hysts-bot commited on
Commit
cccb3fe
·
verified ·
1 Parent(s): f59b4ab

Upload folder using huggingface_hub

Browse files
0.codes.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7440a7192c83473791deb004f9515cc156f2b2ff07563d84ffbe534cdc7cb67d
3
- size 4777372
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60c9f3d9aa404ca7b7ba0710b561fdc6d1514f4b01349e282143043c915c2962
3
+ size 4780380
0.metadata.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "passage_offset": 0,
3
- "num_passages": 6971,
4
- "num_embeddings": 1194052,
5
  "embedding_offset": 0
6
  }
 
1
  {
2
  "passage_offset": 0,
3
+ "num_passages": 6975,
4
+ "num_embeddings": 1194807,
5
  "embedding_offset": 0
6
  }
0.residuals.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b66188bcfc6fe089b79336cce885e712027fcedc016e229e553af2b8cd0e79b
3
- size 76420528
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:056f319211be6a5426b428bbd1639c42f686303d037ff6ce08d900444e798c27
3
+ size 76468848
avg_residual.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0b28fbbe93aebb32bffa9b8e546de9f215a1a2520699892025a5bbd43ae4352
3
  size 1205
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acdf7f05340e5371e66e354fa7f947e98c985aa2d91e693404cdc10c2169b60c
3
  size 1205
buckets.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb07de4614c0981c050a7f0c33d2c492439f37f85a125f99f5559be8e43bf613
3
  size 1432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc8701fc1a86ecfb2a3529d35e7ab042d1c6287ab213bdb73d0f7d33b9dab34
3
  size 1432
centroids.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:722fd1e6e5e29bae87556f8afcf92333fceb5831067b1cfc47e727aac91f2edd
3
  size 4195494
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecbc8da9e39e7a3539ec366393e8321bb0c15121b27eb43d8a3ada9ad6f9ff9a
3
  size 4195494
collection.json CHANGED
@@ -6969,5 +6969,9 @@
6969
  "We instantiated this idea on Wikidata and introduced CypherBench, the first benchmark with 11 large-scale, multi-domain property graphs with 7.8 million entities and over 10,000 questions. To achieve this, we tackled several key challenges, including developing an RDF-to-property graph conversion engine, creating a systematic pipeline for text-to-Cypher task generation, and designing new evaluation metrics.",
6970
  "Multimodal large language models (MLLMs) hold significant potential in the medical field, but their capabilities are often limited by insufficient data in certain medical domains, highlighting the need for understanding what kinds of images can be used by MLLMs for generalization. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks, providing limited guidance on selecting datasets to enhance specific tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG)-the ability of models to understand novel combinations by recombining learned elements-as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG. Therefore, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability.",
6971
  "Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability. Med-MAT is publicly available at https://github.com/FreedomIntelligence/Med-MAT.",
6972
- "As a verified need, consistent editing across in-the-wild images remains a technical challenge arising from various unmanageable factors, like object poses, lighting conditions, and photography environments. Edicho steps in with a training-free solution based on diffusion models, featuring a fundamental design principle of using explicit image correspondence to direct editing. Specifically, the key components include an attention manipulation module and a carefully refined classifier-free guidance (CFG) denoising strategy, both of which take into account the pre-estimated correspondence. Such an inference-time algorithm enjoys a plug-and-play nature and is compatible to most diffusion-based editing methods, such as ControlNet and BrushNet. Extensive results demonstrate the efficacy of Edicho in consistent cross-image editing under diverse settings. We will release the code to facilitate future studies."
 
 
 
 
6973
  ]
 
6969
  "We instantiated this idea on Wikidata and introduced CypherBench, the first benchmark with 11 large-scale, multi-domain property graphs with 7.8 million entities and over 10,000 questions. To achieve this, we tackled several key challenges, including developing an RDF-to-property graph conversion engine, creating a systematic pipeline for text-to-Cypher task generation, and designing new evaluation metrics.",
6970
  "Multimodal large language models (MLLMs) hold significant potential in the medical field, but their capabilities are often limited by insufficient data in certain medical domains, highlighting the need for understanding what kinds of images can be used by MLLMs for generalization. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks, providing limited guidance on selecting datasets to enhance specific tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG)-the ability of models to understand novel combinations by recombining learned elements-as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG. Therefore, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability.",
6971
  "Additionally, further studies demonstrated that CG effectively supports datasets with limited data and delivers consistent performance across different backbones, highlighting its versatility and broad applicability. Med-MAT is publicly available at https://github.com/FreedomIntelligence/Med-MAT.",
6972
+ "As a verified need, consistent editing across in-the-wild images remains a technical challenge arising from various unmanageable factors, like object poses, lighting conditions, and photography environments. Edicho steps in with a training-free solution based on diffusion models, featuring a fundamental design principle of using explicit image correspondence to direct editing. Specifically, the key components include an attention manipulation module and a carefully refined classifier-free guidance (CFG) denoising strategy, both of which take into account the pre-estimated correspondence. Such an inference-time algorithm enjoys a plug-and-play nature and is compatible to most diffusion-based editing methods, such as ControlNet and BrushNet. Extensive results demonstrate the efficacy of Edicho in consistent cross-image editing under diverse settings. We will release the code to facilitate future studies.",
6973
+ "Computer Vision (CV) has yet to fully achieve the zero-shot task generalization observed in Natural Language Processing (NLP), despite following many of the milestones established in NLP, such as large transformer models, extensive pre-training, and the auto-regression paradigm, among others. In this paper, we explore the idea that CV adopts discrete and terminological task definitions (\\eg, ``image segmentation''), which may be a key barrier to zero-shot task generalization. Our hypothesis is that without truly understanding previously-seen tasks--due to these terminological definitions--deep models struggle to generalize to novel tasks. To verify this, we introduce Explanatory Instructions, which provide an intuitive way to define CV task objectives through detailed linguistic transformations from input images to outputs. We create a large-scale dataset comprising 12 million ``image input to explanatory instruction to output'' triplets, and train an auto-regressive-based vision-language model (AR-based VLM) that takes both images and explanatory instructions as input. By learning to follow these instructions, the AR-based VLM achieves instruction-level zero-shot capabilities for previously-seen tasks and demonstrates strong zero-shot generalization for unseen CV tasks. Code and dataset will be openly available on our GitHub repository.",
6974
+ "We introduce TangoFlux, an efficient Text-to-Audio (TTA) generative model with 515M parameters, capable of generating up to 30 seconds of 44.1kHz audio in just 3.7 seconds on a single A40 GPU. A key challenge in aligning TTA models lies in the difficulty of creating preference pairs, as TTA lacks structured mechanisms like verifiable rewards or gold-standard answers available for Large Language Models (LLMs). To address this, we propose CLAP-Ranked Preference Optimization (CRPO), a novel framework that iteratively generates and optimizes preference data to enhance TTA alignment. We demonstrate that the audio preference dataset generated using CRPO outperforms existing alternatives. With this framework, TangoFlux achieves state-of-the-art performance across both objective and subjective benchmarks. We open source all code and models to support further research in TTA generation.",
6975
+ "The rapid evolution of large language models (LLMs) has unlocked their capabilities in advanced reasoning tasks like mathematical problem-solving, code generation, and legal analysis. Central to this progress are inference-time reasoning algorithms, which refine outputs by exploring multiple solution paths, at the cost of increasing compute demands and response latencies. Existing serving systems fail to adapt to the scaling behaviors of these algorithms or the varying difficulty of queries, leading to inefficient resource use and unmet latency targets. We present Dynasor, a system that optimizes inference-time compute for LLM reasoning queries. Unlike traditional engines, Dynasor tracks and schedules requests within reasoning queries and uses Certaindex, a proxy that measures statistical reasoning progress based on model certainty, to guide compute allocation dynamically. Dynasor co-adapts scheduling with reasoning progress: it allocates more compute to hard queries, reduces compute for simpler ones, and terminates unpromising queries early, balancing accuracy, latency, and cost. On diverse datasets and algorithms, Dynasor reduces compute by up to 50% in batch processing and sustaining 3.3x higher query rates or 4.7x tighter latency SLOs in online serving.",
6976
+ "We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4."
6977
  ]
doclens.0.json CHANGED
@@ -1 +1 @@
1
- [206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118,210,211,170,153,218,199,111,194,218,138,221,220,94,173,203,69,229,48,221,79,176,223,213,103,216,217,166,214,225,93,217,106,221,198,111,226,77,197,201,180,96,140,219,117,209,124,215,63,161,203,225,226,154,224,84,204,227,208,99,212,128,206,156,195,206,168,209,42,218,181,202,172,198,104,138,206,100,216,110,232,113,200,99,223,96,213,72,210,194,160,176,133,209,97,196,169,161,190,203,232,49,158,171,222,188,226,184,166,166,147,222,79,195,97,218,115,222,218,191,120,190,187,218,43,181,157,148,207,61,222,55,220,219,95,232,163,194,181,166,218,150,223,117,216,200,110,194,191,129,206,204,99,227,198,195,177,159,173,221,63,196,113,203,125,185,182,184,183,170,219,199,114,216,125,217,85,221,112,187,224,78,205,224,136,143,222,115,190,229,225,200,84,206,168,176,198,228,71,99,203,107,218,157,223,179,225,63,197,106,210,188,170,185,215,119,222,64,211,110,192,40,220,142,220,215,167,215,170,225,183,132,228,197,106,211,219,217,172,207,113,223,60,194,221,72,204,193,223,205,178,178,110,216,201,197,141,80,200,227,228,76,207,215,95,222,210,144,213,192,110,197,82,216,191,99,227,144,205,92,222,181,226,34,204,177,217,228,120,148,201,203,192,107,170,214,107,168,207,192,133,190,190,192,170,215,80,212,68,160,208,174,226,143,216,87,159,219,225,71,230,212,202,182,224,214,198,161,219,214,206,210,77,200,211,199,167,103,193,56,164,202,235,199,209,75,233,133,216,75,219,218,59,184,219,74,189,150,216,216,91,165,209,188,230,193,85,215,162,202,230,57,231,104,225,208,188,182,206,93,225,59,220,108,164,182,87,198,164,210,221,209,75,188,129,125,213,71,204,223,217,118,175,211,129,205,89,215,203,184,220,172,172,227,82,199,152,202,218,220,60,226,215,194,215,81,144,198,147,218,76,229,52,147]
 
1
+ [206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118,210,211,170,153,218,199,111,194,218,138,221,220,94,173,203,69,229,48,221,79,176,223,213,103,216,217,166,214,225,93,217,106,221,198,111,226,77,197,201,180,96,140,219,117,209,124,215,63,161,203,225,226,154,224,84,204,227,208,99,212,128,206,156,195,206,168,209,42,218,181,202,172,198,104,138,206,100,216,110,232,113,200,99,223,96,213,72,210,194,160,176,133,209,97,196,169,161,190,203,232,49,158,171,222,188,226,184,166,166,147,222,79,195,97,218,115,222,218,191,120,190,187,218,43,181,157,148,207,61,222,55,220,219,95,232,163,194,181,166,218,150,223,117,216,200,110,194,191,129,206,204,99,227,198,195,177,159,173,221,63,196,113,203,125,185,182,184,183,170,219,199,114,216,125,217,85,221,112,187,224,78,205,224,136,143,222,115,190,229,225,200,84,206,168,176,198,228,71,99,203,107,218,157,223,179,225,63,197,106,210,188,170,185,215,119,222,64,211,110,192,40,220,142,220,215,167,215,170,225,183,132,228,197,106,211,219,217,172,207,113,223,60,194,221,72,204,193,223,205,178,178,110,216,201,197,141,80,200,227,228,76,207,215,95,222,210,144,213,192,110,197,82,216,191,99,227,144,205,92,222,181,226,34,204,177,217,228,120,148,201,203,192,107,170,214,107,168,207,192,133,190,190,192,170,215,80,212,68,160,208,174,226,143,216,87,159,219,225,71,230,212,202,182,224,214,198,161,219,214,206,210,77,200,211,199,167,103,193,56,164,202,235,199,209,75,233,133,216,75,219,218,59,184,219,74,189,150,216,216,91,165,209,188,230,193,85,215,162,202,230,57,231,104,225,208,188,182,206,93,225,59,220,108,164,182,87,198,164,210,221,209,75,188,129,125,213,71,204,223,217,118,175,211,129,205,89,215,203,184,220,172,172,227,82,199,152,202,218,220,60,226,215,194,215,81,144,198,147,218,76,229,52,147,206,170,225,154]
ivf.pid.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f0e67daa12889c1dbfaea69a15be25cd01c0e2d215471e62215255fa6b9b0d0e
3
- size 3280728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89bc91ddd6dc8373cc7b6e683fe84a3daede9530b0153f09d83a9dc4a393ac28
3
+ size 3276824
metadata.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
- "list with 6971 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
@@ -50,7 +50,7 @@
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
- "name":"2024-12/31/04.53.50",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
@@ -59,8 +59,8 @@
59
  },
60
  "num_chunks":1,
61
  "num_partitions":16384,
62
- "num_embeddings":1194052,
63
- "avg_doclen":171.2884808492,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
 
37
  "checkpoint":"colbert-ir/colbertv2.0",
38
  "triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
39
  "collection":[
40
+ "list with 6975 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
 
50
  "root":".ragatouille/",
51
  "experiment":"colbert",
52
  "index_root":null,
53
+ "name":"2024-12/31/05.53.50",
54
  "rank":0,
55
  "nranks":1,
56
  "amp":true,
 
59
  },
60
  "num_chunks":1,
61
  "num_partitions":16384,
62
+ "num_embeddings":1194807,
63
+ "avg_doclen":171.2984946237,
64
  "RAGatouille":{
65
  "index_config":{
66
  "index_type":"PLAID",
pid_docid_map.json CHANGED
@@ -6969,5 +6969,9 @@
6969
  "6967":"2412.18702",
6970
  "6968":"2412.20070",
6971
  "6969":"2412.20070",
6972
- "6970":"2412.21079"
 
 
 
 
6973
  }
 
6969
  "6967":"2412.18702",
6970
  "6968":"2412.20070",
6971
  "6969":"2412.20070",
6972
+ "6970":"2412.21079",
6973
+ "6971":"2412.18525",
6974
+ "6972":"2412.21037",
6975
+ "6973":"2412.20993",
6976
+ "6974":"2412.20005"
6977
  }
plan.json CHANGED
@@ -37,7 +37,7 @@
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
- "list with 6971 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
@@ -50,7 +50,7 @@
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
- "name": "2024-12\/31\/04.53.50",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
@@ -59,6 +59,6 @@
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 16384,
62
- "num_embeddings_est": 1194052.012664795,
63
- "avg_doclen_est": 171.28848266601562
64
  }
 
37
  "checkpoint": "colbert-ir\/colbertv2.0",
38
  "triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
39
  "collection": [
40
+ "list with 6975 elements starting with...",
41
  [
42
  "Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
43
  "Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
 
50
  "root": ".ragatouille\/",
51
  "experiment": "colbert",
52
  "index_root": null,
53
+ "name": "2024-12\/31\/05.53.50",
54
  "rank": 0,
55
  "nranks": 1,
56
  "amp": true,
 
59
  },
60
  "num_chunks": 1,
61
  "num_partitions": 16384,
62
+ "num_embeddings_est": 1194806.9847106934,
63
+ "avg_doclen_est": 171.29849243164062
64
  }