hysts-bot commited on
Commit
ac08291
·
verified ·
1 Parent(s): b9ca1b9

Upload folder using huggingface_hub

Browse files
0.codes.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3cfb32f6c8a6d7c31ab03bb041133cdedbaafca8ed6b054fd43a80425ec8067
3
- size 4089948
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b762be730a806b3a6cc9aed910c6779c3a8c032bb47a0e03b9ce08e92e2eadca
3
+ size 4093404
0.metadata.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "passage_offset": 0,
3
- "num_passages": 5968,
4
- "num_embeddings": 1022205,
5
  "embedding_offset": 0
6
  }
 
1
  {
2
  "passage_offset": 0,
3
+ "num_passages": 5973,
4
+ "num_embeddings": 1023060,
5
  "embedding_offset": 0
6
  }
0.residuals.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cda919667219569c77dd2793a0f3af8fd0be56d0d90c42d346fdac1449279e7e
3
- size 65422320
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbc9df56b6109bd3c5e47b7e41462a91d6613f64b34cd1e5317e88d85f197aa1
3
+ size 65477040
avg_residual.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:29f2eef965a59b050aeb83c37f166091a6431d5d1766f1513ce2d2eaff766902
3
  size 1205
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac583a136f119876948a4bcab8c87c1d60dd0cc3f35b705b3b5eb551afafd1a2
3
  size 1205
buckets.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1b0dfff6ae3159ce97dc064ce0623f735a035f19d10ea6b0a11ce7c330dd97f
3
  size 1432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b67a912fd7c8c70101e2b83e371887aea77f953f2523d9340a687a6d7772a48d
3
  size 1432
centroids.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:00846c6c1edcc7860e7048c72aeb2bb7cd77511d440caa77743136a2ca748c19
3
  size 2098342
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31494511611024629e5bc31ef48b81dcd2ba301a341ac11804611e1b5c456529
3
  size 2098342
collection.json CHANGED
@@ -5966,5 +5966,10 @@
5966
  "Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).",
5967
  "Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration.",
5968
  "Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.",
5969
- "We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models."
 
 
 
 
 
5970
  ]
 
5966
  "Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).",
5967
  "Image restoration (IR) in real-world scenarios presents significant challenges due to the lack of high-capacity models and comprehensive datasets. To tackle these issues, we present a dual strategy: GenIR, an innovative data curation pipeline, and DreamClear, a cutting-edge Diffusion Transformer (DiT)-based image restoration model. GenIR, our pioneering contribution, is a dual-prompt learning pipeline that overcomes the limitations of existing datasets, which typically comprise only a few thousand images and thus offer limited generalizability for larger models. GenIR streamlines the process into three stages: image-text pair construction, dual-prompt based fine-tuning, and data generation & filtering. This approach circumvents the laborious data crawling process, ensuring copyright compliance and providing a cost-effective, privacy-safe solution for IR dataset construction. The result is a large-scale dataset of one million high-quality images. Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration.",
5968
  "Our second contribution, DreamClear, is a DiT-based image restoration model. It utilizes the generative priors of text-to-image (T2I) diffusion models and the robust perceptual capabilities of multi-modal large language models (MLLMs) to achieve photorealistic restoration. To boost the model's adaptability to diverse real-world degradations, we introduce the Mixture of Adaptive Modulator (MoAM). It employs token-wise degradation priors to dynamically integrate various restoration experts, thereby expanding the range of degradations the model can address. Our exhaustive experiments confirm DreamClear's superior performance, underlining the efficacy of our dual strategy for real-world image restoration. Code and pre-trained models will be available at: https://github.com/shallowdream204/DreamClear.",
5969
+ "We introduce MarDini, a new family of video diffusion models that integrate the advantages of masked auto-regression (MAR) into a unified diffusion model (DM) framework. Here, MAR handles temporal planning, while DM focuses on spatial generation in an asymmetric network design: i) a MAR-based planning model containing most of the parameters generates planning signals for each masked frame using low-resolution input; ii) a lightweight generation model uses these signals to produce high-resolution frames via diffusion de-noising. MarDini's MAR enables video generation conditioned on any number of masked frames at any frame positions: a single model can handle video interpolation (e.g., masking middle frames), image-to-video generation (e.g., masking from the second frame onward), and video expansion (e.g., masking half the frames). The efficient design allocates most of the computational resources to the low-resolution planning model, making computationally expensive but important spatio-temporal attention feasible at scale. MarDini sets a new state-of-the-art for video interpolation; meanwhile, within few inference steps, it efficiently generates videos on par with those of much more expensive advanced image-to-video models.",
5970
+ "FP8 training has emerged as a promising method for improving training efficiency. Existing frameworks accelerate training by applying FP8 computation to linear layers while leaving optimizer states and activations in higher precision, which fails to fully optimize memory usage. This paper introduces COAT (Compressing Optimizer States and Activations for FP8 Training), a novel FP8 training framework designed to significantly reduce memory footprint when training large models. COAT addresses current limitations through two key innovations: (1) Dynamic Range Expansion, which aligns optimizer state distributions more closely with the FP8 representation range, thereby reducing quantization error, and (2) Mixed-Granularity Activation Quantization, which optimizes activation memory using a combination of per-tensor and per-group quantization strategies. Experiments demonstrate that COAT effectively reduces end-to-end training memory footprint by 1.54x compared to BF16 while achieving nearly lossless performance across various tasks, such as Large Language Model pretraining and fine-tuning and Vision Language Model training. COAT also achieves a 1.43x end-to-end training speedup compared to BF16, performing on par with or surpassing TransformerEngine's speedup.",
5971
+ "COAT also achieves a 1.43x end-to-end training speedup compared to BF16, performing on par with or surpassing TransformerEngine's speedup. COAT enables efficient full-parameter training of large models on fewer GPUs, and facilitates doubling the batch size in distributed training settings, providing a practical solution for scaling large-scale model training. The code is available at https://github.com/NVlabs/COAT.",
5972
+ "We introduce a novel training-free spatial grounding technique for text-to-image generation using Diffusion Transformers (DiT). Spatial grounding with bounding boxes has gained attention for its simplicity and versatility, allowing for enhanced user control in image generation. However, prior training-free approaches often rely on updating the noisy image during the reverse diffusion process via backpropagation from custom loss functions, which frequently struggle to provide precise control over individual bounding boxes. In this work, we leverage the flexibility of the Transformer architecture, demonstrating that DiT can generate noisy patches corresponding to each bounding box, fully encoding the target object and allowing for fine-grained control over each region. Our approach builds on an intriguing property of DiT, which we refer to as semantic sharing. Due to semantic sharing, when a smaller patch is jointly denoised alongside a generatable-size image, the two become \"semantic clones\". Each patch is denoised in its own branch of the generation process and then transplanted into the corresponding region of the original noisy image at each timestep, resulting in robust spatial grounding for each bounding box. In our experiments on the HRS and DrawBench benchmarks, we achieve state-of-the-art performance compared to previous training-free spatial grounding approaches.",
5973
+ "This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making, particularly focusing on complex medical cases where even experienced physicians seek peer consultation. The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses. A key finding was the high overall score possible in the latest foundational models (>80% accuracy compared to consensus opinion), which exceeds most human metrics reported on the same clinical cases (450 pages of patient profiles, test results). The study rates the LLMs' performance disparity between straightforward cases (>81% accuracy) and complex scenarios (43% accuracy), particularly in these cases generating substantial debate among human physicians. The research demonstrates that LLMs may be valuable as generators of comprehensive differential diagnoses rather than as primary diagnostic tools, potentially helping to counter cognitive biases in clinical decision-making, reduce cognitive loads, and thus remove some sources of medical error. The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze.",
5974
+ "The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze. In addition to the original contributions of empirical evidence for LLM accuracy, the research aggregated a novel benchmark for others to score highly contested question and answer reliability between both LLMs and disagreeing human practitioners. These results suggest that the optimal deployment of LLMs in professional settings may differ substantially from current approaches that emphasize automation of routine tasks."
5975
  ]
doclens.0.json CHANGED
@@ -1 +1 @@
1
- [206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206]
 
1
+ [206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106]
ivf.pid.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:028668a6413cf9722bdf44e499eb99c0bf42193e2f616806890bc707ae8be781
3
- size 2724760
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e45a1b840a1640fcec124a2e7b75bfee8344adcead9ca4644aa17f5705708068
3
+ size 2728856
metadata.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
- "list with 5968 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
@@ -50,7 +50,7 @@
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
- "name":"2024-10/29/06.02.26",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
@@ -59,8 +59,8 @@
59
  },
60
  "num_chunks":1,
61
  "num_partitions":8192,
62
- "num_embeddings":1022205,
63
- "avg_doclen":171.2809986595,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
 
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
+ "list with 5973 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
 
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
+ "name":"2024-10/29/07.00.09",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
 
59
  },
60
  "num_chunks":1,
61
  "num_partitions":8192,
62
+ "num_embeddings":1023060,
63
+ "avg_doclen":171.2807634355,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
pid_docid_map.json CHANGED
@@ -5966,5 +5966,10 @@
5966
  "5964":"2410.21264",
5967
  "5965":"2410.18666",
5968
  "5966":"2410.18666",
5969
- "5967":"2410.20280"
 
 
 
 
 
5970
  }
 
5966
  "5964":"2410.21264",
5967
  "5965":"2410.18666",
5968
  "5966":"2410.18666",
5969
+ "5967":"2410.20280",
5970
+ "5968":"2410.19313",
5971
+ "5969":"2410.19313",
5972
+ "5970":"2410.20474",
5973
+ "5971":"2410.20636",
5974
+ "5972":"2410.20636"
5975
  }
plan.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
- "list with 5968 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
@@ -50,7 +50,7 @@
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
- "name": "2024-10\/29\/06.02.26",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
@@ -59,6 +59,6 @@
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 8192,
62
- "num_embeddings_est": 1022205.04296875,
63
- "avg_doclen_est": 171.281005859375
64
  }
 
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
+ "list with 5973 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
 
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
+ "name": "2024-10\/29\/07.00.09",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
 
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 8192,
62
+ "num_embeddings_est": 1023059.9897460938,
63
+ "avg_doclen_est": 171.28076171875
64
  }