File size: 2,998 Bytes
457b47f
 
fb70e7e
457b47f
fb70e7e
457b47f
 
 
 
dbad790
457b47f
 
 
dbad790
 
 
 
 
 
 
457b47f
 
 
 
 
fb70e7e
457b47f
 
 
fb70e7e
457b47f
 
fb70e7e
457b47f
 
fb70e7e
457b47f
 
 
 
 
 
 
 
dbad790
457b47f
 
 
 
fb70e7e
457b47f
04d737c
fe11581
6384038
457b47f
 
 
b376881
457b47f
 
f5f5bc2
457b47f
 
b376881
457b47f
 
fb70e7e
457b47f
 
 
 
 
 
 
 
 
 
fb70e7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""Multilang Dataset loading script."""

from datasets import DatasetInfo, BuilderConfig, Version, GeneratorBasedBuilder, DownloadManager
from datasets import SplitGenerator, Split, Features, Value
from typing import Generator, Tuple, Union

import os

_DESCRIPTION = """
This dataset includes English data for CLEF 2024 CheckThat! Lab task1.
"""

_CITATION = """\
@inproceedings{barron2024clef,
  title={The CLEF-2024 CheckThat! Lab: Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness},
  author={Barr{\'o}n-Cede{\~n}o, Alberto and Alam, Firoj and Chakraborty, Tanmoy and Elsayed, Tamer and Nakov, Preslav and Przyby{\l}a, Piotr and Stru{\ss}, Julia Maria and Haouari, Fatima and Hasanain, Maram and Ruggeri, Federico and others},
  booktitle={European Conference on Information Retrieval},
  pages={449--458},
  year={2024},
  organization={Springer}
}
"""

_LICENSE = "Your dataset's license here."

class CLEF24EnData(GeneratorBasedBuilder):
    """A multilingual text dataset."""

    BUILDER_CONFIGS = [
        BuilderConfig(name="clef_data_en", version=Version("1.0.0"), description="English dataset for check-worthy claim classification."),
    ]

    DEFAULT_CONFIG_NAME = "clef_data_en"  # Default configuration name.

    def _info(self):
        """Construct the DatasetInfo object."""
        return DatasetInfo(
            description=_DESCRIPTION,
            features=Features({
                "Sentence_id": Value("string"),
                "Text": Value("string"),
                "class_label": Value("string"),
            }),
            supervised_keys=("Text", "class_label"),
            homepage="https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task1",
            citation=_CITATION,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager: DownloadManager) -> list[SplitGenerator]:
        """Returns SplitGenerators."""
        # Assumes your dataset is located in "data"
        data_dir = os.path.abspath("data")
        splits = {"train": Split.TRAIN, "dev": Split.VALIDATION, "test": Split.TEST}
        
        return [
            SplitGenerator(
                name=splits[split],
                gen_kwargs={
                    "filepath": os.path.join(data_dir, f"{split}.tsv"),
                    "split": splits[split]
                },
            )
            for split in splits.keys()
        ]

    def _generate_examples(self, filepath: Union[str, os.PathLike], split: str) -> Generator[Tuple[str, dict], None, None]:
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                if id_ == 0:  # Optionally skip header
                    continue
                cols = row.strip().split('\t')
                yield f"{split}_{id_}", {
                    "sentence_id": cols[0],
                    "sentence": cols[1],
                    "label": cols[2],
                }