hugosousa commited on
Commit
e7c6630
·
1 Parent(s): 218e3f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -1,3 +1,81 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ - pt
6
+ - de
7
+ - fr
8
+ - it
9
+ - es
10
+ pretty_name: Professor HeidelTime
11
  ---
12
+ # Professor HeidelTime
13
+
14
+ [![License](https://img.shields.io/badge/license-MIT-brightgreen)](LICENSE)
15
+ [![Download](https://img.shields.io/badge/-download-9cf)](https://drive.inesctec.pt/s/B4JojTJaMyR8wDN/download/professor_heideltime.zip)
16
+
17
+
18
+ Professor HeidelTime is a project to create a multilingual corpus weakly labeled with [HeidelTime](https://github.com/HeidelTime/heideltime), a temporal tagger.
19
+
20
+ ## Getting Started
21
+
22
+ ### Download the Annotated Data
23
+
24
+ To download the Professor HeidelTime corpus, click on the following link: [Professor HeidelTime corpus](https://drive.inesctec.pt/s/B4JojTJaMyR8wDN/download/professor_heideltime.zip).
25
+
26
+ The downloaded archive contains six folders, each representing a different language. Inside each folder, there is one `.json` file for each annotated news article. The English, Italian, German, and French files contain `text`, `dct`, and `timexs` keys. However, due to licensing issues, the Portuguese and Spanish corpus files currently lack the `text` key. We are actively working with news sources to license these datasets for redistribution.
27
+
28
+ In the meantime, you can access the texts by running the following scrapping scripts: [Spanish](https://github.com/hmosousa/elmundo_scraper) and [Portuguese](https://github.com/hmosousa/publico_scraper).
29
+
30
+ ### Corpus Details
31
+
32
+ The weak labeling was performed in six languages. Here are the specifics of the corpus for each language:
33
+
34
+ | Dataset | Language | Documents | From | To | Tokens | Timexs |
35
+ | ----------------------- | -------- | --------- | ---------- | ---------- | ---------- | -------- |
36
+ | [All the News 2.0] | EN | 24,642 | 2016-01-01 | 2020-04-02 | 18,755,616 | 254,803 |
37
+ | [Italian Crime News] | IT | 9,619 | 2011-01-01 | 2021-12-31 | 3,296,898 | 58,823 |
38
+ | [ElMundo News] | ES | 33,266 | 2003-01-01 | 2022-12-31 | 21,617,888 | 348,011 |
39
+ | [German News Dataset] | DE | 19,095 | 2005-12-02 | 2021-10-18 | 12,515,410 | 194,043 |
40
+ | [French Financial News] | FR | 27,154 | 2017-10-19 | 2021-03-19 | 1,673,053 | 83,431 |
41
+ | [Público News] | PT | 24,293 | 2000-11-14 | 2002-03-20 | 5,929,377 | 111,810 |
42
+
43
+ ## Running Annotations
44
+
45
+ ### Set up Development Environment
46
+
47
+ To start with, set up a virtual environment and activate it. Then, install the necessary packages from the requirements file:
48
+
49
+ ```shell
50
+ virtualenv venv --python=python3.10
51
+ source venv/bin/activate
52
+ pip install -r requirements.txt
53
+ ```
54
+
55
+ Run pytest to ensure that everything is working correctly: `python -m pytest tests`
56
+
57
+ ### Kaggle API Key
58
+
59
+ To add the Kaggle API keys to your machine, follow the instructions provided on [kaggle-api](https://github.com/Kaggle/kaggle-api).
60
+
61
+ ### Download Raw Data
62
+
63
+ You can download the raw data by executing the following command:
64
+
65
+ ```shell
66
+ sh data/download.sh
67
+ ```
68
+
69
+ ### Execute the Annotation
70
+
71
+ To run the annotation, use the following command (replace 'english' with the language you want to annotate):
72
+
73
+ ```shell
74
+ python src/run.py --language english
75
+ ```
76
+
77
+ ## Contact
78
+
79
+ For more information, reach out to [Hugo Sousa](https://hugosousa.net) at <[email protected]>.
80
+
81
+ This framework is a part of the [Text2Story](https://text2story.inesctec.pt) project. This project is financed by the ERDF – European Regional Development Fund through the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project PTDC/CCI-COM/31857/2017 (NORTE-01-0145-FEDER-03185).