Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- avg_residual.pt +1 -1
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +4 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +4 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a90fa93254698e9a559c2dc10581e09da43d14410b1dcd94515381c695e46e8
|
3 |
+
size 4969564
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 7250,
|
4 |
+
"num_embeddings": 1242111,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c972e7f4bc586da66d0793f473468ff949925d25def333fa45aba8c85e1b47f3
|
3 |
+
size 79496304
|
avg_residual.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92a8d5cea9fac94fbfd250c159f945cde41328d1785b30ad17b7a71e6af547c0
|
3 |
size 1205
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de760d6b410e1f3714c379f43c310ef513c0e4f8dda1bdc64c6c6d4259d8312f
|
3 |
size 1432
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4195494
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d74634c89906952995f35b7e3891f2ce7c7ecc904b2e843c69f87614b0394bcc
|
3 |
size 4195494
|
collection.json
CHANGED
@@ -7245,5 +7245,8 @@
|
|
7245 |
"The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.",
|
7246 |
"Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation.",
|
7247 |
"Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.",
|
7248 |
-
"Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking."
|
|
|
|
|
|
|
7249 |
]
|
|
|
7245 |
"The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.",
|
7246 |
"Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation.",
|
7247 |
"Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.",
|
7248 |
+
"Vision-language models (VLMs), which process image and text inputs, are increasingly integrated into chat assistants and other consumer AI applications. Without proper safeguards, however, VLMs may give harmful advice (e.g. how to self-harm) or encourage unsafe behaviours (e.g. to consume drugs). Despite these clear hazards, little work so far has evaluated VLM safety and the novel risks created by multimodal inputs. To address this gap, we introduce MSTS, a Multimodal Safety Test Suite for VLMs. MSTS comprises 400 test prompts across 40 fine-grained hazard categories. Each test prompt consists of a text and an image that only in combination reveal their full unsafe meaning. With MSTS, we find clear safety issues in several open VLMs. We also find some VLMs to be safe by accident, meaning that they are safe because they fail to understand even simple test prompts. We translate MSTS into ten languages, showing non-English prompts to increase the rate of unsafe model responses. We also show models to be safer when tested with text only rather than multimodal prompts. Finally, we explore the automation of VLM safety assessments, finding even the best safety classifiers to be lacking.",
|
7249 |
+
"We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/",
|
7250 |
+
"Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training.",
|
7251 |
+
"IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer"
|
7252 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118,210,211,170,153,218,199,111,194,218,138,221,220,94,173,203,69,229,48,221,79,176,223,213,103,216,217,166,214,225,93,217,106,221,198,111,226,77,197,201,180,96,140,219,117,209,124,215,63,161,203,225,226,154,224,84,204,227,208,99,212,128,206,156,195,206,168,209,42,218,181,202,172,198,104,138,206,100,216,110,232,113,200,99,223,96,213,72,210,194,160,176,133,209,97,196,169,161,190,203,232,49,158,171,222,188,226,184,166,166,147,222,79,195,97,218,115,222,218,191,120,190,187,218,43,181,157,148,207,61,222,55,220,219,95,232,163,194,181,166,218,150,223,117,216,200,110,194,191,129,206,204,99,227,198,195,177,159,173,221,63,196,113,203,125,185,182,184,183,170,219,199,114,216,125,217,85,221,112,187,224,78,205,224,136,143,222,115,190,229,225,200,84,206,168,176,198,228,71,99,203,107,218,157,223,179,225,63,197,106,210,188,170,185,215,119,222,64,211,110,192,40,220,142,220,215,167,215,170,225,183,132,228,197,106,211,219,217,172,207,113,223,60,194,221,72,204,193,223,205,178,178,110,216,201,197,141,80,200,227,228,76,207,215,95,222,210,144,213,192,110,197,82,216,191,99,227,144,205,92,222,181,226,34,204,177,217,228,120,148,201,203,192,107,170,214,107,168,207,192,133,190,190,192,170,215,80,212,68,160,208,174,226,143,216,87,159,219,225,71,230,212,202,182,224,214,198,161,219,214,206,210,77,200,211,199,167,103,193,56,164,202,235,199,209,75,233,133,216,75,219,218,59,184,219,74,189,150,216,216,91,165,209,188,230,193,85,215,162,202,230,57,231,104,225,208,188,182,206,93,225,59,220,108,164,182,87,198,164,210,221,209,75,188,129,125,213,71,204,223,217,118,175,211,129,205,89,215,203,184,220,172,172,227,82,199,152,202,218,220,60,226,215,194,215,81,144,198,147,218,76,229,52,147,206,170,225,154,167,215,72,177,101,231,118,205,204,80,179,154,214,191,191,118,187,224,161,209,221,128,203,107,215,204,96,212,126,224,234,104,224,79,220,202,150,164,226,147,205,196,182,130,219,81,229,80,177,220,225,191,175,218,155,207,191,207,73,224,104,185,193,206,164,198,172,221,126,182,200,146,212,90,200,140,212,104,199,98,221,51,180,204,169,216,144,171,201,217,146,181,86,154,216,221,194,99,181,223,220,96,186,206,142,211,124,226,157,201,30,147,213,83,206,151,215,141,225,83,187,220,198,175,218,103,213,217,104,188,211,103,217,129,105,232,197,218,157,215,44,193,186,219,153,212,83,222,69,222,81,209,214,213,214,143,204,135,221,217,159,182,205,179,188,141,152,215,105,210,218,59,218,165,115,223,102,205,189,150,215,79,189,82,220,153,208,222,223,211,181,205,85,200,142,218,89,192,128,199,211,161,192,116,212,94,167,181,126,228,86,229,219,109,225,107,222,158,218,117,228,210,93,226,168,192,213,202,78,179,196,130,204,107,122,210,71,165,196,215,74,223,223,208,133,147,221,214,177,212,180,137,204,131,198,158,225,122,211,143,159,182,214,77,194,201,95,214,110,226,77,220]
|
|
|
1 |
+
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118,210,211,170,153,218,199,111,194,218,138,221,220,94,173,203,69,229,48,221,79,176,223,213,103,216,217,166,214,225,93,217,106,221,198,111,226,77,197,201,180,96,140,219,117,209,124,215,63,161,203,225,226,154,224,84,204,227,208,99,212,128,206,156,195,206,168,209,42,218,181,202,172,198,104,138,206,100,216,110,232,113,200,99,223,96,213,72,210,194,160,176,133,209,97,196,169,161,190,203,232,49,158,171,222,188,226,184,166,166,147,222,79,195,97,218,115,222,218,191,120,190,187,218,43,181,157,148,207,61,222,55,220,219,95,232,163,194,181,166,218,150,223,117,216,200,110,194,191,129,206,204,99,227,198,195,177,159,173,221,63,196,113,203,125,185,182,184,183,170,219,199,114,216,125,217,85,221,112,187,224,78,205,224,136,143,222,115,190,229,225,200,84,206,168,176,198,228,71,99,203,107,218,157,223,179,225,63,197,106,210,188,170,185,215,119,222,64,211,110,192,40,220,142,220,215,167,215,170,225,183,132,228,197,106,211,219,217,172,207,113,223,60,194,221,72,204,193,223,205,178,178,110,216,201,197,141,80,200,227,228,76,207,215,95,222,210,144,213,192,110,197,82,216,191,99,227,144,205,92,222,181,226,34,204,177,217,228,120,148,201,203,192,107,170,214,107,168,207,192,133,190,190,192,170,215,80,212,68,160,208,174,226,143,216,87,159,219,225,71,230,212,202,182,224,214,198,161,219,214,206,210,77,200,211,199,167,103,193,56,164,202,235,199,209,75,233,133,216,75,219,218,59,184,219,74,189,150,216,216,91,165,209,188,230,193,85,215,162,202,230,57,231,104,225,208,188,182,206,93,225,59,220,108,164,182,87,198,164,210,221,209,75,188,129,125,213,71,204,223,217,118,175,211,129,205,89,215,203,184,220,172,172,227,82,199,152,202,218,220,60,226,215,194,215,81,144,198,147,218,76,229,52,147,206,170,225,154,167,215,72,177,101,231,118,205,204,80,179,154,214,191,191,118,187,224,161,209,221,128,203,107,215,204,96,212,126,224,234,104,224,79,220,202,150,164,226,147,205,196,182,130,219,81,229,80,177,220,225,191,175,218,155,207,191,207,73,224,104,185,193,206,164,198,172,221,126,182,200,146,212,90,200,140,212,104,199,98,221,51,180,204,169,216,144,171,201,217,146,181,86,154,216,221,194,99,181,223,220,96,186,206,142,211,124,226,157,201,30,147,213,83,206,151,215,141,225,83,187,220,198,175,218,103,213,217,104,188,211,103,217,129,105,232,197,218,157,215,44,193,186,219,153,212,83,222,69,222,81,209,214,213,214,143,204,135,221,217,159,182,205,179,188,141,152,215,105,210,218,59,218,165,115,223,102,205,189,150,215,79,189,82,220,153,208,222,223,211,181,205,85,200,142,218,89,192,128,199,211,161,192,116,212,94,167,181,126,228,86,229,219,109,225,107,222,158,218,117,228,210,93,226,168,192,213,202,78,179,196,130,204,107,122,210,71,165,196,215,74,223,223,208,133,147,221,214,177,212,180,137,204,131,198,158,225,122,211,143,159,182,214,77,194,201,95,214,110,226,77,220,212,206,152]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e54adbdc99eff1e8ea8c867e5a3faa5ec123f526c57bb1eecd340bfdff341d58
|
3 |
+
size 3413144
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2025-01/22/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":16384,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":171.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 7250 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2025-01/22/13.55.25",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":16384,
|
62 |
+
"num_embeddings":1242111,
|
63 |
+
"avg_doclen":171.3256551724,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -7245,5 +7245,8 @@
|
|
7245 |
"7243":"2501.08331",
|
7246 |
"7244":"2501.12375",
|
7247 |
"7245":"2501.12375",
|
7248 |
-
"7246":"2501.10057"
|
|
|
|
|
|
|
7249 |
}
|
|
|
7245 |
"7243":"2501.08331",
|
7246 |
"7244":"2501.12375",
|
7247 |
"7245":"2501.12375",
|
7248 |
+
"7246":"2501.10057",
|
7249 |
+
"7247":"2501.12224",
|
7250 |
+
"7248":"2501.12368",
|
7251 |
+
"7249":"2501.12368"
|
7252 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2025-01\/22\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 16384,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 171.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 7250 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2025-01\/22\/13.55.25",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 16384,
|
62 |
+
"num_embeddings_est": 1242110.984802246,
|
63 |
+
"avg_doclen_est": 171.32565307617188
|
64 |
}
|