Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
File size: 2,998 Bytes
457b47f fb70e7e 457b47f fb70e7e 457b47f dbad790 457b47f dbad790 457b47f fb70e7e 457b47f fb70e7e 457b47f fb70e7e 457b47f fb70e7e 457b47f dbad790 457b47f fb70e7e 457b47f 04d737c fe11581 6384038 457b47f b376881 457b47f f5f5bc2 457b47f b376881 457b47f fb70e7e 457b47f fb70e7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
"""Multilang Dataset loading script."""
from datasets import DatasetInfo, BuilderConfig, Version, GeneratorBasedBuilder, DownloadManager
from datasets import SplitGenerator, Split, Features, Value
from typing import Generator, Tuple, Union
import os
_DESCRIPTION = """
This dataset includes English data for CLEF 2024 CheckThat! Lab task1.
"""
_CITATION = """\
@inproceedings{barron2024clef,
title={The CLEF-2024 CheckThat! Lab: Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness},
author={Barr{\'o}n-Cede{\~n}o, Alberto and Alam, Firoj and Chakraborty, Tanmoy and Elsayed, Tamer and Nakov, Preslav and Przyby{\l}a, Piotr and Stru{\ss}, Julia Maria and Haouari, Fatima and Hasanain, Maram and Ruggeri, Federico and others},
booktitle={European Conference on Information Retrieval},
pages={449--458},
year={2024},
organization={Springer}
}
"""
_LICENSE = "Your dataset's license here."
class CLEF24EnData(GeneratorBasedBuilder):
"""A multilingual text dataset."""
BUILDER_CONFIGS = [
BuilderConfig(name="clef_data_en", version=Version("1.0.0"), description="English dataset for check-worthy claim classification."),
]
DEFAULT_CONFIG_NAME = "clef_data_en" # Default configuration name.
def _info(self):
"""Construct the DatasetInfo object."""
return DatasetInfo(
description=_DESCRIPTION,
features=Features({
"Sentence_id": Value("string"),
"Text": Value("string"),
"class_label": Value("string"),
}),
supervised_keys=("Text", "class_label"),
homepage="https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task1",
citation=_CITATION,
license=_LICENSE,
)
def _split_generators(self, dl_manager: DownloadManager) -> list[SplitGenerator]:
"""Returns SplitGenerators."""
# Assumes your dataset is located in "data"
data_dir = os.path.abspath("data")
splits = {"train": Split.TRAIN, "dev": Split.VALIDATION, "test": Split.TEST}
return [
SplitGenerator(
name=splits[split],
gen_kwargs={
"filepath": os.path.join(data_dir, f"{split}.tsv"),
"split": splits[split]
},
)
for split in splits.keys()
]
def _generate_examples(self, filepath: Union[str, os.PathLike], split: str) -> Generator[Tuple[str, dict], None, None]:
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
if id_ == 0: # Optionally skip header
continue
cols = row.strip().split('\t')
yield f"{split}_{id_}", {
"sentence_id": cols[0],
"sentence": cols[1],
"label": cols[2],
} |