drm_method = LinacDisperseSimRM orb.response_matrix = ResponseMatrix(method=method) # in that case the initial Twiss is needed only for initial energy orb.response_matrix.calculate(tw_init=dl.tws0) ax = sns.heatmap(orb.response_matrix.df, annot=True) ax.set_title("Orbit response matrix") plt.show() s_bpm_b = np.array([p.s for p in orb.bpms]) x_bpm_b, y_bpm_b = method.read_virtual_orbit(p_init=Particle()) fig, ax = plot_API(lat) ax.plot(s_bpm_b, x_bpm_b*1000., "ro-", label="X [mm]") ax.plot(s_bpm_b, y_bpm_b*1000., "bo-", label="Y [mm]") ax.legend() plt.show() orb.correction(beta=500) x_bpm, y_bpm = method.read_virtual_orbit(p_init=Particle()) p_list = lattice_track(lat, method.particle0) s = [p.s for p in p_list] x = [p.x*1000. for p in p_list] y = [p.y*1000. for p in p_list] fig, ax = plot_API(lat) ax.plot(s_bpm_b, x_bpm*1000., "ro" , label="X [mm]") ax.plot(s, x, 'r') ax.plot(s_bpm_b, y_bpm*1000., "bo", label="Y [mm]") ax.plot(s, y, 'b') plt.show() rm = orb.response_matrix.extract(cor_list=['CIX.78.I1', 'CIY.80.I1'], bpm_list=['BPMA.85.I1', 'BPMA.87.I1']) print(rm) rm[0, 0] = 2 rm[2, 0] = 0.1 rm[1, 1] = -0.1 print(rm) orb.response_matrix.inject(cor_list=['CIX.78.I1', 'CIY.80.I1'], bpm_list=['BPMA.85.I1', 'BPMA.87.I1'], inj_matrix=rm) rm_check = orb.response_matrix.extract(cor_list=['CIX.78.I1', 'CIY.80.I1'], bpm_list=['BPMA.85.I1', 'BPMA.87.I1']) print("is RMs equal: ", (np.equal(rm, rm_check)).all()) ax = sns.heatmap(orb.response_matrix.df, annot=True) ax.set_title("Orbit response matrix") plt.show()
gpl-3.0
iABC2XYZ/abc
Scripts/RFQVane/VaneStructure3.py
1
7860
# -*- coding: utf-8 -*- """ Created on Fri Mar 03 11:11:22 2017 @author: A """ import matplotlib.pyplot as plt import numpy as np from scipy.optimize import fsolve from scipy.special import iv #from scipy.signal import find_peaks_cwt plt.close('all') zStart=1.55 zEnd=230 zStep=0.005#########################################步长不要小于0.005,否则贝塞尔函数求解会出错 Freq=162.5 cLight=299792458 lambda_m=cLight/Freq/1.e6 cell_Beta_A_a_m_Z_L=np.loadtxt('V.txt') cell=cell_Beta_A_a_m_Z_L[:,0] Beta=cell_Beta_A_a_m_Z_L[:,1] A=cell_Beta_A_a_m_Z_L[:,2] a=cell_Beta_A_a_m_Z_L[:,3] m=cell_Beta_A_a_m_Z_L[:,4] Z=cell_Beta_A_a_m_Z_L[:,5]######################################end of the cell##################### L=cell_Beta_A_a_m_Z_L[:,6] V4_cell_z_a_m_r0=np.loadtxt('RFQ.V4.txt') cell_V4=V4_cell_z_a_m_r0[:,0]############################################start at cell4############# z_V4=np.array(V4_cell_z_a_m_r0[:,1])+1.52919########################start of the cell################ a_V4=V4_cell_z_a_m_r0[:,2] r0_V4=V4_cell_z_a_m_r0[:,3] L_V4=z_V4[1:]-z_V4[:-1]############################################Cell长度比其他参数少一组########## numCell=len(cell) nREC=int((zEnd-zStart)/zStep)+2 xREC=np.zeros((nREC,2)) xREC_2=np.zeros((nREC,2)) zREC=np.zeros(nREC) cellREC=np.zeros(nREC) cellFlagREC=np.zeros(nREC) RhoREC=np.zeros(nREC) LREC=np.zeros(nREC) Lcal=np.zeros(nREC) iCellFlag=1 zRec=zStart def RFQVane(x,a,k,z,m):########################################################定义RFQ极头函数 A=(m**2-1)/(m**2*iv(0,k*a)+iv(0,m*k*a)) return x**2/a**2-(1-A*iv(0,k*x)*np.cos(k*z))/(1-A*iv(0,k*a)) def RFQVane_V4(x,a,z,L,r0): k=np.pi/L chi=(a/r0)**2 A=(1-chi)/iv(0,k*a) return x**2/a**2-(1-A*iv(0,k*x)*np.cos(k*z))/chi def Rho(a,k,m): A=(m**2-1)/(m**2*iv(0,k*a)+iv(0,m*k*a)) Rho=0.75*a/np.sqrt(1-A*iv(0,k*a)) return Rho iREC=0; while (zRec<zEnd): print(zRec) diff_RecCell=zRec-Z iCell=len(diff_RecCell[diff_RecCell>0]) -1 ###############################判断所取点在第几个Cell if (iCell<4): iCellFlag=(-1)**iCell if (iCellFlag>0): zCal=zRec-Z[iCell] zCal_2=Z[iCell]-zRec else: zCal=Z[iCell+1]-zRec zCal_2=zRec-Z[iCell-1] #zCal=zRec-Z[iCell] #k=np.pi/L[iCell] betaK=np.interp(zRec,Z,Beta) k=np.pi/betaK/lambda_m/100*2 #k=np.pi/np.interp(zRec,Z,L)##############################用L数据计算对比发现和用beta计算CELL长度并没有区别 aInterP=np.interp(zRec,Z,a) mInterP=np.interp(zRec,Z,m) xRecTmp = fsolve(RFQVane,[-0.3],args=(aInterP,k,zCal,mInterP)) xRecTmp_2 = fsolve(RFQVane,[-0.3],args=(aInterP,k,zCal_2,mInterP)) else: aInterP=np.interp(zRec,Z,a) mInterP=np.interp(zRec,Z,m) betaK=np.interp(zRec,Z,Beta) k=np.pi/betaK/lambda_m/100*2 iCellFlag=(-1)**iCell if (iCellFlag>0): zCal=zRec-z_V4[iCell-4] else: zCal=z_V4[iCell-3]-zRec aInterP_V4=np.interp(zRec,z_V4,a_V4) LInterP_V4=np.interp(zRec,z_V4[:-1],L_V4) r0InterP_V4=np.interp(zRec,z_V4,r0_V4) xRecTmp = fsolve(RFQVane_V4,[-0.6],args=(aInterP_V4,zCal,LInterP_V4,r0InterP_V4)) iREC+=1 zRec+=zStep xREC[iREC,:]=xRecTmp #xREC_2[iREC,:]=xRecTmp_2 zREC[iREC]=zRec cellREC[iREC]=iCell cellFlagREC[iREC]=iCellFlag LREC[iREC]=np.interp(zRec,Z,L) Lcal[iREC]=betaK*lambda_m/2*100 RhoREC[iREC]=Rho(aInterP,k,mInterP) plt.figure('calculating result') plt.plot(zREC,xREC[:,0],'b') plt.hold #plt.plot(zREC,xREC_2[:,0],'r') ######################################对比#################################### z_HV_REF=np.loadtxt('RFQ H DATA.txt') Z_REF=z_HV_REF[:,0]/10. X_REF=z_HV_REF[:,1]/10 Rho_REF=z_HV_REF[:,2]/10 plt.figure('Comp') plt.plot(zREC,xREC,'b') plt.hold #plt.plot(zREC,xREC_2[:,0],'g') plt.hold plt.plot(Z_REF,X_REF,'r') xRECInterP=np.interp(Z_REF,zREC,xREC[:,0]) plt.figure('Diff') plt.plot(Z_REF,X_REF-xRECInterP,'r') plt.hold plt.plot(zREC,cellFlagREC,'g') ########################对比Rho函数################################################## plt.figure('Rho') ''' plt.plot(zREC,RhoREC,'b') plt.hold plt.plot(Z_REF,Rho_REF,'r') plt.hold plt.plot(Z_REF,Rho_REF-np.interp(Z_REF,zREC,RhoREC),'g') ''' plt.plot(zREC,np.interp(zREC,Z_REF,Rho_REF),'g') ###########################对比Cell长度读取和计算函数################################ ''' plt.figure('L_COMP') plt.plot(zREC,LREC,'r') plt.hold plt.plot(zREC,Lcal,'b') plt.hold plt.figure('L_Ratio') plt.plot(zREC,((LREC-Lcal)/LREC)) ''' ########################分析Cell数################################################ def Smooth(x): x[0]=x[0] x[1]=np.average(x[0:2]) x[2:-3]=(x[0:-5]+x[1:-4]+x[2:-3]+x[3:-2]+x[4:-1])/5. x[-2]=np.average(x[-3:-1]) x[-1]=x[-1] return x def FindPeaks(x): xLeft=x[1:-2]> x[0:-3] xRight=x[1:-2]> x[2:-1] xFlag=xLeft*xRight indexX=np.where(xFlag==1) return indexX def FindValley(x): xLeft=x[1:-2]< x[0:-3] xRight=x[1:-2]< x[2:-1] xFlag=xLeft*xRight indexX=np.where(xFlag==1) return indexX indexPeak=((Z_REF>4.) * (Z_REF<221.5))######################定义寻峰范围 ZREFPeak=Z_REF[indexPeak] xREFPeak=X_REF[indexPeak] xREFPeak=Smooth(xREFPeak) xREFPeak=Smooth(xREFPeak) xRECPeak=xRECInterP[indexPeak] ZRECPeak=ZREFPeak xRECPeak=Smooth(xRECPeak) xRECPeak=Smooth(xRECPeak) index_xRECPeakTuple=FindPeaks(xRECPeak) index_xREFPeakTuple=FindPeaks(xREFPeak) index_xRECPeak=index_xRECPeakTuple[0] index_xREFPeak=index_xREFPeakTuple[0] print(' xRECPeak:',len(index_xRECPeak),'\n','xREFPeak:',len(index_xREFPeak)) index_xREFValleyTuple=FindValley(xREFPeak) index_xREFValley=index_xREFValleyTuple[0] if len(index_xREFPeak)==len(index_xREFValley): if ((Z_REF[index_xREFPeak[0]])<(Z_REF[index_xREFValley[0]])): Lcell_HV=Z_REF[index_xREFValley]-Z_REF[index_xREFPeak] P_cell_PV=Z_REF[index_xREFValley] else: Lcell_HV=Z_REF[index_xREFPeak]-Z_REF[index_xREFValley] P_cell_PV=Z_REF[index_xREFPeak] elif len(index_xREFPeak)<len(index_xREFValley): Lcell_HV=Z_REF[index_xREFPeak]-Z_REF[index_xREFValley[:-1]] P_cell_PV=Z_REF[index_xREFPeak] else: Lcell_HV=Z_REF[index_xREFValley]-Z_REF[index_xREFPeak[-1]] P_cell_PV=Z_REF[index_xREFValley] pariout=np.loadtxt('pariout_python.txt') Cell_pariout=pariout[:,0] Z_pariout=pariout[:,-3] L_pariout=pariout[:,-4] r0_pariout=pariout[:,9] ncell_pariout=len(Z_pariout[(Z_pariout>4.)*(Z_pariout<221.5)]) plt.figure('Length(HV_P-V)_comp_priout') plt.plot(Z_REF[indexPeak],np.interp(Z_REF[indexPeak],P_cell_PV,Lcell_HV),'b') plt.hold plt.plot(Z_REF[indexPeak],np.interp(Z_REF[indexPeak],Z_pariout,L_pariout),'r') print(' HV:',((len(index_xREFPeak))+len(index_xREFValley)),'\n','parioutcell:',ncell_pariout) ''' plt.figure('Peak') plt.plot(ZRECPeak,xRECPeak,'b') plt.hold plt.plot(ZRECPeak,xREFPeak,'r') plt.plot(ZRECPeak[index_xRECPeak],xRECPeak[index_xRECPeak],'bo') plt.plot(ZRECPeak[index_xREFPeak],xREFPeak[index_xREFPeak],'r*') plt.plot(ZRECPeak[index_xREFValley],xREFPeak[index_xREFValley],'r*') ''' ##############################计算固定极头半径###################################### r0_cal_rho=r0_pariout[4:] L_cal_rho=L_pariout[4:] r0_sum=0 for i in range(0,len(L_cal_rho)): r0_sum=r0_sum+r0_cal_rho[i]*L_cal_rho[i] r0_rho=r0_sum/Z_pariout[-1] rho_constant=0.75*r0_rho print(' CST_RHO_constant=',rho_constant,'cm') ############################################################################## plt.show()
gpl-3.0
automl/paramsklearn
ParamSklearn/components/classification/extra_trees.py
1
6420
import numpy as np from HPOlibConfigSpace.configuration_space import ConfigurationSpace from HPOlibConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter, \ UnParametrizedHyperparameter, Constant from ParamSklearn.components.base import ParamSklearnClassificationAlgorithm from ParamSklearn.constants import * from sklearn.ensemble import ExtraTreesClassifier as ETC class ExtraTreesClassifier(ParamSklearnClassificationAlgorithm): def __init__(self, n_estimators, criterion, min_samples_leaf, min_samples_split, max_features, max_leaf_nodes_or_max_depth="max_depth", bootstrap=False, max_leaf_nodes=None, max_depth="None", min_weight_fraction_leaf=0.0, oob_score=False, n_jobs=1, random_state=None, verbose=0, class_weight=None): self.n_estimators = int(n_estimators) self.estimator_increment = 10 if criterion not in ("gini", "entropy"): raise ValueError("'criterion' is not in ('gini', 'entropy'): " "%s" % criterion) self.criterion = criterion if max_leaf_nodes_or_max_depth == "max_depth": self.max_leaf_nodes = None if max_depth == "None": self.max_depth = None else: self.max_depth = int(max_depth) #if use_max_depth == "True": # self.max_depth = int(max_depth) #elif use_max_depth == "False": # self.max_depth = None else: if max_leaf_nodes == "None": self.max_leaf_nodes = None else: self.max_leaf_nodes = int(max_leaf_nodes) self.max_depth = None self.min_samples_leaf = int(min_samples_leaf) self.min_samples_split = int(min_samples_split) self.max_features = float(max_features) if bootstrap == "True": self.bootstrap = True elif bootstrap == "False": self.bootstrap = False self.oob_score = oob_score self.n_jobs = int(n_jobs) self.random_state = random_state self.verbose = int(verbose) self.class_weight = class_weight self.estimator = None def fit(self, X, y, sample_weight=None, refit=False): if self.estimator is None or refit: self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight, refit=refit) while not self.configuration_fully_fitted(): self.iterative_fit(X, y, n_iter=1, sample_weight=sample_weight) return self def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False): if refit: self.estimator = None if self.estimator is None: num_features = X.shape[1] max_features = int( float(self.max_features) * (np.log(num_features) + 1)) # Use at most half of the features max_features = max(1, min(int(X.shape[1] / 2), max_features)) self.estimator = ETC( n_estimators=0, criterion=self.criterion, max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, bootstrap=self.bootstrap, max_features=max_features, max_leaf_nodes=self.max_leaf_nodes, oob_score=self.oob_score, n_jobs=self.n_jobs, verbose=self.verbose, random_state=self.random_state, class_weight=self.class_weight, warm_start=True ) tmp = self.estimator # TODO copy ? tmp.n_estimators += n_iter tmp.fit(X, y, sample_weight=sample_weight) self.estimator = tmp return self def configuration_fully_fitted(self): if self.estimator is None: return False return not len(self.estimator.estimators_) < self.n_estimators def predict(self, X): if self.estimator is None: raise NotImplementedError return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'ET', 'name': 'Extra Trees Classifier', 'handles_missing_values': False, 'handles_nominal_values': False, 'handles_numerical_features': True, 'prefers_data_scaled': False, # TODO find out if this is good because of sparcity... 'prefers_data_normalized': False, 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'is_deterministic': True, 'handles_sparse': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS,), # TODO find out what is best used here! # But rather fortran or C-contiguous? 'preferred_dtype': np.float32} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() n_estimators = cs.add_hyperparameter(Constant("n_estimators", 100)) criterion = cs.add_hyperparameter(CategoricalHyperparameter( "criterion", ["gini", "entropy"], default="gini")) max_features = cs.add_hyperparameter(UniformFloatHyperparameter( "max_features", 0.5, 5, default=1)) max_depth = cs.add_hyperparameter( UnParametrizedHyperparameter(name="max_depth", value="None")) min_samples_split = cs.add_hyperparameter(UniformIntegerHyperparameter( "min_samples_split", 2, 20, default=2)) min_samples_leaf = cs.add_hyperparameter(UniformIntegerHyperparameter( "min_samples_leaf", 1, 20, default=1)) min_weight_fraction_leaf = cs.add_hyperparameter(Constant( 'min_weight_fraction_leaf', 0.)) bootstrap = cs.add_hyperparameter(CategoricalHyperparameter( "bootstrap", ["True", "False"], default="False")) return cs
bsd-3-clause
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/bezier.py
10
15695
""" A module providing some utility functions regarding bezier path manipulation. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from matplotlib.path import Path from operator import xor import warnings class NonIntersectingPathException(ValueError): pass # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a * d - b * c if ad_bc == 0.: raise ValueError("Given lines do not intersect") #rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_ * line1_rhs + b_ * line2_rhs y = c_ * line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy return x1, y1, x2, y2 ## BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1 - t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta # FIXME spelling mistake in the name of the parameter ``tolerence`` def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is insed the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if not xor(start_inside, end_inside): raise NonIntersectingPathException( "the segment does not seem to intersect with the path") while 1: # return if the distance is smaller than the tolerence if (start[0] - end[0]) ** 2 + \ (start[1] - end[1]) ** 2 < tolerence ** 2: return t0, t1 # calculate the middle point middle_t = 0.5 * (t0 + t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if xor(start_inside, middle_inside): t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment(object): """ A simple class of a 2-dimensional bezier segment """ # Higher order bezier lines can be supported by simplying adding # corresponding values. _binom_coeff = {1: np.array([1., 1.]), 2: np.array([1., 2., 1.]), 3: np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] _control_points = np.asarray(control_points) xx = _control_points[:, 0] yy = _control_points[:, 1] self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" one_minus_t_powers = np.power(1. - t, self._orders)[::-1] t_powers = np.power(t, self._orders) tt = one_minus_t_powers * t_powers _x = sum(tt * self._px) _y = sum(tt * self._py) return _x, _y def split_bezier_intersecting_with_closedpath(bezier, inside_closedpath, tolerence=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence) _left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.) return _left, _right def find_r_to_boundary_of_closedpath(inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t * r + cx, sin_t * r + cy find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence) ## matplotlib specific def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = next(path_iter) begin_inside = inside(ctl_points[-2:]) # true if begin point is inside bezier_path = None ctl_points_old = ctl_points concat = np.concatenate iold = 0 i = 1 for ctl_points, command in path_iter: iold = i i += len(ctl_points) // 2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points if bezier_path is None: raise ValueError("The path does not seem to intersect with the patch") bp = list(zip(bezier_path[::2], bezier_path[1::2])) left, right = split_bezier_intersecting_with_closedpath(bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise ValueError() verts_left = left[1:] verts_right = right[:] #i += 1 if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and begin_inside == False: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r ** 2 def _f(xy): x, y = xy return (x - cx) ** 2 + (y - cy) ** 2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1 - x0, y1 - y0 d = (dx * dx + dy * dy) ** .5 return dx / d, dy / d def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5): """ returns * 1 if two lines are parralel in same direction * -1 if two lines are parralel in opposite direction * 0 otherwise """ theta1 = np.arctan2(dx1, dy1) theta2 = np.arctan2(dx2, dy2) dtheta = np.abs(theta1 - theta2) if dtheta < tolerence: return 1 elif np.abs(dtheta - np.pi) < tolerence: return -1 else: return False def get_parallels(bezier2, width): """ Given the quadratic bezier control points *bezier2*, returns control points of quadratic bezier lines roughly parallel to given one separated by *width*. """ # The parallel bezier lines are constructed by following ways. # c1 and c2 are contol points representing the begin and end of the # bezier line. # cm is the middle point c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2] parallel_test = check_if_parallel(c1x - cmx, c1y - cmy, cmx - c2x, cmy - c2y) if parallel_test == -1: warnings.warn( "Lines do not intersect. A straight line is used instead.") #cmx, cmy = 0.5*(c1x+c2x), 0.5*(c1y+c2y) cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) cos_t2, sin_t2 = cos_t1, sin_t1 else: # t1 and t2 is the angle between c1 and cm, cm, c2. They are # also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width) c2x_left, c2y_left, c2x_right, c2y_right = \ get_normal_points(c2x, c2y, cos_t2, sin_t2, width) # find cm_left which is the intersectng point of a line through # c1_left with angle t1 and a line throught c2_left with angle # t2. Same with cm_right. if parallel_test != 0: # a special case for a straight line, i.e., angle between two # lines are smaller than some (arbitrtay) value. cmx_left, cmy_left = \ 0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left) cmx_right, cmy_right = \ 0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right) else: cmx_left, cmy_left = \ get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2) cmx_right, cmy_right = \ get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2) # the parralel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)] return path_left, path_right def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): """ Find control points of the bezier line throught c1, mm, c2. We simply assume that c1, mm, c2 which have parametric value 0, 0.5, and 1. """ cmx = .5 * (4 * mmx - (c1x + c2x)) cmy = .5 * (4 * mmy - (c1y + c2y)) return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ # c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1) c3x_left, c3y_left, c3x_right, c3y_right = \ get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2) # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and # c12-c23 c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5 c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5 c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5 # tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) c123x_left, c123y_left, c123x_right, c123y_right = \ get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm) path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right) return path_left, path_right def make_path_regular(p): """ fill in the codes if None. """ c = p.codes if c is None: c = np.empty(p.vertices.shape[:1], "i") c.fill(Path.LINETO) c[0] = Path.MOVETO return Path(p.vertices, c) else: return p def concatenate_paths(paths): """ concatenate list of paths into a single path. """ vertices = [] codes = [] for p in paths: p = make_path_regular(p) vertices.append(p.vertices) codes.append(p.codes) _path = Path(np.concatenate(vertices), np.concatenate(codes)) return _path
mit
Obus/scikit-learn
examples/applications/plot_out_of_core_classification.py
255
13919
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batchs of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() #fig = plt.gcf() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
leiran/aermodpy
aermod.py
1
32889
#!/usr/bin/env python """Python interface to AERMOD modeling system files. design notes: + Bug on POST processing; only processes 996 hours - proposed fix: in-place averaging, discard hourly data developed for python 3.x """ # docstring metadata __author__ = "Leiran Biton" __copyright__ = "Copyright 2015" __credits__ = [] __license__ = "GPL" __version__ = "0.11" __maintainer__ = "Leiran Biton" __email__ = "[email protected]" __status__ = "Production" # standard library imports import os.path import datetime import numpy import csv # internal package imports from aermodpy.support import pollutant_dict, vars_indices, ordinal class point(object): def __init__(self, num, **kwargs): """Point object mandatory arguments: num - number of points optional arguments: Xs - array of x locations for # of points. default = zeros Ys - array of y locations for # of points. default = zeros Zs - array of z locations for # of points. default = zeros XYs - array shape=(num, 2) of x and y locations for # of points. replaces Xs & Ys. XYZs - array shape=(num, 3) of x, y, and z locations for # of points. replaces Xs, Ys, and Zs. """ self.num = num self.X = kwargs.get("Xs", numpy.zeros(num)) self.Y = kwargs.get("Ys", numpy.zeros(num)) self.Z = kwargs.get("Zs", numpy.zeros(num)) if "XYs" in kwargs: self.X = kwargs["XYs"][:,0] self.Y = kwargs["XYs"][:,1] if "XYZs" in kwargs: self.X = kwargs["XYZs"][:,0] self.Y = kwargs["XYZs"][:,1] self.Z = kwargs["XYZs"][:,2] class post: "POST file processor" verbose = False DEBUG = False # default data formatstring = "(3(1X,F13.5),3(1X,F8.2),3X,A5,2X,A8,2X,A4,6X,A8,2X,I8)" vars_index = None def __init__(self ,filename ,directory="." ,receptors=0 ,formatstring_override=False ,century=20 ,vars_index=vars_indices["post"] ,verbose=True ,DEBUG=False ): self.POSTfile = self.openfile(filename, directory=directory, mode="rU") self.century = century self.datetimes = [] # empty list for datetime objects self.modeldoc = [] self.datatypes = [] self.POSTdata = {} self.receptors = point(receptors) self.formatstring_override = formatstring_override self.vars_index = vars_index self.verbose = verbose self.DEBUG = DEBUG def decode_format_datastring(self ,formatstring): """placeholder function for decoding a string describing POST file dataformat""" # example format '* FORMAT: (3(1X,F13.5),3(1X,F8.2),3X,A5,2X,A8,2X,A4,6X,A8,2X,I8)' return formatstring def decode_data(self ,dataline #,formatstring=formatstring ): # example format '* FORMAT: (3(1X,F13.5),3(1X,F8.2),3X,A5,2X,A8,2X,A4,6X,A8,2X,I8)' # example head '* X Y AVERAGE CONC ZELEV ZHILL ZFLAG AVE GRP HIVAL NET ID DATE(CONC)\n # example data ' 569830.00000 4909393.00000 3065.99300 494.10 747.20 0.00 1-HR ALL 08033104\n' #if self.formatstring_override: # self.decode_format_datastring(self, formatstring) if all([datetime_part in self.vars_index for datetime_part in ("year","month","day","hour")]): dt = datetime.datetime(self.vars_index["year"]["type"](dataline[self.vars_index["year"]["start"]: self.vars_index["year"]["end" ]]) + self.century*100 ,self.vars_index["month"]["type"](dataline[self.vars_index["month"]["start"]: self.vars_index["month"]["end" ]]) ,self.vars_index["day"]["type"](dataline[self.vars_index["day"]["start"]: self.vars_index["day"]["end" ]]) ,self.vars_index["hour"]["type"](dataline[self.vars_index["hour"]["start"]: self.vars_index["hour"]["end" ]]) - 1 ) else: dt = None return [self.vars_index[var]["type"](dataline[self.vars_index[var]["start"]:self.vars_index[var]["end"]]) for var in ["x", "y", "zflag","conc"] ], dt def add_buildings(self ,filename ,directory="." ,nosources=False ): self.building_vertices = {} self.sources = {} if self.verbose: print("--> opening building data file") self.building_file = self.openfile(filename, directory, "rU") # throw away header data [next(self.building_file) for header in range(2)] units, unit_value = next(self.building_file).split() if self.DEBUG: print("DEBUG: units / unit_value:", units, unit_value) utmy, trash = next(self.building_file).split() num_bldgs = int(next(self.building_file)) if self.DEBUG: print("DEBUG: number of buildings:", num_bldgs) for building in range(num_bldgs): try: name, stories, elev = self.building_header() self.process_building(name, stories, elev) except: raise Exception("No more buildings to process") if not nosources: num_srcs = int(next(self.building_file)) for src in range(num_srcs): try: raw_source_line = next(self.building_file).strip() source_descriptors = raw_source_line.replace("'", "").split(sep=None, maxsplit=5) if len(source_descriptors) == 5: name, elev, height, x, y = source_descriptors else: trash, elev, height, x, y, name = source_descriptors name = name.strip() if self.DEBUG: print("DEBUG: source name:", name, x, y) self.sources[(name)] = \ point(1, Xs=numpy.array(float(x)) , Ys=numpy.array(float(y)) ) if self.verbose: print("adding source:", self.sources[(name)].X, self.sources[(name)].Y) except: raise Exception("No more sources to process") def building_header(self): """get building data for new building""" building_descriptors = next(self.building_file).split(sep=None, maxsplit=3) if len(building_descriptors) == 3: name_padded, stories, base_elevation = building_descriptors else: trash, stories, base_elevation, name_padded = building_descriptors if self.verbose: print("adding building: ", name_padded.strip(), stories, base_elevation) return name_padded.strip().replace("'",""), int(stories), float(base_elevation) def process_building(self ,name ,stories ,base_elevation ): """adds building data to the self.building_vertices dictionary""" for story in range(stories): self.process_building_story(name, story+1) def process_building_story(self ,name ,story ): """process a building story""" vertices, height = next(self.building_file).split() vertices = int(vertices) height = float(height) vs = numpy.array([(float(X), float(Y)) for (X, Y) in \ [next(self.building_file).split() for v in range(vertices)] \ ]).reshape(vertices, 2) self.building_vertices[(name, story)] = point(vertices, XYs=vs) def openfile(self ,filename ,directory="." ,mode="rU" ): # files try: filepath = directory + os.path.sep + filename except TypeError: raise TypeError("Invalid 'directory' or 'filename' inputs!") if self.verbose: print("Opening file:", filepath) if self.verbose: print(" mode =", mode) try: openfile = open(filepath, mode) except: raise IOError("Filepath '%s' failed to open. Check the address and mode." % filepath) return openfile def getPOSTfileMetaData(self): """Get metadata from POSTfile""" try: [filetype_doc ,optionsflag_doc ,modeloptions_doc ,datatype_doc ,receptors_doc ,dataformat_doc ] = [next(self.POSTfile) for i in range(6)] except: raise Exception("POST file does not contain proper header metadata") # extract format string from data format documentation if self.DEBUG: print("DEBUG: filetype_doc =", filetype_doc) if self.DEBUG: print("DEBUG: dataformat_doc =", dataformat_doc) dataformat_string = dataformat_doc[dataformat_doc.index(":")+1:].strip() # decode data format string dataformat = self.decode_format_datastring(dataformat_string) if self.formatstring_override: # function still in development self.formatstring = dataformat else: self.modeldoc.append((filetype_doc ,optionsflag_doc ,modeloptions_doc ,datatype_doc ,receptors_doc ,dataformat_doc )) datatype_metadata = datatype_doc.split() r_type = datatype_metadata[datatype_metadata.index("VALUES")-1] r_form = datatype_metadata[datatype_metadata.index("OF")+1:\ datatype_metadata.index("VALUES")-1] r_form = " ".join(r_form) source_group = datatype_metadata[-1] if self.DEBUG: print("DEBUG:", r_type, r_form, source_group) self.datatypes.append((r_type, r_form, source_group)) self.POSTdata[(r_type, r_form, source_group)] = numpy.zeros([self.receptors.num, 1]) if len(self.modeldoc) == 1: n_receptors = [int(s) for s in receptors_doc.split() if s.isdigit()][0] self.receptors = point(n_receptors) def getPOSTfileHeader(self): """Get metadata from POSTfile""" self.fileheader = next(self.POSTfile).strip() next(self.POSTfile) # -------- line def printResults(self, filename, r_type, **kwargs): """print(r_type results data array to outfile as comma separated values)""" outfile = self.openfile(filename, directory=kwargs.get("directory", "."), mode="w") self.POSTdata[(r_type, r_form, source_group)].tofile(outfile, sep=",") outfile.close() def scalePOSTdata(self, r_type, **kwargs): """scales POSTdata result_type using optional "scalar" keyword argument. if omitted, 1.0.""" if self.DEBUG: print("DEBUG: scaling %s results by" % r_type, kwargs.get("scalar", 1.0)) self.POSTdata[(r_type, r_form, source_group)] *= kwargs.get("scalar", 1.0) def processPOSTData(self ,ranked=1 ,annual=False ): """Process stored POST file data""" if self.verbose: print("--> processing open data file") while True: try: self.getPOSTfileMetaData() self.getPOSTfileHeader() self.POSTdata[self.datatypes[-1]] = numpy.zeros([self.receptors.num, ranked]) h = 0 if "hour" in self.vars_index: while True: try: self.getPOSTfileData(h=h, annual=annual, ranked=ranked) h += 1 except Exception as e: if self.DEBUG: print("DEBUG: reached exception during file processing") print("DEBUG:", "Unexpected error:", e) print(" ", self.datetimes[-1]) return else: try: self.getPOSTfileData(h=h, annual=annual, ranked=ranked) if self.DEBUG: print("DEBUG: got 1 instance of POST data") except: return except: return def getPOSTfileData(self ,h=0 ,annual=False ,ranked=1 ): """Get data from POSTfile, process for average number of hours""" if self.verbose: print("--> retrieving data") if h == 0: self.POSTdata[self.datatypes[-1]] = numpy.zeros([self.receptors.num, ranked]) if annual: self.POSTdata[self.datatypes[-1]] = numpy.expand_dims(self.POSTdata[self.datatypes[-1]], axis=2) for r in range(self.receptors.num): line = next(self.POSTfile) # decode data data4hour, dt = self.decode_data(line) # build datetime list if r == 0: if self.DEBUG: print("DEBUG:", "processing for", dt) if annual and (h > 0) and (dt.year > self.datetimes[-1].year): self.POSTdata[self.datatypes[-1]] = numpy.append(self.POSTdata[self.datatypes[-1]] ,numpy.zeros([self.receptors.num, ranked, 1]) ,axis=2 ) self.datetimes.append(dt) # populate receptor location values if h == 0: self.receptors.X[r] = data4hour[0] self.receptors.Y[r] = data4hour[1] self.receptors.Z[r] = data4hour[2] if annual: receptor_data = numpy.append(self.POSTdata[self.datatypes[-1]][r,:,-1], [data4hour[3]], axis=1) receptor_data.sort() self.POSTdata[self.datatypes[-1]][r,:,-1] = receptor_data[::-1][:ranked] else: receptor_data = numpy.append(self.POSTdata[self.datatypes[-1]][r,:], [data4hour[3]], axis=1) receptor_data.sort() self.POSTdata[self.datatypes[-1]][r,:] = receptor_data[::-1][:ranked] return def draw_building(self ,building ,story ,axis ,origin=point(1,Xs=[0],Ys=[0]) ,**kwargs ): import matplotlib.patches as patches from matplotlib.path import Path """method for drawing buildings""" # create polygon using path method verts = [(x-origin.X, y-origin.Y) \ for (x, y) \ in zip(self.building_vertices[(building, story)].X ,self.building_vertices[(building, story)].Y )] verts.append(verts[0]) # add first point to close polygon codes = [Path.LINETO for coords in verts] codes[0] = Path.MOVETO codes[-1] = Path.CLOSEPOLY path = Path(verts, codes) patch = patches.PathPatch(path ,facecolor=kwargs.get("color", "white") ,edgecolor='black' ,linewidth=kwargs.get("linewidth", 0.4) ,alpha=kwargs.get("alpha", 1.00) ) axis.add_patch(patch) if kwargs.get("building_name", False) and (story == 1): axis.annotate(str(building) ,xy=((self.building_vertices[(building, story)].X - origin.X).mean() ,(self.building_vertices[(building, story)].Y - origin.Y).mean()) ,va="center" ,ha="center" ,color="blue" ,size=kwargs.get("max_textsize", 8) ) def printdata(self ,r_type ,r_form # datatype key for POSTdata ,source_group ,filename="aermod_results.csv" ,directory="." ,**kwargs ): with self.openfile(filename, directory, "w") as csvoutfile: csvoutfile.write(r_type+"\n") csvoutfile.write(r_form+"\n") csvoutfile.write(source_group+"\n") w = csv.writer(csvoutfile) rank = kwargs.get("ranked_data", 0) rank_index = 0 if rank == 0 else rank-1 if kwargs.get("exclude_flagpole_receptors", False): concs = self.POSTdata[(r_type, r_form, source_group)][:,rank_index][self.receptors.Z==0] * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) else: concs = self.POSTdata[(r_type, r_form, source_group)][:,rank_index] * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) outlist = [kwargs.get("scale_decimals","%0.0f") % concs.max()] w.writerow(outlist) def gridplot(self ,r_type ,r_form # datatype key for POSTdata ,source_group ,levels=[0,10,20,30,40,50,60,70,80,90,100,150,200,250,300] ,**kwargs ): """creates an individual grid plot based on input concentration array kwargs: contours - width of contour lines to draw. no contour lines if omitted levels - list of levels to be used in the contour plots receptor_size - an integer for sizing the receptors to be plotted. default = 15. enter 0 to omit. plot_max - an integer for sizing the datapoint for the max conc in the domain. enter 0 to omit. distance_from_origin - receptor_type - receptor representation as matplotlib marker indicators (default=".") max_plot - if 0, maximum point omitted. tickinterval - interval of x and y axes noticks - if True, omit x-y ticks labelsize - size of colorbar and x-y tick labels labelgap - gap between ticks and labels nocolorbar - if True: colorbar omitted scale_decimals - colorbar number formatting (e.g. "%0.0f") filename - string for filename. default: "aermod.png" colorbar_spacing - "uniform" or "proportional" (default = "proportional") interpolation_method - linear cubic nearest contour_colors - list of contour colors to use for contours. if omitted, hot colorscale is used. colorslevels - colors and levels scalar - multiplier for concentration data exclude_flagpole_receptors - Default = False, set to True to exclude flagpole receptors add_background - Default value = 0.0 ranked_data - use ranked dataset of value n. Default=1. annual - POSTdata has annual values (default=False) """ import matplotlib import matplotlib.pyplot as plt #from scipy.interpolate import griddata from matplotlib.mlab import griddata if kwargs.get("exclude_flagpole_receptors", False): if self.DEBUG: print("DEBUG: removing flagpole receptors") receptor_array = numpy.column_stack((self.receptors.X[self.receptors.Z==0] ,self.receptors.Y[self.receptors.Z==0] ,self.receptors.Z[self.receptors.Z==0])) else: receptor_array = numpy.column_stack((self.receptors.X, self.receptors.Y, self.receptors.Z)) receptor_num = len(receptor_array) receptors = point(receptor_num ,XYZs=receptor_array) rank = kwargs.get("ranked_data", 0) rank_index = 0 if rank == 0 else rank-1 if kwargs.get("annual", False): if self.DEBUG: print("DEBUG: 'annual' flag is on. Averaging all years.") if kwargs.get("exclude_flagpole_receptors", False): if self.DEBUG: print("DEBUG: removing flagplot data") concs = numpy.mean(self.POSTdata[(r_type, r_form, source_group)][:,rank_index,:], axis=1)[self.receptors.Z==0] * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) else: concs = numpy.mean(self.POSTdata[(r_type, r_form, source_group)][:,rank_index,:], axis=1) * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) else: if kwargs.get("exclude_flagpole_receptors", False): if self.DEBUG: print("DEBUG: removing flagplot data") concs = self.POSTdata[(r_type, r_form, source_group)][:,rank_index][self.receptors.Z==0] * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) else: concs = self.POSTdata[(r_type, r_form, source_group)][:,rank_index] * kwargs.get("scalar", 1.0) + kwargs.get("add_background", 0.0) # define grid. x_range = receptors.X.max() - receptors.X.min() y_range = receptors.Y.max() - receptors.Y.min() xi = numpy.linspace(receptors.X.min(), receptors.X.max(), round(receptors.num**0.85)) yi = numpy.linspace(receptors.Y.min(), receptors.Y.max(), round(receptors.num**0.85)) distance_from_origin = kwargs.get("distance_from_origin", max(x_range/2, y_range/2)) if self.DEBUG: print("DEBUG: distance_from_origin -", distance_from_origin) origin = point(1) origin.X = (receptors.X.max() + receptors.X.min())/2 origin.Y = (receptors.Y.max() + receptors.Y.min())/2 # instantiate figure figure = plt.figure(num=None ,figsize=(6.5, 6) if kwargs.get("nocolorbar", False) else (8, 6) ,dpi=80 ,facecolor="white" ,edgecolor="black" ) ax = figure.add_subplot(111 ,aspect="equal" ) # grid the data. if self.DEBUG: print("DEBUG: receptors.X:", type(receptors.X), receptors.X) if self.DEBUG: print("DEBUG: receptors.X:", type(receptors.Y), receptors.Y) zi = griddata(receptors.X - origin.X, receptors.Y - origin.Y, concs, 0, 0, interp = kwargs.get("interpolation_method", "linear")) if self.DEBUG: print("DEBUG:", zi) # define contour levels and colors if kwargs.get("colorslevels", None): levels = [level for level, color, label in kwargs["colorslevels"]] kwargs["levels"] = levels kwargs["contour_colors"] = [color for level, color, label in kwargs["colorslevels"]] # draw the contours using contour(X,Y,Z,V) formulation (see documentation) CS = plt.contour(xi - origin.X, # X yi - origin.Y, # Y zi, # Z levels, # V linewidths=float(kwargs.get("contours", 0)), colors="black") # fill the contours if kwargs.get("contour_colors", None): cmap, norm = matplotlib.colors.from_levels_and_colors(levels=levels ,colors=kwargs.get("contour_colors", ["white" for level in levels])[:-1] ,extend="neither" ) else: cmap = plt.cm.hot_r norm = matplotlib.colors.Normalize(vmin=0, vmax=1) CS = plt.contourf(xi - origin.X ,yi - origin.Y ,zi ,levels ,cmap=cmap ,norm=norm ) # prepare the colorbar if not kwargs.get("nocolorbar", False): matplotlib.rcParams['xtick.direction'] = 'out' matplotlib.rcParams['ytick.direction'] = 'out' if kwargs.get("colorslevels", False): if self.DEBUG: print("DEBUG: setting colorbar labels") labels = [label for level, color, label in kwargs.get("colorslevels", False)] else: labels = ["" for level in levels] colorbar = figure.colorbar(CS ,ax=ax ,format=kwargs.get("scale_decimals", "%0.1f") ,spacing=kwargs.get("colorbar_spacing", "proportional") ,shrink=1.0 # same size as map ) display_units = pollutant_dict[kwargs["pollutant"]][1] colorbar.set_label("Concentration (%s)" %display_units ,size=kwargs.get("max_textsize", 10) ) colorbar.set_ticks(levels) colorbar.set_ticklabels(labels) colorbar.ax.tick_params(labelsize=kwargs.get("labelsize", 10) ,colors="black" ,axis="both" ,direction="out" ) if kwargs.get("tickinterval", None): tickinterval = kwargs.get("tickinterval", 100) # build ticks aticks = ["0m"] ticks = [0] j = tickinterval while j <= distance_from_origin: aticks = [-j] + aticks + [j] ticks = [-j] + ticks + [j] j += tickinterval ticks = numpy.array(ticks) CS.ax.set_xticks(ticks) CS.ax.set_yticks(ticks) CS.ax.set_xticklabels(aticks, rotation=90) CS.ax.set_yticklabels(aticks) else: if self.DEBUG: print("DEBUG: ticklabels set") ax.ticklabel_format(axis="both" ,style="plain" ,useOffset=0 ) # set tick interval ax.set_xlim(-distance_from_origin, distance_from_origin) ax.set_ylim(-distance_from_origin, distance_from_origin) # format tick marks ax.tick_params(axis="both" ,direction="out" ,length=0 if kwargs.get("noticks", False) else 4 # default tick length is 4. Can be omitted if requested using noticks option ,color="grey" ,width=1 ,pad=kwargs.get("labelgap",4) ,labelsize=kwargs.get("labelsize", 10) ) # plot data points. if kwargs.get("receptor_size", 12): scat = ax.scatter(receptors.X - origin.X ,receptors.Y - origin.Y ,marker=kwargs.get("receptor_type", "o") ,c=(1,1,1,0) # in place of marker_style which I can't get to work ,s=kwargs.get("receptor_size", 12) ,zorder=10 ) if kwargs.get("max_plot", True): max_point = point(1 ,Xs=numpy.array([receptors.X[concs.argmax()] - origin.X]) ,Ys=numpy.array([receptors.Y[concs.argmax()] - origin.Y]) ) if self.DEBUG: print("DEBUG: max plot:") print(" X =", max_point.X[0]) print(" Y =", max_point.Y[0]) print(" c =", concs.max()) ax.annotate('+ Maximum Concentration: '+ kwargs.get("scale_decimals","%0.0f") % concs.max() ,(0.5, 0) ,(0, -40 + (kwargs.get("max_textsize", 10))) ,xycoords='axes fraction' ,ha="center" ,va="top" ,textcoords='offset points' ,size=kwargs.get("max_textsize", 10) ) ax.scatter(max_point.X ,max_point.Y ,marker="+" ,c=(0,0,0) # in place of marker_style which I can't get to work ,s=kwargs.get("max_plot", 50) ,zorder=10 ) if kwargs.get("add_background", False): ax.annotate('Includes background\nconcentration: '+ kwargs.get("scale_decimals","%0.0f") % kwargs.get("add_background", 0.0) ,(1.05, 0) ,(0, -32 + (kwargs.get("max_textsize", 10))) ,xycoords='axes fraction' ,ha="left" ,va="top" ,textcoords='offset points' ,size=kwargs.get("max_textsize", 10) ) if kwargs.get("transparent_buildings", False): if self.DEBUG: print("DEBUG: transparent buildings") building_color = "#FFFFFF00" else: building_color = "white" if kwargs.get("buildings", False): for name, story in sorted(self.building_vertices.keys()): self.draw_building(name, story, ax, origin=origin ,color=kwargs.get("building_color", building_color) ,linewidth=kwargs.get("building_linewidth", 0.4) ,building_name=kwargs.get("building_name", False) ) if kwargs.get("sources", False): for name, source in self.sources.items(): if self.DEBUG: print("DEBUG: source:", name, source.X, source.Y) ax.scatter(source.X - origin.X ,source.Y - origin.Y ,marker="o" ,c=(0,0,0) ,s=kwargs.get("sources", 10) ,zorder=10 ) if self.DEBUG: print("DEBUG: sources successfully plotted") ax.set_title(pollutant_dict[kwargs.get("pollutant", "PM2.5")][0] + " " + \ ("" if r_form is "CONCURRENT" else r_type )+ "\n" + \ ("%s HIGHEST " %(ordinal(rank)) if rank else "") + \ ("HOURLY" if (r_form == "CONCURRENT") else r_form) ,size=kwargs.get("title_size", 10) ,loc="left" ,ha="left" ,position=(0.05,1.012) ) ax.set_title("SOURCE(S): \n"+source_group ,size=kwargs.get("title_size", 10) ,loc="right" ,ha="left" ,position=(0.75,1.012) ) plt.savefig(kwargs.get("filename", "aermod.png")) plt.close("all")
gpl-2.0
Vidhyalakshimi/blog
DMPs/cs.py
4
4434
''' Copyright (C) 2013 Travis DeWolf This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import numpy as np class CanonicalSystem(): """Implementation of the canonical dynamical system as described in Dr. Stefan Schaal's (2002) paper""" def __init__(self, dt, pattern='discrete'): """Default values from Schaal (2012) dt float: the timestep pattern string: either 'discrete' or 'rhythmic' """ self.ax = 1.0 self.pattern = pattern if pattern == 'discrete': self.step = self.step_discrete self.run_time = 1.0 elif pattern == 'rhythmic': self.step = self.step_rhythmic self.run_time = 2*np.pi else: raise Exception('Invalid pattern type specified: \ Please specify rhythmic or discrete.') self.dt = dt self.timesteps = int(self.run_time / self.dt) self.reset_state() def rollout(self, **kwargs): """Generate x for open loop movements. """ if kwargs.has_key('tau'): timesteps = int(self.timesteps / kwargs['tau']) else: timesteps = self.timesteps self.x_track = np.zeros(timesteps) self.reset_state() for t in range(timesteps): self.x_track[t] = self.x self.step(**kwargs) return self.x_track def reset_state(self): """Reset the system state""" self.x = 1.0 def step_discrete(self, tau=1.0, error_coupling=1.0): """Generate a single step of x for discrete (potentially closed) loop movements. Decaying from 1 to 0 according to dx = -ax*x. tau float: gain on execution time increase tau to make the system execute faster error_coupling float: slow down if the error is > 1 """ self.x += (-self.ax * self.x * error_coupling) * tau * self.dt return self.x def step_rhythmic(self, tau=1.0, error_coupling=1.0): """Generate a single step of x for rhythmic closed loop movements. Decaying from 1 to 0 according to dx = -ax*x. tau float: gain on execution time increase tau to make the system execute faster error_coupling float: slow down if the error is > 1 """ self.x += (1 * error_coupling * tau) * self.dt return self.x #============================== # Test code #============================== if __name__ == "__main__": cs = CanonicalSystem(dt=.001, pattern='discrete') # test normal rollout x_track1 = cs.rollout() cs.reset_state() # test error coupling timesteps = int(1.0/.001) x_track2 = np.zeros(timesteps) err = np.zeros(timesteps) err[200:400] = 2 err_coup = 1.0 / (1 + err) for i in range(timesteps): x_track2[i] = cs.step(error_coupling=err_coup[i]) import matplotlib.pyplot as plt fig, ax1 = plt.subplots(figsize=(6,3)) ax1.plot(x_track1, lw=2) ax1.plot(x_track2, lw=2) plt.grid() plt.legend(['normal rollout', 'error coupling']) ax2 = ax1.twinx() ax2.plot(err, 'r-', lw=2) plt.legend(['error'], loc='lower right') plt.ylim(0, 3.5) plt.xlabel('time (s)') plt.ylabel('x') plt.title('Canonical system - discrete') for t1 in ax2.get_yticklabels(): t1.set_color('r') plt.tight_layout() cs = CanonicalSystem(dt=.001, pattern='rhythmic') # test normal rollout x_track1 = cs.rollout() import matplotlib.pyplot as plt fig, ax1 = plt.subplots(figsize=(6,3)) ax1.plot(x_track1, lw=2) plt.grid() plt.legend(['normal rollout'], loc='lower right') plt.xlabel('time (s)') plt.ylabel('x') plt.title('Canonical system - rhythmic') plt.show()
gpl-3.0
lsolanka/gridcells
setup.py
2
4136
'''Setup script for GridCells.''' from __future__ import absolute_import, print_function, division from os.path import join try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension all_packages = [ 'gridcells', 'gridcells.analysis', 'gridcells.core', 'gridcells.plotting', ] default_swig_opts = [ '-builtin', '-Wall', '-O', '-ignoremissing', '-c++', '-Iexternal/armanpy/include', '-Isrc/include' ] ARMANPY_INCLUDE_DIR = 'external/armanpy/include' ARMANPY_DEPS = [ join(ARMANPY_INCLUDE_DIR, 'armanpy.hpp'), join(ARMANPY_INCLUDE_DIR, 'armanpy.i'), join(ARMANPY_INCLUDE_DIR, 'armanpy_1d.i'), join(ARMANPY_INCLUDE_DIR, 'armanpy_2d.i'), join(ARMANPY_INCLUDE_DIR, 'armanpy_3d.i'), join(ARMANPY_INCLUDE_DIR, 'numpy.i'), ] class DelayedExtension(Extension, object): """ A distutils Extension subclass where some of its members may have delayed computation until reaching the build phase. This is so we can, for example, get the Numpy include dirs after pip has installed Numpy for us if it wasn't already on the system. This class has been adapted from the matplotlib package. """ def __init__(self, *args, **kwargs): super(DelayedExtension, self).__init__(*args, **kwargs) self._hooks = {"include_dirs": self.get_include_dirs} @staticmethod def get_include_dirs(): import numpy return [ 'src/include', 'external/armanpy/include', 'external/armadillo/include', numpy.get_include() ] class DelayedMember(property): def __init__(self, name): self._name = name def __get__(self, obj, objtype=None): result = getattr(obj, '_' + self._name, []) if self._name in obj._hooks: result = obj._hooks[self._name]() + result return result def __set__(self, obj, value): setattr(obj, '_' + self._name, value) include_dirs = DelayedMember('include_dirs') field_ext = DelayedExtension('gridcells.analysis._fields', ['src/fields.cpp', 'src/fields.i'], depends=['src/fields.cpp', 'src/include/fields.hpp', 'src/fields.i'] + ARMANPY_DEPS, swig_opts=default_swig_opts) common_ext = DelayedExtension('gridcells.core._common', ['src/common.cpp', 'src/common.i'], depends=['src/common.cpp', 'src/include/common.hpp', 'src/common.i'] + ARMANPY_DEPS, swig_opts=default_swig_opts) spikes_ext = DelayedExtension('gridcells.analysis._spikes', ['src/spikes.cpp', 'src/spikes.i'], depends=['src/spikes.cpp', 'src/include/spikes.hpp', 'src/spikes.i'] + ARMANPY_DEPS, swig_opts=default_swig_opts) signal_ext = DelayedExtension('gridcells.analysis._signal', ['src/signal.cpp', 'src/signal.i'], depends=['src/signal.cpp', 'src/include/signal.hpp', 'src/signal.i'] + ARMANPY_DEPS, swig_opts=default_swig_opts) all_extensions = [ field_ext, common_ext, spikes_ext, signal_ext ] setup( name='gridcells', version='0.1.3', description='Package for grid cell analysis and simulation.', author='Lukas Solanka', author_email='[email protected]', url='https://github.com/lsolanka/gridcells', license='GPL', packages=all_packages, ext_modules=all_extensions, install_requires=['numpy>=1.8.0', 'scipy>=0.13.3', 'enum34>=1.0.4'] )
gpl-3.0
leonardolepus/pubmad
experiments/features_20140601/distribution.py
1
1833
import pickle import os, sys import itertools import matplotlib.pyplot as plt from scipy import stats sys.path.insert(1, os.path.abspath('../../')) from toolbox.graph_io.kegg.parse_KGML import KGML2Graph features = {} for feature_file in os.listdir('../../data/evex/Homo_Sapiens/features/'): with open('../../data/evex/Homo_Sapiens/features/'+feature_file, 'r') as f: try: features[feature_file] = pickle.load(f) except: print feature_file, sys.exc_info() edge_betweenness_centrality = features['edge_betweenness_centrality'] del features['edge_betweenness_centrality'] def distribution(x, label): fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) ax1.set_title(label+'_hist') ax1.hist(x, bins = 100, histtype = 'step') ax2 = fig.add_subplot(2, 1, 2) ax2.set_title(label+'_cumulative_normalized') ax2.hist(x, bins = 100, cumulative = True, normed = True, histtype = 'step') plt.savefig(label) for i in features: x = features[i].values() distribution(x, i) pathway_f = '../../data/kegg/hsa04151.xml' kegg = KGML2Graph(pathway_f) kegg = kegg.to_undirected() for i in features: ev = features[i] ke = [ev[j] for j in kegg.nodes_iter() if j in ev] ev = ev.values() fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) ax1.set_title(i+'_hist') ax1.hist(ev, bins = 100, histtype = 'step', label = 'evex', normed = True) ax1.hist(ke, bins = 100, histtype = 'step', label = 'kegg', normed = True) ax2 = fig.add_subplot(2, 1, 2) ax2.set_title(i+'_cumulative_normalized') ax2.hist(ev, bins = 100, cumulative = True, normed = True, histtype = 'step', label = 'evex') ax2.hist(ke, bins = 100, cumulative = True, normed = True, histtype = 'step', label = 'kegg') plt.savefig(i+'_evex_VS_kegg')
gpl-2.0
bukzor/sympy
sympy/external/importtools.py
85
7294
"""Tools to assist importing optional external modules.""" from __future__ import print_function, division import sys # Override these in the module to change the default warning behavior. # For example, you might set both to False before running the tests so that # warnings are not printed to the console, or set both to True for debugging. WARN_NOT_INSTALLED = None # Default is False WARN_OLD_VERSION = None # Default is True def __sympy_debug(): # helper function from sympy/__init__.py # We don't just import SYMPY_DEBUG from that file because we don't want to # import all of sympy just to use this module. import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) if __sympy_debug(): WARN_OLD_VERSION = True WARN_NOT_INSTALLED = True def import_module(module, min_module_version=None, min_python_version=None, warn_not_installed=None, warn_old_version=None, module_version_attr='__version__', module_version_attr_call_args=None, __import__kwargs={}, catch=()): """ Import and return a module if it is installed. If the module is not installed, it returns None. A minimum version for the module can be given as the keyword argument min_module_version. This should be comparable against the module version. By default, module.__version__ is used to get the module version. To override this, set the module_version_attr keyword argument. If the attribute of the module to get the version should be called (e.g., module.version()), then set module_version_attr_call_args to the args such that module.module_version_attr(*module_version_attr_call_args) returns the module's version. If the module version is less than min_module_version using the Python < comparison, None will be returned, even if the module is installed. You can use this to keep from importing an incompatible older version of a module. You can also specify a minimum Python version by using the min_python_version keyword argument. This should be comparable against sys.version_info. If the keyword argument warn_not_installed is set to True, the function will emit a UserWarning when the module is not installed. If the keyword argument warn_old_version is set to True, the function will emit a UserWarning when the library is installed, but cannot be imported because of the min_module_version or min_python_version options. Note that because of the way warnings are handled, a warning will be emitted for each module only once. You can change the default warning behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and WARN_OLD_VERSION is True. This function uses __import__() to import the module. To pass additional options to __import__(), use the __import__kwargs keyword argument. For example, to import a submodule A.B, you must pass a nonempty fromlist option to __import__. See the docstring of __import__(). This catches ImportError to determine if the module is not installed. To catch additional errors, pass them as a tuple to the catch keyword argument. Examples ======== >>> from sympy.external import import_module >>> numpy = import_module('numpy') >>> numpy = import_module('numpy', min_python_version=(2, 7), ... warn_old_version=False) >>> numpy = import_module('numpy', min_module_version='1.5', ... warn_old_version=False) # numpy.__version__ is a string >>> # gmpy does not have __version__, but it does have gmpy.version() >>> gmpy = import_module('gmpy', min_module_version='1.14', ... module_version_attr='version', module_version_attr_call_args=(), ... warn_old_version=False) >>> # To import a submodule, you must pass a nonempty fromlist to >>> # __import__(). The values do not matter. >>> p3 = import_module('mpl_toolkits.mplot3d', ... __import__kwargs={'fromlist':['something']}) >>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened >>> matplotlib = import_module('matplotlib', ... __import__kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,)) """ # keyword argument overrides default, and global variable overrides # keyword argument. warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None else warn_old_version or True) warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None else warn_not_installed or False) import warnings # Check Python first so we don't waste time importing a module we can't use if min_python_version: if sys.version_info < min_python_version: if warn_old_version: warnings.warn("Python version is too old to use %s " "(%s or newer required)" % ( module, '.'.join(map(str, min_python_version))), UserWarning) return # PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it if module == 'numpy' and '__pypy__' in sys.builtin_module_names: return try: mod = __import__(module, **__import__kwargs) ## there's something funny about imports with matplotlib and py3k. doing ## from matplotlib import collections ## gives python's stdlib collections module. explicitly re-importing ## the module fixes this. from_list = __import__kwargs.get('fromlist', tuple()) for submod in from_list: if submod == 'collections' and mod.__name__ == 'matplotlib': __import__(module + '.' + submod) except ImportError: if warn_not_installed: warnings.warn("%s module is not installed" % module, UserWarning) return except catch as e: if warn_not_installed: warnings.warn( "%s module could not be used (%s)" % (module, repr(e))) return if min_module_version: modversion = getattr(mod, module_version_attr) if module_version_attr_call_args is not None: modversion = modversion(*module_version_attr_call_args) if modversion < min_module_version: if warn_old_version: # Attempt to create a pretty string version of the version if isinstance(min_module_version, basestring): verstr = min_module_version elif isinstance(min_module_version, (tuple, list)): verstr = '.'.join(map(str, min_module_version)) else: # Either don't know what this is. Hopefully # it's something that has a nice str version, like an int. verstr = str(min_module_version) warnings.warn("%s version is too old to use " "(%s or newer required)" % (module, verstr), UserWarning) return return mod
bsd-3-clause
neuro-lyon/multiglom-model
src/plot_multiple_osc_vs_rates.py
1
2518
# -*- coding:utf-8 -*- """ Script to plot osc vs rate curve coming from different set of simulations Usage ----- Change the files to analyse in the script in the variable ``list_files``. """ import matplotlib.pyplot as py from matplotlib.cm import get_cmap from scipy import * from h5manager import * if __name__ == '__main__': list_files=[['db_one_glom_N100_sig035_gI20.h5','db_one_glom_N100_sig035_gI20_gE1_4.h5','db_one_glom_N100_sig035_gI20_gE3_5.h5']] def get_data(db_filename): DB = tables.openFile(db_filename) # Collect, g_Ein0, firing rate, network osc freq ATTRS = (('paramset', '_v_attrs', 'Input', 'g_Ein0'), ('results', 'spikes_it'), ('results', '_v_attrs', 'FFTMAX')) res=get_all_attrs(DB, ATTRS) simu_length=DB.listNodes("/")[0].paramset._v_attrs['Common']['simu_length'] N_mitral=DB.listNodes("/")[0].paramset._v_attrs['Common']['N_mitral'] start_time=simu_length/2. all_gEin0=[r1 for r1,r2,r3 in res] all_rates=[1.*(r2[1,:]>=start_time).sum()/N_mitral/(simu_length-start_time) for r1,r2,r3 in res] all_freqs=[r3['mean'] for r1,r2,r3 in res] DB.close() return all_gEin0,all_rates,all_freqs n_rows=len(list_files) fig=py.figure() for ind,sublist_files in enumerate(list_files): ax=fig.add_subplot(n_rows,2,2*ind+1) cmap = get_cmap('jet', len(sublist_files)) for num,db_filename in enumerate(sublist_files): all_gEin0,all_rates,all_freqs=get_data(db_filename) ax.scatter(all_rates,all_freqs,color=cmap(num),label=db_filename) ax.set_xlabel("Avg firing rate") ax.set_ylabel("Network freq") xl=ax.get_xlim() yl=ax.get_ylim() coord=min(xl[1],yl[1]) coord2=min(xl[1],2*yl[1]) ax.plot([0,coord],[0,coord],'--') ax.plot([0,coord2],[0,2*coord],'--') ax.set_xlim(0,40) ax.set_ylim(0,100) ax.legend() ax=fig.add_subplot(n_rows,2,2*ind+2) for num,db_filename in enumerate(sublist_files): all_gEin0,all_rates,all_freqs=get_data(db_filename) ax.scatter(all_gEin0,all_rates,color=cmap(num),label=db_filename) ax.set_xlabel("g_Ein0") ax.set_ylabel("Network freq") ax.set_xlim(0,5.2) ax.set_ylim(0,100) py.show()
mit
openeemeter/eemeter
tests/test_visualization.py
1
4663
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2014-2019 OpenEEmeter contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import matplotlib import pandas as pd import pytest matplotlib.use("Agg") from eemeter.caltrack.usage_per_day import ( CalTRACKUsagePerDayCandidateModel, CalTRACKUsagePerDayModelResults, ) from eemeter.visualization import plot_energy_signature, plot_time_series def test_plot_time_series(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] ax_m, ax_t = plot_time_series(meter_data, temperature_data) m_data = ax_m.lines[0].get_xydata() t_data = ax_t.lines[0].get_xydata() assert m_data.shape == (810, 2) assert t_data.shape == (19417, 2) def test_plot_energy_signature(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] ax = plot_energy_signature(meter_data, temperature_data, title="title") data = ax.collections[0].get_offsets() assert data.shape == (810, 2) assert ax.get_title() == "title" def test_plot_caltrack_candidate_qualified(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) ax = candidate_model.plot(candidate_model, title="title") data = ax.lines[0].get_xydata() assert data.shape == (60, 2) assert ax.get_title() == "title" def test_plot_caltrack_candidate_disqualified(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="DISQUALIFIED", model_params={"intercept": 1}, ) ax = candidate_model.plot() data = ax.lines[0].get_xydata() assert data.shape == (60, 2) def test_plot_caltrack_candidate_with_range(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) ax = candidate_model.plot(temp_range=(10, 20)) data = ax.lines[0].get_xydata() assert data.shape == (10, 2) def test_plot_caltrack_candidate_best(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) ax = candidate_model.plot(best=True) data = ax.lines[0].get_xydata() assert data.shape == (60, 2) def test_plot_caltrack_candidate_error(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="ERROR", model_params={"intercept": 1}, ) ax = candidate_model.plot() assert ax is None def test_plot_caltrack_candidate_cdd_hdd_model(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="cdd_hdd", formula="formula", status="QUALIFIED", model_params={ "beta_hdd": 1, "beta_cdd": 1, "cooling_balance_point": 65, "heating_balance_point": 65, "intercept": 1, }, ) ax = candidate_model.plot() data = ax.lines[0].get_xydata() assert data.shape == (60, 2) def test_plot_model_results(il_electricity_cdd_hdd_daily): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) model_results = CalTRACKUsagePerDayModelResults( status="status", method_name="method_name", model=candidate_model, candidates=[candidate_model], ) ax = model_results.plot(title="title", with_candidates=True) data = ax.lines[0].get_xydata() assert data.shape == (70, 2) data = ax.lines[1].get_xydata() assert data.shape == (70, 2) assert ax.get_title() == "title"
apache-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/groupby/test_nth.py
2
16800
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, isna from pandas.util.testing import assert_frame_equal, assert_series_equal def test_first_last_nth(df): # tests for first / last / nth grouped = df.groupby("A") first = grouped.first() expected = df.loc[[1, 0], ["B", "C", "D"]] expected.index = Index(["bar", "foo"], name="A") expected = expected.sort_index() assert_frame_equal(first, expected) nth = grouped.nth(0) assert_frame_equal(nth, expected) last = grouped.last() expected = df.loc[[5, 7], ["B", "C", "D"]] expected.index = Index(["bar", "foo"], name="A") assert_frame_equal(last, expected) nth = grouped.nth(-1) assert_frame_equal(nth, expected) nth = grouped.nth(1) expected = df.loc[[2, 3], ["B", "C", "D"]].copy() expected.index = Index(["foo", "bar"], name="A") expected = expected.sort_index() assert_frame_equal(nth, expected) # it works! grouped["B"].first() grouped["B"].last() grouped["B"].nth(0) df.loc[df["A"] == "foo", "B"] = np.nan assert isna(grouped["B"].first()["foo"]) assert isna(grouped["B"].last()["foo"]) assert isna(grouped["B"].nth(0)["foo"]) # v0.14.0 whatsnew df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"]) g = df.groupby("A") result = g.first() expected = df.iloc[[1, 2]].set_index("A") assert_frame_equal(result, expected) expected = df.iloc[[1, 2]].set_index("A") result = g.nth(0, dropna="any") assert_frame_equal(result, expected) def test_first_last_nth_dtypes(df_mixed_floats): df = df_mixed_floats.copy() df["E"] = True df["F"] = 1 # tests for first / last / nth grouped = df.groupby("A") first = grouped.first() expected = df.loc[[1, 0], ["B", "C", "D", "E", "F"]] expected.index = Index(["bar", "foo"], name="A") expected = expected.sort_index() assert_frame_equal(first, expected) last = grouped.last() expected = df.loc[[5, 7], ["B", "C", "D", "E", "F"]] expected.index = Index(["bar", "foo"], name="A") expected = expected.sort_index() assert_frame_equal(last, expected) nth = grouped.nth(1) expected = df.loc[[3, 2], ["B", "C", "D", "E", "F"]] expected.index = Index(["bar", "foo"], name="A") expected = expected.sort_index() assert_frame_equal(nth, expected) # GH 2763, first/last shifting dtypes idx = list(range(10)) idx.append(9) s = Series(data=range(11), index=idx, name="IntCol") assert s.dtype == "int64" f = s.groupby(level=0).first() assert f.dtype == "int64" def test_nth(): df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"]) g = df.groupby("A") assert_frame_equal(g.nth(0), df.iloc[[0, 2]].set_index("A")) assert_frame_equal(g.nth(1), df.iloc[[1]].set_index("A")) assert_frame_equal(g.nth(2), df.loc[[]].set_index("A")) assert_frame_equal(g.nth(-1), df.iloc[[1, 2]].set_index("A")) assert_frame_equal(g.nth(-2), df.iloc[[0]].set_index("A")) assert_frame_equal(g.nth(-3), df.loc[[]].set_index("A")) assert_series_equal(g.B.nth(0), df.set_index("A").B.iloc[[0, 2]]) assert_series_equal(g.B.nth(1), df.set_index("A").B.iloc[[1]]) assert_frame_equal(g[["B"]].nth(0), df.loc[[0, 2], ["A", "B"]].set_index("A")) exp = df.set_index("A") assert_frame_equal(g.nth(0, dropna="any"), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(-1, dropna="any"), exp.iloc[[1, 2]]) exp["B"] = np.nan assert_frame_equal(g.nth(7, dropna="any"), exp.iloc[[1, 2]]) assert_frame_equal(g.nth(2, dropna="any"), exp.iloc[[1, 2]]) # out of bounds, regression from 0.13.1 # GH 6621 df = DataFrame( { "color": {0: "green", 1: "green", 2: "red", 3: "red", 4: "red"}, "food": {0: "ham", 1: "eggs", 2: "eggs", 3: "ham", 4: "pork"}, "two": { 0: 1.5456590000000001, 1: -0.070345000000000005, 2: -2.4004539999999999, 3: 0.46206000000000003, 4: 0.52350799999999997, }, "one": { 0: 0.56573799999999996, 1: -0.9742360000000001, 2: 1.033801, 3: -0.78543499999999999, 4: 0.70422799999999997, }, } ).set_index(["color", "food"]) result = df.groupby(level=0, as_index=False).nth(2) expected = df.iloc[[-1]] assert_frame_equal(result, expected) result = df.groupby(level=0, as_index=False).nth(3) expected = df.loc[[]] assert_frame_equal(result, expected) # GH 7559 # from the vbench df = DataFrame(np.random.randint(1, 10, (100, 2)), dtype="int64") s = df[1] g = df[0] expected = s.groupby(g).first() expected2 = s.groupby(g).apply(lambda x: x.iloc[0]) assert_series_equal(expected2, expected, check_names=False) assert expected.name == 1 assert expected2.name == 1 # validate first v = s[g == 1].iloc[0] assert expected.iloc[0] == v assert expected2.iloc[0] == v # this is NOT the same as .first (as sorted is default!) # as it keeps the order in the series (and not the group order) # related GH 7287 expected = s.groupby(g, sort=False).first() result = s.groupby(g, sort=False).nth(0, dropna="all") assert_series_equal(result, expected) with pytest.raises(ValueError, match="For a DataFrame groupby"): s.groupby(g, sort=False).nth(0, dropna=True) # doc example df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"]) g = df.groupby("A") result = g.B.nth(0, dropna="all") expected = g.B.first() assert_series_equal(result, expected) # test multiple nth values df = DataFrame([[1, np.nan], [1, 3], [1, 4], [5, 6], [5, 7]], columns=["A", "B"]) g = df.groupby("A") assert_frame_equal(g.nth(0), df.iloc[[0, 3]].set_index("A")) assert_frame_equal(g.nth([0]), df.iloc[[0, 3]].set_index("A")) assert_frame_equal(g.nth([0, 1]), df.iloc[[0, 1, 3, 4]].set_index("A")) assert_frame_equal(g.nth([0, -1]), df.iloc[[0, 2, 3, 4]].set_index("A")) assert_frame_equal(g.nth([0, 1, 2]), df.iloc[[0, 1, 2, 3, 4]].set_index("A")) assert_frame_equal(g.nth([0, 1, -1]), df.iloc[[0, 1, 2, 3, 4]].set_index("A")) assert_frame_equal(g.nth([2]), df.iloc[[2]].set_index("A")) assert_frame_equal(g.nth([3, 4]), df.loc[[]].set_index("A")) business_dates = pd.date_range(start="4/1/2014", end="6/30/2014", freq="B") df = DataFrame(1, index=business_dates, columns=["a", "b"]) # get the first, fourth and last two business days for each month key = [df.index.year, df.index.month] result = df.groupby(key, as_index=False).nth([0, 3, -2, -1]) expected_dates = pd.to_datetime( [ "2014/4/1", "2014/4/4", "2014/4/29", "2014/4/30", "2014/5/1", "2014/5/6", "2014/5/29", "2014/5/30", "2014/6/2", "2014/6/5", "2014/6/27", "2014/6/30", ] ) expected = DataFrame(1, columns=["a", "b"], index=expected_dates) assert_frame_equal(result, expected) def test_nth_multi_index(three_group): # PR 9090, related to issue 8979 # test nth on MultiIndex, should match .first() grouped = three_group.groupby(["A", "B"]) result = grouped.nth(0) expected = grouped.first() assert_frame_equal(result, expected) @pytest.mark.parametrize( "data, expected_first, expected_last", [ ( { "id": ["A"], "time": Timestamp("2012-02-01 14:00:00", tz="US/Central"), "foo": [1], }, { "id": ["A"], "time": Timestamp("2012-02-01 14:00:00", tz="US/Central"), "foo": [1], }, { "id": ["A"], "time": Timestamp("2012-02-01 14:00:00", tz="US/Central"), "foo": [1], }, ), ( { "id": ["A", "B", "A"], "time": [ Timestamp("2012-01-01 13:00:00", tz="America/New_York"), Timestamp("2012-02-01 14:00:00", tz="US/Central"), Timestamp("2012-03-01 12:00:00", tz="Europe/London"), ], "foo": [1, 2, 3], }, { "id": ["A", "B"], "time": [ Timestamp("2012-01-01 13:00:00", tz="America/New_York"), Timestamp("2012-02-01 14:00:00", tz="US/Central"), ], "foo": [1, 2], }, { "id": ["A", "B"], "time": [ Timestamp("2012-03-01 12:00:00", tz="Europe/London"), Timestamp("2012-02-01 14:00:00", tz="US/Central"), ], "foo": [3, 2], }, ), ], ) def test_first_last_tz(data, expected_first, expected_last): # GH15884 # Test that the timezone is retained when calling first # or last on groupby with as_index=False df = DataFrame(data) result = df.groupby("id", as_index=False).first() expected = DataFrame(expected_first) cols = ["id", "time", "foo"] assert_frame_equal(result[cols], expected[cols]) result = df.groupby("id", as_index=False)["time"].first() assert_frame_equal(result, expected[["id", "time"]]) result = df.groupby("id", as_index=False).last() expected = DataFrame(expected_last) cols = ["id", "time", "foo"] assert_frame_equal(result[cols], expected[cols]) result = df.groupby("id", as_index=False)["time"].last() assert_frame_equal(result, expected[["id", "time"]]) @pytest.mark.parametrize( "method, ts, alpha", [ ["first", Timestamp("2013-01-01", tz="US/Eastern"), "a"], ["last", Timestamp("2013-01-02", tz="US/Eastern"), "b"], ], ) def test_first_last_tz_multi_column(method, ts, alpha): # GH 21603 category_string = pd.Series(list("abc")).astype("category") df = pd.DataFrame( { "group": [1, 1, 2], "category_string": category_string, "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), } ) result = getattr(df.groupby("group"), method)() expected = pd.DataFrame( { "category_string": pd.Categorical( [alpha, "c"], dtype=category_string.dtype ), "datetimetz": [ts, Timestamp("2013-01-03", tz="US/Eastern")], }, index=pd.Index([1, 2], name="group"), ) assert_frame_equal(result, expected) def test_nth_multi_index_as_expected(): # PR 9090, related to issue 8979 # test nth on MultiIndex three_group = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], } ) grouped = three_group.groupby(["A", "B"]) result = grouped.nth(0) expected = DataFrame( {"C": ["dull", "dull", "dull", "dull"]}, index=MultiIndex.from_arrays( [["bar", "bar", "foo", "foo"], ["one", "two", "one", "two"]], names=["A", "B"], ), ) assert_frame_equal(result, expected) def test_groupby_head_tail(): df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) g_as = df.groupby("A", as_index=True) g_not_as = df.groupby("A", as_index=False) # as_index= False, much easier assert_frame_equal(df.loc[[0, 2]], g_not_as.head(1)) assert_frame_equal(df.loc[[1, 2]], g_not_as.tail(1)) empty_not_as = DataFrame( columns=df.columns, index=pd.Index([], dtype=df.index.dtype) ) empty_not_as["A"] = empty_not_as["A"].astype(df.A.dtype) empty_not_as["B"] = empty_not_as["B"].astype(df.B.dtype) assert_frame_equal(empty_not_as, g_not_as.head(0)) assert_frame_equal(empty_not_as, g_not_as.tail(0)) assert_frame_equal(empty_not_as, g_not_as.head(-1)) assert_frame_equal(empty_not_as, g_not_as.tail(-1)) assert_frame_equal(df, g_not_as.head(7)) # contains all assert_frame_equal(df, g_not_as.tail(7)) # as_index=True, (used to be different) df_as = df assert_frame_equal(df_as.loc[[0, 2]], g_as.head(1)) assert_frame_equal(df_as.loc[[1, 2]], g_as.tail(1)) empty_as = DataFrame(index=df_as.index[:0], columns=df.columns) empty_as["A"] = empty_not_as["A"].astype(df.A.dtype) empty_as["B"] = empty_not_as["B"].astype(df.B.dtype) assert_frame_equal(empty_as, g_as.head(0)) assert_frame_equal(empty_as, g_as.tail(0)) assert_frame_equal(empty_as, g_as.head(-1)) assert_frame_equal(empty_as, g_as.tail(-1)) assert_frame_equal(df_as, g_as.head(7)) # contains all assert_frame_equal(df_as, g_as.tail(7)) # test with selection assert_frame_equal(g_as[[]].head(1), df_as.loc[[0, 2], []]) assert_frame_equal(g_as[["A"]].head(1), df_as.loc[[0, 2], ["A"]]) assert_frame_equal(g_as[["B"]].head(1), df_as.loc[[0, 2], ["B"]]) assert_frame_equal(g_as[["A", "B"]].head(1), df_as.loc[[0, 2]]) assert_frame_equal(g_not_as[[]].head(1), df_as.loc[[0, 2], []]) assert_frame_equal(g_not_as[["A"]].head(1), df_as.loc[[0, 2], ["A"]]) assert_frame_equal(g_not_as[["B"]].head(1), df_as.loc[[0, 2], ["B"]]) assert_frame_equal(g_not_as[["A", "B"]].head(1), df_as.loc[[0, 2]]) def test_group_selection_cache(): # GH 12839 nth, head, and tail should return same result consistently df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) expected = df.iloc[[0, 2]].set_index("A") g = df.groupby("A") result1 = g.head(n=2) result2 = g.nth(0) assert_frame_equal(result1, df) assert_frame_equal(result2, expected) g = df.groupby("A") result1 = g.tail(n=2) result2 = g.nth(0) assert_frame_equal(result1, df) assert_frame_equal(result2, expected) g = df.groupby("A") result1 = g.nth(0) result2 = g.head(n=2) assert_frame_equal(result1, expected) assert_frame_equal(result2, df) g = df.groupby("A") result1 = g.nth(0) result2 = g.tail(n=2) assert_frame_equal(result1, expected) assert_frame_equal(result2, df) def test_nth_empty(): # GH 16064 df = DataFrame(index=[0], columns=["a", "b", "c"]) result = df.groupby("a").nth(10) expected = DataFrame(index=Index([], name="a"), columns=["b", "c"]) assert_frame_equal(result, expected) result = df.groupby(["a", "b"]).nth(10) expected = DataFrame( index=MultiIndex([[], []], [[], []], names=["a", "b"]), columns=["c"] ) assert_frame_equal(result, expected) def test_nth_column_order(): # GH 20760 # Check that nth preserves column order df = DataFrame( [[1, "b", 100], [1, "a", 50], [1, "a", np.nan], [2, "c", 200], [2, "d", 150]], columns=["A", "C", "B"], ) result = df.groupby("A").nth(0) expected = DataFrame( [["b", 100.0], ["c", 200.0]], columns=["C", "B"], index=Index([1, 2], name="A") ) assert_frame_equal(result, expected) result = df.groupby("A").nth(-1, dropna="any") expected = DataFrame( [["a", 50.0], ["d", 150.0]], columns=["C", "B"], index=Index([1, 2], name="A") ) assert_frame_equal(result, expected) @pytest.mark.parametrize("dropna", [None, "any", "all"]) def test_nth_nan_in_grouper(dropna): # GH 26011 df = DataFrame( [[np.nan, 0, 1], ["abc", 2, 3], [np.nan, 4, 5], ["def", 6, 7], [np.nan, 8, 9]], columns=list("abc"), ) result = df.groupby("a").nth(0, dropna=dropna) expected = pd.DataFrame( [[2, 3], [6, 7]], columns=list("bc"), index=Index(["abc", "def"], name="a") ) assert_frame_equal(result, expected)
apache-2.0
madgik/exareme
Exareme-Docker/src/mip-algorithms/LOGISTIC_REGRESSION/generate_testcases_logistic_regression.py
1
2972
""" WARNING: This one needs python3.6 because the 2.7 version of sklearn doesn't support Logistic Regression without regularization. """ import json from pathlib import Path from random import shuffle from sklearn.linear_model import LogisticRegression from mipframework.algorithmtest import AlgorithmTest class LogisticRegressionTest(AlgorithmTest): def get_expected(self, alg_input): # Get data and remove missing values x_names = alg_input[0]["value"] y_name = alg_input[1]["value"] variables = x_names + "," + y_name datasets = alg_input[3]["value"] data = self.get_data(variables, datasets=datasets) data = data.dropna() # Select two categories at random for y categories = list(set(data[y_name])) if len(categories) < 2: return None shuffle(categories) cat_0, cat_1 = categories[:2] # Build filter # filter_ = { # "condition": "OR", # "rules": [ # { # "id": y_name, # "field": y_name, # "type": "string", # "input": "text", # "operator": "equal", # "value": cat_0, # }, # { # "id": y_name, # "field": y_name, # "type": "string", # "input": "text", # "operator": "equal", # "value": cat_1, # }, # ], # "valid": True, # } # alg_input[4]["value"] = json.dumps(filter_) alg_input[4]["value"] = "" alg_input[5]["value"] = cat_0 alg_input[6]["value"] = cat_1 # Filter data according to above filter data = data[(data[y_name] == cat_0) | (data[y_name] == cat_1)] y = data[y_name] X = data[x_names.split(",")] # If n_obs < n_cols reject n_obs = len(data) if n_obs == 0 or data.shape[0] < data.shape[1]: return None # Reject when one class appears less times than then number of columns if any([len(y[y == item]) <= X.shape[1] for item in set(y)]): return None # Fit logistic regression and return results logreg_res = LogisticRegression(penalty="none", solver="newton-cg").fit(X, y) coeff = logreg_res.intercept_.tolist() + logreg_res.coef_.tolist()[0] coeff_names = ["Intercept"] + x_names.split(",") return {"n_obs": n_obs, "coeff": coeff, "coeff_names": coeff_names} if __name__ == "__main__": prop_path = dbs_folder = Path(__file__).parent / "properties.json" logistic_regression_test = LogisticRegressionTest(prop_path.as_posix()) logistic_regression_test.generate_test_cases(num_tests=100) logistic_regression_test.to_json("logistic_regression_expected.json")
mit
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/compat/__init__.py
1
11402
""" compat ====== Cross-compatible functions for Python 2 and 3. Key items to import for 2/3 compatible code: * iterators: range(), map(), zip(), filter(), reduce() * lists: lrange(), lmap(), lzip(), lfilter() * unicode: u() [u"" is a syntax error in Python 3.0-3.2] * longs: long (int in Python 3) * callable * iterable method compatibility: iteritems, iterkeys, itervalues * Uses the original method if available, otherwise uses items, keys, values. * types: * text_type: unicode in Python 2, str in Python 3 * binary_type: str in Python 2, bytes in Python 3 * string_types: basestring in Python 2, str in Python 3 * bind_method: binds functions to classes * add_metaclass(metaclass) - class decorator that recreates class with with the given metaclass instead (and avoids intermediary class creation) Other items: * OrderedDefaultDict * platform checker """ # pylint disable=W0611 # flake8: noqa import functools import itertools from distutils.version import LooseVersion from itertools import product import sys import types from unicodedata import east_asian_width import struct import inspect from collections import namedtuple PY2 = sys.version_info[0] == 2 PY3 = (sys.version_info[0] >= 3) PY35 = (sys.version_info >= (3, 5)) try: import __builtin__ as builtins # not writeable when instantiated with string, doesn't handle unicode well from cStringIO import StringIO as cStringIO # always writeable from StringIO import StringIO BytesIO = StringIO import cPickle import httplib except ImportError: import builtins from io import StringIO, BytesIO cStringIO = StringIO import pickle as cPickle import http.client as httplib from pandas.compat.chainmap import DeepChainMap if PY3: def isidentifier(s): return s.isidentifier() def str_to_bytes(s, encoding=None): return s.encode(encoding or 'ascii') def bytes_to_str(b, encoding=None): return b.decode(encoding or 'utf-8') # The signature version below is directly copied from Django, # https://github.com/django/django/pull/4846 def signature(f): sig = inspect.signature(f) args = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] varargs = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_POSITIONAL ] varargs = varargs[0] if varargs else None keywords = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_KEYWORD ] keywords = keywords[0] if keywords else None defaults = [ p.default for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not p.empty ] or None argspec = namedtuple('Signature',['args','defaults', 'varargs','keywords']) return argspec(args,defaults,varargs,keywords) # have to explicitly put builtins into the namespace range = range map = map zip = zip filter = filter reduce = functools.reduce long = int unichr = chr # list-producing versions of the major Python iterating functions def lrange(*args, **kwargs): return list(range(*args, **kwargs)) def lzip(*args, **kwargs): return list(zip(*args, **kwargs)) def lmap(*args, **kwargs): return list(map(*args, **kwargs)) def lfilter(*args, **kwargs): return list(filter(*args, **kwargs)) else: # Python 2 import re _name_re = re.compile(r"[a-zA-Z_][a-zA-Z0-9_]*$") def isidentifier(s, dotted=False): return bool(_name_re.match(s)) def str_to_bytes(s, encoding='ascii'): return s def bytes_to_str(b, encoding='ascii'): return b def signature(f): return inspect.getargspec(f) # import iterator versions of these functions range = xrange zip = itertools.izip filter = itertools.ifilter map = itertools.imap reduce = reduce long = long unichr = unichr # Python 2-builtin ranges produce lists lrange = builtins.range lzip = builtins.zip lmap = builtins.map lfilter = builtins.filter if PY2: def iteritems(obj, **kw): return obj.iteritems(**kw) def iterkeys(obj, **kw): return obj.iterkeys(**kw) def itervalues(obj, **kw): return obj.itervalues(**kw) next = lambda it : it.next() else: def iteritems(obj, **kw): return iter(obj.items(**kw)) def iterkeys(obj, **kw): return iter(obj.keys(**kw)) def itervalues(obj, **kw): return iter(obj.values(**kw)) next = next def bind_method(cls, name, func): """Bind a method to class, python 2 and python 3 compatible. Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has bound/unbound method issue if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func) # ---------------------------------------------------------------------------- # functions largely based / taken from the six module # Much of the code in this module comes from Benjamin Peterson's six library. # The license for this library can be found in LICENSES/SIX and the code can be # found at https://bitbucket.org/gutworth/six # Definition of East Asian Width # http://unicode.org/reports/tr11/ # Ambiguous width can be changed by option _EAW_MAP = {'Na': 1, 'N': 1, 'W': 2, 'F': 2, 'H': 1} if PY3: string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes def u(s): return s def u_safe(s): return s def strlen(data, encoding=None): # encoding is for compat with PY2 return len(data) def east_asian_len(data, encoding=None, ambiguous_width=1): """ Calculate display width considering unicode East Asian Width """ if isinstance(data, text_type): return sum([_EAW_MAP.get(east_asian_width(c), ambiguous_width) for c in data]) else: return len(data) def import_lzma(): """ import lzma from the std library """ import lzma return lzma def set_function_name(f, name, cls): """ Bind the name/qualname attributes of the function """ f.__name__ = name f.__qualname__ = '{klass}.{name}'.format( klass=cls.__name__, name=name) f.__module__ = cls.__module__ return f ResourceWarning = ResourceWarning else: string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str def u(s): return unicode(s, "unicode_escape") def u_safe(s): try: return unicode(s, "unicode_escape") except: return s def strlen(data, encoding=None): try: data = data.decode(encoding) except UnicodeError: pass return len(data) def east_asian_len(data, encoding=None, ambiguous_width=1): """ Calculate display width considering unicode East Asian Width """ if isinstance(data, text_type): try: data = data.decode(encoding) except UnicodeError: pass return sum([_EAW_MAP.get(east_asian_width(c), ambiguous_width) for c in data]) else: return len(data) def import_lzma(): """ import the backported lzma library or raise ImportError if not available """ from backports import lzma return lzma def set_function_name(f, name, cls): """ Bind the name attributes of the function """ f.__name__ = name return f class ResourceWarning(Warning): pass string_and_binary_types = string_types + (binary_type,) try: # callable reintroduced in later versions of Python callable = callable except NameError: def callable(obj): return any("__call__" in klass.__dict__ for klass in type(obj).__mro__) def add_metaclass(metaclass): """Class decorator for creating a class with a metaclass.""" def wrapper(cls): orig_vars = cls.__dict__.copy() orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) for slots_var in orig_vars.get('__slots__', ()): orig_vars.pop(slots_var) return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper from collections import OrderedDict, Counter if PY3: def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc.with_traceback(traceback) else: # this version of raise is a syntax error in Python 3 exec(""" def raise_with_traceback(exc, traceback=Ellipsis): if traceback == Ellipsis: _, _, traceback = sys.exc_info() raise exc, None, traceback """) raise_with_traceback.__doc__ = """Raise exception with existing traceback. If traceback is not passed, uses sys.exc_info() to get traceback.""" # http://stackoverflow.com/questions/4126348 # Thanks to @martineau at SO from dateutil import parser as _date_parser import dateutil if LooseVersion(dateutil.__version__) < '2.0': @functools.wraps(_date_parser.parse) def parse_date(timestr, *args, **kwargs): timestr = bytes(timestr) return _date_parser.parse(timestr, *args, **kwargs) elif PY2 and LooseVersion(dateutil.__version__) == '2.0': # dateutil brokenness raise Exception('dateutil 2.0 incompatible with Python 2.x, you must ' 'install version 1.5 or 2.1+!') else: parse_date = _date_parser.parse class OrderedDefaultdict(OrderedDict): def __init__(self, *args, **kwargs): newdefault = None newargs = () if args: newdefault = args[0] if not (newdefault is None or callable(newdefault)): raise TypeError('first argument must be callable or None') newargs = args[1:] self.default_factory = newdefault super(self.__class__, self).__init__(*newargs, **kwargs) def __missing__(self, key): if self.default_factory is None: raise KeyError(key) self[key] = value = self.default_factory() return value def __reduce__(self): # optional, for pickle support args = self.default_factory if self.default_factory else tuple() return type(self), args, None, None, list(self.items()) # https://github.com/pydata/pandas/pull/9123 def is_platform_little_endian(): """ am I little endian """ return sys.byteorder == 'little' def is_platform_windows(): return sys.platform == 'win32' or sys.platform == 'cygwin' def is_platform_linux(): return sys.platform == 'linux2' def is_platform_mac(): return sys.platform == 'darwin' def is_platform_32bit(): return struct.calcsize("P") * 8 < 64
mit
okadate/romspy
romspy/make/make_ini_file.py
1
6797
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 2014/12/04 OKADA Teruhisa make this file. 2015/05/02 okada remake it. """ from datetime import datetime import netCDF4 import numpy as np from numpy import dtype #import matplotlib.pyplot as plt import pandas as pd import itertools def make_ini_file(grdfile, inifile, biofile=None, bgcfile=None): kmax = 20 Nbed = 20 nc = netCDF4.Dataset(grdfile, 'r') imax = len(nc.dimensions['xi_rho']) jmax = len(nc.dimensions['eta_rho']) lon = nc.variables['lon_rho'][:,:] lat = nc.variables['lat_rho'][:,:] h = nc.variables['h'][:,:] nc.close() dstart = datetime(2012,1,1,0,0,0) GMT = 'seconds since 1968-05-23 00:00:00 GMT' JST = 'seconds since 1968-05-23 09:00:00 GMT' time_out = [netCDF4.date2num(dstart, JST)] nc = netCDF4.Dataset(inifile, 'w', format='NETCDF3_CLASSIC') nc.Author = 'romspy.make_ini_file' nc.Created = datetime.now().isoformat() nc.grdfile = grdfile nc.createDimension('xi_rho', imax) nc.createDimension('xi_u', imax-1) nc.createDimension('xi_v', imax) nc.createDimension('eta_rho', jmax) nc.createDimension('eta_u', jmax) nc.createDimension('eta_v', jmax-1) nc.createDimension('s_rho', kmax) nc.createDimension('s_w', kmax+1) nc.createDimension('ocean_time', None) time = nc.createVariable('ocean_time', dtype('double').char, ('ocean_time',)) lon_rho = nc.createVariable('lon_rho', dtype('float32').char, ('eta_rho', 'xi_rho')) lat_rho = nc.createVariable('lat_rho', dtype('float32').char, ('eta_rho', 'xi_rho')) zeta = nc.createVariable('zeta', dtype('float32').char, ('ocean_time', 'eta_rho', 'xi_rho')) ubar = nc.createVariable('ubar', dtype('float32').char, ('ocean_time', 'eta_u', 'xi_u')) vbar = nc.createVariable('vbar', dtype('float32').char, ('ocean_time', 'eta_v', 'xi_v')) u = nc.createVariable('u', dtype('float32').char, ('ocean_time', 's_rho', 'eta_u', 'xi_u')) v = nc.createVariable('v', dtype('float32').char, ('ocean_time', 's_rho', 'eta_v', 'xi_v')) temp = nc.createVariable('temp', dtype('float32').char, ('ocean_time', 's_rho', 'eta_rho', 'xi_rho')) salt = nc.createVariable('salt', dtype('float32').char, ('ocean_time', 's_rho', 'eta_rho', 'xi_rho')) time.units = GMT lon_rho.units = 'degree_north' lat_rho.units = 'degree_east' zeta.units = 'meter' ubar.units = 'meter second-1' vbar.units = 'meter second-1' u.units = 'meter second-1' v.units = 'meter second-1' temp.units = 'Celsius' salt.units = 'PSU' time[:] = time_out lon_rho[:,:] = lon lat_rho[:,:] = lat zeta[:,:,:] = 1.5 ubar[:,:,:] = 0.0 vbar[:,:,:] = 0.0 u[:,:,:,:] = 0.0 v[:,:,:,:] = 0.0 temp[:,:,:,:] = 13.0 salt[:,:,:,:] = 32.5 zeta.time = 'ocean_time' ubar.time = 'ocean_time' vbar.time = 'ocean_time' u.time = 'ocean_time' v.time = 'ocean_time' temp.time = 'ocean_time' salt.time = 'ocean_time' if biofile is not None: add_bio(nc, biofile) if bgcfile is not None: add_bgc(nc, Nbed, h, bgcfile) nc.close() def add_bio(nc, biofile): """ 2015/05/01 okada All value is 0, use biofile=0 """ Chl2C = 0.05 # okada (=1/20 gChl/gC) PhyCN = 6.625 # (=106/16 molC/molN) C = 12.01 N = 14.01 P = 30.97 bio_names = ['NO3','NH4','chlorophyll','phytoplankton','zooplankton', 'LdetritusN','SdetritusN', 'oxygen','PO4','LdetritusP','SdetritusP'] bio_out = {} bio_out["chlorophyll"] = 1.0 bio_out["NO3"] = 0.0233 / N * 1000.0 bio_out["NH4"] = 0.0193 / N * 1000.0 bio_out["SdetritusN"] = 0.0296 / N * 1000.0 bio_out["PO4"] = 0.0135 / P * 1000.0 bio_out["SdetritusP"] = 0.0080 / P * 1000.0 bio_out["oxygen"] = 400.0 bio_out["phytoplankton"] = bio_out["chlorophyll"] / (Chl2C * PhyCN * C) bio_out["zooplankton"] = bio_out["phytoplankton"] * 0.1 bio_out["SdetritusN"] = bio_out["SdetritusN"] / 2.0 bio_out["SdetritusP"] = bio_out["SdetritusP"] / 2.0 bio_out["LdetritusN"] = bio_out["SdetritusN"] bio_out["LdetritusP"] = bio_out["SdetritusP"] nc.createDimension('bio_tracer', len(bio_names)) bio = {} for name in bio_names: bio[name] = nc.createVariable(name, dtype('float32').char, ('ocean_time', 's_rho', 'eta_rho', 'xi_rho')) for name in bio_names: bio[name].units = 'milimole meter-3' for name in bio_names: bio[name][:,:,:,:] = bio_out[name] for name in bio_names: bio[name].time = 'ocean_time' return nc def add_bgc(nc, Nbed, h, bgcfile): """ 2015/05/01 okada Read from rst file. """ bgc_names = ['O2','NH4','NO3','PO4','SO4','H2S','Mn','Fe','CH4','DOMf','DOMs', 'POMf','POMs','POMn','FeOOHA','FeOOHB','FeOOHP','MnO2A','MnO2B', 'S0','FeS','FeS2'] bgc_out = {} imax = len(nc.dimensions['xi_rho']) jmax = len(nc.dimensions['eta_rho']) for name in bgc_names: bgc_out[name] = np.ndarray(shape=[1, Nbed, jmax, imax]) rst1 = pd.read_csv(bgcfile.format(1)) rst2 = pd.read_csv(bgcfile.format(2)) print rst1.describe() for name in bgc_names: print name, for i, j in itertools.product(range(imax), range(jmax)): if 0.5 < h[j,i] < 18.0: bgc_out[name][0,:,j,i] = rst1[name][:Nbed] elif h[j,i] >= 18.0: bgc_out[name][0,:,j,i] = rst2[name][:Nbed] else: bgc_out[name][0,:,j,i] = 0.0 nc.createDimension('Nbed', Nbed) nc.createDimension('bgc_tracer', len(bgc_names)) bgc = {} for name in bgc_names: bgc[name] = nc.createVariable('bgc_'+name, dtype('float32').char, ('ocean_time', 'Nbed', 'eta_rho', 'xi_rho')) for name in bgc_names: bgc[name].units = 'milimole meter-3' for name in bgc_names: bgc[name][:,:,:,:] = bgc_out[name] for name in bgc_names: bgc[name].time = 'ocean_time' return nc def test1(): grdfile = '/Users/teruhisa/Dropbox/Data/ob500_grd-8.nc' inifile = '/Users/teruhisa/Dropbox/Data/ob500_ini_fennelP-8.nc' #bgcfile = 'rst{}.csv' make_ini_file(grdfile, inifile, biofile=0) def test2(): grdfile = '/home/okada/Data/ob500_grd-12_h50_2.nc' inifile = '/home/okada/Data/ob500_ini_grd-12_2.nc' make_ini_file(grdfile, inifile, biofile=0) if __name__ == '__main__': test2()
mit
phdowling/scikit-learn
sklearn/cluster/mean_shift_.py
106
14056
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None, got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape stop_thresh = 1e-3 * bandwidth # when mean has converged center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # For each seed, climb gradient until convergence or max_iter for my_mean in seeds: completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): center_intensity_dict[tuple(my_mean)] = len(points_within) break completed_iterations += 1 if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f, using data" " points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
rs2/pandas
pandas/tests/frame/test_analytics.py
1
45480
from datetime import timedelta from decimal import Decimal import operator import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops def assert_stat_op_calc( opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, rtol=1e-5, atol=1e-8, skipna_alternative=None, ): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series rtol : float, default 1e-5 Relative tolerance. atol : float, default 1e-8 Absolute tolerance. skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: expected_warning = FutureWarning if opname in ["mean", "median"] else None df = DataFrame({"b": date_range("1/1/2001", periods=2)}) with tm.assert_produces_warning(expected_warning): result = getattr(df, opname)() assert isinstance(result, Series) df["a"] = range(len(df)) with tm.assert_produces_warning(expected_warning): result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal( result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol ) # HACK: win32 tm.assert_series_equal( result1, frame.apply(wrapper, axis=1), check_dtype=False, rtol=rtol, atol=atol, ) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal( result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol, ) if opname in ["sum", "prod"]: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal( result1, expected, check_dtype=False, rtol=rtol, atol=atol ) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match="No axis named 2"): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ["sum", "prod"]: unit = 1 if opname == "prod" else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal( result1, frame.apply(wrapper, axis=1), check_dtype=False ) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal( result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False ) # bad axis with pytest.raises(ValueError, match="No axis named 2"): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == "any": assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api( opname, bool_frame_with_na, float_string_frame, has_bool_only=False ): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed["_bool_"] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics: # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api( "count", float_frame, float_string_frame, has_numeric_only=True ) assert_stat_op_api( "sum", float_frame, float_string_frame, has_numeric_only=True ) assert_stat_op_api("nunique", float_frame, float_string_frame) assert_stat_op_api("mean", float_frame, float_string_frame) assert_stat_op_api("product", float_frame, float_string_frame) assert_stat_op_api("median", float_frame, float_string_frame) assert_stat_op_api("min", float_frame, float_string_frame) assert_stat_op_api("max", float_frame, float_string_frame) assert_stat_op_api("mad", float_frame, float_string_frame) assert_stat_op_api("var", float_frame, float_string_frame) assert_stat_op_api("std", float_frame, float_string_frame) assert_stat_op_api("sem", float_frame, float_string_frame) assert_stat_op_api("median", float_frame, float_string_frame) try: from scipy.stats import kurtosis, skew # noqa:F401 assert_stat_op_api("skew", float_frame, float_string_frame) assert_stat_op_api("kurt", float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc( "nunique", nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True, ) # GH#32571 check_less_precise is needed on apparently-random # py37-npdev builds and OSX-PY36-min_version builds # mixed types (with upcasting happening) assert_stat_op_calc( "sum", np.sum, mixed_float_frame.astype("float32"), check_dtype=False, rtol=1e-3, ) assert_stat_op_calc( "sum", np.sum, float_frame_with_na, skipna_alternative=np.nansum ) assert_stat_op_calc("mean", np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc( "product", np.prod, float_frame_with_na, skipna_alternative=np.nanprod ) assert_stat_op_calc("mad", mad, float_frame_with_na) assert_stat_op_calc("var", var, float_frame_with_na) assert_stat_op_calc("std", std, float_frame_with_na) assert_stat_op_calc("sem", sem, float_frame_with_na) assert_stat_op_calc( "count", count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True, ) try: from scipy import kurtosis, skew # noqa:F401 assert_stat_op_calc("skew", skewness, float_frame_with_na) assert_stat_op_calc("kurt", kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc("median", wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc( "median", wrapper, int_frame, check_dtype=False, check_dates=True ) @pytest.mark.parametrize( "method", ["sum", "mean", "prod", "var", "std", "skew", "min", "max"] ) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { "a": [ -0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013, ], "b": [-0, -0, 0.0], "c": [ 0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691, ], } df1 = DataFrame(data, index=["foo", "bar", "baz"], dtype="O") df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype("f8"), method)(1) if method in ["sum", "prod"]: tm.assert_series_equal(result, expected) @pytest.mark.parametrize("op", ["mean", "std", "var", "skew", "kurt", "sem"]) def test_mixed_ops(self, op): # GH#16116 df = DataFrame( { "int": [1, 2, 3, 4], "float": [1.0, 2.0, 3.0, 4.0], "str": ["a", "b", "c", "d"], } ) result = getattr(df, op)() assert len(result) == 2 with pd.option_context("use_bottleneck", False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame( { "bool_data": [True, True, False, False, False], "int_data": [10, 20, 30, 40, 50], "string_data": ["a", "b", "c", "d", "e"], } ) df.reindex(columns=["bool_data", "int_data", "string_data"]) test = df.sum(axis=0) tm.assert_numpy_array_equal( test.values, np.array([2, 150, "abcde"], dtype=object) ) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({"A": [1, 1, 1], "B": [1, 2, 3], "C": [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({"A": 1, "B": 3, "C": 2})) tm.assert_series_equal( df.nunique(dropna=False), Series({"A": 1, "B": 3, "C": 3}) ) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal( df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2}) ) @pytest.mark.parametrize("tz", [None, "UTC"]) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp("2000", tz=tz)] * 2}) with tm.assert_produces_warning(FutureWarning): result = df.mean() expected = pd.Series([1.0], index=["A"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "UTC"]) def test_mean_excludes_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp("2000", tz=tz)] * 2}) with tm.assert_produces_warning(FutureWarning): result = df.mean() expected = pd.Series(dtype=np.float64) tm.assert_series_equal(result, expected) def test_mean_mixed_string_decimal(self): # GH 11670 # possible bug when calculating mean of DataFrame? d = [ {"A": 2, "B": None, "C": Decimal("628.00")}, {"A": 1, "B": None, "C": Decimal("383.00")}, {"A": 3, "B": None, "C": Decimal("651.00")}, {"A": 2, "B": None, "C": Decimal("575.00")}, {"A": 4, "B": None, "C": Decimal("1114.00")}, {"A": 1, "B": "TEST", "C": Decimal("241.00")}, {"A": 2, "B": None, "C": Decimal("572.00")}, {"A": 4, "B": None, "C": Decimal("609.00")}, {"A": 3, "B": None, "C": Decimal("820.00")}, {"A": 5, "B": None, "C": Decimal("1223.00")}, ] df = pd.DataFrame(d) result = df.mean() expected = pd.Series([2.7, 681.6], index=["A", "C"]) tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context("use_bottleneck", False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize("meth", ["sem", "var", "std"]) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=["foo", "bar", "baz"]) # set one entry to a number in str format df1.loc[0, "foo"] = "100" df2 = DataFrame(np.random.randn(5, 3), columns=["foo", "bar", "baz"]) # set one entry to a non-number str df2.loc[0, "foo"] = "a" result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[["bar", "baz"]], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[["bar", "baz"]], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context("use_bottleneck", False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs("bar") tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == "bar" @pytest.mark.parametrize( "dropna, expected", [ ( True, { "A": [12], "B": [10.0], "C": [1.0], "D": ["a"], "E": Categorical(["a"], categories=["a"]), "F": to_datetime(["2000-1-2"]), "G": to_timedelta(["1 days"]), }, ), ( False, { "A": [12], "B": [10.0], "C": [np.nan], "D": np.array([np.nan], dtype=object), "E": Categorical([np.nan], categories=["a"]), "F": [pd.NaT], "G": to_timedelta([pd.NaT]), }, ), ( True, { "H": [8, 9, np.nan, np.nan], "I": [8, 9, np.nan, np.nan], "J": [1, np.nan, np.nan, np.nan], "K": Categorical(["a", np.nan, np.nan, np.nan], categories=["a"]), "L": to_datetime(["2000-1-2", "NaT", "NaT", "NaT"]), "M": to_timedelta(["1 days", "nan", "nan", "nan"]), "N": [0, 1, 2, 3], }, ), ( False, { "H": [8, 9, np.nan, np.nan], "I": [8, 9, np.nan, np.nan], "J": [1, np.nan, np.nan, np.nan], "K": Categorical([np.nan, "a", np.nan, np.nan], categories=["a"]), "L": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]), "M": to_timedelta(["nan", "1 days", "nan", "nan"]), "N": [0, 1, 2, 3], }, ), ], ) def test_mode_dropna(self, dropna, expected): df = DataFrame( { "A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, "a", np.nan], "E": Categorical([np.nan, np.nan, "a", np.nan]), "F": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]), "G": to_timedelta(["1 days", "nan", "nan", "nan"]), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(["a", np.nan, "a", np.nan]), "L": to_datetime(["2000-1-2", "2000-1-2", "NaT", "NaT"]), "M": to_timedelta(["1 days", "nan", "1 days", "nan"]), "N": np.arange(4, dtype="int64"), } ) result = df[sorted(expected.keys())].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, "a", "a"]}) expected = DataFrame({"A": ["a", np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by="A").reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame( dict( A=date_range("2012-1-1", periods=3, freq="D"), B=date_range("2012-1-2", periods=3, freq="D"), C=Timestamp("20120101") - timedelta(minutes=5, seconds=5), ) ) diffs = DataFrame(dict(A=df["A"] - df["C"], B=df["A"] - df["B"])) # min result = diffs.min() assert result[0] == diffs.loc[0, "A"] assert result[1] == diffs.loc[0, "B"] result = diffs.min(axis=1) assert (result == diffs.loc[0, "B"]).all() # max result = diffs.max() assert result[0] == diffs.loc[2, "A"] assert result[1] == diffs.loc[2, "B"] result = diffs.max(axis=1) assert (result == diffs["A"]).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df["A"] - df["C"], B=df["B"] - df["A"])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed["C"] = "foo" mixed["D"] = 1 mixed["E"] = 1.0 mixed["F"] = Timestamp("20130101") # results in an object array result = mixed.min() expected = Series( [ pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), "foo", 1, 1.0, Timestamp("20130101"), ], index=mixed.columns, ) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.0], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[["A", "B"]].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[["A", "B"]].min() expected = Series( [timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=["A", "B"] ) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame( { "time": date_range("20130102", periods=5), "time2": date_range("20130105", periods=5), } ) df["off1"] = df["time2"] - df["time"] assert df["off1"].dtype == "timedelta64[ns]" df["off2"] = df["time"] - df["time2"] df._consolidate_inplace() assert df["off1"].dtype == "timedelta64[ns]" assert df["off2"].dtype == "timedelta64[ns]" def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize("method, unit", [("sum", 0), ("prod", 1)]) def test_sum_prod_nanops(self, method, unit): idx = ["a", "b", "c"] df = pd.DataFrame( {"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]} ) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype="float64") # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype="float64") tm.assert_series_equal(result, expected) result = getattr(df.iloc[1:], method)(min_count=1) expected = pd.Series([unit, np.nan, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count > 1 df = pd.DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) result = getattr(df, method)(min_count=5) expected = pd.Series(result, index=["A", "B"]) tm.assert_series_equal(result, expected) result = getattr(df, method)(min_count=6) expected = pd.Series(result, index=["A", "B"]) tm.assert_series_equal(result, expected) def test_sum_nanops_timedelta(self): # prod isn't defined on timedeltas idx = ["a", "b", "c"] df = pd.DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) df2 = df.apply(pd.to_timedelta) # 0 by default result = df2.sum() expected = pd.Series([0, 0, 0], dtype="m8[ns]", index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = df2.sum(min_count=0) tm.assert_series_equal(result, expected) # min_count=1 result = df2.sum(min_count=1) expected = pd.Series([0, 0, np.nan], dtype="m8[ns]", index=idx) tm.assert_series_equal(result, expected) def test_sum_object(self, float_frame): values = float_frame.values.astype(int) frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) deltas = frame * timedelta(1) deltas.sum() def test_sum_bool(self, float_frame): # ensure this works, bug report bools = np.isnan(float_frame) bools.sum(1) bools.sum(0) def test_sum_mixed_datetime(self): # GH#30886 df = pd.DataFrame( {"A": pd.date_range("2000", periods=4), "B": [1, 2, 3, 4]} ).reindex([2, 3, 4]) result = df.sum() expected = pd.Series({"B": 7.0}) tm.assert_series_equal(result, expected) def test_mean_corner(self, float_frame, float_string_frame): # unit test when have object data the_mean = float_string_frame.mean(axis=0) the_sum = float_string_frame.sum(axis=0, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) assert len(the_mean.index) < len(float_string_frame.columns) # xs sum mixed type, just want to know it works... the_mean = float_string_frame.mean(axis=1) the_sum = float_string_frame.sum(axis=1, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) # take mean of boolean column float_frame["bool"] = float_frame["A"] > 0 means = float_frame.mean(0) assert means["bool"] == float_frame["bool"].values.mean() def test_mean_datetimelike(self): # GH#24757 check that datetimelike are excluded by default, handled # correctly with numeric_only=True df = pd.DataFrame( { "A": np.arange(3), "B": pd.date_range("2016-01-01", periods=3), "C": pd.timedelta_range("1D", periods=3), "D": pd.period_range("2016", periods=3, freq="A"), } ) result = df.mean(numeric_only=True) expected = pd.Series({"A": 1.0}) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning): # in the future datetime columns will be included result = df.mean() expected = pd.Series({"A": 1.0, "C": df.loc[1, "C"]}) tm.assert_series_equal(result, expected) def test_mean_datetimelike_numeric_only_false(self): df = pd.DataFrame( { "A": np.arange(3), "B": pd.date_range("2016-01-01", periods=3), "C": pd.timedelta_range("1D", periods=3), } ) # datetime(tz) and timedelta work result = df.mean(numeric_only=False) expected = pd.Series({"A": 1, "B": df.loc[1, "B"], "C": df.loc[1, "C"]}) tm.assert_series_equal(result, expected) # mean of period is not allowed df["D"] = pd.period_range("2016", periods=3, freq="A") with pytest.raises(TypeError, match="mean is not implemented for Period"): df.mean(numeric_only=False) def test_mean_extensionarray_numeric_only_true(self): # https://github.com/pandas-dev/pandas/issues/33256 arr = np.random.randint(1000, size=(10, 5)) df = pd.DataFrame(arr, dtype="Int64") result = df.mean(numeric_only=True) expected = pd.DataFrame(arr).mean() tm.assert_series_equal(result, expected) def test_stats_mixed_type(self, float_string_frame): # don't blow up float_string_frame.std(1) float_string_frame.var(1) float_string_frame.mean(1) float_string_frame.skew(1) def test_sum_bools(self): df = DataFrame(index=range(1), columns=range(10)) bools = isna(df) assert bools.sum(axis=1)[0] == 10 # ---------------------------------------------------------------------- # Index of max / min def test_idxmin(self, float_frame, int_frame): frame = float_frame frame.iloc[5:10] = np.nan frame.iloc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmin(axis=axis, skipna=skipna) expected = df.apply(Series.idxmin, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.idxmin(axis=2) def test_idxmax(self, float_frame, int_frame): frame = float_frame frame.iloc[5:10] = np.nan frame.iloc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmax(axis=axis, skipna=skipna) expected = df.apply(Series.idxmax, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.idxmax(axis=2) # ---------------------------------------------------------------------- # Logical reductions @pytest.mark.parametrize("opname", ["any", "all"]) def test_any_all(self, opname, bool_frame_with_na, float_string_frame): assert_bool_op_calc( opname, getattr(np, opname), bool_frame_with_na, has_skipna=True ) assert_bool_op_api( opname, bool_frame_with_na, float_string_frame, has_bool_only=True ) def test_any_all_extra(self): df = DataFrame( { "A": [True, False, False], "B": [True, True, False], "C": [True, True, True], }, index=["a", "b", "c"], ) result = df[["A", "B"]].any(1) expected = Series([True, True, False], index=["a", "b", "c"]) tm.assert_series_equal(result, expected) result = df[["A", "B"]].any(1, bool_only=True) tm.assert_series_equal(result, expected) result = df.all(1) expected = Series([True, False, False], index=["a", "b", "c"]) tm.assert_series_equal(result, expected) result = df.all(1, bool_only=True) tm.assert_series_equal(result, expected) # Axis is None result = df.all(axis=None).item() assert result is False result = df.any(axis=None).item() assert result is True result = df[["C"]].all(axis=None).item() assert result is True def test_any_datetime(self): # GH 23070 float_data = [1, np.nan, 3, np.nan] datetime_data = [ pd.Timestamp("1960-02-15"), pd.Timestamp("1960-02-16"), pd.NaT, pd.NaT, ] df = DataFrame({"A": float_data, "B": datetime_data}) result = df.any(1) expected = Series([True, True, True, False]) tm.assert_series_equal(result, expected) def test_any_all_bool_only(self): # GH 25101 df = DataFrame( {"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]} ) result = df.all(bool_only=True) expected = Series(dtype=np.bool_) tm.assert_series_equal(result, expected) df = DataFrame( { "col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None], "col4": [False, False, True], } ) result = df.all(bool_only=True) expected = Series({"col4": False}) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "func, data, expected", [ (np.any, {}, False), (np.all, {}, True), (np.any, {"A": []}, False), (np.all, {"A": []}, True), (np.any, {"A": [False, False]}, False), (np.all, {"A": [False, False]}, False), (np.any, {"A": [True, False]}, True), (np.all, {"A": [True, False]}, False), (np.any, {"A": [True, True]}, True), (np.all, {"A": [True, True]}, True), (np.any, {"A": [False], "B": [False]}, False), (np.all, {"A": [False], "B": [False]}, False), (np.any, {"A": [False, False], "B": [False, True]}, True), (np.all, {"A": [False, False], "B": [False, True]}, False), # other types (np.all, {"A": pd.Series([0.0, 1.0], dtype="float")}, False), (np.any, {"A": pd.Series([0.0, 1.0], dtype="float")}, True), (np.all, {"A": pd.Series([0, 1], dtype=int)}, False), (np.any, {"A": pd.Series([0, 1], dtype=int)}, True), pytest.param(np.all, {"A": pd.Series([0, 1], dtype="M8[ns]")}, False), pytest.param(np.any, {"A": pd.Series([0, 1], dtype="M8[ns]")}, True), pytest.param(np.all, {"A": pd.Series([1, 2], dtype="M8[ns]")}, True), pytest.param(np.any, {"A": pd.Series([1, 2], dtype="M8[ns]")}, True), pytest.param(np.all, {"A": pd.Series([0, 1], dtype="m8[ns]")}, False), pytest.param(np.any, {"A": pd.Series([0, 1], dtype="m8[ns]")}, True), pytest.param(np.all, {"A": pd.Series([1, 2], dtype="m8[ns]")}, True), pytest.param(np.any, {"A": pd.Series([1, 2], dtype="m8[ns]")}, True), (np.all, {"A": pd.Series([0, 1], dtype="category")}, False), (np.any, {"A": pd.Series([0, 1], dtype="category")}, True), (np.all, {"A": pd.Series([1, 2], dtype="category")}, True), (np.any, {"A": pd.Series([1, 2], dtype="category")}, True), # Mix GH#21484 pytest.param( np.all, { "A": pd.Series([10, 20], dtype="M8[ns]"), "B": pd.Series([10, 20], dtype="m8[ns]"), }, True, ), ], ) def test_any_all_np_func(self, func, data, expected): # GH 19976 data = DataFrame(data) result = func(data) assert isinstance(result, np.bool_) assert result.item() is expected # method version result = getattr(DataFrame(data), func.__name__)(axis=None) assert isinstance(result, np.bool_) assert result.item() is expected def test_any_all_object(self): # GH 19976 result = np.all(DataFrame(columns=["a", "b"])).item() assert result is True result = np.any(DataFrame(columns=["a", "b"])).item() assert result is False @pytest.mark.parametrize("method", ["any", "all"]) def test_any_all_level_axis_none_raises(self, method): df = DataFrame( {"A": 1}, index=MultiIndex.from_product( [["A", "B"], ["a", "b"]], names=["out", "in"] ), ) xpr = "Must specify 'axis' when aggregating by level." with pytest.raises(ValueError, match=xpr): getattr(df, method)(axis=None, level="out") # --------------------------------------------------------------------- # Matrix-like def test_matmul(self): # matmul test is for GH 10259 a = DataFrame( np.random.randn(3, 4), index=["a", "b", "c"], columns=["p", "q", "r", "s"] ) b = DataFrame( np.random.randn(4, 2), index=["p", "q", "r", "s"], columns=["one", "two"] ) # DataFrame @ DataFrame result = operator.matmul(a, b) expected = DataFrame( np.dot(a.values, b.values), index=["a", "b", "c"], columns=["one", "two"] ) tm.assert_frame_equal(result, expected) # DataFrame @ Series result = operator.matmul(a, b.one) expected = Series(np.dot(a.values, b.one.values), index=["a", "b", "c"]) tm.assert_series_equal(result, expected) # np.array @ DataFrame result = operator.matmul(a.values, b) assert isinstance(result, DataFrame) assert result.columns.equals(b.columns) assert result.index.equals(pd.Index(range(3))) expected = np.dot(a.values, b.values) tm.assert_almost_equal(result.values, expected) # nested list @ DataFrame (__rmatmul__) result = operator.matmul(a.values.tolist(), b) expected = DataFrame( np.dot(a.values, b.values), index=["a", "b", "c"], columns=["one", "two"] ) tm.assert_almost_equal(result.values, expected.values) # mixed dtype DataFrame @ DataFrame a["q"] = a.q.round().astype(int) result = operator.matmul(a, b) expected = DataFrame( np.dot(a.values, b.values), index=["a", "b", "c"], columns=["one", "two"] ) tm.assert_frame_equal(result, expected) # different dtypes DataFrame @ DataFrame a = a.astype(int) result = operator.matmul(a, b) expected = DataFrame( np.dot(a.values, b.values), index=["a", "b", "c"], columns=["one", "two"] ) tm.assert_frame_equal(result, expected) # unaligned df = DataFrame(np.random.randn(3, 4), index=[1, 2, 3], columns=range(4)) df2 = DataFrame(np.random.randn(5, 3), index=range(5), columns=[1, 2, 3]) with pytest.raises(ValueError, match="aligned"): operator.matmul(df, df2) # --------------------------------------------------------------------- # Unsorted def test_series_broadcasting(self): # smoke test for numpy warnings # GH 16378, GH 16306 df = DataFrame([1.0, 1.0, 1.0]) df_nan = DataFrame({"A": [np.nan, 2.0, np.nan]}) s = Series([1, 1, 1]) s_nan = Series([np.nan, np.nan, 1]) with tm.assert_produces_warning(None): df_nan.clip(lower=s, axis=0) for op in ["lt", "le", "gt", "ge", "eq", "ne"]: getattr(df, op)(s_nan, axis=0) class TestDataFrameReductions: def test_min_max_dt64_with_NaT(self): # Both NaT and Timestamp are in DataFrame. df = pd.DataFrame({"foo": [pd.NaT, pd.NaT, pd.Timestamp("2012-05-01")]}) res = df.min() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"]) tm.assert_series_equal(res, exp) # GH12941, only NaTs are in DataFrame. df = pd.DataFrame({"foo": [pd.NaT, pd.NaT]}) res = df.min() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) def test_min_max_dt64_api_consistency_with_NaT(self): # Calling the following sum functions returned an error for dataframes but # returned NaT for series. These tests check that the API is consistent in # min/max calls on empty Series/DataFrames. See GH:33704 for more # information df = pd.DataFrame(dict(x=pd.to_datetime([]))) expected_dt_series = pd.Series(pd.to_datetime([])) # check axis 0 assert (df.min(axis=0).x is pd.NaT) == (expected_dt_series.min() is pd.NaT) assert (df.max(axis=0).x is pd.NaT) == (expected_dt_series.max() is pd.NaT) # check axis 1 tm.assert_series_equal(df.min(axis=1), expected_dt_series) tm.assert_series_equal(df.max(axis=1), expected_dt_series) def test_min_max_dt64_api_consistency_empty_df(self): # check DataFrame/Series api consistency when calling min/max on an empty # DataFrame/Series. df = pd.DataFrame(dict(x=[])) expected_float_series = pd.Series([], dtype=float) # check axis 0 assert np.isnan(df.min(axis=0).x) == np.isnan(expected_float_series.min()) assert np.isnan(df.max(axis=0).x) == np.isnan(expected_float_series.max()) # check axis 1 tm.assert_series_equal(df.min(axis=1), expected_float_series) tm.assert_series_equal(df.min(axis=1), expected_float_series) @pytest.mark.parametrize( "initial", ["2018-10-08 13:36:45+00:00", "2018-10-08 13:36:45+03:00"], # Non-UTC timezone ) @pytest.mark.parametrize("method", ["min", "max"]) def test_preserve_timezone(self, initial: str, method): # GH 28552 initial_dt = pd.to_datetime(initial) expected = Series([initial_dt]) df = DataFrame([expected]) result = getattr(df, method)(axis=1) tm.assert_series_equal(result, expected) def test_mixed_frame_with_integer_sum(): # https://github.com/pandas-dev/pandas/issues/34520 df = pd.DataFrame([["a", 1]], columns=list("ab")) df = df.astype({"b": "Int64"}) result = df.sum() expected = pd.Series(["a", 1], index=["a", "b"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numeric_only", [True, False, None]) @pytest.mark.parametrize("method", ["min", "max"]) def test_minmax_extensionarray(method, numeric_only): # https://github.com/pandas-dev/pandas/issues/32651 int64_info = np.iinfo("int64") ser = Series([int64_info.max, None, int64_info.min], dtype=pd.Int64Dtype()) df = DataFrame({"Int64": ser}) result = getattr(df, method)(numeric_only=numeric_only) expected = Series( [getattr(int64_info, method)], index=pd.Index(["Int64"], dtype="object") ) tm.assert_series_equal(result, expected)
bsd-3-clause
nicocardiel/pyemir
emirdrp/recipes/image/checks.py
3
8941
# # Copyright 2011-2018 Universidad Complutense de Madrid # # This file is part of PyEmir # # PyEmir is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyEmir is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PyEmir. If not, see <http://www.gnu.org/licenses/>. # """Routines shared by image mode recipes""" import logging import operator import six import numpy from astropy.io import fits import sep import matplotlib.pyplot as plt from emirdrp.util.sextractor import SExtractor from .naming import name_skysub_proc _logger = logging.getLogger(__name__) # Actions to carry over images when checking the flux # of the objects in different images def warn_action(img): _logger.warning('Image %s has low flux in objects', img.baselabel) img.valid_science = True def reject_action(img): img.valid_science = False _logger.info('Image %s rejected, has low flux in objects', img.baselabel) pass def default_action(img): _logger.info( 'Image %s accepted, has correct flux in objects', img.baselabel) img.valid_science = True # Actions _dactions = {'warn': warn_action, 'reject': reject_action, 'default': default_action} def check_photometry(frames, sf_data, seeing_fwhm, step=0, border=300, extinction=0.0, check_photometry_levels=[0.5, 0.8], check_photometry_actions=['warn', 'warn', 'default'], figure=None): # Check photometry of few objects weigthmap = 'weights4rms.fits' wmap = numpy.ones_like(sf_data[0], dtype='bool') # Center of the image wmap[border:-border, border:-border] = 0 # fits.writeto(weigthmap, wmap.astype('uintt8'), overwrite=True) basename = 'result_i%0d.fits' % (step) data_res = fits.getdata(basename) data_res = data_res.byteswap().newbyteorder() bkg = sep.Background(data_res) data_sub = data_res - bkg _logger.info('Runing source extraction tor in %s', basename) objects = sep.extract(data_sub, 1.5, err=bkg.globalrms, mask=wmap) # if seeing_fwhm is not None: # sex.config['SEEING_FWHM'] = seeing_fwhm * sex.config['PIXEL_SCALE'] # sex.config['PARAMETERS_LIST'].append('CLASS_STAR') # sex.config['CATALOG_NAME'] = 'master-catalogue-i%01d.cat' % step LIMIT_AREA = 5000 idx_small = objects['npix'] < LIMIT_AREA objects_small = objects[idx_small] NKEEP = 15 idx_flux = objects_small['flux'].argsort() objects_nth = objects_small[idx_flux][-NKEEP:] # set of indices of the N first objects fluxes = [] errors = [] times = [] airmasses = [] for idx, frame in enumerate(frames): imagename = name_skysub_proc(frame.baselabel, step) #sex.config['CATALOG_NAME'] = ('catalogue-%s-i%01d.cat' % # (frame.baselabel, step)) # Lauch SExtractor on a FITS file # om double image mode _logger.info('Runing sextractor in %s', imagename) with fits.open(imagename) as hdul: header = hdul[0].header airmasses.append(header['airmass']) times.append(header['tstamp']) data_i = hdul[0].data data_i = data_i.byteswap().newbyteorder() bkg_i = sep.Background(data_i) data_sub_i = data_i - bkg_i # objects_i = sep.extract(data_sub_i, 1.5, err=bkg_i.globalrms, mask=wmap) flux_i, fluxerr_i, flag_i = sep.sum_circle(data_sub_i, objects_nth['x'], objects_nth['y'], 3.0, err=bkg_i.globalrms) # Extinction correction excor = pow(10, -0.4 * frame.airmass * extinction) flux_i = excor * flux_i fluxerr_i = excor * fluxerr_i fluxes.append(flux_i) errors.append(fluxerr_i) fluxes_a = numpy.array(fluxes) errors_a = numpy.array(errors) fluxes_n = fluxes_a / fluxes_a[0] errors_a = errors_a / fluxes_a[0] # sigma w = 1.0 / (errors_a) ** 2 # weighted mean of the flux values wdata = numpy.average(fluxes_n, axis=1, weights=w) wsigma = 1 / numpy.sqrt(w.sum(axis=1)) levels = check_photometry_levels actions = check_photometry_actions x = list(six.moves.range(len(frames))) vals, (_, sigma) = check_photometry_categorize( x, wdata, levels, tags=actions) # n sigma level to plt nsig = 3 if True: figure = plt.figure() ax = figure.add_subplot(111) plot_photometry_check(ax, vals, wsigma, check_photometry_levels, nsig * sigma) plt.savefig('figure-relative-flux_i%01d.png' % step) for x, _, t in vals: try: action = _dactions[t] except KeyError: _logger.warning('Action named %s not recognized, ignoring', t) action = default_action for p in x: action(frames[p]) def check_photometry_categorize(x, y, levels, tags=None): '''Put every point in its category. levels must be sorted.''' x = numpy.asarray(x) y = numpy.asarray(y) ys = y.copy() ys.sort() # Mean of the upper half m = ys[len(ys) // 2:].mean() y /= m m = 1.0 s = ys[len(ys) // 2:].std() result = [] if tags is None: tags = list(six.moves.range(len(levels) + 1)) for l, t in zip(levels, tags): indc = y < l if indc.any(): x1 = x[indc] y1 = y[indc] result.append((x1, y1, t)) x = x[~indc] y = y[~indc] else: result.append((x, y, tags[-1])) return result, (m, s) def plot_photometry_check(ax, vals, errors, levels, nsigma): x = range(len(errors)) ax.set_title('Relative flux of brightest object') for v, c in zip(vals, ['b', 'r', 'g', 'y']): ax.scatter(v[0], v[1], c=c) w = errors[v[0]] ax.errorbar(v[0], v[1], yerr=w, fmt='none', c=c) ax.plot([x[0], x[-1]], [1, 1], 'r--') ax.plot([x[0], x[-1]], [1 - nsigma, 1 - nsigma], 'b--') for f in levels: ax.plot([x[0], x[-1]], [f, f], 'g--') return ax def check_position(images_info, sf_data, seeing_fwhm, step=0): # FIXME: this method has to be updated _logger.info('Checking positions') # Check position of bright objects weigthmap = 'weights4rms.fits' wmap = numpy.zeros_like(sf_data[0]) # Center of the image border = 300 wmap[border:-border, border:-border] = 1 fits.writeto(weigthmap, wmap.astype('uint8'), overwrite=True) basename = 'result_i%0d.fits' % (step) sex = SExtractor() sex.config['VERBOSE_TYPE'] = 'QUIET' sex.config['PIXEL_SCALE'] = 1 sex.config['BACK_TYPE'] = 'AUTO' if seeing_fwhm is not None and seeing_fwhm > 0: sex.config['SEEING_FWHM'] = seeing_fwhm * sex.config['PIXEL_SCALE'] sex.config['WEIGHT_TYPE'] = 'MAP_WEIGHT' sex.config['WEIGHT_IMAGE'] = weigthmap sex.config['PARAMETERS_LIST'].append('FLUX_BEST') sex.config['PARAMETERS_LIST'].append('FLUXERR_BEST') sex.config['PARAMETERS_LIST'].append('FWHM_IMAGE') sex.config['PARAMETERS_LIST'].append('CLASS_STAR') sex.config['CATALOG_NAME'] = 'master-catalogue-i%01d.cat' % step _logger.info('Runing sextractor in %s', basename) sex.run('%s,%s' % (basename, basename)) # Sort catalog by flux catalog = sex.catalog() catalog = sorted( catalog, key=operator.itemgetter('FLUX_BEST'), reverse=True) # set of indices of the N first objects OBJS_I_KEEP = 10 # master = [(obj['X_IMAGE'], obj['Y_IMAGE']) # for obj in catalog[:OBJS_I_KEEP]] for image in images_info: imagename = name_skysub_proc(image.baselabel, step) sex.config['CATALOG_NAME'] = ('catalogue-self-%s-i%01d.cat' % (image.baselabel, step)) # Lauch SExtractor on a FITS file # on double image mode _logger.info('Runing sextractor in %s', imagename) sex.run(imagename) catalog = sex.catalog() # data = [(obj['X_IMAGE'], obj['Y_IMAGE']) for obj in catalog] # tree = KDTree(data) # Search 2 neighbors # dists, _ids = tree.query(master, 2, distance_upper_bound=5) # for i in dists[:,0]: # print i # _logger.info('Mean offset correction for image %s is %f', # imagename, dists[:,0].mean()) # raw_input('press any key')
gpl-3.0
jvivian/rnaseq-lib
src/rnaseq_lib/graphs/__init__.py
1
1102
import os from itertools import combinations import pandas as pd def output_gephi(df, node_attrs, output_dir): """ Output two CSVs used by Gephi to create graphs: nodes.csv edges.csv :param pd.DataFrame df: Dataframe of input data :param list(str) node_attrs: List of attributes in DF to create nodes from :param str output_dir: Path to output directory """ # Create nodes nodes = [] for attr in node_attrs: nodes.extend(map(lambda x: (x, attr), df[attr].tolist())) nodes = pd.DataFrame.from_records(nodes, columns=('Label', 'Type')) # Create edges edges = set() for row in df.iterrows(): i, row = row for j, k in combinations(node_attrs, 2): edges.add((int(nodes[nodes.Label == row[j]].index[0]), int(nodes[nodes.Label == row[k]].index[0]))) edges = pd.DataFrame.from_records(list(edges), columns=('Source', 'Target')) # Output nodes.to_csv(os.path.join(output_dir, 'nodes.csv'), index=True, index_label='Id') edges.to_csv(os.path.join(output_dir, 'edges.csv'), index=False)
mit
asteca/ASteCA
packages/out/make_D1_plot.py
1
7630
import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from os.path import join from . import add_version_plot from . import mp_mcmc_cnvrg from . import tracePlot from . import prep_plots from . prep_plots import figsize_x, figsize_y, grid_x, grid_y def main(npd, pd, clp): """ Make D1 block plots. """ fig = plt.figure(figsize=(figsize_x, figsize_y)) gs = gridspec.GridSpec(grid_y, grid_x) fit_pars = clp['isoch_fit_params'] # Title and version for the plot. m_bf, s_bf = divmod(fit_pars['bf_elapsed'], 60) h_bf, m_bf = divmod(m_bf, 60) xf, yf = .02, .999 add_version_plot.main(x_fix=xf, y_fix=yf) nwalkers, nburn, nsteps, pt_adapt = pd['nwalkers_mcee'],\ pd['nburn_mcee'], fit_pars['N_steps'],\ pd['pt_adapt'] p_str = ( "chains={:.0f}, burn={:.2f}, steps={:.0f}," " adapt={}").format(nwalkers, nburn, nsteps[-1], pt_adapt) xt, yt = .5, 1.005 plt.suptitle( ("{} | {:.0f}h{:.0f}m").format(p_str, h_bf, m_bf), x=xt, y=yt, fontsize=11) # DEPRECATED May 2020 # if pd['best_fit_algor'] == 'boot+GA': # m_btsr, s_btsr = divmod(isoch_fit_params['btstrp_t'], 60) # h_btsr, m_btsr = divmod(m_btsr, 60) # p_str = ( # r"$N_{{pop}}={},\,N_{{gen}}={},\,N_{{btstrp}}={}$ " # "({:.0f}h{:.0f}m)").format( # pd['N_pop'], isoch_fit_params['OF_steps'], # isoch_fit_params['N_bootstrap'], h_btsr, m_btsr) # if isoch_fit_params['N_bootstrap'] == 0: # xt = 0.83 # xf, yf = .67, 1.01 # elif pd['best_fit_algor'] == 'ptemcee': # elif pd['best_fit_algor'] == 'emcee': # nwalkers, nburn, nsteps = pd['nwalkers_mcee'],\ # pd['nburn_mcee'], isoch_fit_params['N_steps'] # p_str = ( # "[{}] chains={:.0f}, burn={:.2f}, steps={:.0f} ").format( # ' '.join(pd['emcee_moves']), nwalkers, nburn, nsteps[-1]) # Best fitting process plots. # if pd['best_fit_algor'] == 'boot+GA': # if isoch_fit_params['N_bootstrap'] > 2: # pos0 = (0, 2, 4, 8) # pos1 = ( # (0, 2, 2, 4), (2, 4, 4, 6), (4, 6, 6, 8), # (6, 8, 8, 10), (8, 10, 10, 12), (6, 8, 10, 12)) # min_max_p = prep_plots.param_ranges( # pd['best_fit_algor'], pd['fundam_params'], # isoch_fit_params['varIdxs'], # isoch_fit_params['params_boot']) # sharedPlots(pd, npd, isoch_fit_params, gs, min_max_p) # else: # pos0 = (0, 2, 8, 12) # pos1 = ( # (2, 4, 8, 10), (2, 4, 10, 12), (4, 6, 8, 10), # (4, 6, 10, 12), (6, 8, 8, 10), (6, 8, 10, 12)) # min_max_p = prep_plots.param_ranges( # pd['best_fit_algor'], pd['fundam_params']) # args = [ # # pl_GA_lkl: Likelihood evolution for the GA. # gs, pos0, isoch_fit_params['lkl_best'], # isoch_fit_params['lkl_mean'], isoch_fit_params['OF_models'], # isoch_fit_params['new_bs_indx'], pd['fit_diff'], # pd['cross_prob'], pd['cross_sel'], pd['mut_prob'], # pd['N_el'], pd['N_ei'], pd['N_es'] # ] # mp_best_fit1_GA.plot(0, *args) # arglist = [ # # pl_lkl_scatt: Parameter likelihood density plot. # [gs, pos1, r'$z$', min_max_p, isoch_fit_params['map_sol'], # isoch_fit_errors, isoch_fit_params['models_GA'], # isoch_fit_params['lkls_GA']], # [gs, pos1, r'$log(age)$', min_max_p, # isoch_fit_params['map_sol'], isoch_fit_errors, # isoch_fit_params['models_GA'], isoch_fit_params['lkls_GA']], # [gs, pos1, r'$E_{{(B-V)}}$', min_max_p, # isoch_fit_params['map_sol'], isoch_fit_errors, # isoch_fit_params['models_GA'], isoch_fit_params['lkls_GA']], # [gs, pos1, r'$(m-M)_o$', min_max_p, # isoch_fit_params['map_sol'], isoch_fit_errors, # isoch_fit_params['models_GA'], isoch_fit_params['lkls_GA']], # [gs, pos1, r'$M\,(M_{{\odot}})$', min_max_p, # isoch_fit_params['map_sol'], isoch_fit_errors, # isoch_fit_params['models_GA'], isoch_fit_params['lkls_GA']], # [gs, pos1, r'$b_{{frac}}$', min_max_p, # isoch_fit_params['map_sol'], isoch_fit_errors, # isoch_fit_params['models_GA'], isoch_fit_params['lkls_GA']] # ] # for n, args in enumerate(arglist, 1): # mp_best_fit1_GA.plot(n, *args) # elif pd['best_fit_algor'] in ('ptemcee', 'emcee'): # 'abc' # Trace plots min_max_p = prep_plots.param_ranges( pd['fundam_params'], fit_pars['varIdxs'], fit_pars['pars_chains']) trace = fit_pars['mcmc_trace'] best_sol = fit_pars['mean_sol'] traceplot_args = ( fit_pars['acorr_t'], fit_pars['med_at_c'], fit_pars['mcmc_ess']) post_trace, pre_trace = fit_pars['pars_chains'], fit_pars['pars_chains_bi'] # pl_param_chain: Parameters sampler chains. par_list = ['metal', 'age', 'ext', 'dist', 'mass', 'binar'] for p in par_list: args = [ p, gs, best_sol, min_max_p, traceplot_args, trace, fit_pars['varIdxs'], post_trace, pre_trace] tracePlot.plot(0, *args) # Parallel Coordinates plot # mp_mcmc_cnvrg.plot(2, *args) # pl_MAP_lkl: Parameters half of pdfs. args = [ gs, fit_pars['N_steps'], fit_pars['prob_mean'], fit_pars['map_lkl'], fit_pars['map_lkl_final']] mp_mcmc_cnvrg.plot(0, *args) # if pd['best_fit_algor'] == 'ptemcee': # pl_betas: Betas vs steps. args = [gs, fit_pars['Tmax'], fit_pars['N_steps'], fit_pars['betas_pt']] mp_mcmc_cnvrg.plot(2, *args) # pl_Tswaps: Tswaps AFs vs steps. args = [gs, fit_pars['N_steps'], fit_pars['tswaps_afs']] mp_mcmc_cnvrg.plot(3, *args) # pl_MAF: Parameters evolution of MAF. maf_steps = fit_pars['maf_allT'] # if pd['best_fit_algor'] == 'ptemcee': # elif pd['best_fit_algor'] == 'emcee': # maf_steps = fit_pars['maf_steps'] args = [gs, fit_pars['N_steps'], maf_steps] mp_mcmc_cnvrg.plot(1, *args) # pl_tau args = [gs, fit_pars['N_steps'], fit_pars['tau_autocorr']] mp_mcmc_cnvrg.plot(4, *args) # TODO re-implement when/if code is fixed # # pl_mESS # args = [ # 'mESS', gs, fit_pars['mESS'], # fit_pars['minESS'], # fit_pars['mESS_epsilon']] # mp_mcmc_cnvrg.plot(7, *args) # pl_lags args = [gs, fit_pars['varIdxs'], fit_pars['acorr_function']] mp_mcmc_cnvrg.plot(5, *args) # pl_GW args = [gs, fit_pars['varIdxs'], fit_pars['geweke_z']] mp_mcmc_cnvrg.plot(6, *args) # pl_tau_histo args = [gs, fit_pars['all_taus']] mp_mcmc_cnvrg.plot(7, *args) # Generate output file. fig.tight_layout() plt.savefig(join( npd['output_subdir'], str(npd['clust_name']) + '_D1_' + pd['best_fit_algor'] + npd['ext'])) # Close to release memory. plt.clf() plt.close("all") # DEPRECATED May 2020 # def sharedPlots(pd, npd, isoch_fit_params, gs, min_max_p): # """ # """ # # if pd['best_fit_algor'] == 'boot+GA': # # trace = isoch_fit_params['params_boot'] # # msol = 'ML' # # best_sol = isoch_fit_params['map_sol'] # # traceplot_args = [] # # post_trace, pre_trace = isoch_fit_params['params_boot'], None # # elif pd['best_fit_algor'] in ('ptemcee', 'emcee'):
gpl-3.0
mugizico/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
liangz0707/scikit-learn
sklearn/linear_model/setup.py
146
1713
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('linear_model', parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension('cd_fast', sources=['cd_fast.c'], libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sgd_fast', sources=['sgd_fast.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sag_fast', sources=['sag_fast.c'], include_dirs=numpy.get_include()) # add other directories config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
jakirkham/bokeh
examples/plotting/file/custom_tooltip.py
3
1902
import pandas as pd from bokeh.plotting import figure, show from bokeh.sampledata.periodic_table import elements elements = elements.copy() elements = elements[elements.group != "-"] elements.sort_values('metal', inplace=True) colormap = { "alkali metal" : "#a6cee3", "alkaline earth metal" : "#1f78b4", "halogen" : "#fdbf6f", "metal" : "#b2df8a", "metalloid" : "#33a02c", "noble gas" : "#bbbb88", "nonmetal" : "#baa2a6", "transition metal" : "#e08e79", } data=dict( atomic_number=elements["atomic number"], sym=elements["symbol"], name=elements["name"], atomic_mass = pd.to_numeric(elements['atomic mass'], errors="coerce"), density=elements['density'], metal=[x.title() for x in elements["metal"]], type_color=[colormap[x] for x in elements["metal"]] ) mass_format = '{0.00}' TOOLTIPS = """ <div style="width: 62px; height: 62px; opacity: .8; padding: 5px; background-color: @type_color;> <h1 style="margin: 0; font-size: 12px;"> @atomic_number </h1> <h1 style="margin: 0; font-size: 24px;"><strong> @sym </strong></h1> <p style=" margin: 0; font-size: 8px;"><strong> @name </strong></p> <p style="margin: 0; font-size: 8px;"> @atomic_mass{mass_format} </p> </div> """.format(mass_format=mass_format) p = figure(plot_width=900, plot_height=450, tooltips=TOOLTIPS, title='Densities by Atomic Mass') p.background_fill_color = "#fafafa" p.circle('atomic_mass', 'density', size=12, source=data, color='type_color', line_color="black", legend='metal', alpha=0.9) p.legend.glyph_width = 30 p.legend.glyph_height = 30 p.xaxis.axis_label= 'Atomic Mass' p.yaxis.axis_label= 'Density' p.xgrid.grid_line_color = None p.toolbar_location = None l = p.legend[0] l.plot = None p.add_layout(l, 'right') l.border_line_color = None show(p)
bsd-3-clause
annahs/atmos_research
NC_size_distrs_with_variable_coating_bin_at_end_avg_flights.py
1
17996
from pymiecoated import Mie import sys import os import numpy as np from pprint import pprint from datetime import datetime import mysql.connector import math import matplotlib.pyplot as plt import matplotlib.colors import calendar from scipy.optimize import curve_fit cloud_droplet_conc = 0.5 min_coat = 0 #assumed minimum coating thickness for particles with LEO failure or outside of detection range = 0 max_coat = 100 #assumed maximum coating thickness for particles with LEO failure or outside of detection range = 100 #distr parameters min_BC_VED = 85 max_BC_VED = 220 min_rBC_mass = ((min_BC_VED/(10.**7))**3)*(math.pi/6.)*1.8*(10.**15) max_rBC_mass = ((max_BC_VED/(10.**7))**3)*(math.pi/6.)*1.8*(10.**15) fit_bin_min = 50 fit_bin_max = 1000 bin_incr = 10 master_bin_file = 'UHSAS_Polar6_20150408_R1_V2.ict' #master_bin_file = 'UHSAS_Polar6_20150413_R1_V1.ict' flight_times = { #'science 1' : [datetime(2015,4,5,9,0), datetime(2015,4,5,14,0) ,''], #'ferry 1' : [datetime(2015,4,6,9,0), datetime(2015,4,6,11,0) ,'UHSAS_Polar6_20150406_R1_V1.ict'], #'ferry 2' : [datetime(2015,4,6,15,0), datetime(2015,4,6,18,0) ,'UHSAS_Polar6_20150406_R1_V2.ict'], 'science 2' : [datetime(2015,4,7,16,0), datetime(2015,4,7,21,0) ,'UHSAS_Polar6_20150407_R1_V1.ict'], 'science 3' : [datetime(2015,4,8,13,0), datetime(2015,4,8,17,0) ,'UHSAS_Polar6_20150408_R1_V1.ict'], 'science 4' : [datetime(2015,4,8,17,30),datetime(2015,4,8,22,0) ,'UHSAS_Polar6_20150408_R1_V2.ict'], #'science 5' : [datetime(2015,4,9,13,30),datetime(2015,4,9,18,0) ,'UHSAS_Polar6_20150409_R1_V1.ict'], #'ferry 3' : [datetime(2015,4,10,14,0),datetime(2015,4,10,17,0),'UHSAS_Polar6_20150410_R1_V1.ict'], 'science 6' : [datetime(2015,4,11,15,0),datetime(2015,4,11,22,0),'UHSAS_Polar6_20150411_R1_V1.ict'], 'science 7' : [datetime(2015,4,13,15,0),datetime(2015,4,13,21,0),'UHSAS_Polar6_20150413_R1_V1.ict'], #'science 8' : [datetime(2015,4,20,15,0),datetime(2015,4,20,20,0),'UHSAS_Polar6_20150420_R1_V1.ict'], #'science 9' : [datetime(2015,4,20,21,0),datetime(2015,4,21,2,0) ,'UHSAS_Polar6_20150420_R1_V2.ict'], #'science 10': [datetime(2015,4,21,16,8),datetime(2015,4,21,16,18),'UHSAS_Polar6_20150421_R1_V1.ict'], ### } #database connection cnx = mysql.connector.connect(user='root', password='Suresh15', host='localhost', database='black_carbon') cursor = cnx.cursor() def myRound(x, base): return int(base * round(float(x)/base)) def lognorm(x_vals, A, w, xc): return A/(np.sqrt(2*math.pi)*w*x_vals)*np.exp(-(np.log(x_vals/xc))**2/(2*w**2)) def getUHSASBins(UHSAS_file): #UHSAS_file = 'UHSAS_Polar6_20150413_R1_V1.ict' os.chdir('C:/Users/Sarah Hanna/Documents/Data/Netcare/Spring 2015/UHSAS/UHSAS-R1/') with open(UHSAS_file, 'r') as f: file_date = UHSAS_file[13:21] date = datetime.strptime(file_date, '%Y%m%d') ##get bin limits i=0 while i < 9: #indep_var_number is always on line 10 f.readline() i+=1 indep_var_number = float(f.readline()) i=0 while i < (indep_var_number + 11): #check that 11 is right for each set of files f.readline() i+=1 bin_LL_line = (f.readline()).split() f.readline() #skip this line bin_UL_line = (f.readline()).split() ##create bins dict bin_dict = {} i=0 for LL_limit in bin_LL_line: bin_dict[i] = [float(LL_limit),float(bin_UL_line[i]),[]] i+=1 return bin_dict def make_bin_dict(): new_dict = {} print fit_bin_min,fit_bin_max,bin_incr for bin in range(fit_bin_min,fit_bin_max,bin_incr): new_dict[bin] = [bin,(bin+bin_incr),[]] return new_dict def sampling_time_in_flight(start_time,end_time): cursor.execute(('''SELECT ftd.UNIX_UTC_ts FROM polar6_flight_track_details ftd JOIN polar6_fssp_cloud_data fssp on ftd.fssd_id = fssp.id WHERE ftd.UNIX_UTC_ts >= %s and ftd.UNIX_UTC_ts < %s and fssp.FSSPTotalConc <=%s ORDER BY ftd.UNIX_UTC_ts'''), (start_time,end_time,cloud_droplet_conc)) alt_data = cursor.fetchall() first_line = True temp_list = [] interval_list = [] for line in alt_data: current_ts = line[0] if first_line == True: prior_ts = current_ts first_line = False if (current_ts - prior_ts) <= 1: temp_list.append(current_ts) prior_ts = current_ts else: time_interval = (temp_list[-1]-temp_list[0]) #in sec interval_list.append(time_interval) temp_list = [] temp_list.append(current_ts) prior_ts = current_ts #add in last interval if len(temp_list): time_interval = (temp_list[-1]-temp_list[0]) #in sec interval_list.append(time_interval) total_sampling_time = np.sum(interval_list) else: total_sampling_time = 0 return total_sampling_time def assemble_bin_data(retrieved_records, flight_data): #parse each row in results for row in retrieved_records: mass = row[0] coat = row[1] LEO_amp = row[2] sample_flow = row[3] temperature = row[4] + 273.15 #convert to Kelvin pressure = row[5] VED = (((mass/(10**15*1.8))*6/math.pi)**(1/3.0))*10**7 STP_correction_factor = (101325/pressure)*(temperature/273.15) #succesful LEO fitting if (0 <= LEO_amp < 45000) and coat != None: #failed LEO fits give neg LEO amps (e.g -2) #if coat >= 0: coat_min = coat coat_max = coat #failed LEO fitting or neg coating, we calc a max and min case for these else: coat_min = min_coat coat_max = max_coat flight_data['core_dia'].append(VED) flight_data['min_coated_dia'].append(VED+2*coat_min) flight_data['max_coated_dia'].append(VED+2*coat_max) flight_data['STP_correction_factor'].append(STP_correction_factor) flight_data['sample_flow'].append(sample_flow) return flight_data def make_binned_list(raw_dia_list, bin_dict,total_vol_sccm): for dia in raw_dia_list: for point in bin_dict: LL_bin = bin_dict[point][0] UL_bin = bin_dict[point][1] if (LL_bin <= dia < UL_bin): bin_dict[point][2].append(dia) dia_list = [] area = 0 for point in bin_dict: bin_ll = bin_dict[point][0] bin_ul = bin_dict[point][1] bin_mid = bin_ll + (bin_ul-bin_ll)/2 number = len(bin_dict[point][2]) number_conc = number/total_vol_sccm #in #/cm3 norm_number_conc = number_conc/(math.log((bin_ul))-math.log(bin_ll)) area = area+norm_number_conc dia_list.append([bin_ll,bin_ul,bin_mid,number,number_conc,norm_number_conc]) dia_list.sort() print 'area',area return dia_list def fit_distr(core_dia_list, instr): #don't fit to bins with no data, this messes with the fit if instr == 'SP2': core_bin_midpoints = [] core_number_conc_norm = [] for row in core_dia_list: if min_BC_VED <= row[2] < max_BC_VED: core_bin_midpoints.append(row[2]) core_number_conc_norm.append(row[5]) if instr == 'UHSAS': core_bin_midpoints = [] core_number_conc_norm = [] for row in core_dia_list: if 70 <= row[2] < 700: core_bin_midpoints.append(row[2]) core_number_conc_norm.append(row[5]) #core try: popt, pcov = curve_fit(lognorm, np.array(core_bin_midpoints), np.array(core_number_conc_norm), p0=(2000,0.6,110)) except Exception,e: popt = np.nan print str(e) print 'number fit failure' return popt def calc_bin_values(flight_data,UNIX_start_time,UNIX_end_time,UHSAS_file): mean_sample_flow = np.nanmean(flight_data['sample_flow']) #in cm2/min mean_STP_correction_factor = np.nanmean(flight_data['STP_correction_factor']) #no units total_samping_time = 0 for flight in flight_times: print flight start_time = flight_times[flight][0] end_time = flight_times[flight][1] UHSAS_file = flight_times[flight][2] UNIX_start_time = calendar.timegm(start_time.utctimetuple()) UNIX_end_time = calendar.timegm(end_time.utctimetuple()) total_samping_time = total_samping_time + sampling_time_in_flight(UNIX_start_time,UNIX_end_time) total_vol = mean_sample_flow*total_samping_time/60 #factor of 60 to convert minutes to secs, result is in cc total_vol_sccm = total_vol/mean_STP_correction_factor #factor of 60 to convert minutes to secs, result is in cc print 'stp',mean_STP_correction_factor print total_vol, total_vol_sccm #cores binned_core_dias = getUHSASBins(master_bin_file) #binned_core_dias = make_bin_dict() core_diameter_list = make_binned_list(flight_data['core_dia'],binned_core_dias,total_vol_sccm) core_dia_fit_func = fit_distr(core_diameter_list,'SP2') area = 0 fit_core_dias_list = [] for point in binned_core_dias: bin_ll = binned_core_dias[point][0] bin_ul = binned_core_dias[point][1] bin_mid = bin_ll + (bin_ul-bin_ll)/2 fit_core_number_conc_norm = lognorm(bin_mid, core_dia_fit_func[0], core_dia_fit_func[1], core_dia_fit_func[2]) fit_core_number_conc = fit_core_number_conc_norm*(math.log((bin_ul))-math.log(bin_ll)) fit_core_number = fit_core_number_conc*total_vol_sccm fit_core_dias_list.append([bin_ll,bin_ul,bin_mid,fit_core_number,fit_core_number_conc,fit_core_number_conc_norm]) area+= fit_core_number_conc_norm if (bin_ul < min_BC_VED) or (max_BC_VED < bin_ll): i=0 while i < fit_core_number: flight_data['min_coated_dia'].append(bin_mid) flight_data['max_coated_dia'].append(bin_mid+2*max_coat) i+=1 print 'fit area',area fit_core_dias_list.sort() #min coats binned_min_coat_dias = getUHSASBins(master_bin_file) #binned_min_coat_dias = make_bin_dict() min_coated_dia_list = make_binned_list(flight_data['min_coated_dia'],binned_min_coat_dias,total_vol_sccm) #max coats binned_max_coat_dias = getUHSASBins(master_bin_file) #binned_max_coat_dias = make_bin_dict() max_coated_dia_list = make_binned_list(flight_data['max_coated_dia'],binned_max_coat_dias,total_vol_sccm) return [core_diameter_list,min_coated_dia_list,max_coated_dia_list,fit_core_dias_list] def plot_distrs(binned_data,UHSAS_list,UHSAS_fitted_list): core_bin_mids = [row[2] for row in binned_data[0]] core_norm_conc = [row[5] for row in binned_data[0]] min_coat_bin_mids = [row[2] for row in binned_data[1]] min_coat_norm_conc = [row[5] for row in binned_data[1]] max_coat_bin_mids = [row[2] for row in binned_data[2]] max_coat_norm_conc = [row[5] for row in binned_data[2]] core_fit_bin_mids = [row[2] for row in binned_data[3]] core_fit_norm_conc = [row[5] for row in binned_data[3]] uhsas_bin_mids = [row[0] for row in UHSAS_list] uhsas_norm_conc = [row[1] for row in UHSAS_list] uhsas_fitted_bin_mids = [row[2] for row in UHSAS_fitted_list] uhsas_fitted_norm_conc = [row[5] for row in UHSAS_fitted_list] print sum(core_fit_norm_conc) print sum(uhsas_fitted_norm_conc) i=0 min_ratios = [] max_ratios = [] for conc in min_coat_norm_conc: min_ratio = conc/uhsas_norm_conc[i] max_ratio = max_coat_norm_conc[i]/uhsas_norm_conc[i] min_ratios.append(min_ratio) max_ratios.append(max_ratio) i+=1 print np.nanmean(min_ratios) print np.nanmean(max_ratios) #plots ticks = [50,60,70,80,100,120,160,200,300,400,600,800] fig = plt.figure(figsize= (12,10)) ax1 = fig.add_subplot(111) ax1.plot(uhsas_bin_mids,uhsas_norm_conc, color = 'g',marker='s', label = 'total particles (UHSAS)') ax1.scatter(core_bin_mids,core_norm_conc, color = 'k',marker='o', label='rBC cores only') ax1.plot(core_fit_bin_mids,core_fit_norm_conc, color = 'grey',marker='',linestyle = '--', label = 'rBC core fit') ax1.plot(min_coat_bin_mids,min_coat_norm_conc, color = 'b',marker='<', label='rBC cores + min coating') ax1.plot(max_coat_bin_mids,max_coat_norm_conc, color = 'r',marker='>', label='rBC cores + max coating') #ax1.plot(uhsas_fitted_bin_mids,uhsas_fitted_norm_conc, color = 'g',marker='',linestyle = '--', label = 'UHSAS fit') #ax1.plot(uhsas_bin_mids,min_ratios, color = 'c',marker='o', label = 'min/UHSAS') #ax1.plot(uhsas_bin_mids,max_ratios, color = 'orange',marker='o', label = 'max/UHSAS') ax1.set_xlabel('VED (nm)') ax1.set_ylabel('dN/dlog(VED)') ax1.set_xscale('log') ax1.set_yscale('log') ax1.xaxis.set_major_formatter(plt.FormatStrFormatter('%d')) ax1.xaxis.set_major_locator(plt.FixedLocator(ticks)) ax1.set_ylim(1,3500) ax1.set_xlim(50,1000) plt.legend() plt.show() ticks = [50,60,70,80,100,120,160,200,300,400,600,800] fig = plt.figure(figsize= (12,10)) ax2 = fig.add_subplot(111) ax2.plot(uhsas_bin_mids,min_ratios, color = 'b',marker='o',linestyle = '-', label = 'rBC cores with min coating/UHSAS') ax2.plot(uhsas_bin_mids,max_ratios, color = 'r',marker='s',linestyle = '-', label = 'rBC cores with max coating/UHSAS') ax2.set_xlabel('VED (nm)') ax2.set_ylabel('fraction of total particles containing rBC') ax2.set_xscale('log') #ax2.set_yscale('log') ax2.xaxis.set_major_formatter(plt.FormatStrFormatter('%d')) ax2.xaxis.set_major_locator(plt.FixedLocator(ticks)) ax2.set_ylim(0,1) ax2.set_xlim(50,1000) plt.legend() plt.show() def write_files(binned_data): #cores file = open('C:/Users/Sarah Hanna/Documents/Data/Netcare/Spring 2015/coating data/SP2 core data-'+flight+'.txt', 'w') file.write('bin_LL\tbin_UL\tbin_mid\tbin_number\tbin_number_conc\tbin_number_conc_norm' + '\n') for row in binned_data[0]: line = '\t'.join(str(x) for x in row) file.write(line + '\n') file.close() #min_coats file = open('C:/Users/Sarah Hanna/Documents/Data/Netcare/Spring 2015/coating data/SP2 min coat data-'+flight+'.txt', 'w') file.write('bin_LL\tbin_UL\tbin_mid\tbin_number\tbin_number_conc\tbin_number_conc_norm' + '\n') for row in binned_data[1]: line = '\t'.join(str(x) for x in row) file.write(line + '\n') file.close() #max_coats file = open('C:/Users/Sarah Hanna/Documents/Data/Netcare/Spring 2015/coating data/SP2 max coat data-'+flight+'.txt', 'w') file.write('bin_LL\tbin_UL\tbin_mid\tbin_number\tbin_number_conc\tbin_number_conc_norm' + '\n') for row in binned_data[2]: line = '\t'.join(str(x) for x in row) file.write(line + '\n') file.close() #fit cores file = open('C:/Users/Sarah Hanna/Documents/Data/Netcare/Spring 2015/coating data/SP2 core fit data-'+flight+'.txt', 'w') file.write('bin_LL\tbin_UL\tbin_mid\tbin_number\tbin_number_conc\tbin_number_conc_norm' + '\n') for row in binned_data[3]: line = '\t'.join(str(x) for x in row) file.write(line + '\n') file.close() ##script #set up data structure flight_data = { 'core_dia':[], 'min_coated_dia':[], 'max_coated_dia':[], 'STP_correction_factor':[], 'sample_flow':[], } UHSAS_dict = {} master_bin_list = getUHSASBins(master_bin_file) for point in master_bin_list: master_bin_ll = master_bin_list[point][0] master_bin_ul = master_bin_list[point][1] master_bin_mid = master_bin_ll + (master_bin_ul-master_bin_ll)/2 UHSAS_dict[master_bin_mid] = [] UHSAS_to_fit_list = [] for flight in flight_times: print flight start_time = flight_times[flight][0] end_time = flight_times[flight][1] UHSAS_file = flight_times[flight][2] UNIX_start_time = calendar.timegm(start_time.utctimetuple()) UNIX_end_time = calendar.timegm(end_time.utctimetuple()) ###SP2 cursor.execute(('''SELECT bc.rBC_mass_fg, bc.coat_thickness_nm_jancalib, bc.LF_scat_amp, hk.sample_flow, ftd.temperature_C, ftd.BP_Pa FROM polar6_coating_2015 bc JOIN polar6_fssp_cloud_data fssp on bc.fssp_id = fssp.id JOIN polar6_flight_track_details ftd on bc.flight_track_data_id = ftd.id JOIN polar6_hk_data_2015 hk on bc.hk_data_id = hk.id WHERE bc.rBC_mass_fg IS NOT NULL and bc.UNIX_UTC_ts >= %s and bc.UNIX_UTC_ts < %s and bc.particle_type = %s and fssp.FSSPTotalConc <=%s and hk.sample_flow >%s and hk.sample_flow <%s AND bc.rBC_mass_fg >= %s AND bc.rBC_mass_fg <= %s ORDER BY bc.UNIX_UTC_ts'''), (UNIX_start_time,UNIX_end_time,'incand',cloud_droplet_conc,100,200,min_rBC_mass,max_rBC_mass)) coat_data = cursor.fetchall() #assemble the data for this bin flight_data = assemble_bin_data(coat_data,flight_data) ##UHSAS if UHSAS_file == '': continue UHSAS_bin_list = getUHSASBins(UHSAS_file) #get number concs for each bin for point in UHSAS_bin_list: bin_ll = UHSAS_bin_list[point][0] bin_ul = UHSAS_bin_list[point][1] bin_mid = bin_ll + (bin_ul-bin_ll)/2 #get UHSAS #avg for that bin on that flight (values taken every sec) cursor.execute(('''SELECT avg(property_value) FROM polar6_uhsas_rbc_binned_data_altcalib bd WHERE bd.UNIX_UTC_ts >= %s AND bd.UNIX_UTC_ts < %s AND (bd.bin_LL + (bd.bin_UL-bd.bin_LL)/2) >= %s AND (bd.bin_LL + (bd.bin_UL-bd.bin_LL)/2) < %s AND bd.binned_property = %s '''), (UNIX_start_time, UNIX_end_time,bin_ll,bin_ul,'UHSAS_#')) UHSAS_number = cursor.fetchall() UHSAS_number_conc = UHSAS_number[0][0] if UHSAS_number_conc != None: UHSAS_number_conc_norm = UHSAS_number_conc*1.0/(math.log((bin_ul))-math.log(bin_ll)) for point in master_bin_list: master_bin_ll = master_bin_list[point][0] master_bin_ul = master_bin_list[point][1] master_bin_mid = master_bin_ll + (master_bin_ul-master_bin_ll)/2 if master_bin_ll <= bin_mid < master_bin_ul: UHSAS_dict[master_bin_mid].append(UHSAS_number_conc_norm) if bin_ll >= min_BC_VED: UHSAS_to_fit_list.append([master_bin_ll,master_bin_ul,master_bin_mid,np.nan,UHSAS_number_conc,UHSAS_number_conc_norm]) UHSAS_list = [] for bin in UHSAS_dict: mean_conc = np.mean(UHSAS_dict[bin]) UHSAS_list.append([bin,mean_conc]) UHSAS_list.sort() #UHSAS fit UHSAS_to_fit_list.sort() UHSAS_fitted_list = [] uhsas_fit_func = fit_distr(UHSAS_to_fit_list,'UHSAS') for point in UHSAS_bin_list: bin_ll = UHSAS_bin_list[point][0] bin_ul = UHSAS_bin_list[point][1] bin_mid = bin_ll + (bin_ul-bin_ll)/2 fit_uhsas_number_conc_norm = lognorm(bin_mid, uhsas_fit_func[0], uhsas_fit_func[1], uhsas_fit_func[2]) fit_uhsas_number_conc = fit_uhsas_number_conc_norm*(math.log((bin_ul))-math.log(bin_ll)) UHSAS_fitted_list.append([bin_ll,bin_ul,bin_mid,np.nan,fit_uhsas_number_conc,fit_uhsas_number_conc_norm]) UHSAS_fitted_list.sort() print 'binning' binned_data = calc_bin_values(flight_data,UNIX_start_time,UNIX_end_time,UHSAS_file) plot_distrs(binned_data,UHSAS_list,UHSAS_fitted_list) write_files(binned_data) cnx.close()
mit
riscmaster/risc_maap
risc_visual/src/Ishmaalsplots.py
2
2444
#!/usr/bin/env python '''====================================================== Created by: Ishmaal Erekson Last updated: January 2015 File name: Ishmaalsplots.py Organization: RISC Lab, Utah State University ======================================================''' import roslib; roslib.load_manifest('ardrone_tutorials') roslib.load_manifest('risc_msgs') import rospy from math import * import numpy as np import sys import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import pylab as p import matplotlib.pyplot as plt import IshyPlots as pl import time #=======================# # Messages Needed # #=======================# from risc_msgs.msg import * # states,controls,trajectory from ardrone_autonomy.msg import * # on board state estimates #========================# # Globals # #========================# rate = 60 # Hz start_time = 0 states = Cortex() states.Obj = [States()]*1 t = 0 #===================================# # Plotting Variables # #===================================# Init_mat = np.asmatrix(np.zeros((1,3))) #==================# # Get States # #==================# def GetStates(I): global states states = I #=============# # Plots # #=============# def Plots(): global states,Init_mat x_act = states.Obj[0].x y_act = states.Obj[0].y z_act = states.Obj[0].z new_stack = np.asmatrix(np.array([x_act, y_act, z_act])) Init_mat = np.append(Init_mat,new_stack,0) def Plotaroosky(): global Init_mat pl.pl3d('Plotalicious',Init_mat[0:,0],Init_mat[0:,1],Init_mat[0:,2]) plt.show() #===================# # Main # #===================# if __name__=='__main__': import sys rospy.init_node('Ishmaalsplots') start_time = rospy.get_time() #=====================================# # Set up Publish/Subscribe Loop # #=====================================# r = rospy.Rate(rate) while not rospy.is_shutdown(): sub_states = rospy.Subscriber('/cortex_raw' , Cortex, GetStates) Plots() t = rospy.get_time() - start_time rospy.loginfo("time = %f",t) if t > 20: Plotaroosky() start_time = rospy.get_time() r.sleep()
bsd-2-clause
rcpedersen/stl-to-voxel
testslice.py
1
4181
import slice import stl_reader import unittest from matplotlib import pyplot import pylab from mpl_toolkits.mplot3d import Axes3D import random import numpy as np from util import printBigArray class TestSlice(unittest.TestCase): def testslice(self): mesh = list(stl_reader.read_stl_verticies("./stls/cube.stl")) # for p in slice.slice(mesh, .5): # print(list(p)) def testIsAboveAndBelow(self): tri = ( (1, 2, 5), (2, 3, 4), (3, 2, 1) ) self.assertTrue(slice.isAboveAndBelow(tri, 4)) self.assertTrue(slice.isAboveAndBelow(tri, 5)) self.assertTrue(slice.isAboveAndBelow(tri, 1)) self.assertFalse(slice.isAboveAndBelow(tri, 5.5)) self.assertFalse(slice.isAboveAndBelow(tri, 0)) def testIsAboveAndBelow_inclusive(self): tri = [ [1, 2, 5], [2, 3, 5], [3, 2, 1] ] self.assertTrue(slice.isAboveAndBelow(tri, 5)) def test_wherelinecrossesz(self): p1 = [2, 4, 1] p2 = [1, 2, 5] self.assertEqual(slice.whereLineCrossesZ(p1, p2, 1), p1) self.assertEqual(slice.whereLineCrossesZ(p1, p2, 5), p2) self.assertEqual(slice.whereLineCrossesZ(p1, p2, 3), [1.5, 3, 3]) self.assertEqual(slice.whereLineCrossesZ([0, 0, 0], [0, 1, 1], 0.5), [0.0, 0.5, 0.5]) def test_linearInterpolation(self): p1 = [2, 4, 1] p2 = [1, 2, 5] self.assertEqual(slice.linearInterpolation(p1, p2, 0), p1) self.assertEqual(slice.linearInterpolation(p1, p2, 1), p2) self.assertEqual(slice.linearInterpolation(p1, p2, .5), [1.5, 3, 3]) def test_makebigarray(self): chr = ' ' arr = [[chr, chr], [chr, chr]] self.assertEqual(slice.makeBigArrayOfZeros(2), arr) self.assertEqual(len(slice.makeBigArrayOfZeros(3)), 3) def test_toVoxels(self): # mesh = list(stl_reader.read_stl_verticies("./stls/sphere.stl")) # lines = slice.slice(mesh, 1) # slice.toVoxels(lines) pass def test_triangleToIntersectingLines(self): tri = [ [2, 4, 1], [1, 2, 5], [3, 2, 3] ] lines = list(slice.triangleToIntersectingLines(tri, 4)) self.assertIn((tri[0], tri[1]), lines) self.assertIn((tri[2], tri[1]), lines) print(lines) self.assertEqual(2, len(lines)) def test_triangleToIntersectingLines_onePointSame(self): tri = [ [2, 4, 1], [1, 2, 5], [3, 2, 3] ] lines = list(slice.triangleToIntersectingLines(tri, 3)) self.assertTrue((tri[0], tri[2]) in lines or (tri[2], tri[1]) in lines) def test_triangleToIntersectingLines_twoPointSame(self): tri = [ [2, 4, 3], [1, 2, 5], [3, 2, 3] ] lines = list(slice.triangleToIntersectingLines(tri, 3)) self.assertTrue((tri[0], tri[1]) in lines or (tri[2], tri[1]) in lines) def test_triangleToIntersectingLines_threePointSame(self): tri = [ [2, 4, 3], [1, 2, 3], [3, 2, 3] ] lines = list(slice.triangleToIntersectingLines(tri, 3)) self.assertTrue(tri in lines) def test_toVoxels(self): lines = [ [[3, 0, 7], [0, 3, 7]], [[3, 7, 7], [0, 3, 7]], [[3, 7, 7], [7, 3, 7]], [[3, 0, 7], [7, 3, 7]], ] expected = [[False, False, False, True, True, False, False, False], [False, False, True, True, True, True, False, False], [False, True, True, True, True, True, True, False], [True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True], [False, True, True, True, True, True, True, False], [False, False, True, True, True, True, False, False], [False, False, False, True, True, False, False, False]] printBigArray(slice.toVoxels(lines, 8, 8)) # self.assertTrue((expected==)
mit
h2educ/scikit-learn
sklearn/cluster/tests/test_affinity_propagation.py
341
2620
""" Testing for Clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.cluster.affinity_propagation_ import AffinityPropagation from sklearn.cluster.affinity_propagation_ import affinity_propagation from sklearn.datasets.samples_generator import make_blobs from sklearn.metrics import euclidean_distances n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=60, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_affinity_propagation(): # Affinity Propagation algorithm # Compute similarities S = -euclidean_distances(X, squared=True) preference = np.median(S) * 10 # Compute Affinity Propagation cluster_centers_indices, labels = affinity_propagation( S, preference=preference) n_clusters_ = len(cluster_centers_indices) assert_equal(n_clusters, n_clusters_) af = AffinityPropagation(preference=preference, affinity="precomputed") labels_precomputed = af.fit(S).labels_ af = AffinityPropagation(preference=preference, verbose=True) labels = af.fit(X).labels_ assert_array_equal(labels, labels_precomputed) cluster_centers_indices = af.cluster_centers_indices_ n_clusters_ = len(cluster_centers_indices) assert_equal(np.unique(labels).size, n_clusters_) assert_equal(n_clusters, n_clusters_) # Test also with no copy _, labels_no_copy = affinity_propagation(S, preference=preference, copy=False) assert_array_equal(labels, labels_no_copy) # Test input validation assert_raises(ValueError, affinity_propagation, S[:, :-1]) assert_raises(ValueError, affinity_propagation, S, damping=0) af = AffinityPropagation(affinity="unknown") assert_raises(ValueError, af.fit, X) def test_affinity_propagation_predict(): # Test AffinityPropagation.predict af = AffinityPropagation(affinity="euclidean") labels = af.fit_predict(X) labels2 = af.predict(X) assert_array_equal(labels, labels2) def test_affinity_propagation_predict_error(): # Test exception in AffinityPropagation.predict # Not fitted. af = AffinityPropagation(affinity="euclidean") assert_raises(ValueError, af.predict, X) # Predict not supported when affinity="precomputed". S = np.dot(X, X.T) af = AffinityPropagation(affinity="precomputed") af.fit(S) assert_raises(ValueError, af.predict, X)
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Coupled_Contact/Steady_State_Single_Foundation_Sysytem_Under_Tension/CoupledSoftContact/n_0.3/Plot_Results.py
15
3554
#!/usr/bin/env python #!/usr/bin/python import h5py from matplotlib import pylab import matplotlib.pylab as plt import sys from matplotlib.font_manager import FontProperties import math import numpy as np #!/usr/bin/python import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 30}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 5 mpl.rcParams['xtick.minor.size'] = 10 mpl.rcParams['xtick.minor.width'] = 5 plt.rcParams['xtick.labelsize']=28 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 5 mpl.rcParams['ytick.minor.size'] = 10 mpl.rcParams['ytick.minor.width'] = 5 plt.rcParams['ytick.labelsize']=28 # Plot the figure. Add labels and titles. plt.figure() ax = plt.subplot(111) ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Stress [Pa] ") # Pore Pressure # ######################################################################### thefile = "Soil_Foundation_System_Surface_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] upU_p = finput["/Model/Nodes/Generalized_Displacements"][3,:] upU_u = finput["/Model/Nodes/Generalized_Displacements"][2,:] upU_U = finput["/Model/Nodes/Generalized_Displacements"][6,:] u_u = finput["/Model/Nodes/Generalized_Displacements"][79,:] sigma_zz_ = finput["/Model/Elements/Gauss_Outputs"][14,:] # pore_pressure ax.plot(times,upU_p,'b',linewidth=2,label=r'Pore Pressure $p$'); ax.hold(True); # Total Stress # ######################################################################### # Read the time and displacement times = finput["time"][:]; T = times[len(times)-1] sigma_zz = -400/T*times # kinetic energy ax.plot(times,sigma_zz,'k',linewidth=2,label=r'Total Stress $\sigma$'); ax.hold(True); # Effective Stress # ######################################################################### # Read the time and displacement times = finput["time"][:]; sigma_zz_ = sigma_zz - upU_p # kinetic energy ax.plot(times,sigma_zz_,'r',linewidth=2,label=r'''Effective Stress $\sigma^{\prime}$'''); ax.hold(True); max_yticks = 5 yloc = plt.MaxNLocator(max_yticks) ax.yaxis.set_major_locator(yloc) max_xticks = 5 yloc = plt.MaxNLocator(max_xticks) ax.xaxis.set_major_locator(yloc) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.35), ncol=2, fancybox=True, shadow=True, prop={'size': 24}) pylab.savefig("Coupled_Soft_Contact_Steady_State_SF_Ststem_Under_Compression_Porosity_Effective_Stress_Principle.pdf", bbox_inches='tight') # plt.show() # ################################### Drainage Condition Verification ############################# ax.hold(False); fig = plt.figure(); ax = plt.subplot(111) ax.plot(times,upU_u*1e8,'k',linewidth=3,label=r'$upU\_u$'); ax.hold(True); ax.plot(times,upU_U*1e8,'b',linewidth=10,label=r'$upU\_U$'); ax.hold(True); ax.plot(times,u_u*1e8,'r',linewidth=3,label=r'$u\_u$'); ax.hold(True); ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Displacement $\times 1e^{-8}$ [m] ") ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=4, fancybox=True, shadow=True, prop={'size': 24}) max_yticks = 5 yloc = plt.MaxNLocator(max_yticks) ax.yaxis.set_major_locator(yloc) max_xticks = 5 yloc = plt.MaxNLocator(max_xticks) ax.xaxis.set_major_locator(yloc) pylab.savefig("Coupled_Soft_Contact_Steady_State_SF_Ststem_Under_Compression_Porosity_Undrained_Conditions.pdf", bbox_inches='tight') # plt.show()
cc0-1.0
rvraghav93/scikit-learn
examples/linear_model/plot_logistic_multinomial.py
81
2525
""" ==================================================== Plot multinomial and One-vs-Rest Logistic Regression ==================================================== Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines. """ print(__doc__) # Authors: Tom Dupre la Tour <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression # make 3-class dataset for classification centers = [[-5, 0], [0, 1.5], [5, -1]] X, y = make_blobs(n_samples=1000, centers=centers, random_state=40) transformation = [[0.4, 0.2], [-0.4, 1.2]] X = np.dot(X, transformation) for multi_class in ('multinomial', 'ovr'): clf = LogisticRegression(solver='sag', max_iter=100, random_state=42, multi_class=multi_class).fit(X, y) # print the training scores print("training score : %.3f (%s)" % (clf.score(X, y), multi_class)) # create a mesh to plot in h = .02 # step size in the mesh x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.title("Decision surface of LogisticRegression (%s)" % multi_class) plt.axis('tight') # Plot also the training points colors = "bry" for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor='black', s=20) # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.show()
bsd-3-clause
jreback/pandas
pandas/tests/util/test_assert_index_equal.py
1
6392
import numpy as np import pytest from pandas import Categorical, Index, MultiIndex, NaT import pandas._testing as tm def test_index_equal_levels_mismatch(): msg = """Index are different Index levels are different \\[left\\]: 1, Int64Index\\(\\[1, 2, 3\\], dtype='int64'\\) \\[right\\]: 2, MultiIndex\\(\\[\\('A', 1\\), \\('A', 2\\), \\('B', 3\\), \\('B', 4\\)\\], \\)""" idx1 = Index([1, 2, 3]) idx2 = MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3), ("B", 4)]) with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, exact=False) def test_index_equal_values_mismatch(check_exact): msg = """MultiIndex level \\[1\\] are different MultiIndex level \\[1\\] values are different \\(25\\.0 %\\) \\[left\\]: Int64Index\\(\\[2, 2, 3, 4\\], dtype='int64'\\) \\[right\\]: Int64Index\\(\\[1, 2, 3, 4\\], dtype='int64'\\)""" idx1 = MultiIndex.from_tuples([("A", 2), ("A", 2), ("B", 3), ("B", 4)]) idx2 = MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3), ("B", 4)]) with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, check_exact=check_exact) def test_index_equal_length_mismatch(check_exact): msg = """Index are different Index length are different \\[left\\]: 3, Int64Index\\(\\[1, 2, 3\\], dtype='int64'\\) \\[right\\]: 4, Int64Index\\(\\[1, 2, 3, 4\\], dtype='int64'\\)""" idx1 = Index([1, 2, 3]) idx2 = Index([1, 2, 3, 4]) with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, check_exact=check_exact) def test_index_equal_class_mismatch(check_exact): msg = """Index are different Index classes are different \\[left\\]: Int64Index\\(\\[1, 2, 3\\], dtype='int64'\\) \\[right\\]: Float64Index\\(\\[1\\.0, 2\\.0, 3\\.0\\], dtype='float64'\\)""" idx1 = Index([1, 2, 3]) idx2 = Index([1, 2, 3.0]) with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, exact=True, check_exact=check_exact) def test_index_equal_values_close(check_exact): idx1 = Index([1, 2, 3.0]) idx2 = Index([1, 2, 3.0000000001]) if check_exact: msg = """Index are different Index values are different \\(33\\.33333 %\\) \\[left\\]: Float64Index\\(\\[1.0, 2.0, 3.0], dtype='float64'\\) \\[right\\]: Float64Index\\(\\[1.0, 2.0, 3.0000000001\\], dtype='float64'\\)""" with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, check_exact=check_exact) else: tm.assert_index_equal(idx1, idx2, check_exact=check_exact) def test_index_equal_values_less_close(check_exact, rtol): idx1 = Index([1, 2, 3.0]) idx2 = Index([1, 2, 3.0001]) kwargs = {"check_exact": check_exact, "rtol": rtol} if check_exact or rtol < 0.5e-3: msg = """Index are different Index values are different \\(33\\.33333 %\\) \\[left\\]: Float64Index\\(\\[1.0, 2.0, 3.0], dtype='float64'\\) \\[right\\]: Float64Index\\(\\[1.0, 2.0, 3.0001\\], dtype='float64'\\)""" with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, **kwargs) else: tm.assert_index_equal(idx1, idx2, **kwargs) def test_index_equal_values_too_far(check_exact, rtol): idx1 = Index([1, 2, 3]) idx2 = Index([1, 2, 4]) kwargs = {"check_exact": check_exact, "rtol": rtol} msg = """Index are different Index values are different \\(33\\.33333 %\\) \\[left\\]: Int64Index\\(\\[1, 2, 3\\], dtype='int64'\\) \\[right\\]: Int64Index\\(\\[1, 2, 4\\], dtype='int64'\\)""" with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, **kwargs) @pytest.mark.parametrize("check_order", [True, False]) def test_index_equal_value_oder_mismatch(check_exact, rtol, check_order): idx1 = Index([1, 2, 3]) idx2 = Index([3, 2, 1]) msg = """Index are different Index values are different \\(66\\.66667 %\\) \\[left\\]: Int64Index\\(\\[1, 2, 3\\], dtype='int64'\\) \\[right\\]: Int64Index\\(\\[3, 2, 1\\], dtype='int64'\\)""" if check_order: with pytest.raises(AssertionError, match=msg): tm.assert_index_equal( idx1, idx2, check_exact=check_exact, rtol=rtol, check_order=True ) else: tm.assert_index_equal( idx1, idx2, check_exact=check_exact, rtol=rtol, check_order=False ) def test_index_equal_level_values_mismatch(check_exact, rtol): idx1 = MultiIndex.from_tuples([("A", 2), ("A", 2), ("B", 3), ("B", 4)]) idx2 = MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3), ("B", 4)]) kwargs = {"check_exact": check_exact, "rtol": rtol} msg = """MultiIndex level \\[1\\] are different MultiIndex level \\[1\\] values are different \\(25\\.0 %\\) \\[left\\]: Int64Index\\(\\[2, 2, 3, 4\\], dtype='int64'\\) \\[right\\]: Int64Index\\(\\[1, 2, 3, 4\\], dtype='int64'\\)""" with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, **kwargs) @pytest.mark.parametrize( "name1,name2", [(None, "x"), ("x", "x"), (np.nan, np.nan), (NaT, NaT), (np.nan, NaT)], ) def test_index_equal_names(name1, name2): idx1 = Index([1, 2, 3], name=name1) idx2 = Index([1, 2, 3], name=name2) if name1 == name2 or name1 is name2: tm.assert_index_equal(idx1, idx2) else: name1 = "'x'" if name1 == "x" else name1 name2 = "'x'" if name2 == "x" else name2 msg = f"""Index are different Attribute "names" are different \\[left\\]: \\[{name1}\\] \\[right\\]: \\[{name2}\\]""" with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2) def test_index_equal_category_mismatch(check_categorical): msg = """Index are different Attribute "dtype" are different \\[left\\]: CategoricalDtype\\(categories=\\['a', 'b'\\], ordered=False\\) \\[right\\]: CategoricalDtype\\(categories=\\['a', 'b', 'c'\\], \ ordered=False\\)""" idx1 = Index(Categorical(["a", "b"])) idx2 = Index(Categorical(["a", "b"], categories=["a", "b", "c"])) if check_categorical: with pytest.raises(AssertionError, match=msg): tm.assert_index_equal(idx1, idx2, check_categorical=check_categorical) else: tm.assert_index_equal(idx1, idx2, check_categorical=check_categorical)
bsd-3-clause
MatthieuBizien/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
immerrr/numpy
numpy/lib/polynomial.py
1
37669
""" Functions to operate on polynomials. """ from __future__ import division, absolute_import, print_function __all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', 'polyfit', 'RankWarning'] import re import warnings import numpy.core.numeric as NX from numpy.core import isscalar, abs, finfo, atleast_1d, hstack, dot from numpy.lib.twodim_base import diag, vander from numpy.lib.function_base import trim_zeros, sort_complex from numpy.lib.type_check import iscomplex, real, imag from numpy.linalg import eigvals, lstsq, inv class RankWarning(UserWarning): """ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. """ pass def poly(seq_of_zeros): """ Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Evaluate a polynomial at a point. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Or a square matrix object: >>> np.poly(np.matrix(P)) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. """ seq_of_zeros = atleast_1d(seq_of_zeros) sh = seq_of_zeros.shape if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: seq_of_zeros = eigvals(seq_of_zeros) elif len(sh) == 1: pass else: raise ValueError("input must be 1d or non-empty square 2d array.") if len(seq_of_zeros) == 0: return 1.0 a = [1] for k in range(len(seq_of_zeros)): a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full') if issubclass(a.dtype.type, NX.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = NX.asarray(seq_of_zeros, complex) pos_roots = sort_complex(NX.compress(roots.imag > 0, roots)) neg_roots = NX.conjugate(sort_complex( NX.compress(roots.imag < 0, roots))) if (len(pos_roots) == len(neg_roots) and NX.alltrue(neg_roots == pos_roots)): a = a.real.copy() return a def roots(p): """ Return the roots of a polynomial with coefficients given in p. The values in the rank-1 array `p` are coefficients of a polynomial. If the length of `p` is n+1 then the polynomial is described by:: p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] Parameters ---------- p : array_like Rank-1 array of polynomial coefficients. Returns ------- out : ndarray An array containing the complex roots of the polynomial. Raises ------ ValueError When `p` cannot be converted to a rank-1 array. See also -------- poly : Find the coefficients of a polynomial with a given sequence of roots. polyval : Evaluate a polynomial at a point. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- The algorithm relies on computing the eigenvalues of the companion matrix [1]_. References ---------- .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7. Examples -------- >>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) """ # If input is scalar, this makes it an array p = atleast_1d(p) if len(p.shape) != 1: raise ValueError("Input must be a rank-1 array.") # find non-zero array entries non_zero = NX.nonzero(NX.ravel(p))[0] # Return an empty array if polynomial is all zeros if len(non_zero) == 0: return NX.array([]) # find the number of trailing zeros -- this is the number of roots at 0. trailing_zeros = len(p) - non_zero[-1] - 1 # strip leading and trailing zeros p = p[int(non_zero[0]):int(non_zero[-1])+1] # casting: if incoming array isn't floating point, make it floating point. if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): p = p.astype(float) N = len(p) if N > 1: # build companion matrix and find its eigenvalues (the roots) A = diag(NX.ones((N-2,), p.dtype), -1) A[0,:] = -p[1:] / p[0] roots = eigvals(A) else: roots = NX.array([]) # tack any zeros onto the back of the array roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) return roots def polyint(p, m=1, k=None): """ Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : {array_like, poly1d} Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : {None, list of `m` scalars, scalar}, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 """ m = int(m) if m < 0: raise ValueError("Order of integral must be positive (see polyder)") if k is None: k = NX.zeros(m, float) k = atleast_1d(k) if len(k) == 1 and m > 1: k = k[0]*NX.ones(m, float) if len(k) < m: raise ValueError( "k must be a scalar or a rank-1 array of length 1 or >m.") truepoly = isinstance(p, poly1d) p = NX.asarray(p) if m == 0: if truepoly: return poly1d(p) return p else: # Note: this must work also with object and integer arrays y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) val = polyint(y, m - 1, k=k[1:]) if truepoly: return poly1d(val) return val def polyder(p, m=1): """ Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) """ m = int(m) if m < 0: raise ValueError("Order of derivative must be positive (see polyint)") truepoly = isinstance(p, poly1d) p = NX.asarray(p) n = len(p) - 1 y = p[:-1] * NX.arange(n, 0, -1) if m == 0: val = p else: val = polyder(y, m - 1) if truepoly: val = poly1d(val) return val def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): """ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional weights to apply to the y-coordinates of the sample points. cov : bool, optional Return the estimate and the covariance matrix of the estimate If full is True, then cov is not returned. Returns ------- p : ndarray, shape (M,) or (M, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond : present only if `full` = True Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. V : ndaray, shape (M,M) or (M,M,K) : present only if `full` = False and `cov`=True The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-d array, then the covariance matrix for the `k`-th data set are in ``V[:,:,k]`` Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Computes polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() """ order = int(deg) + 1 x = NX.asarray(x) + 0.0 y = NX.asarray(y) + 0.0 # check arguments. if deg < 0 : raise ValueError("expected deg >= 0") if x.ndim != 1: raise TypeError("expected 1D vector for x") if x.size == 0: raise TypeError("expected non-empty vector for x") if y.ndim < 1 or y.ndim > 2 : raise TypeError("expected 1D or 2D array for y") if x.shape[0] != y.shape[0] : raise TypeError("expected x and y to have same length") # set rcond if rcond is None : rcond = len(x)*finfo(x.dtype).eps # set up least squares equation for powers of x lhs = vander(x, order) rhs = y # apply weighting if w is not None: w = NX.asarray(w) + 0.0 if w.ndim != 1: raise TypeError("expected a 1-d array for weights") if w.shape[0] != y.shape[0] : raise TypeError("expected w and y to have the same length") lhs *= w[:, NX.newaxis] if rhs.ndim == 2: rhs *= w[:, NX.newaxis] else: rhs *= w # scale lhs to improve condition number and solve scale = NX.sqrt((lhs*lhs).sum(axis=0)) lhs /= scale c, resids, rank, s = lstsq(lhs, rhs, rcond) c = (c.T/scale).T # broadcast scale coefficients # warn on rank reduction, which indicates an ill conditioned matrix if rank != order and not full: msg = "Polyfit may be poorly conditioned" warnings.warn(msg, RankWarning) if full : return c, resids, rank, s, rcond elif cov : Vbase = inv(dot(lhs.T, lhs)) Vbase /= NX.outer(scale, scale) # Some literature ignores the extra -2.0 factor in the denominator, but # it is included here because the covariance of Multivariate Student-T # (which is implied by a Bayesian uncertainty analysis) includes it. # Plus, it gives a slightly more conservative estimate of uncertainty. fac = resids / (len(x) - order - 2.0) if y.ndim == 1: return c, Vbase * fac else: return c, Vbase[:,:, NX.newaxis] * fac else : return c def polyval(p, x): """ Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, a 1D array of numbers, or an instance of poly1d, "at" which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) """ p = NX.asarray(p) if isinstance(x, poly1d): y = 0 else: x = NX.asarray(x) y = NX.zeros_like(x) for i in range(len(p)): y = x * y + p[i] return y def polyadd(a1, a2): """ Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print p1 1 x + 2 >>> print p2 2 9 x + 5 x + 4 >>> print np.polyadd(p1, p2) 2 9 x + 6 x + 6 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 + a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) + a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 + NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polysub(a1, a2): """ Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1 = atleast_1d(a1) a2 = atleast_1d(a2) diff = len(a2) - len(a1) if diff == 0: val = a1 - a2 elif diff > 0: zr = NX.zeros(diff, a1.dtype) val = NX.concatenate((zr, a1)) - a2 else: zr = NX.zeros(abs(diff), a2.dtype) val = a1 - NX.concatenate((zr, a2)) if truepoly: val = poly1d(val) return val def polymul(a1, a2): """ Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval convolve : Array convolution. Same output as polymul, but has parameter for overlap mode. Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print p1 2 1 x + 2 x + 3 >>> print p2 2 9 x + 5 x + 1 >>> print np.polymul(p1, p2) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 """ truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) a1, a2 = poly1d(a1), poly1d(a2) val = NX.convolve(a1, a2) if truepoly: val = poly1d(val) return val def polydiv(u, v): """ Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) """ truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d)) u = atleast_1d(u) + 0.0 v = atleast_1d(v) + 0.0 # w has the common type w = u[0] + v[0] m = len(u) - 1 n = len(v) - 1 scale = 1. / v[0] q = NX.zeros((max(m - n + 1, 1),), w.dtype) r = u.copy() for k in range(0, m-n+1): d = scale * r[k] q[k] = d r[k:k+n+1] -= d*v while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): r = r[1:] if truepoly: return poly1d(q), poly1d(r) return q, r _poly_mat = re.compile(r"[*][*]([0-9]*)") def _raise_power(astr, wrap=70): n = 0 line1 = '' line2 = '' output = ' ' while True: mat = _poly_mat.search(astr, n) if mat is None: break span = mat.span() power = mat.groups()[0] partstr = astr[n:span[0]] n = span[1] toadd2 = partstr + ' '*(len(power)-1) toadd1 = ' '*(len(partstr)-1) + power if ((len(line2)+len(toadd2) > wrap) or \ (len(line1)+len(toadd1) > wrap)): output += line1 + "\n" + line2 + "\n " line1 = toadd1 line2 = toadd2 else: line2 += partstr + ' '*(len(power)-1) line1 += ' '*(len(partstr)-1) + power output += line1 + "\n" + line2 return output + astr[n:] class poly1d(object): """ A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print np.poly1d(p) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print p 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) """ coeffs = None order = None variable = None __hash__ = None def __init__(self, c_or_r, r=0, variable=None): if isinstance(c_or_r, poly1d): for key in c_or_r.__dict__.keys(): self.__dict__[key] = c_or_r.__dict__[key] if variable is not None: self.__dict__['variable'] = variable return if r: c_or_r = poly(c_or_r) c_or_r = atleast_1d(c_or_r) if len(c_or_r.shape) > 1: raise ValueError("Polynomial must be 1d only.") c_or_r = trim_zeros(c_or_r, trim='f') if len(c_or_r) == 0: c_or_r = NX.array([0.]) self.__dict__['coeffs'] = c_or_r self.__dict__['order'] = len(c_or_r) - 1 if variable is None: variable = 'x' self.__dict__['variable'] = variable def __array__(self, t=None): if t: return NX.asarray(self.coeffs, t) else: return NX.asarray(self.coeffs) def __repr__(self): vals = repr(self.coeffs) vals = vals[6:-1] return "poly1d(%s)" % vals def __len__(self): return self.order def __str__(self): thestr = "0" var = self.variable # Remove leading zeros coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] N = len(coeffs)-1 def fmt_float(q): s = '%.4g' % q if s.endswith('.0000'): s = s[:-5] return s for k in range(len(coeffs)): if not iscomplex(coeffs[k]): coefstr = fmt_float(real(coeffs[k])) elif real(coeffs[k]) == 0: coefstr = '%sj' % fmt_float(imag(coeffs[k])) else: coefstr = '(%s + %sj)' % (fmt_float(real(coeffs[k])), fmt_float(imag(coeffs[k]))) power = (N-k) if power == 0: if coefstr != '0': newstr = '%s' % (coefstr,) else: if k == 0: newstr = '0' else: newstr = '' elif power == 1: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = var else: newstr = '%s %s' % (coefstr, var) else: if coefstr == '0': newstr = '' elif coefstr == 'b': newstr = '%s**%d' % (var, power,) else: newstr = '%s %s**%d' % (coefstr, var, power) if k > 0: if newstr != '': if newstr.startswith('-'): thestr = "%s - %s" % (thestr, newstr[1:]) else: thestr = "%s + %s" % (thestr, newstr) else: thestr = newstr return _raise_power(thestr) def __call__(self, val): return polyval(self.coeffs, val) def __neg__(self): return poly1d(-self.coeffs) def __pos__(self): return self def __mul__(self, other): if isscalar(other): return poly1d(self.coeffs * other) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __rmul__(self, other): if isscalar(other): return poly1d(other * self.coeffs) else: other = poly1d(other) return poly1d(polymul(self.coeffs, other.coeffs)) def __add__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __radd__(self, other): other = poly1d(other) return poly1d(polyadd(self.coeffs, other.coeffs)) def __pow__(self, val): if not isscalar(val) or int(val) != val or val < 0: raise ValueError("Power to non-negative integers only.") res = [1] for _ in range(val): res = polymul(self.coeffs, res) return poly1d(res) def __sub__(self, other): other = poly1d(other) return poly1d(polysub(self.coeffs, other.coeffs)) def __rsub__(self, other): other = poly1d(other) return poly1d(polysub(other.coeffs, self.coeffs)) def __div__(self, other): if isscalar(other): return poly1d(self.coeffs/other) else: other = poly1d(other) return polydiv(self, other) __truediv__ = __div__ def __rdiv__(self, other): if isscalar(other): return poly1d(other/self.coeffs) else: other = poly1d(other) return polydiv(other, self) __rtruediv__ = __rdiv__ def __eq__(self, other): return NX.alltrue(self.coeffs == other.coeffs) def __ne__(self, other): return NX.any(self.coeffs != other.coeffs) def __setattr__(self, key, val): raise ValueError("Attributes cannot be changed this way.") def __getattr__(self, key): if key in ['r', 'roots']: return roots(self.coeffs) elif key in ['c', 'coef', 'coefficients']: return self.coeffs elif key in ['o']: return self.order else: try: return self.__dict__[key] except KeyError: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key)) def __getitem__(self, val): ind = self.order - val if val > self.order: return 0 if val < 0: return 0 return self.coeffs[ind] def __setitem__(self, key, val): ind = self.order - key if key < 0: raise ValueError("Does not support negative powers.") if key > self.order: zr = NX.zeros(key-self.order, self.coeffs.dtype) self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs)) self.__dict__['order'] = key ind = 0 self.__dict__['coeffs'][ind] = val return def __iter__(self): return iter(self.coeffs) def integ(self, m=1, k=0): """ Return an antiderivative (indefinite integral) of this polynomial. Refer to `polyint` for full documentation. See Also -------- polyint : equivalent function """ return poly1d(polyint(self.coeffs, m=m, k=k)) def deriv(self, m=1): """ Return a derivative of this polynomial. Refer to `polyder` for full documentation. See Also -------- polyder : equivalent function """ return poly1d(polyder(self.coeffs, m=m)) # Stuff to do on module import warnings.simplefilter('always', RankWarning)
bsd-3-clause
qifeigit/scikit-learn
sklearn/utils/estimator_checks.py
41
47834
from __future__ import print_function import types import warnings import sys import traceback import inspect import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.lda import LDA from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.utils.validation import DataConversionWarning from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classfiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d if name != 'CCA': # check that the regressor handles int input yield check_regressors_int # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. """ name = Estimator.__class__.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_fast_parameters(estimator): # speed up some estimators params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: # NMF if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_fast_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, 'predict_proba'): estimator.predict_proba(X) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_fast_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_fast_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) X_pred = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = inspect.getargspec(func).args assert_true(args[2] in ["y", "Y"]) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_fast_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = "0 feature(s) (shape=(3, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if hasattr(estimator, "transform"): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_fast_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_fast_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_fast_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_fast_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_fast_parameters(regressor_1) set_fast_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y) # X is already scaled y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_fast_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): print(regressor) assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_fast_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # Make a physical copy of the orginal estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_fast_parameters(estimator_1) set_fast_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LDA() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: args, varargs, kws, defaults = inspect.getargspec(init) except TypeError: # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they need a non-default argument args = args[2:] else: args = args[1:] if args: # non-empty list assert_equal(len(args), len(defaults)) else: return for arg, default in zip(args, defaults): assert_in(type(default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if arg not in params.keys(): # deprecated parameter, not in get_params assert_true(default is None) continue if isinstance(params[arg], np.ndarray): assert_array_equal(params[arg], default) else: assert_equal(params[arg], default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if name in (['MultiTaskElasticNetCV', 'MultiTaskLassoCV', 'MultiTaskLasso', 'MultiTaskElasticNet']): return y[:, np.newaxis] return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteratiom iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = y_[:, np.newaxis] set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) assert_greater(estimator.n_iter_, 0) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater(iter_, 1) else: assert_greater(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV' 'RandomizedSearchCV'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items()))
bsd-3-clause
kiyoto/statsmodels
statsmodels/sandbox/distributions/otherdist.py
33
10145
'''Parametric Mixture Distributions Created on Sat Jun 04 2011 Author: Josef Perktold Notes: Compound Poisson has mass point at zero http://en.wikipedia.org/wiki/Compound_Poisson_distribution and would need special treatment need a distribution that has discrete mass points and contiuous range, e.g. compound Poisson, Tweedie (for some parameter range), pdf of Tobit model (?) - truncation with clipping Question: Metaclasses and class factories for generating new distributions from existing distributions by transformation, mixing, compounding ''' from __future__ import print_function import numpy as np from scipy import stats class ParametricMixtureD(object): '''mixtures with a discrete distribution The mixing distribution is a discrete distribution like scipy.stats.poisson. All distribution in the mixture of the same type and parameterized by the outcome of the mixing distribution and have to be a continuous distribution (or have a pdf method). As an example, a mixture of normal distributed random variables with Poisson as the mixing distribution. assumes vectorized shape, loc and scale as in scipy.stats.distributions assume mixing_dist is frozen initialization looks fragile for all possible cases of lower and upper bounds of the distributions. ''' def __init__(self, mixing_dist, base_dist, bd_args_func, bd_kwds_func, cutoff=1e-3): '''create a mixture distribution Parameters ---------- mixing_dist : discrete frozen distribution mixing distribution base_dist : continuous distribution parameterized distributions in the mixture bd_args_func : callable function that builds the tuple of args for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty tuple or a tuple of arrays. bd_kwds_func : callable function that builds the dictionary of kwds for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty dictionary or a dictionary with arrays as values. cutoff : float If the mixing distribution has infinite support, then the distribution is truncated with approximately (subject to integer conversion) the cutoff probability in the missing tail. Random draws that are outside the truncated range are clipped, that is assigned to the highest or lowest value in the truncated support. ''' self.mixing_dist = mixing_dist self.base_dist = base_dist #self.bd_args = bd_args if not np.isneginf(mixing_dist.dist.a): lower = mixing_dist.dist.a else: lower = mixing_dist.ppf(1e-4) if not np.isposinf(mixing_dist.dist.b): upper = mixing_dist.dist.b else: upper = mixing_dist.isf(1e-4) self.ma = lower self.mb = upper mixing_support = np.arange(lower, upper+1) self.mixing_probs = mixing_dist.pmf(mixing_support) self.bd_args = bd_args_func(mixing_support) self.bd_kwds = bd_kwds_func(mixing_support) def rvs(self, size=1): mrvs = self.mixing_dist.rvs(size) #TODO: check strange cases ? this assumes continous integers mrvs_idx = (np.clip(mrvs, self.ma, self.mb) - self.ma).astype(int) bd_args = tuple(md[mrvs_idx] for md in self.bd_args) bd_kwds = dict((k, self.bd_kwds[k][mrvs_idx]) for k in self.bd_kwds) kwds = {'size':size} kwds.update(bd_kwds) rvs = self.base_dist.rvs(*self.bd_args, **kwds) return rvs, mrvs_idx def pdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.pdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs def cdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.cdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs #try: class ClippedContinuous(object): '''clipped continuous distribution with a masspoint at clip_lower Notes ----- first version, to try out possible designs insufficient checks for valid arguments and not clear whether it works for distributions that have compact support clip_lower is fixed and independent of the distribution parameters. The clip_lower point in the pdf has to be interpreted as a mass point, i.e. different treatment in integration and expect function, which means none of the generic methods for this can be used. maybe this will be better designed as a mixture between a degenerate or discrete and a continuous distribution Warning: uses equality to check for clip_lower values in function arguments, since these are floating points, the comparison might fail if clip_lower values are not exactly equal. We could add a check whether the values are in a small neighborhood, but it would be expensive (need to search and check all values). ''' def __init__(self, base_dist, clip_lower): self.base_dist = base_dist self.clip_lower = clip_lower def _get_clip_lower(self, kwds): '''helper method to get clip_lower from kwds or attribute ''' if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: clip_lower = kwds.pop('clip_lower') return clip_lower, kwds def rvs(self, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) rvs_ = self.base_dist.rvs(*args, **kwds) #same as numpy.clip ? rvs_[rvs_ < clip_lower] = clip_lower return rvs_ def pdf(self, x, *args, **kwds): x = np.atleast_1d(x) if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') pdf_raw = np.atleast_1d(self.base_dist.pdf(x, *args, **kwds)) clip_mask = (x == self.clip_lower) if np.any(clip_mask): clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous pdf_raw[x < clip_lower] = 0 return pdf_raw def cdf(self, x, *args, **kwds): if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') cdf_raw = self.base_dist.cdf(x, *args, **kwds) #not needed if equality test is used ## clip_mask = (x == self.clip_lower) ## if np.any(clip_mask): ## clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) ## pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous #if self.a is defined cdf_raw[x < clip_lower] = 0 return cdf_raw def sf(self, x, *args, **kwds): if not 'clip_lower' in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') sf_raw = self.base_dist.sf(x, *args, **kwds) sf_raw[x <= clip_lower] = 1 return sf_raw def ppf(self, x, *args, **kwds): raise NotImplementedError def plot(self, x, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) mass = self.pdf(clip_lower, *args, **kwds) xr = np.concatenate(([clip_lower+1e-6], x[x>clip_lower])) import matplotlib.pyplot as plt #x = np.linspace(-4, 4, 21) #plt.figure() plt.xlim(clip_lower-0.1, x.max()) #remove duplicate calculation xpdf = self.pdf(x, *args, **kwds) plt.ylim(0, max(mass, xpdf.max())*1.1) plt.plot(xr, self.pdf(xr, *args, **kwds)) #plt.vline(clip_lower, self.pdf(clip_lower, *args, **kwds)) plt.stem([clip_lower], [mass], linefmt='b-', markerfmt='bo', basefmt='r-') return if __name__ == '__main__': doplots = 1 #*********** Poisson-Normal Mixture mdist = stats.poisson(2.) bdist = stats.norm bd_args_fn = lambda x: () #bd_kwds_fn = lambda x: {'loc': np.atleast_2d(10./(1+x))} bd_kwds_fn = lambda x: {'loc': x, 'scale': 0.1*np.ones_like(x)} #10./(1+x)} pd = ParametricMixtureD(mdist, bdist, bd_args_fn, bd_kwds_fn) print(pd.pdf(1)) p, bp = pd.pdf(np.linspace(0,20,21)) pc, bpc = pd.cdf(np.linspace(0,20,21)) print(pd.rvs()) rvs, m = pd.rvs(size=1000) if doplots: import matplotlib.pyplot as plt plt.hist(rvs, bins = 100) plt.title('poisson mixture of normal distributions') #********** clipped normal distribution (Tobit) bdist = stats.norm clip_lower_ = 0. #-0.5 cnorm = ClippedContinuous(bdist, clip_lower_) x = np.linspace(1e-8, 4, 11) print(cnorm.pdf(x)) print(cnorm.cdf(x)) if doplots: #plt.figure() #cnorm.plot(x) plt.figure() cnorm.plot(x = np.linspace(-1, 4, 51), loc=0.5, scale=np.sqrt(2)) plt.title('clipped normal distribution') fig = plt.figure() for i, loc in enumerate([0., 0.5, 1.,2.]): fig.add_subplot(2,2,i+1) cnorm.plot(x = np.linspace(-1, 4, 51), loc=loc, scale=np.sqrt(2)) plt.title('clipped normal, loc = %3.2f' % loc) loc = 1.5 rvs = cnorm.rvs(loc=loc, size=2000) plt.figure() plt.hist(rvs, bins=50) plt.title('clipped normal rvs, loc = %3.2f' % loc) #plt.show()
bsd-3-clause
devanshdalal/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
43
10272
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_singular_values(): # Check that the IncrementalPCA output has the correct singular values rng = np.random.RandomState(0) n_samples = 1000 n_features = 100 X = datasets.make_low_rank_matrix(n_samples, n_features, tail_strength=0.0, effective_rank=10, random_state=rng) pca = PCA(n_components=10, svd_solver='full', random_state=rng).fit(X) ipca = IncrementalPCA(n_components=10, batch_size=100).fit(X) assert_array_almost_equal(pca.singular_values_, ipca.singular_values_, 2) # Compare to the Frobenius norm X_pca = pca.transform(X) X_ipca = ipca.transform(X) assert_array_almost_equal(np.sum(pca.singular_values_**2.0), np.linalg.norm(X_pca, "fro")**2.0, 12) assert_array_almost_equal(np.sum(ipca.singular_values_**2.0), np.linalg.norm(X_ipca, "fro")**2.0, 2) # Compare to the 2-norms of the score vectors assert_array_almost_equal(pca.singular_values_, np.sqrt(np.sum(X_pca**2.0, axis=0)), 12) assert_array_almost_equal(ipca.singular_values_, np.sqrt(np.sum(X_ipca**2.0, axis=0)), 2) # Set the singular values and see what we get back rng = np.random.RandomState(0) n_samples = 100 n_features = 110 X = datasets.make_low_rank_matrix(n_samples, n_features, tail_strength=0.0, effective_rank=3, random_state=rng) pca = PCA(n_components=3, svd_solver='full', random_state=rng) ipca = IncrementalPCA(n_components=3, batch_size=100) X_pca = pca.fit_transform(X) X_pca /= np.sqrt(np.sum(X_pca**2.0, axis=0)) X_pca[:, 0] *= 3.142 X_pca[:, 1] *= 2.718 X_hat = np.dot(X_pca, pca.components_) pca.fit(X_hat) ipca.fit(X_hat) assert_array_almost_equal(pca.singular_values_, [3.142, 2.718, 1.0], 14) assert_array_almost_equal(ipca.singular_values_, [3.142, 2.718, 1.0], 14) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
ysekky/GPy
GPy/plotting/plotly_dep/plot_definitions.py
4
16743
#=============================================================================== # Copyright (c) 2015, Max Zwiessele # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of GPy.plotting.matplot_dep.plot_definitions nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== import numpy as np from ..abstract_plotting_library import AbstractPlottingLibrary from .. import Tango from . import defaults import plotly from plotly import tools from plotly.graph_objs import Scatter, Scatter3d, Line,\ Marker, ErrorX, ErrorY, Bar, Heatmap, Trace,\ Annotations, Annotation, Contour, Font, Surface from plotly.exceptions import PlotlyDictKeyError SYMBOL_MAP = { 'o': 'dot', 'v': 'triangle-down', '^': 'triangle-up', '<': 'triangle-left', '>': 'triangle-right', 's': 'square', '+': 'cross', 'x': 'x', '*': 'x', # no star yet in plotly!! 'D': 'diamond', 'd': 'diamond', } class PlotlyPlotsBase(AbstractPlottingLibrary): def __init__(self): super(PlotlyPlotsBase, self).__init__() self._defaults = defaults.__dict__ self.current_states = dict() def figure(self, rows=1, cols=1, specs=None, is_3d=False, **kwargs): if specs is None: specs = [[{'is_3d': is_3d}]*cols]*rows figure = tools.make_subplots(rows, cols, specs=specs, **kwargs) return figure def new_canvas(self, figure=None, row=1, col=1, projection='2d', xlabel=None, ylabel=None, zlabel=None, title=None, xlim=None, ylim=None, zlim=None, **kwargs): #if 'filename' not in kwargs: # print('PlotlyWarning: filename was not given, this may clutter your plotly workspace') # filename = None #else: # filename = kwargs.pop('filename') if figure is None: figure = self.figure(is_3d=projection=='3d') figure.layout.font = Font(family="Raleway, sans-serif") if projection == '3d': figure.layout.legend.x=.5 figure.layout.legend.bgcolor='#DCDCDC' return (figure, row, col), kwargs def add_to_canvas(self, canvas, traces, legend=False, **kwargs): figure, row, col = canvas def append_annotation(a, xref, yref): if 'xref' not in a: a['xref'] = xref if 'yref' not in a: a['yref'] = yref figure.layout.annotations.append(a) def append_trace(t, row, col): figure.append_trace(t, row, col) def recursive_append(traces): if isinstance(traces, Annotations): xref, yref = figure._grid_ref[row-1][col-1] for a in traces: append_annotation(a, xref, yref) # elif isinstance(traces, (Trace)): # doesn't work # elif type(traces) in [v for k,v in go.__dict__.iteritems()]: elif isinstance(traces, (Scatter, Scatter3d, ErrorX, ErrorY, Bar, Heatmap, Trace, Contour, Surface)): try: append_trace(traces, row, col) except PlotlyDictKeyError: # Its a dictionary of plots: for t in traces: recursive_append(traces[t]) elif isinstance(traces, (dict)): for t in traces: recursive_append(traces[t]) elif isinstance(traces, (tuple, list)): for t in traces: recursive_append(t) recursive_append(traces) figure.layout['showlegend'] = legend return canvas def show_canvas(self, canvas, filename=None, **kwargs): return NotImplementedError def scatter(self, ax, X, Y, Z=None, color=Tango.colorsHex['mediumBlue'], cmap=None, label=None, marker='o', marker_kwargs=None, **kwargs): try: marker = SYMBOL_MAP[marker] except: #not matplotlib marker pass marker_kwargs = marker_kwargs or {} if 'symbol' not in marker_kwargs: marker_kwargs['symbol'] = marker X, Y = np.squeeze(X), np.squeeze(Y) if Z is not None: Z = np.squeeze(Z) return Scatter3d(x=X, y=Y, z=Z, mode='markers', showlegend=label is not None, marker=Marker(color=color, colorscale=cmap, **marker_kwargs), name=label, **kwargs) return Scatter(x=X, y=Y, mode='markers', showlegend=label is not None, marker=Marker(color=color, colorscale=cmap, **marker_kwargs), name=label, **kwargs) def plot(self, ax, X, Y, Z=None, color=None, label=None, line_kwargs=None, **kwargs): if 'mode' not in kwargs: kwargs['mode'] = 'lines' X, Y = np.squeeze(X), np.squeeze(Y) if Z is not None: Z = np.squeeze(Z) return Scatter3d(x=X, y=Y, z=Z, showlegend=label is not None, line=Line(color=color, **line_kwargs or {}), name=label, **kwargs) return Scatter(x=X, y=Y, showlegend=label is not None, line=Line(color=color, **line_kwargs or {}), name=label, **kwargs) def plot_axis_lines(self, ax, X, color=Tango.colorsHex['mediumBlue'], label=None, marker_kwargs=None, **kwargs): if X.shape[1] == 1: annotations = Annotations() for i, row in enumerate(X): annotations.append( Annotation( text='', x=row[0], y=0, yref='paper', ax=0, ay=20, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor=color, showarrow=True, #showlegend=i==0, #label=label, )) return annotations elif X.shape[1] == 2: marker_kwargs.setdefault('symbol', 'diamond') opacity = kwargs.pop('opacity', .8) return Scatter3d(x=X[:, 0], y=X[:, 1], z=np.zeros(X.shape[0]), mode='markers', projection=dict(z=dict(show=True, opacity=opacity)), marker=Marker(color=color, **marker_kwargs or {}), opacity=0, name=label, showlegend=label is not None, **kwargs) def barplot(self, canvas, x, height, width=0.8, bottom=0, color=Tango.colorsHex['mediumBlue'], label=None, **kwargs): figure, _, _ = canvas if 'barmode' in kwargs: figure.layout['barmode'] = kwargs.pop('barmode') return Bar(x=x, y=height, marker=Marker(color=color), name=label) def xerrorbar(self, ax, X, Y, error, Z=None, color=Tango.colorsHex['mediumBlue'], label=None, error_kwargs=None, **kwargs): error_kwargs = error_kwargs or {} if (error.shape[0] == 2) and (error.ndim == 2): error_kwargs.update(dict(array=error[1], arrayminus=error[0], symmetric=False)) else: error_kwargs.update(dict(array=error, symmetric=True)) X, Y = np.squeeze(X), np.squeeze(Y) if Z is not None: Z = np.squeeze(Z) return Scatter3d(x=X, y=Y, z=Z, mode='markers', error_x=ErrorX(color=color, **error_kwargs or {}), marker=Marker(size='0'), name=label, showlegend=label is not None, **kwargs) return Scatter(x=X, y=Y, mode='markers', error_x=ErrorX(color=color, **error_kwargs or {}), marker=Marker(size='0'), name=label, showlegend=label is not None, **kwargs) def yerrorbar(self, ax, X, Y, error, Z=None, color=Tango.colorsHex['mediumBlue'], label=None, error_kwargs=None, **kwargs): error_kwargs = error_kwargs or {} if (error.shape[0] == 2) and (error.ndim == 2): error_kwargs.update(dict(array=error[1], arrayminus=error[0], symmetric=False)) else: error_kwargs.update(dict(array=error, symmetric=True)) X, Y = np.squeeze(X), np.squeeze(Y) if Z is not None: Z = np.squeeze(Z) return Scatter3d(x=X, y=Y, z=Z, mode='markers', error_y=ErrorY(color=color, **error_kwargs or {}), marker=Marker(size='0'), name=label, showlegend=label is not None, **kwargs) return Scatter(x=X, y=Y, mode='markers', error_y=ErrorY(color=color, **error_kwargs or {}), marker=Marker(size='0'), name=label, showlegend=label is not None, **kwargs) def imshow(self, ax, X, extent=None, label=None, vmin=None, vmax=None, **imshow_kwargs): if not 'showscale' in imshow_kwargs: imshow_kwargs['showscale'] = False return Heatmap(z=X, name=label, x0=extent[0], dx=float(extent[1]-extent[0])/(X.shape[0]-1), y0=extent[2], dy=float(extent[3]-extent[2])/(X.shape[1]-1), zmin=vmin, zmax=vmax, showlegend=label is not None, hoverinfo='z', **imshow_kwargs) def imshow_interact(self, ax, plot_function, extent=None, label=None, resolution=None, vmin=None, vmax=None, **imshow_kwargs): # TODO stream interaction? super(PlotlyPlotsBase, self).imshow_interact(ax, plot_function) def annotation_heatmap(self, ax, X, annotation, extent=None, label='Gradient', imshow_kwargs=None, **annotation_kwargs): imshow_kwargs.setdefault('label', label) imshow_kwargs.setdefault('showscale', True) imshow = self.imshow(ax, X, extent, **imshow_kwargs) X = X-X.min() X /= X.max()/2. X -= 1 x = np.linspace(extent[0], extent[1], X.shape[0]) y = np.linspace(extent[2], extent[3], X.shape[1]) annotations = Annotations() for n, row in enumerate(annotation): for m, val in enumerate(row): var = X[n][m] annotations.append( Annotation( text=str(val), x=x[m], y=y[n], xref='x1', yref='y1', font=dict(color='white' if np.abs(var) > 0.8 else 'black', size=10), opacity=.5, showarrow=False, )) return imshow, annotations def annotation_heatmap_interact(self, ax, plot_function, extent, label=None, resolution=15, imshow_kwargs=None, **annotation_kwargs): super(PlotlyPlotsBase, self).annotation_heatmap_interact(ax, plot_function, extent) def contour(self, ax, X, Y, C, levels=20, label=None, **kwargs): return Contour(x=X, y=Y, z=C, #ncontours=levels, contours=Contours(start=C.min(), end=C.max(), size=(C.max()-C.min())/levels), name=label, **kwargs) def surface(self, ax, X, Y, Z, color=None, label=None, **kwargs): return Surface(x=X, y=Y, z=Z, name=label, showlegend=label is not None, **kwargs) def fill_between(self, ax, X, lower, upper, color=Tango.colorsHex['mediumBlue'], label=None, line_kwargs=None, **kwargs): if not 'line' in kwargs: kwargs['line'] = Line(**line_kwargs or {}) else: kwargs['line'].update(line_kwargs or {}) if color.startswith('#'): fcolor = 'rgba({c[0]}, {c[1]}, {c[2]}, {alpha})'.format(c=Tango.hex2rgb(color), alpha=kwargs.get('opacity', 1.0)) else: fcolor = color u = Scatter(x=X, y=upper, fillcolor=fcolor, showlegend=label is not None, name=label, fill='tonextx', legendgroup='{}_fill_({},{})'.format(label, ax[1], ax[2]), **kwargs) #fcolor = '{}, {alpha})'.format(','.join(fcolor.split(',')[:-1]), alpha=0.0) l = Scatter(x=X, y=lower, fillcolor=fcolor, showlegend=False, name=label, legendgroup='{}_fill_({},{})'.format(label, ax[1], ax[2]), **kwargs) return l, u def fill_gradient(self, canvas, X, percentiles, color=Tango.colorsHex['mediumBlue'], label=None, **kwargs): if color.startswith('#'): colarray = Tango.hex2rgb(color) opacity = .9 else: colarray = map(float(color.strip(')').split('(')[1])) if len(colarray) == 4: colarray, opacity = colarray[:3] ,colarray[3] alpha = opacity*(1.-np.abs(np.linspace(-1,1,len(percentiles)-1))) def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." from itertools import tee a, b = tee(iterable) next(b, None) return zip(a, b) polycol = [] for i, y1, a in zip(range(len(percentiles)), percentiles, alpha): fcolor = 'rgba({}, {}, {}, {alpha})'.format(*colarray, alpha=a) if i == len(percentiles)/2: polycol.append(Scatter(x=X, y=y1, fillcolor=fcolor, showlegend=True, name=label, line=Line(width=0, smoothing=0), mode='none', fill='tonextx', legendgroup='density', hoverinfo='none', **kwargs)) else: polycol.append(Scatter(x=X, y=y1, fillcolor=fcolor, showlegend=False, name=None, line=Line(width=1, smoothing=0, color=fcolor), mode='none', fill='tonextx', legendgroup='density', hoverinfo='none', **kwargs)) return polycol class PlotlyPlotsOnline(PlotlyPlotsBase): def __init__(self): super(PlotlyPlotsOnline, self).__init__() def show_canvas(self, canvas, filename=None, **kwargs): figure, _, _ = canvas if len(figure.data) == 0: # add mock data figure.append_trace(Scatter(x=[], y=[], name='', showlegend=False), 1, 1) from ..gpy_plot.plot_util import in_ipynb if in_ipynb(): return plotly.plotly.iplot(figure, filename=filename, **kwargs) else: return plotly.plotly.plot(figure, filename=filename, **kwargs)#self.current_states[hex(id(figure))]['filename']) class PlotlyPlotsOffline(PlotlyPlotsBase): def __init__(self): super(PlotlyPlotsOffline, self).__init__() def show_canvas(self, canvas, filename=None, **kwargs): figure, _, _ = canvas if len(figure.data) == 0: # add mock data figure.append_trace(Scatter(x=[], y=[], name='', showlegend=False), 1, 1) from ..gpy_plot.plot_util import in_ipynb if in_ipynb(): plotly.offline.init_notebook_mode(connected=True) return plotly.offline.iplot(figure, filename=filename, **kwargs)#self.current_states[hex(id(figure))]['filename']) else: return plotly.offline.plot(figure, filename=filename, **kwargs)
bsd-3-clause
B3AU/waveTree
doc/sphinxext/numpy_ext/docscrape_sphinx.py
52
8004
import re import inspect import textwrap import pydoc import sphinx from docscrape import NumpyDocString from docscrape import FunctionDoc from docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause