hysts-bot commited on
Commit
7886223
·
verified ·
1 Parent(s): d959419

Upload folder using huggingface_hub

Browse files
0.codes.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6fe2c85c189a53fd27e577513c65b5a32b49811e767267eb05fc099d03ea6fd5
3
- size 2646492
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c04b0dd82240fbc8a90c48045d1a3864ed53f8a303b4d0d8517a92562adbef
3
+ size 2647260
0.metadata.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "passage_offset": 0,
3
- "num_passages": 3851,
4
- "num_embeddings": 661330,
5
  "embedding_offset": 0
6
  }
 
1
  {
2
  "passage_offset": 0,
3
+ "num_passages": 3852,
4
+ "num_embeddings": 661535,
5
  "embedding_offset": 0
6
  }
0.residuals.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd59b2e135777915df8646ac6dc9d028a42c28d740b38b65764dda76f637eaa7
3
- size 84651440
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91295b99eaf72e3012b74815deca271027ad75317f5e42384e909ef27a9dbb65
3
+ size 84677680
avg_residual.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6569bc80fd22871a92cb2e9d12e7f5304d55d98009c8889ae291c61cedab95aa
3
  size 1205
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5427315cdee8433d755a8fe320678cd01b1ea6fda093cb5e949a7cc66e71e7ce
3
  size 1205
buckets.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7be09eff6532fe148f59fe824b3b6156c6edda659e46552e3efa500103c32fb6
3
  size 2904
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94209f3093139d76165f13ed4db3761a389bcabdc8fca62407841af351970f59
3
  size 2904
centroids.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6a942b5dd87d12a49d69b69d500abbdbbaa034312470ae8eab75777bbf923d3
3
  size 2098342
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ee0207f06a0e2e69b25e6e83a4e3cb2eff92a3c7687c4c909015927e7219595
3
  size 2098342
collection.json CHANGED
@@ -3849,5 +3849,6 @@
3849
  "It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters, underpinning notions of overparameterized and underparameterized models. In practice, however, we only find solutions accessible via our training procedure, including the optimizer and regularizers, limiting flexibility. Moreover, the exact parameterization of the function class, built into an architecture, shapes its loss surface and impacts the minima we find. In this work, we examine the ability of neural networks to fit data in practice. Our findings indicate that: (1) standard optimizers find minima where the model can only fit training sets with significantly fewer samples than it has parameters; (2) convolutional networks are more parameter-efficient than MLPs and ViTs, even on randomly labeled data; (3) while stochastic training is thought to have a regularizing effect, SGD actually finds minima that fit more training data than full-batch gradient descent; (4) the difference in capacity to fit correctly labeled and incorrectly labeled samples can be predictive of generalization; (5) ReLU activation functions result in finding minima that fit more data despite being designed to avoid vanishing and exploding gradients in deep architectures.",
3850
  "A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-3.5-turbo. We propose a cooperative game dubbed \"HiddenTables\" as a potential resolution to this challenge. In essence, \"HiddenTables\" is played between the code-generating LLM \"Solver\" and the \"Oracle\" which evaluates the ability of the LLM agents to solve Table QA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM's collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of \"HiddenTables\" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens.",
3851
  "Unlike encoder-based models, we have pushed the boundaries of \"HiddenTables\" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset \"PyQTax\" that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns & labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs' deficiency in TableQA tasks, \"HiddenTables\" is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.",
3852
- "The existing fine-tuning paradigm for language models is brittle in knowledge editing scenarios, where the model must incorporate new information without extensive retraining. This brittleness often results in overfitting, reduced performance, and unnatural language generation. To address this, we propose Consistent In-Context Editing (ICE), a novel approach that leverages the model's in-context learning capability to tune toward a contextual distribution rather than a one-hot target. ICE introduces a straightforward optimization framework that includes both a target and a procedure, enhancing the robustness and effectiveness of gradient-based tuning methods. We provide analytical insights into ICE across four critical aspects of knowledge editing: accuracy, locality, generalization, and linguistic quality, showing its advantages. Experimental results across four datasets confirm the effectiveness of ICE and demonstrate its potential for continual editing, ensuring that updated information is incorporated while preserving the integrity of the model."
 
3853
  ]
 
3849
  "It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters, underpinning notions of overparameterized and underparameterized models. In practice, however, we only find solutions accessible via our training procedure, including the optimizer and regularizers, limiting flexibility. Moreover, the exact parameterization of the function class, built into an architecture, shapes its loss surface and impacts the minima we find. In this work, we examine the ability of neural networks to fit data in practice. Our findings indicate that: (1) standard optimizers find minima where the model can only fit training sets with significantly fewer samples than it has parameters; (2) convolutional networks are more parameter-efficient than MLPs and ViTs, even on randomly labeled data; (3) while stochastic training is thought to have a regularizing effect, SGD actually finds minima that fit more training data than full-batch gradient descent; (4) the difference in capacity to fit correctly labeled and incorrectly labeled samples can be predictive of generalization; (5) ReLU activation functions result in finding minima that fit more data despite being designed to avoid vanishing and exploding gradients in deep architectures.",
3850
  "A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-3.5-turbo. We propose a cooperative game dubbed \"HiddenTables\" as a potential resolution to this challenge. In essence, \"HiddenTables\" is played between the code-generating LLM \"Solver\" and the \"Oracle\" which evaluates the ability of the LLM agents to solve Table QA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM's collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of \"HiddenTables\" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens.",
3851
  "Unlike encoder-based models, we have pushed the boundaries of \"HiddenTables\" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset \"PyQTax\" that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns & labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs' deficiency in TableQA tasks, \"HiddenTables\" is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.",
3852
+ "The existing fine-tuning paradigm for language models is brittle in knowledge editing scenarios, where the model must incorporate new information without extensive retraining. This brittleness often results in overfitting, reduced performance, and unnatural language generation. To address this, we propose Consistent In-Context Editing (ICE), a novel approach that leverages the model's in-context learning capability to tune toward a contextual distribution rather than a one-hot target. ICE introduces a straightforward optimization framework that includes both a target and a procedure, enhancing the robustness and effectiveness of gradient-based tuning methods. We provide analytical insights into ICE across four critical aspects of knowledge editing: accuracy, locality, generalization, and linguistic quality, showing its advantages. Experimental results across four datasets confirm the effectiveness of ICE and demonstrate its potential for continual editing, ensuring that updated information is incorporated while preserving the integrity of the model.",
3853
+ "World models simulate future states of the world in response to different actions. They facilitate interactive content creation and provides a foundation for grounded, long-horizon reasoning. Current foundation models do not fully meet the capabilities of general world models: large language models (LLMs) are constrained by their reliance on language modality and their limited understanding of the physical world, while video models lack interactive action control over the world simulations. This paper makes a step towards building a general world model by introducing Pandora, a hybrid autoregressive-diffusion model that simulates world states by generating videos and allows real-time control with free-text actions. Pandora achieves domain generality, video consistency, and controllability through large-scale pretraining and instruction tuning. Crucially, Pandora bypasses the cost of training-from-scratch by integrating a pretrained LLM (7B) and a pretrained video model, requiring only additional lightweight finetuning. We illustrate extensive outputs by Pandora across diverse domains (indoor/outdoor, natural/urban, human/robot, 2D/3D, etc.). The results indicate great potential of building stronger general world models with larger-scale training."
3854
  ]
doclens.0.json CHANGED
@@ -1 +1 @@
1
- [178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160]
 
1
+ [178,205,218,148,184,163,221,185,200,228,172,155,210,222,88,206,226,67,132,212,91,206,104,212,174,205,132,159,230,175,216,198,227,190,212,198,122,213,169,204,92,197,118,191,191,224,69,219,197,72,218,77,175,111,155,217,220,170,231,91,221,217,95,146,177,123,195,205,151,209,207,36,202,200,226,176,232,53,167,199,89,184,213,104,154,153,216,214,215,174,205,72,211,78,221,212,232,223,73,158,220,158,202,222,189,165,205,175,222,132,126,179,219,110,209,158,208,98,176,192,226,34,158,205,126,178,224,182,227,100,152,191,169,195,163,172,208,117,199,217,167,217,157,163,194,217,200,217,23,221,209,146,150,204,200,125,215,232,68,147,212,41,223,178,152,173,210,139,198,182,196,207,95,176,205,223,83,216,85,207,210,52,177,178,230,197,119,226,99,182,210,212,77,138,199,123,179,111,219,69,223,65,204,215,83,197,87,211,132,216,135,178,157,166,216,85,170,195,208,190,175,134,220,200,67,221,211,66,227,222,226,190,209,205,67,207,139,208,127,186,205,168,221,179,223,117,148,221,216,80,189,125,199,202,64,218,77,195,190,221,181,98,143,214,220,97,187,127,219,122,216,87,138,212,194,112,219,227,101,220,100,164,234,109,221,102,223,89,184,205,219,77,188,223,172,171,175,152,175,137,213,197,114,205,221,138,181,174,227,73,147,144,178,147,215,152,182,204,80,210,123,211,121,209,224,224,219,211,163,133,187,148,151,163,221,94,133,213,72,187,224,216,162,154,224,184,118,204,220,154,117,220,162,202,223,195,110,197,151,224,88,182,217,221,214,118,218,118,164,205,97,221,183,154,206,197,74,170,219,103,230,215,192,224,78,184,72,201,227,221,191,181,104,190,224,221,99,123,206,102,228,202,74,195,96,225,176,232,231,96,225,206,61,173,101,190,211,90,213,199,203,184,209,173,160,207,203,99,201,195,132,195,214,148,211,227,192,215,212,127,162,213,114,178,111,207,71,129,182,212,75,176,209,137,213,224,220,70,232,116,228,179,200,184,222,93,202,71,219,123,213,119,204,173,135,118,207,96,216,107,210,202,189,172,211,76,146,195,169,83,227,62,219,223,125,158,202,226,98,214,225,76,156,211,204,110,190,224,200,64,228,223,72,213,102,214,178,219,128,211,127,187,213,160,216,134,202,150,186,201,195,230,199,206,193,205,219,216,84,213,223,192,222,109,187,209,79,153,204,224,72,167,190,183,183,228,133,227,103,197,225,203,205,201,207,213,210,78,138,195,133,195,180,190,185,207,189,100,191,229,198,129,226,135,205,164,226,190,73,200,231,209,216,147,221,228,165,213,209,181,157,222,117,216,58,148,219,92,222,219,63,191,218,186,197,158,172,204,109,204,102,223,229,91,192,217,186,204,144,173,209,95,186,222,225,178,183,222,71,193,182,232,63,227,228,82,209,162,219,183,222,122,212,195,60,219,130,223,69,216,111,198,224,80,223,74,164,148,227,193,216,139,207,198,148,227,199,169,230,225,86,138,165,206,91,213,164,215,229,173,216,210,92,166,205,102,196,78,202,74,187,202,229,191,222,57,206,115,183,94,225,173,198,109,212,224,126,215,44,221,80,196,95,177,218,217,198,109,218,191,221,214,227,71,207,123,206,90,219,218,108,181,214,123,150,204,214,208,225,199,191,192,213,93,217,149,178,199,106,204,80,208,60,131,132,232,218,213,115,202,94,175,227,217,114,200,222,178,180,185,192,193,205,173,226,217,222,197,184,205,211,136,214,221,62,213,89,169,184,135,198,98,216,225,71,230,133,213,154,216,189,122,224,108,204,88,207,227,93,191,204,214,66,153,219,209,203,218,237,229,222,148,174,218,107,214,169,223,216,173,220,148,199,188,175,203,142,188,210,98,167,174,224,103,156,97,220,111,216,70,130,221,216,115,166,164,162,210,216,69,173,203,77,216,175,172,210,98,199,213,88,221,82,184,131,201,220,133,211,116,156,219,213,227,128,221,237,172,217,64,180,221,70,169,220,216,134,215,177,190,197,229,221,226,74,189,190,219,86,222,74,213,106,184,182,205,221,229,143,201,198,162,209,128,221,209,60,216,146,228,106,215,154,214,202,82,194,141,168,217,213,80,140,114,220,149,229,215,150,211,170,199,109,218,108,206,125,204,164,183,148,193,153,188,143,160,199,210,124,225,105,178,75,222,112,205,75,199,83,222,215,158,104,205,70,215,223,158,220,99,124,194,91,219,65,209,149,234,188,222,218,200,66,208,101,208,188,201,207,198,160,205,219,118,170,195,141,128,182,189,211,51,179,216,112,152,196,224,80,223,177,218,127,186,113,151,117,159,184,200,231,212,134,222,68,216,204,90,151,202,158,173,146,144,209,222,89,171,188,206,215,117,191,223,80,215,68,151,159,210,74,208,105,204,105,174,228,67,147,202,214,41,222,163,183,142,227,188,200,208,132,157,191,195,94,166,201,155,214,132,185,195,165,214,219,156,217,100,147,220,105,220,223,225,117,176,166,207,134,218,202,172,183,217,76,229,139,217,87,208,181,214,169,154,199,231,208,200,157,213,222,49,207,191,139,219,218,82,122,154,137,190,176,192,180,231,80,208,136,185,112,189,187,192,208,219,110,208,102,186,225,220,218,235,214,96,133,198,199,95,152,83,219,190,124,148,222,213,207,145,217,168,200,32,208,198,171,205,218,104,218,136,230,77,139,178,212,214,129,211,233,93,221,95,155,153,221,151,201,108,193,216,172,208,72,177,217,208,225,60,81,172,234,180,146,184,180,199,222,224,182,106,183,105,221,208,81,221,137,211,44,198,224,205,82,187,164,147,213,163,229,192,219,218,190,228,221,218,116,231,97,182,126,213,193,173,207,103,207,122,161,156,193,153,192,92,198,155,223,224,106,223,170,177,225,40,206,203,221,152,208,116,203,105,197,221,65,226,111,224,215,215,142,154,211,84,184,135,169,212,213,76,229,225,130,207,85,209,177,116,140,150,229,209,105,164,186,214,219,62,148,203,230,118,207,216,217,211,114,201,134,217,87,197,124,209,186,184,164,189,163,212,85,219,106,209,220,168,221,212,112,189,183,229,200,192,106,224,114,220,95,141,223,222,219,226,79,187,202,212,222,193,128,223,209,160,178,197,222,111,152,114,164,206,179,189,183,122,212,149,150,130,214,115,195,118,204,208,120,195,163,159,220,125,222,174,211,144,140,220,80,173,204,87,215,149,227,97,229,221,119,213,139,212,82,215,68,213,136,186,168,202,85,213,93,168,218,63,222,121,213,90,218,94,197,221,182,220,112,224,221,83,215,194,138,181,197,221,91,186,194,99,179,213,210,76,188,214,216,79,213,92,220,94,201,108,213,131,221,153,219,74,159,172,218,217,219,108,209,35,217,112,157,206,148,211,126,214,107,191,105,164,224,220,126,204,201,211,119,203,129,165,205,130,218,137,211,178,204,215,206,119,209,75,193,182,115,178,207,217,220,184,199,167,189,230,140,208,167,173,195,136,220,205,64,186,159,194,75,213,189,110,189,208,120,176,182,162,196,183,137,134,198,172,193,184,172,212,189,214,200,95,167,199,110,195,116,180,204,66,217,126,222,226,193,166,143,121,218,224,196,140,226,142,206,66,214,140,218,144,201,221,152,204,154,221,101,225,69,216,212,128,181,200,180,206,136,193,226,226,219,141,168,202,209,105,178,128,208,197,145,163,218,124,220,147,220,156,211,69,212,226,132,223,165,211,110,229,194,193,204,208,90,218,106,152,215,134,180,182,204,211,80,211,108,204,102,208,102,192,94,191,206,203,140,165,213,197,105,186,186,210,62,208,165,213,174,186,115,211,164,193,128,201,169,217,167,217,174,222,167,129,170,217,218,182,159,113,208,85,219,126,219,89,172,213,212,69,205,135,124,205,67,208,52,186,160,225,125,190,65,227,168,180,166,151,194,205,88,138,204,110,124,223,80,193,106,179,183,163,220,148,205,218,200,221,198,202,190,213,87,227,239,81,213,115,211,219,201,204,105,216,83,210,95,170,219,197,86,228,86,209,125,231,83,198,194,171,144,183,222,216,216,226,204,109,216,115,180,227,116,207,223,84,190,215,117,212,79,214,230,218,134,208,92,209,99,181,220,61,212,85,199,185,174,171,220,221,57,146,224,214,81,183,218,152,163,193,72,203,111,130,222,204,217,229,209,201,189,220,213,72,192,214,221,157,197,124,209,100,223,162,223,73,85,221,68,210,46,205,76,118,160,180,200,85,218,34,196,170,204,88,168,224,71,188,207,166,181,210,101,148,215,76,219,217,104,199,180,210,208,69,201,202,216,224,89,206,88,128,125,196,203,106,183,182,84,228,200,120,171,166,153,215,210,82,210,65,163,131,213,83,180,205,92,152,228,99,212,212,209,94,215,218,95,206,179,236,219,204,102,196,110,160,218,140,228,102,218,177,172,193,95,209,215,203,220,78,213,191,189,168,204,218,192,89,213,223,208,230,168,202,169,222,56,155,203,73,197,156,208,222,127,212,223,160,217,201,223,205,217,100,221,208,143,218,22,208,224,86,209,90,220,144,182,139,219,79,194,183,225,216,209,190,102,221,220,203,152,215,113,230,106,212,221,106,197,111,185,211,83,162,200,208,219,124,210,92,161,216,221,79,208,166,211,142,179,222,197,79,185,226,182,193,195,170,202,113,192,231,228,197,180,152,223,155,215,97,213,85,205,145,200,89,209,201,139,217,163,133,206,174,112,205,213,217,123,201,136,132,221,206,105,200,139,183,160,215,134,221,208,181,208,101,210,225,116,183,217,80,186,120,162,194,201,97,188,209,174,122,229,214,205,120,218,228,228,83,134,201,119,171,210,55,227,107,225,64,174,203,130,213,226,95,206,157,139,154,171,139,224,219,154,190,206,218,217,221,86,135,217,213,183,118,187,186,128,212,79,184,186,156,188,134,216,172,155,195,210,176,223,125,128,217,213,214,217,94,189,192,133,167,85,187,217,60,158,221,122,217,117,224,95,206,89,199,74,205,210,70,209,83,196,77,169,188,228,114,188,105,229,182,174,223,59,181,205,127,225,222,128,190,219,112,197,115,222,205,115,184,214,210,238,196,212,85,207,86,183,215,178,187,112,194,176,212,90,217,80,164,179,187,138,221,214,203,96,227,198,82,209,207,96,208,76,228,224,205,207,186,178,221,224,189,143,229,182,229,132,213,201,186,218,67,222,221,83,216,44,220,68,214,103,137,210,48,210,211,88,222,169,225,155,181,200,207,62,219,152,179,130,215,86,183,90,202,164,179,205,128,219,224,148,190,117,213,221,184,175,146,223,216,82,230,92,201,231,218,172,207,209,189,150,216,142,226,46,197,219,92,228,168,216,111,221,204,216,190,180,189,206,108,204,101,224,74,223,65,181,142,211,203,122,220,214,66,179,185,222,116,120,209,222,101,172,209,232,56,223,177,212,107,191,168,193,193,105,212,105,163,209,191,117,194,170,211,190,121,221,90,161,207,67,226,90,216,60,171,219,89,220,184,214,194,144,182,214,208,196,133,226,214,77,190,215,63,115,208,92,227,204,68,197,77,178,188,204,216,202,194,152,175,181,208,131,196,223,128,177,116,207,102,220,121,216,199,202,207,74,211,196,217,177,214,218,221,93,219,192,215,143,139,183,226,83,102,219,211,100,194,47,119,204,160,143,180,149,183,226,96,172,212,186,198,207,182,207,221,164,146,224,61,200,140,147,196,214,60,226,215,111,216,186,180,161,234,196,124,208,214,221,189,178,112,168,208,136,169,181,202,124,201,74,211,143,192,175,119,163,202,67,191,172,148,179,223,122,217,117,180,190,186,209,72,193,182,218,80,156,138,201,202,218,208,149,190,109,224,64,192,114,219,199,210,208,97,232,205,197,188,189,87,213,152,196,164,131,225,94,219,205,163,191,172,196,189,206,110,201,73,191,122,210,173,208,73,221,136,222,185,224,74,213,86,185,221,170,210,69,165,156,210,102,211,210,221,197,209,154,127,212,180,208,139,231,207,50,166,96,150,158,206,228,214,202,95,162,220,191,136,217,54,155,201,140,179,191,91,213,220,74,145,216,232,45,208,217,209,182,160,182,100,221,155,219,227,160,180,209,147,174,212,67,209,82,213,148,208,51,176,88,210,71,117,174,218,82,211,188,170,210,186,136,176,220,157,189,167,190,212,160,212,135,201,219,49,162,165,209,117,175,213,152,176,220,221,124,150,204,220,73,228,194,218,57,195,173,159,173,175,206,176,229,79,164,201,203,152,214,116,137,219,66,222,214,80,175,202,90,225,113,219,206,78,190,89,214,50,209,154,188,227,194,157,195,74,186,206,130,198,73,212,60,204,122,222,99,205,196,229,213,83,230,108,171,126,192,104,216,207,117,217,197,214,79,207,110,221,79,217,144,206,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205]
ivf.pid.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d17a0553ff73627ea3db88b85ab551a10a0e89742427ba3ebc13030c406c7b0
3
- size 1738648
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f40b9ea9f22f3bd126583c86edc763142b29b1194c10fd9fc57fe13e646aff9
3
+ size 1737368
metadata.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
- "list with 3851 elements starting with...",
41
  [
42
  "Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
43
  "Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
@@ -50,7 +50,7 @@
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
- "name":"2024-06/18/14.54.20",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
@@ -59,8 +59,8 @@
59
  },
60
  "num_chunks":1,
61
  "num_partitions":8192,
62
- "num_embeddings":661330,
63
- "avg_doclen":171.7294209296,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
 
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
+ "list with 3852 elements starting with...",
41
  [
42
  "Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
43
  "Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
 
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
+ "name":"2024-06/18/15.56.12",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
 
59
  },
60
  "num_chunks":1,
61
  "num_partitions":8192,
62
+ "num_embeddings":661535,
63
+ "avg_doclen":171.7380581516,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
pid_docid_map.json CHANGED
@@ -3849,5 +3849,6 @@
3849
  "3847":"2406.11463",
3850
  "3848":"2406.10803",
3851
  "3849":"2406.10803",
3852
- "3850":"2406.11194"
 
3853
  }
 
3849
  "3847":"2406.11463",
3850
  "3848":"2406.10803",
3851
  "3849":"2406.10803",
3852
+ "3850":"2406.11194",
3853
+ "3851":"2406.09455"
3854
  }
plan.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
- "list with 3851 elements starting with...",
41
  [
42
  "Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
43
  "Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
@@ -50,7 +50,7 @@
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
- "name": "2024-06\/18\/14.54.20",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
@@ -59,6 +59,6 @@
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 8192,
62
- "num_embeddings_est": 661329.9806060791,
63
- "avg_doclen_est": 171.7294158935547
64
  }
 
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
+ "list with 3852 elements starting with...",
41
  [
42
  "Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the self-supervised information-theoretic learning problem. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks.",
43
  "Pre-trained large language models (LLMs) capture procedural knowledge about the world. Recent work has leveraged LLM's ability to generate abstract plans to simplify challenging control tasks, either by action scoring, or action modeling (fine-tuning). However, the transformer architecture inherits several constraints that make it difficult for the LLM to directly serve as the agent: e.g. limited input lengths, fine-tuning inefficiency, bias from pre-training, and incompatibility with non-text environments. To maintain compatibility with a low-level trainable actor, we propose to instead use the knowledge in LLMs to simplify the control problem, rather than solving it. We propose the Plan, Eliminate, and Track (PET) framework. The Plan module translates a task description into a list of high-level sub-tasks. The Eliminate module masks out irrelevant objects and receptacles from the observation for the current sub-task. Finally, the Track module determines whether the agent has accomplished each sub-task. On the AlfWorld instruction following benchmark, the PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.",
 
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
+ "name": "2024-06\/18\/15.56.12",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
 
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 8192,
62
+ "num_embeddings_est": 661534.977722168,
63
+ "avg_doclen_est": 171.73805236816406
64
  }