|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""OneStopEnglish Corpus: Dataset of texts classified into reading levels/text complexities.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{vajjala-lucic-2018-onestopenglish, |
|
title = {OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification}, |
|
author = {Sowmya Vajjala and Ivana Lučić}, |
|
booktitle = {Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications}, |
|
year = {2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is a compilation of the OneStopEnglish corpus of texts written at three reading levels into one file. |
|
Text documents are classified into three reading levels - ele, int, adv (Elementary, Intermediate and Advance). |
|
This dataset demonstrates its usefulness for through two applica-tions - automatic readability assessment and automatic text simplification. |
|
The corpus consists of 189 texts, each in three versions/reading levels (567 in total). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/nishkalavallabhi/OneStopEnglishCorpus" |
|
|
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International License" |
|
|
|
_URL = "https://github.com/purvimisal/OneStopCorpus-Compiled/raw/main/Texts-SeparatedByReadingLevel.zip" |
|
|
|
|
|
|
|
class OnestopEnglish(datasets.GeneratorBasedBuilder): |
|
"""OneStopEnglish Corpus: Dataset of texts classified into reading levels""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["ele", "int", "adv"])} |
|
), |
|
supervised_keys=[""], |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="text", label_column="label")], |
|
) |
|
|
|
def _vocab_text_gen(self, train_file): |
|
for _, ex in self._generate_examples(train_file): |
|
yield ex["text"] |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Downloads OneStopEnglish corpus""" |
|
extracted_folder_path = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split_key": "train", "data_dir": extracted_folder_path}, |
|
) |
|
] |
|
|
|
def _get_examples_from_split(self, split_key, data_dir): |
|
"""Reads the downloaded and extracted files and combines the individual text files to one dataset.""" |
|
|
|
data_dir = os.path.join(data_dir, "Texts-SeparatedByReadingLevel") |
|
|
|
ele_samples = [] |
|
dir_path = os.path.join(data_dir, "Ele-Txt") |
|
files = os.listdir(dir_path) |
|
for f in sorted(files): |
|
try: |
|
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile: |
|
text = myfile.read().strip() |
|
ele_samples.append(text) |
|
except Exception as e: |
|
logger.info("Error with:", os.path.join(dir_path, f), e) |
|
|
|
int_samples = [] |
|
dir_path = os.path.join(data_dir, "Int-Txt") |
|
files = os.listdir(dir_path) |
|
for f in sorted(files): |
|
try: |
|
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile: |
|
text = myfile.read().strip() |
|
int_samples.append(text) |
|
except Exception as e: |
|
logger.info("Error with:", os.path.join(dir_path, f), e) |
|
|
|
adv_samples = [] |
|
dir_path = os.path.join(data_dir, "Adv-Txt") |
|
files = os.listdir(dir_path) |
|
for f in sorted(files): |
|
try: |
|
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile: |
|
text = myfile.read().strip() |
|
adv_samples.append(text) |
|
except Exception as e: |
|
logger.info("Error with:", os.path.join(dir_path, f), e) |
|
|
|
train_samples = ele_samples + int_samples + adv_samples |
|
train_labels = (["ele"] * len(ele_samples)) + (["int"] * len(int_samples)) + (["adv"] * len(adv_samples)) |
|
|
|
if split_key == "train": |
|
return (train_samples, train_labels) |
|
else: |
|
raise ValueError(f"Invalid split key {split_key}") |
|
|
|
def _generate_examples(self, split_key, data_dir): |
|
"""Yields examples for a given split of dataset.""" |
|
split_text, split_labels = self._get_examples_from_split(split_key, data_dir) |
|
for id_, (text, label) in enumerate(zip(split_text, split_labels)): |
|
feature_dict = {"text": text, "label": label} |
|
yield id_, feature_dict |
|
|