Upload folder using huggingface_hub
Browse files- 0.codes.pt +2 -2
- 0.metadata.json +2 -2
- 0.residuals.pt +2 -2
- avg_residual.pt +1 -1
- buckets.pt +1 -1
- centroids.pt +1 -1
- collection.json +4 -1
- doclens.0.json +1 -1
- ivf.pid.pt +2 -2
- metadata.json +4 -4
- pid_docid_map.json +4 -1
- plan.json +4 -4
0.codes.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01427b7d00e0e20befaf1b239699739941b26759d203aa3caac8b48da4f88f46
|
3 |
+
size 4482332
|
0.metadata.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
-
"num_passages":
|
4 |
-
"num_embeddings":
|
5 |
"embedding_offset": 0
|
6 |
}
|
|
|
1 |
{
|
2 |
"passage_offset": 0,
|
3 |
+
"num_passages": 6541,
|
4 |
+
"num_embeddings": 1120300,
|
5 |
"embedding_offset": 0
|
6 |
}
|
0.residuals.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27d61db5b6adeb45769c504a3d3fa8166073a8acb38cc5273d4a9b85f0137f2a
|
3 |
+
size 71700400
|
avg_residual.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1205
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fedddf1b9b9f48ece3bdd0e01bb48663dc5f5d9cc6809c511495d31d1471b71b
|
3 |
size 1205
|
buckets.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b12a0e867a91a100cb8ca0c6e7a052359cb11afddb31acb65c53f3120b8a7f24
|
3 |
size 1432
|
centroids.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4195494
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2e4fdb4466ad19212fba58d0075621821fef9be48da90261a72a8af0a2786a0
|
3 |
size 4195494
|
collection.json
CHANGED
@@ -6536,5 +6536,8 @@
|
|
6536 |
"While fusing heterogeneous open-source LLMs with varying architectures and sizes can potentially integrate the strengths of different models, existing fusion methods face significant challenges, such as vocabulary alignment and merging distribution matrices. These procedures are not only complex but also prone to introducing noise and errors. In this paper, we propose an implicit fusion method, Weighted-Reward Preference Optimization (WRPO), which leverages preference optimization between the source LLMs and the target LLM to transfer their capabilities effectively. WRPO eliminates the need for vocabulary alignment and matrix fusion and can be efficiently scaled to accommodate various LLMs. To address distributional deviations between the source and target LLMs, WRPO introduces a progressive adaptation strategy that gradually shifts reliance on preferred examples from the target LLM to the source LLMs. Extensive experiments on the MT-Bench, AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently outperforms existing knowledge fusion methods and various fine-tuning baselines.",
|
6537 |
"Extensive experiments on the MT-Bench, AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently outperforms existing knowledge fusion methods and various fine-tuning baselines. When applied to LLaMA3-8B-Instruct as the target model, WRPO achieves a length-controlled win rate of 55.9% against GPT-4-Preview-1106 on AlpacaEval-2 and a win rate of 46.2% against GPT-4-0314 on Arena-Hard. Our code is available at https://github.com/SLIT-AI/WRPO.",
|
6538 |
"Recent approaches have yielded promising results in distilling multi-step text-to-image diffusion models into one-step ones. The state-of-the-art efficient distillation technique, i.e., SwiftBrushv2 (SBv2), even surpasses the teacher model's performance with limited resources. However, our study reveals its instability when handling different diffusion model backbones due to using a fixed guidance scale within the Variational Score Distillation (VSD) loss. Another weakness of the existing one-step diffusion models is the missing support for negative prompt guidance, which is crucial in practical image generation. This paper presents SNOOPI, a novel framework designed to address these limitations by enhancing the guidance in one-step diffusion models during both training and inference. First, we effectively enhance training stability through Proper Guidance-SwiftBrush (PG-SB), which employs a random-scale classifier-free guidance approach. By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance.",
|
6539 |
-
"By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance. Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images. Our experimental results show that our proposed methods significantly improve baseline models across various metrics. Remarkably, we achieve an HPSv2 score of 31.08, setting a new state-of-the-art benchmark for one-step diffusion models."
|
|
|
|
|
|
|
6540 |
]
|
|
|
6536 |
"While fusing heterogeneous open-source LLMs with varying architectures and sizes can potentially integrate the strengths of different models, existing fusion methods face significant challenges, such as vocabulary alignment and merging distribution matrices. These procedures are not only complex but also prone to introducing noise and errors. In this paper, we propose an implicit fusion method, Weighted-Reward Preference Optimization (WRPO), which leverages preference optimization between the source LLMs and the target LLM to transfer their capabilities effectively. WRPO eliminates the need for vocabulary alignment and matrix fusion and can be efficiently scaled to accommodate various LLMs. To address distributional deviations between the source and target LLMs, WRPO introduces a progressive adaptation strategy that gradually shifts reliance on preferred examples from the target LLM to the source LLMs. Extensive experiments on the MT-Bench, AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently outperforms existing knowledge fusion methods and various fine-tuning baselines.",
|
6537 |
"Extensive experiments on the MT-Bench, AlpacaEval-2, and Arena-Hard benchmarks demonstrate that WRPO consistently outperforms existing knowledge fusion methods and various fine-tuning baselines. When applied to LLaMA3-8B-Instruct as the target model, WRPO achieves a length-controlled win rate of 55.9% against GPT-4-Preview-1106 on AlpacaEval-2 and a win rate of 46.2% against GPT-4-0314 on Arena-Hard. Our code is available at https://github.com/SLIT-AI/WRPO.",
|
6538 |
"Recent approaches have yielded promising results in distilling multi-step text-to-image diffusion models into one-step ones. The state-of-the-art efficient distillation technique, i.e., SwiftBrushv2 (SBv2), even surpasses the teacher model's performance with limited resources. However, our study reveals its instability when handling different diffusion model backbones due to using a fixed guidance scale within the Variational Score Distillation (VSD) loss. Another weakness of the existing one-step diffusion models is the missing support for negative prompt guidance, which is crucial in practical image generation. This paper presents SNOOPI, a novel framework designed to address these limitations by enhancing the guidance in one-step diffusion models during both training and inference. First, we effectively enhance training stability through Proper Guidance-SwiftBrush (PG-SB), which employs a random-scale classifier-free guidance approach. By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance.",
|
6539 |
+
"By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance. Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images. Our experimental results show that our proposed methods significantly improve baseline models across various metrics. Remarkably, we achieve an HPSv2 score of 31.08, setting a new state-of-the-art benchmark for one-step diffusion models.",
|
6540 |
+
"PaliGemma 2 is an upgrade of the PaliGemma open Vision-Language Model (VLM) based on the Gemma 2 family of language models. We combine the SigLIP-So400m vision encoder that was also used by PaliGemma with the whole range of Gemma 2 models, from the 2B one all the way up to the 27B model. We train these models at three resolutions (224px, 448px, and 896px) in multiple stages to equip them with broad knowledge for transfer via fine-tuning. The resulting family of base models covering different model sizes and resolutions allows us to investigate factors impacting transfer performance (such as learning rate) and to analyze the interplay between the type of task, model size, and resolution. We further increase the number and breadth of transfer tasks beyond the scope of PaliGemma including different OCR-related tasks such as table structure recognition, molecular structure recognition, music score recognition, as well as long fine-grained captioning and radiography report generation, on which PaliGemma 2 obtains state-of-the-art results.",
|
6541 |
+
"The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly impacted various multimodal tasks. However, these models face challenges in tasks that require spatial understanding within 3D environments. Efforts to enhance MLLMs, such as incorporating point cloud features, have been made, yet a considerable gap remains between the models' learned representations and the inherent complexity of 3D scenes. This discrepancy largely stems from the training of MLLMs on predominantly 2D data, which restricts their effectiveness in comprehending 3D spaces. To address this issue, in this paper, we propose a novel generalist model, i.e., Video-3D LLM, for 3D scene understanding. By treating 3D scenes as dynamic videos and incorporating 3D position encoding into these representations, our Video-3D LLM aligns video representations with real-world spatial contexts more accurately. Additionally, we have implemented a maximum coverage sampling technique to optimize the balance between computational costs and performance efficiency. Extensive experiments demonstrate that our model achieves state-of-the-art performance on several 3D scene understanding benchmarks, including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.",
|
6542 |
+
"Internal features from large-scale pre-trained diffusion models have recently been established as powerful semantic descriptors for a wide range of downstream tasks. Works that use these features generally need to add noise to images before passing them through the model to obtain the semantic features, as the models do not offer the most useful features when given images with little to no noise. We show that this noise has a critical impact on the usefulness of these features that cannot be remedied by ensembling with different random noises. We address this issue by introducing a lightweight, unsupervised fine-tuning method that enables diffusion backbones to provide high-quality, noise-free semantic features. We show that these features readily outperform previous diffusion features by a wide margin in a wide variety of extraction setups and downstream tasks, offering better performance than even ensemble-based methods at a fraction of the cost."
|
6543 |
]
|
doclens.0.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118]
|
|
|
1 |
+
[206,104,226,67,200,185,221,212,206,222,88,210,228,174,155,205,172,218,148,132,212,91,163,184,205,132,213,190,212,198,230,227,159,198,122,216,175,197,118,217,219,224,69,220,197,72,204,92,169,191,191,155,175,111,218,77,207,36,195,178,123,170,231,91,209,177,146,205,151,221,217,95,199,89,153,216,154,202,167,213,104,184,176,226,200,232,53,223,73,202,220,158,174,189,165,222,158,221,211,78,205,72,214,212,215,232,175,219,110,205,192,226,34,176,209,158,222,132,179,208,98,126,205,126,172,167,227,100,224,182,208,117,217,199,195,191,169,178,158,217,152,157,163,163,204,209,146,217,150,194,217,23,125,200,221,200,212,41,176,223,207,95,178,232,68,182,173,205,198,210,139,152,147,215,196,223,83,199,123,197,119,230,223,65,216,85,210,52,210,204,179,111,138,215,83,177,219,69,212,77,182,226,99,178,207,197,87,190,222,216,85,208,211,66,220,226,221,134,175,190,170,166,157,216,135,211,132,200,67,227,195,178,221,179,205,168,186,208,127,207,139,205,67,209,223,117,195,190,202,64,218,77,199,221,189,125,216,80,148,214,143,181,98,221,194,112,219,212,138,216,87,127,187,219,122,220,97,223,221,164,205,220,100,227,101,171,188,223,89,213,137,175,172,219,77,102,234,109,197,114,205,184,221,138,175,152,163,133,227,73,224,181,174,147,144,178,147,224,211,121,123,211,219,209,210,204,80,182,215,152,118,224,216,154,220,163,204,187,133,151,162,221,94,184,224,213,72,187,148,223,195,110,182,117,224,88,202,162,220,154,151,197,227,197,74,221,205,97,221,219,103,206,184,72,191,201,192,230,164,217,170,214,118,221,218,118,215,181,224,78,183,154,190,206,102,202,74,195,96,225,228,221,99,224,104,123,203,184,211,90,209,173,199,203,99,201,176,160,207,132,231,96,195,213,173,101,190,206,61,225,232,215,178,211,227,192,148,195,213,114,212,127,162,214,213,129,220,70,176,224,209,137,232,116,228,212,75,182,207,71,111,173,189,207,96,172,213,119,222,93,195,204,211,76,179,200,184,216,107,135,202,71,118,219,123,202,210,146,225,76,227,62,214,226,98,158,202,219,169,83,156,223,125,211,213,102,219,223,72,224,178,190,204,110,228,64,214,200,193,205,213,160,201,216,134,195,128,186,213,219,187,199,216,84,202,150,211,127,230,206,204,180,183,183,167,213,224,72,209,79,195,205,153,228,133,203,210,78,190,207,195,133,225,192,197,190,201,187,222,109,138,227,103,223,209,164,190,73,226,200,205,191,189,100,226,135,198,129,185,207,229,148,209,216,58,222,117,219,92,221,147,222,219,63,216,228,165,181,157,213,197,218,158,191,186,223,204,109,172,229,91,231,204,102,192,217,204,144,222,173,209,209,95,186,195,60,212,219,209,162,183,227,216,111,193,182,222,71,183,222,122,178,219,130,228,82,225,223,69,198,232,63,193,207,216,139,223,74,164,198,224,80,148,227,138,227,199,225,86,148,230,169,210,92,166,187,202,165,196,78,202,74,229,173,216,215,213,164,205,102,206,91,212,173,198,109,183,94,206,115,224,126,229,222,57,225,191,221,218,215,44,177,217,214,218,191,221,80,198,109,196,95,192,181,214,214,123,208,191,225,219,218,108,204,150,199,206,90,227,71,207,123,199,106,131,213,93,178,208,60,132,217,149,204,80,227,218,202,94,232,175,213,115,217,114,222,200,173,184,217,222,178,226,205,192,185,197,180,193,205,211,136,221,62,184,213,89,225,71,169,216,135,198,98,214,204,88,191,154,207,213,227,93,230,133,216,189,122,224,108,229,237,218,209,214,66,153,203,219,204,222,218,107,174,214,148,169,188,210,98,203,142,167,174,224,103,223,220,148,216,199,188,175,173,130,156,97,220,111,216,115,216,70,221,210,77,173,162,216,164,216,69,203,175,172,166,199,156,184,131,201,210,98,220,133,211,116,221,82,213,88,213,128,227,219,177,190,216,180,237,217,64,215,134,221,172,220,221,70,169,221,189,226,74,229,197,209,128,190,213,106,221,198,162,184,182,219,86,201,143,229,205,146,228,106,154,209,60,216,222,74,221,215,141,168,202,82,194,213,80,217,214,204,164,199,220,149,114,140,215,150,218,108,109,211,170,206,125,183,148,193,229,210,124,188,143,160,153,199,178,75,225,105,199,83,222,112,205,75,222,205,70,104,194,91,158,220,99,215,209,219,65,124,215,158,223,234,208,101,218,200,66,188,222,149,201,189,211,51,179,208,198,160,182,152,195,141,216,112,205,207,170,128,219,118,188,223,224,80,177,218,127,196,151,159,117,186,113,216,212,134,204,90,200,231,184,222,68,146,151,158,202,173,144,206,171,215,68,188,222,89,215,117,223,80,191,209,204,105,228,67,174,210,74,208,105,151,159,183,142,163,202,214,41,147,222,227,188,208,200,157,132,195,94,191,185,214,132,201,155,166,195,220,147,219,156,214,165,220,105,223,217,100,176,225,117,207,134,166,202,218,172,200,157,183,217,87,214,181,229,217,76,231,199,139,154,213,208,208,169,218,82,219,191,139,207,222,49,122,154,176,219,110,185,112,137,231,80,208,136,189,192,208,190,192,187,180,220,186,225,218,208,102,190,124,152,83,219,199,95,198,133,235,214,96,213,217,148,168,200,32,145,207,222,198,171,208,218,104,178,230,77,214,129,218,136,139,212,233,93,221,153,221,95,155,151,211,225,60,81,217,201,108,208,234,172,177,172,193,208,72,216,224,211,44,205,82,221,224,199,198,221,137,208,81,183,105,182,106,222,180,184,146,180,205,187,192,163,219,213,164,229,218,190,147,221,193,213,182,126,228,231,97,173,218,116,161,156,207,122,193,198,155,207,103,223,192,92,153,223,170,206,177,225,40,224,106,203,208,116,203,105,197,152,221,211,84,226,111,215,154,224,221,65,215,142,169,212,184,135,207,85,209,213,76,225,229,130,203,217,186,229,140,177,116,216,219,62,209,105,164,150,207,214,211,114,148,230,118,201,134,197,124,209,163,184,164,186,189,219,106,221,220,95,141,217,87,200,224,114,220,168,212,112,229,192,106,189,183,209,212,85,187,202,219,222,223,223,212,226,79,193,128,222,209,206,197,178,152,114,222,111,164,183,189,179,214,130,149,150,212,122,160,195,118,115,204,144,163,159,140,211,208,120,222,220,125,195,174,220,80,173,204,87,149,212,82,221,119,213,139,186,227,97,215,213,136,215,68,229,218,63,224,182,221,218,94,213,90,168,202,85,168,222,121,215,213,93,221,83,220,112,197,213,213,92,210,76,216,79,179,220,94,194,99,186,181,197,214,194,138,221,91,218,172,159,219,74,153,221,201,108,213,131,217,112,214,107,209,35,224,188,219,108,191,105,157,211,126,206,148,220,126,217,164,203,129,201,211,119,204,165,209,75,205,130,204,215,206,119,178,211,218,137,193,167,199,220,182,115,207,184,189,217,178,186,159,208,230,140,194,75,173,205,64,213,167,189,110,220,195,136,137,196,134,208,120,198,182,189,176,162,183,172,172,214,200,95,212,189,193,184,195,116,167,199,110,180,217,126,193,226,142,204,66,140,222,226,218,144,218,214,140,206,66,196,224,143,121,166,221,101,154,204,216,201,221,152,225,69,226,226,180,200,181,212,128,193,206,136,219,141,208,128,202,209,105,168,178,204,211,110,145,163,193,211,69,220,147,194,223,165,212,218,124,197,229,226,132,220,156,211,80,203,140,192,94,208,102,180,215,134,152,218,106,191,204,102,211,108,182,204,206,208,90,165,197,105,186,115,213,208,186,165,186,174,213,211,164,210,62,129,201,217,170,169,217,193,167,222,174,217,167,128,182,113,159,208,85,172,219,89,219,126,218,190,65,227,208,52,225,125,160,205,135,168,186,213,212,69,124,205,67,204,110,151,180,220,205,193,106,223,80,124,166,218,194,138,148,205,88,179,183,163,227,221,198,213,87,190,200,239,81,202,211,213,115,204,105,216,83,170,201,210,95,219,219,180,216,222,228,86,231,83,227,116,223,84,207,216,115,204,109,194,171,198,183,197,86,216,144,209,125,226,221,57,215,117,199,185,152,230,174,220,61,209,99,163,218,218,134,183,212,85,208,92,190,214,81,146,220,181,224,214,212,79,171,209,217,209,100,213,72,220,223,193,72,130,203,111,214,192,197,222,201,229,204,189,162,124,221,157,218,34,204,88,170,205,76,168,210,46,196,223,73,180,85,118,200,85,221,68,160,202,201,219,181,148,207,210,208,69,210,101,215,76,217,104,188,180,224,71,199,166,203,106,216,196,182,84,183,125,128,224,89,206,88,212,212,152,205,92,210,65,166,171,200,120,228,213,83,163,131,153,180,215,228,99,179,210,82,218,95,209,94,215,206,196,110,236,219,209,193,95,172,177,218,218,140,203,228,102,160,215,102,204,192,89,168,222,56,223,155,189,213,208,220,78,204,213,168,202,169,230,191,218,203,73,222,127,208,143,221,217,217,100,160,212,208,156,223,197,205,201,223,220,144,209,90,209,139,182,218,22,221,183,219,79,216,194,224,86,208,225,190,102,200,212,162,211,83,221,106,215,113,161,197,111,216,210,92,219,124,208,185,152,203,220,230,106,182,193,185,221,79,197,79,231,192,202,113,166,211,142,195,170,179,226,222,208,228,152,133,200,89,197,180,155,215,97,201,139,205,145,217,163,213,85,223,209,200,139,217,123,160,183,201,136,210,206,105,208,132,206,208,101,134,174,112,205,181,221,215,221,213,225,116,217,80,162,186,120,183,122,214,201,97,188,209,174,229,205,120,194,203,130,228,134,228,83,201,119,218,210,55,225,64,171,174,227,107,226,95,139,190,154,171,206,139,154,219,157,224,213,206,212,79,135,186,156,217,186,128,118,184,187,213,221,86,183,217,218,210,216,155,195,188,134,172,223,125,176,167,85,187,214,217,94,213,128,217,133,192,217,60,189,122,217,117,224,95,199,74,206,89,221,205,158,196,77,228,114,188,105,210,70,209,83,188,169,214,225,184,205,127,197,115,182,174,181,238,222,223,59,229,219,112,205,115,190,128,196,210,222,176,215,194,187,112,212,90,183,207,86,212,85,178,187,138,217,80,203,96,221,198,82,207,96,164,227,208,76,214,179,209,186,207,205,221,224,143,224,178,228,189,229,132,213,182,222,218,67,229,186,201,169,211,88,210,48,219,152,225,207,62,200,210,220,68,216,44,137,155,181,221,83,214,103,222,183,90,215,86,179,205,128,219,179,164,202,130,224,148,221,146,175,184,213,117,190,201,142,216,82,231,230,92,172,218,207,189,223,150,226,46,216,209,221,216,111,168,219,92,197,228,204,204,101,223,65,211,220,203,122,206,108,224,74,181,142,216,189,190,180,212,107,223,120,191,232,56,209,214,66,209,222,116,172,222,101,179,177,185,168,193,163,194,209,193,105,170,211,212,105,191,117,90,226,90,190,121,216,60,207,67,161,171,220,219,89,184,221,144,182,194,208,214,214,226,196,133,188,202,204,68,194,216,214,77,208,92,215,63,204,178,197,77,115,190,152,227,181,207,102,199,131,208,216,177,116,202,220,121,223,128,196,175,211,219,207,74,218,215,221,93,177,214,183,192,143,139,196,217,226,83,102,119,211,100,212,172,183,180,204,219,226,96,194,47,149,186,143,160,221,224,61,226,147,214,60,198,207,164,146,200,140,182,207,196,208,180,186,215,111,181,221,214,161,216,169,208,136,168,178,112,189,196,124,234,119,202,67,201,74,163,172,148,179,211,143,124,191,202,192,175,218,80,209,72,190,156,217,117,223,122,180,193,182,186,210,219,201,202,224,64,138,192,114,199,208,190,109,218,149,208,97,213,189,87,232,131,152,188,205,219,196,225,94,197,164,210,173,191,222,185,172,189,205,163,208,73,196,201,73,224,206,110,191,122,221,136,165,221,185,156,210,69,210,211,210,102,213,86,170,209,221,197,207,50,154,74,96,212,180,231,158,208,139,150,166,127,213,216,202,95,201,155,217,54,206,214,208,179,140,191,136,228,191,91,232,45,145,220,162,220,74,209,147,155,160,182,217,209,160,174,180,227,219,221,182,100,212,67,213,148,208,51,188,209,82,211,210,71,218,82,176,88,174,117,186,210,160,157,212,135,165,201,162,170,136,176,220,189,167,219,49,212,190,220,73,152,150,176,204,221,124,220,209,117,175,213,228,173,195,159,194,218,57,201,214,164,175,229,79,176,116,206,137,203,152,173,206,78,227,209,154,175,190,89,225,113,222,219,214,50,219,66,202,90,188,214,80,195,74,212,60,130,206,186,157,204,122,198,73,194,230,108,196,205,213,83,192,104,207,117,216,171,126,222,99,229,221,79,214,79,217,144,217,197,206,207,110,160,206,172,197,183,207,217,207,113,210,221,71,161,221,164,227,214,142,177,185,180,103,130,198,123,205,74,216,102,219,160,217,75,204,114,192,213,166,188,118,222,227,92,195,219,161,200,221,69,203,143,198,198,217,198,66,212,50,208,116,199,125,210,207,167,225,116,207,97,184,99,220,184,203,184,219,177,167,202,214,55,207,161,197,122,212,226,187,96,216,201,188,135,224,207,139,225,230,220,121,221,107,212,66,170,169,210,199,102,220,94,159,184,207,92,207,231,214,125,227,220,205,58,193,203,215,223,229,78,196,170,185,196,162,234,56,201,123,171,231,196,86,162,199,213,220,68,200,68,205,88,225,135,220,82,182,215,222,79,152,230,62,162,218,184,224,67,206,99,189,124,214,197,73,204,105,221,179,102,218,232,80,214,181,170,204,165,216,207,217,212,195,176,215,106,192,160,221,182,217,57,211,88,198,233,113,171,204,138,193,209,225,59,176,184,134,223,151,193,200,217,100,225,79,180,142,190,123,222,80,232,216,133,216,148,211,110,198,96,187,224,95,208,112,178,227,94,171,96,181,209,170,225,196,206,94,216,87,217,171,191,82,218,127,227,176,219,207,230,79,214,203,105,213,143,174,188,125,193,220,60,215,172,214,101,211,110,161,117,187,180,125,218,220,62,208,203,217,87,198,156,216,226,161,161,223,224,72,178,198,213,195,219,208,140,175,217,74,201,201,66,186,154,229,89,226,169,204,87,184,85,161,133,201,80,176,188,114,224,77,207,126,202,83,219,200,125,172,169,190,216,80,88,221,68,218,133,216,117,217,157,217,170,190,124,214,210,156,231,84,207,204,113,200,70,222,162,208,227,92,223,136,167,195,221,221,77,173,213,109,214,117,211,217,89,217,91,210,152,194,206,202,110,216,177,190,207,227,185,172,230,172,207,171,199,234,207,149,194,192,179,212,209,210,101,198,225,85,164,211,110,194,182,211,224,65,228,218,79,224,81,122,208,154,129,206,92,193,171,148,188,221,80,220,161,165,166,161,214,99,210,64,174,224,221,105,200,122,230,216,94,223,128,225,161,219,126,187,137,191,222,214,148,151,198,218,210,110,208,228,184,211,35,202,218,195,216,115,212,95,177,199,101,184,208,202,212,134,193,129,192,81,182,223,70,226,230,134,167,183,198,222,227,227,226,63,213,109,187,177,219,223,203,144,179,209,103,177,181,158,221,90,222,166,207,175,230,207,99,205,234,210,210,168,223,143,210,187,209,204,150,209,213,208,193,221,214,77,215,199,81,197,82,177,190,210,231,79,179,221,64,182,199,82,204,204,95,172,187,178,209,86,222,220,118,192,223,88,220,77,174,104,224,137,182,186,96,207,198,74,152,196,217,206,79,214,208,204,180,94,215,81,177,160,201,164,173,205,76,199,220,228,91,215,155,226,79,133,181,136,182,226,96,221,109,209,223,71,202,95,217,87,202,204,183,210,187,212,81,226,184,224,88,170,214,198,226,142,212,81,209,189,172,192,221,216,123,221,126,204,218,222,76,205,73,225,221,73,204,108,201,88,174,197,136,223,90,189,56,207,147,206,212,73,201,83,204,112,137,227,67,208,137,219,225,65,200,186,99,214,97,215,74,203,65,199,216,108,216,80,206,219,104,226,180,225,199,186,197,226,157,102,177,107,231,156,141,226,70,220,216,223,64,214,66,201,174,170,207,46,202,131,173,218,125,217,157,234,192,159,174,209,95,196,224,59,220,69,211,130,203,222,88,208,86,198,127,219,228,75,218,170,168,198,128,215,54,211,167,186,117,211,162,221,219,105,223,99,223,127,202,218,213,143,194,181,200,180,230,224,97,181,132,173,202,221,57,151,220,77,220,160,206,188,101,197,72,213,95,193,212,189,105,226,100,205,201,56,211,93,178,212,88,208,83,213,165,219,183,236,121,220,210,94,212,171,186,218,137,212,129,175,203,223,134,194,95,193,191,105,229,208,102,196,120,191,221,217,65,206,200,74,168,180,199,217,119,223,68,211,125,204,105,180,164,215,227,128,211,166,218,86,185,74,214,57,200,171,111,185,73,199,220,213,192,216,107,211,115,219,227,192,221,101,203,65,211,51,216,84,193,121,214,86,195,115,179,229,90,215,92,207,63,179,212,38,202,104,182,125,179,99,147,184,210,166,227,232,164,120,218,169,203,154,192,224,217,122,160,205,206,221,80,191,217,166,202,78,206,147,202,155,195,76,204,136,191,112,195,160,147,226,91,224,216,212,177,188,165,174,130,203,221,220,133,209,147,216,69,159,155,143,213,94,227,139,209,163,183,199,112,217,213,98,217,96,185,158,173,229,51,209,195,227,214,161,213,83,168,229,209,118,221,224,59,179,161,220,209,193,199,199,212,107,226,219,204,117,166,223,122,166,181,163,176,223,176,130,223,221,202,89,188,147,160,143,218,223,206,151,201,161,130,176,175,138,126,209,112,230,94,211,17,103,218,73,218,131,210,104,214,63,222,38,135,140,215,143,215,191,185,223,207,215,203,46,219,207,93,177,85,213,191,223,56,181,209,82,210,221,66,210,195,223,184,138,217,48,194,73,150,199,220,183,209,60,194,103,218,103,211,216,124,197,217,185,106,185,207,174,165,204,138,220,68,218,151,202,68,214,155,183,221,66,216,61,218,122,214,178,202,178,217,142,215,126,187,148,219,98,180,222,217,80,210,203,43,208,154,220,101,167,206,211,212,208,72,147,225,139,174,207,36,200,234,205,211,180,205,202,126,159,186,116,211,154,192,155,194,168,198,160,218,220,202,153,222,215,66,174,128,211,104,136,171,235,219,112,156,209,109,203,132,192,181,215,112,205,68,215,82,213,117,189,221,186,211,171,208,136,189,128,210,96,199,107,195,232,74,223,132,193,198,46,220,73,181,112,224,133,221,144,224,83,232,217,131,186,53,214,225,95,203,70,102,217,106,224,79,210,113,177,150,228,220,102,225,80,221,170,206,105,223,112,210,46,201,89,197,207,128,235,111,212,161,144,221,182,200,77,213,229,90,134,223,179,212,204,125,197,215,80,233,218,44,226,53,152,184,220,113,219,216,110,214,206,151,215,224,216,163,144,190,133,223,195,216,203,67,95,169,191,131,208,78,104,176,179,148,207,172,220,98,202,118,218,204,120,213,92,213,93,210,203,219,75,212,227,212,188,187,201,100,206,151,200,96,197,215,157,210,70,207,182,205,205,101,212,117,230,86,163,143,167,189,215,168,216,194,98,218,128,219,94,149,188,217,48,172,174,131,131,182,171,200,115,220,217,91,200,80,178,188,226,49,192,205,222,127,194,134,175,214,115,212,214,82,193,106,217,48,197,114,204,114,201,221,190,174,214,168,223,86,217,212,214,181,204,96,190,189,216,91,204,118,226,110,198,224,158,195,117,189,200,150,231,206,91,209,207,118,223,183,232,146,158,207,213,122,204,118,200,103,200,227,76,179,195,73,215,93,214,170,215,232,41,210,107,138,202,204,125,198,134,225,80,117,164,185,197,106,232,74,139,216,207,209,57,207,94,200,229,190,192,140,112,208,155,191,177,216,203,142,192,103,195,219,91,179,228,187,115,213,217,192,193,215,141,218,70,186,37,225,190,84,178,177,162,218,210,185,176,195,97,218,63,218,176,227,215,149,224,221,115,208,214,133,182,188,205,163,207,58,199,217,129,208,184,214,206,133,228,200,80,224,179,229,152,208,95,194,170,224,178,196,181,94,199,90,203,75,216,153,169,213,86,225,67,192,194,65,189,201,103,188,153,163,213,226,142,185,133,226,106,181,215,199,209,211,56,204,114,181,163,171,228,228,73,74,198,203,186,178,185,125,229,221,204,41,165,189,126,205,173,116,179,198,159,216,129,209,222,174,183,229,95,212,68,177,152,217,138,156,135,105,204,193,188,127,209,150,133,163,208,80,218,232,211,77,230,37,198,224,165,213,81,220,207,195,173,174,212,102,206,117,196,178,222,134,205,216,203,86,151,184,157,217,222,123,213,159,195,121,207,159,220,120,212,176,144,217,67,173,216,105,206,90,220,121,217,59,184,219,156,213,149,143,216,221,140,225,182,115,209,115,209,45,223,172,227,133,187,165,199,168,224,91,206,115,153,202,197,62,169,210,134,215,167,203,214,141,200,213,182,90,214,170,206,199,219,54,167,154,72,194,122,181,197,129,214,105,153,209,137,202,227,72,207,61,178,127,181,210,200,46,188,210,214,67,189,216,51,209,125,190,127,208,110,191,219,137,213,76,206,120,186,121,201,222,113,195,194,68,183,179,184,223,61,180,220,197,133,208,226,136,217,200,93,178,220,113,197,198,172,141,225,102,159,149,213,196,100,220,196,176,232,182,187,171,165,182,101,175,169,191,224,110,200,128,200,129,114,179,188,165,198,216,184,174,216,67,229,198,220,32,232,219,72,219,203,127,88,212,81,142,223,210,166,97,145,209,77,216,227,196,83,202,137,214,82,223,114,205,177,183,196,214,129,196,122,223,157,232,99,180,188,203,132,229,223,186,115,209,191,218,50,192,184,220,102,207,87,196,162,219,92,221,140,217,139,169,213,79,211,99,205,104,200,86,210,90,157,151,227,228,53,205,72,195,75,226,89,226,74,218,145,228,224,208,171,215,153,140,208,182,161,228,107,209,220,217,207,125,181,195,212,220,95,202,95,191,233,74,201,184,221,81,231,181,120,227,119,139,121,179,199,203,216,154,210,144,195,129,153,213,103,209,219,212,125,216,229,219,108,223,65,212,92,221,197,162,211,147,210,197,178,221,162,192,172,215,84,194,52,204,70,175,187,187,194,186,235,185,177,170,216,213,64,212,102,191,112,143,204,96,164,226,218,107,182,116,224,157,223,171,194,104,228,114,218,40,207,54,204,220,108,199,214,195,81,158,130,133,116,118,203,215,215,146,219,210,69,216,121,225,59,210,65,217,202,79,209,76,156,152,178,193,86,228,50,217,94,220,71,156,206,84,202,88,113,211,215,65,168,221,195,219,213,148,204,84,212,217,184,218,228,118,222,76,222,226,205,126,218,224,216,77,122,218,74,213,81,220,66,190,132,212,213,200,216,63,204,105,169,166,173,193,142,201,168,213,96,200,210,93,210,217,214,182,204,199,172,159,200,216,162,198,168,191,200,99,214,227,230,87,171,204,195,176,210,165,158,221,118,195,182,217,225,217,191,210,120,164,100,222,195,227,81,229,174,207,212,92,191,204,206,61,209,143,230,113,218,224,188,223,95,216,71,154,212,107,150,171,192,204,66,216,218,113,218,206,155,187,185,209,180,111,230,66,206,89,225,62,218,183,201,229,215,172,196,114,199,211,54,203,198,211,110,223,85,219,133,133,221,154,155,186,205,77,36,213,221,196,174,180,135,217,54,181,219,215,194,206,154,216,101,209,162,184,192,147,224,84,183,223,68,197,155,205,174,97,199,177,211,221,68,204,103,221,163,203,109,186,216,216,152,228,67,218,100,140,222,113,202,70,202,183,125,126,203,226,175,165,160,182,121,172,231,204,185,159,198,219,227,150,194,108,204,72,215,119,212,190,223,213,63,234,116,234,180,218,182,189,175,205,110,226,213,184,191,88,182,162,187,163,193,198,49,214,148,159,214,162,154,227,187,123,185,167,184,127,229,228,147,150,187,222,104,217,153,229,211,112,179,198,211,124,222,166,207,99,152,175,160,214,176,134,213,74,201,93,171,202,183,212,91,208,60,221,164,207,72,181,167,210,170,226,50,147,206,80,209,136,210,108,180,221,218,105,213,118,188,216,219,94,216,162,219,99,209,207,206,217,221,221,222,56,182,222,220,229,226,209,111,231,144,229,126,210,140,187,155,214,138,226,128,213,193,99,159,115,218,98,219,96,152,221,224,136,220,215,224,71,201,96,190,212,102,229,133,216,62,217,87,187,200,198,213,93,201,108,217,210,101,198,71,192,178,197,221,232,107,220,81,169,220,210,201,82,222,219,195,128,225,147,221,79,202,159,182,100,214,229,221,80,206,128,182,216,103,200,127,205,90,193,133,168,213,72,217,122,210,91,207,117,220,147,211,98,199,150,203,159,217,63,203,62,154,211,222,227,180,161,169,227,86,212,157,177,220,140,216,125,229,228,212,100,222,193,107,186,176,212,187,224,144,171,225,69,217,102,183,222,129,219,71,220,206,91,158,212,114,172,151,200,207,175,177,168,177,210,224,77,201,74,205,206,218,123,216,94,190,87,221,225,220,210,227,52,209,110,177,218,97,220,225,93,159,212,102,201,83,178,219,212,189,136,224,221,189,81,224,140,226,202,206,101,218,46,199,101,209,106,182,220,195,205,221,144,191,210,220,95,191,220,177,203,222,69,203,111,214,70,223,162,228,230,143,221,84,210,81,203,195,220,70,170,120,179,183,148,209,149,207,187,224,151,208,136,208,98,223,126,216,220,205,109,224,45,171,206,98,194,176,131,158,221,213,169,115,197,97,149,204,197,221,96,203,199,161,209,126,207,215,213,143,208,78,223,61,156,190,223,67,186,217,85,217,200,115,225,217,112,187,88,216,147,214,228,198,211,124,221,103,174,199,68,214,192,193,201,197,96,212,72,226,177,225,117,214,119,200,123,209,202,210,200,79,211,214,91,215,120,213,187,208,79,218,144,203,223,223,99,218,72,178,218,211,215,108,230,224,103,197,218,113,215,97,198,106,173,230,138,224,229,229,62,191,219,207,78,184,185,229,67,215,113,181,71,193,208,187,118,204,209,73,202,130,176,215,203,63,227,68,222,74,198,220,172,224,208,217,145,197,94,172,117,224,47,220,229,73,196,100,214,198,212,230,121,216,219,181,205,79,108,202,211,179,165,228,109,177,203,120,200,90,208,220,72,142,217,214,84,224,233,140,167,199,111,184,208,93,223,69,218,205,221,82,203,213,156,236,92,210,151,206,225,82,227,215,106,206,61,184,132,228,59,187,185,182,213,230,202,104,215,52,190,177,165,133,178,167,225,221,114,219,107,189,217,179,212,109,201,223,197,216,181,185,193,110,151,180,168,227,216,60,185,195,208,102,206,153,136,216,73,223,206,223,72,203,109,173,219,211,180,223,105,224,172,184,171,218,83,209,38,144,194,95,211,105,224,231,209,176,177,138,217,81,192,218,169,219,103,171,221,59,191,98,118,185,217,160,211,181,147,208,225,189,190,119,215,125,160,209,76,208,232,84,208,198,205,119,206,110,196,180,187,169,154,212,161,202,117,203,106,210,119,206,206,135,195,199,107,188,201,217,150,199,134,190,219,168,173,225,194,221,152,173,205,100,219,81,181,139,189,216,53,198,75,207,214,192,200,65,193,196,184,220,222,204,183,188,195,222,214,67,194,102,222,192,77,214,110,198,158,222,223,76,213,219,94,226,53,223,230,185,201,132,93,193,179,224,115,228,181,192,105,213,218,71,219,137,197,148,199,149,162,196,207,74,218,125,147,224,118,209,59,190,193,221,77,124,151,223,157,208,203,62,226,114,215,182,196,184,165,127,200,211,222,155,203,129,177,194,134,188,179,205,72,163,216,205,160,214,165,195,153,151,213,40,221,215,226,124,212,160,217,113,200,192,218,194,92,220,86,208,121,212,130,225,174,221,224,62,162,221,218,61,229,166,141,208,98,222,108,125,207,24,196,197,191,155,156,230,165,211,211,99,167,214,214,234,185,160,211,94,204,87,222,221,108,227,107,207,220,71,218,218,74,156,226,223,79,207,109,215,59,202,111,162,202,104,189,131,209,77,212,115,228,75,213,121,218,92,182,208,203,161,225,94,206,203,189,67,220,111,132,204,147,195,210,103,204,38,199,214,216,93,216,119,194,219,214,67,208,164,152,208,149,206,124,224,213,85,208,88,210,213,121,193,215,111,208,165,217,92,137,218,137,201,119,181,163,205,221,182,210,95,152,202,178,187,96,211,114,210,223,203,185,215,132,220,210,204,181,210,222,162,121,209,225,82,203,234,214,126,224,223,102,213,125,190,219,203,204,95,134,204,220,82,171,198,120,200,88,223,222,66,205,105,162,201,86,223,98,211,189,109,211,216,168,125,182,218,173,217,152,175,212,191,218,99,187,83,212,189,133,163,114,193,209,185,210,197,77,219,195,149,200,148,209,117,217,220,213,146,221,43,212,93,109,227,84,223,218,81,218,115,219,210,83,212,76,202,58,172,221,221,103,196,227,216,184,106,197,118,210,211,170]
|
ivf.pid.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a20dcd3fab89a89ed643f198be0cfdb64ef3c143ca0db185bc06e92ae29c4693
|
3 |
+
size 3064920
|
metadata.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
-
"name":"2024-12/05/
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
@@ -59,8 +59,8 @@
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":16384,
|
62 |
-
"num_embeddings":
|
63 |
-
"avg_doclen":171.
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
|
|
37 |
"checkpoint":"colbert-ir/colbertv2.0",
|
38 |
"triples":"/future/u/okhattab/root/unit/experiments/2021.10/downstream.distillation.round2.2_score/round2.nway6.cosine.ib/examples.64.json",
|
39 |
"collection":[
|
40 |
+
"list with 6541 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https://github.com/ZrrSkywalker/Personalize-SAM",
|
|
|
50 |
"root":".ragatouille/",
|
51 |
"experiment":"colbert",
|
52 |
"index_root":null,
|
53 |
+
"name":"2024-12/05/10.54.09",
|
54 |
"rank":0,
|
55 |
"nranks":1,
|
56 |
"amp":true,
|
|
|
59 |
},
|
60 |
"num_chunks":1,
|
61 |
"num_partitions":16384,
|
62 |
+
"num_embeddings":1120300,
|
63 |
+
"avg_doclen":171.2735055802,
|
64 |
"RAGatouille":{
|
65 |
"index_config":{
|
66 |
"index_type":"PLAID",
|
pid_docid_map.json
CHANGED
@@ -6536,5 +6536,8 @@
|
|
6536 |
"6534":"2412.03187",
|
6537 |
"6535":"2412.03187",
|
6538 |
"6536":"2412.02687",
|
6539 |
-
"6537":"2412.02687"
|
|
|
|
|
|
|
6540 |
}
|
|
|
6536 |
"6534":"2412.03187",
|
6537 |
"6535":"2412.03187",
|
6538 |
"6536":"2412.02687",
|
6539 |
+
"6537":"2412.02687",
|
6540 |
+
"6538":"2412.03555",
|
6541 |
+
"6539":"2412.00493",
|
6542 |
+
"6540":"2412.03439"
|
6543 |
}
|
plan.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
-
"list with
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
@@ -50,7 +50,7 @@
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
-
"name": "2024-12\/05\/
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
@@ -59,6 +59,6 @@
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 16384,
|
62 |
-
"num_embeddings_est":
|
63 |
-
"avg_doclen_est": 171.
|
64 |
}
|
|
|
37 |
"checkpoint": "colbert-ir\/colbertv2.0",
|
38 |
"triples": "\/future\/u\/okhattab\/root\/unit\/experiments\/2021.10\/downstream.distillation.round2.2_score\/round2.nway6.cosine.ib\/examples.64.json",
|
39 |
"collection": [
|
40 |
+
"list with 6541 elements starting with...",
|
41 |
[
|
42 |
"Driven by large-data pre-training, Segment Anything Model (SAM) has been demonstrated as a powerful and promptable framework, revolutionizing the segmentation models. Despite the generality, customizing SAM for specific visual concepts without man-powered prompting is under explored, e.g., automatically segmenting your pet dog in different images. In this paper, we propose a training-free Personalization approach for SAM, termed as PerSAM. Given only a single image with a reference mask, PerSAM first localizes the target concept by a location prior, and segments it within other images or videos via three techniques: target-guided attention, target-semantic prompting, and cascaded post-refinement. In this way, we effectively adapt SAM for private use without any training. To further alleviate the mask ambiguity, we present an efficient one-shot fine-tuning variant, PerSAM-F. Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance.",
|
43 |
"Freezing the entire SAM, we introduce two learnable weights for multi-scale masks, only training 2 parameters within 10 seconds for improved performance. To demonstrate our efficacy, we construct a new segmentation dataset, PerSeg, for personalized evaluation, and test our methods on video object segmentation with competitive performance. Besides, our approach can also enhance DreamBooth to personalize Stable Diffusion for text-to-image generation, which discards the background disturbance for better target appearance learning. Code is released at https:\/\/github.com\/ZrrSkywalker\/Personalize-SAM",
|
|
|
50 |
"root": ".ragatouille\/",
|
51 |
"experiment": "colbert",
|
52 |
"index_root": null,
|
53 |
+
"name": "2024-12\/05\/10.54.09",
|
54 |
"rank": 0,
|
55 |
"nranks": 1,
|
56 |
"amp": true,
|
|
|
59 |
},
|
60 |
"num_chunks": 1,
|
61 |
"num_partitions": 16384,
|
62 |
+
"num_embeddings_est": 1120299.953918457,
|
63 |
+
"avg_doclen_est": 171.27349853515625
|
64 |
}
|