Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- avg_residual.pt +1 -1
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +4 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +4 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f23a578437a83c45d2fcc3715926557e4550b198de6ecd966b2e019bdbeb864
|
3 |
+
size 3926044
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 5729,
|
4 |
+
"num_embeddings": 981218,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bf1c9e8767194868ff0a305cab1b21bd3c3395a7a0cf2a28b9b44d2d44a8c0
|
3 |
+
size 62799152
|
avg_residual.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6560645fb7b6f6ca7e272f744da544c743dc242f29694c3d0fb31fd8c0a9ef76
|
3 |
size 1205
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3062c9cc6ed8ec05e22cfc75191ebf24eb030d59e7e310ebbed4102d9b3374c6
|
3 |
size 1432
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2098342
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d32c0ef05a1ba7f609597aaa2195f48da541834a9c5eb6452c667150a6681f0e
|
3 |
size 2098342
|
collection.json
CHANGED
@@ -5724,5 +5724,8 @@
|
|
5724 |
"As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \\( O(n^3) \\) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \\( L_{1,2}-norm \\) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \\( O(n^2) \\) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia.",
|
5725 |
"This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.",
|
5726 |
"Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide, necessitating robust benchmarks to ensure their safety, efficacy, and fairness. Multiple-choice question and answer (QA) datasets derived from national medical examinations have long served as valuable evaluation tools, but existing datasets are largely text-only and available in a limited subset of languages and countries. To address these challenges, we present WorldMedQA-V, an updated multilingual, multimodal benchmarking dataset designed to evaluate VLMs in healthcare. WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries (Brazil, Israel, Japan, and Spain), covering original languages and validated English translations by native clinicians, respectively. Baseline performance for common open- and closed-source models are provided in the local language and English translations, and with and without images provided to the model. The WorldMedQA-V benchmark aims to better match AI systems to the diverse healthcare environments in which they are deployed, fostering more equitable, effective, and representative applications.",
|
5727 |
-
"Consistency models (CMs) are a powerful class of diffusion-based generative models optimized for fast sampling. Most existing CMs are trained using discretized timesteps, which introduce additional hyperparameters and are prone to discretization errors. While continuous-time formulations can mitigate these issues, their success has been limited by training instability. To address this, we propose a simplified theoretical framework that unifies previous parameterizations of diffusion models and CMs, identifying the root causes of instability. Based on this analysis, we introduce key improvements in diffusion process parameterization, network architecture, and training objectives. These changes enable us to train continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on ImageNet 512x512. Our proposed training algorithm, using only two sampling steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64x64, and 1.88 on ImageNet 512x512, narrowing the gap in FID scores with the best existing diffusion models to within 10%."
|
|
|
|
|
|
|
5728 |
]
|
|
|
5724 |
"As large language models (LLMs) continue to evolve, efficient evaluation metrics are vital for assessing their ability to compress information and reduce redundancy. While traditional metrics like Matrix Entropy offer valuable insights, they are computationally intensive for large-scale models due to their \\( O(n^3) \\) time complexity with Singular Value Decomposition (SVD). To mitigate this issue, we introduce the Matrix Nuclear-Norm, which not only serves as a metric to quantify the data compression proficiency of LLM but also provides a convex approximation of matrix rank to capture both predictive discriminability and diversity. By employing the \\( L_{1,2}-norm \\) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities. This approach reduces the time complexity to \\( O(n^2) \\) and eliminates the need for SVD computation. Consequently, the Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B. This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia.",
|
5725 |
"This performance gap becomes more pronounced with larger models, as validated in tests with other models like Pythia. Additionally, evaluations on benchmarks and model responses confirm that our proposed Matrix Nuclear-Norm is a reliable, scalable, and efficient tool for assessing LLMs' performance, striking a balance between accuracy and computational efficiency. The code is available at https://github.com/MLGroupJLU/MatrixNuclearNorm.",
|
5726 |
"Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide, necessitating robust benchmarks to ensure their safety, efficacy, and fairness. Multiple-choice question and answer (QA) datasets derived from national medical examinations have long served as valuable evaluation tools, but existing datasets are largely text-only and available in a limited subset of languages and countries. To address these challenges, we present WorldMedQA-V, an updated multilingual, multimodal benchmarking dataset designed to evaluate VLMs in healthcare. WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries (Brazil, Israel, Japan, and Spain), covering original languages and validated English translations by native clinicians, respectively. Baseline performance for common open- and closed-source models are provided in the local language and English translations, and with and without images provided to the model. The WorldMedQA-V benchmark aims to better match AI systems to the diverse healthcare environments in which they are deployed, fostering more equitable, effective, and representative applications.",
|
5727 |
+
"Consistency models (CMs) are a powerful class of diffusion-based generative models optimized for fast sampling. Most existing CMs are trained using discretized timesteps, which introduce additional hyperparameters and are prone to discretization errors. While continuous-time formulations can mitigate these issues, their success has been limited by training instability. To address this, we propose a simplified theoretical framework that unifies previous parameterizations of diffusion models and CMs, identifying the root causes of instability. Based on this analysis, we introduce key improvements in diffusion process parameterization, network architecture, and training objectives. These changes enable us to train continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on ImageNet 512x512. Our proposed training algorithm, using only two sampling steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64x64, and 1.88 on ImageNet 512x512, narrowing the gap in FID scores with the best existing diffusion models to within 10%.",
|
5728 |
+
"This paper introduces a new learning paradigm termed Neural Metamorphosis (NeuMeta), which aims to build self-morphable neural networks. Contrary to crafting separate models for different architectures or sizes, NeuMeta directly learns the continuous weight manifold of neural networks. Once trained, we can sample weights for any-sized network directly from the manifold, even for previously unseen configurations, without retraining. To achieve this ambitious goal, NeuMeta trains neural implicit functions as hypernetworks. They accept coordinates within the model space as input, and generate corresponding weight values on the manifold. In other words, the implicit function is learned in a way, that the predicted weights is well-performed across various models sizes. In training those models, we notice that, the final performance closely relates on smoothness of the learned manifold. In pursuit of enhancing this smoothness, we employ two strategies. First, we permute weight matrices to achieve intra-model smoothness, by solving the Shortest Hamiltonian Path problem. Besides, we add a noise on the input coordinates when training the implicit function, ensuring models with various sizes shows consistent outputs. As such, NeuMeta shows promising results in synthesizing parameters for various network configurations.",
|
5729 |
+
"Besides, we add a noise on the input coordinates when training the implicit function, ensuring models with various sizes shows consistent outputs. As such, NeuMeta shows promising results in synthesizing parameters for various network configurations. Our extensive tests in image classification, semantic segmentation, and image generation reveal that NeuMeta sustains full-size performance even at a 75% compression rate.",
|
5730 |
+
"Large language models (LLMs) trained with Reinforcement Learning from Human Feedback (RLHF) have demonstrated remarkable capabilities, but their underlying reward functions and decision-making processes remain opaque. This paper introduces a novel approach to interpreting LLMs by applying inverse reinforcement learning (IRL) to recover their implicit reward functions. We conduct experiments on toxicity-aligned LLMs of varying sizes, extracting reward models that achieve up to 80.40% accuracy in predicting human preferences. Our analysis reveals key insights into the non-identifiability of reward functions, the relationship between model size and interpretability, and potential pitfalls in the RLHF process. We demonstrate that IRL-derived reward models can be used to fine-tune new LLMs, resulting in comparable or improved performance on toxicity benchmarks. This work provides a new lens for understanding and improving LLM alignment, with implications for the responsible development and deployment of these powerful systems."
|
5731 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195]
|
|
|
1 |
+
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4df0fc33d7ed4e3301c7353072e7d658f78f6498f27566b5a5e6fceb73cb1805
|
3 |
+
size 2618584
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2024-10/17/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":171.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 5729 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2024-10/17/12.53.55",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":8192,
|
62 |
+
"num_embeddings":981218,
|
63 |
+
"avg_doclen":171.27212428,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -5724,5 +5724,8 @@
|
|
5724 |
"5722":"2410.10672",
|
5725 |
"5723":"2410.10672",
|
5726 |
"5724":"2410.12722",
|
5727 |
-
"5725":"2410.11081"
|
|
|
|
|
|
|
5728 |
}
|
|
|
5724 |
"5722":"2410.10672",
|
5725 |
"5723":"2410.10672",
|
5726 |
"5724":"2410.12722",
|
5727 |
+
"5725":"2410.11081",
|
5728 |
+
"5726":"2410.11878",
|
5729 |
+
"5727":"2410.11878",
|
5730 |
+
"5728":"2410.12491"
|
5731 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2024-10\/17\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 171.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 5729 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2024-10\/17\/12.53.55",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 8192,
|
62 |
+
"num_embeddings_est": 981218.0055236816,
|
63 |
+
"avg_doclen_est": 171.27212524414062
|
64 |
}
|