onestop_english / onestop_english.py
system's picture
system HF staff
Update files from the datasets library (from 1.8.0)
a687453
raw
history blame
5.71 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OneStopEnglish Corpus: Dataset of texts classified into reading levels/text complexities."""
import os
import datasets
from datasets.tasks import TextClassification
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{vajjala-lucic-2018-onestopenglish,
title = {OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification},
author = {Sowmya Vajjala and Ivana Lučić},
booktitle = {Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications},
year = {2018}
}
"""
_DESCRIPTION = """\
This dataset is a compilation of the OneStopEnglish corpus of texts written at three reading levels into one file.
Text documents are classified into three reading levels - ele, int, adv (Elementary, Intermediate and Advance).
This dataset demonstrates its usefulness for through two applica-tions - automatic readability assessment and automatic text simplification.
The corpus consists of 189 texts, each in three versions/reading levels (567 in total).
"""
_HOMEPAGE = "https://github.com/nishkalavallabhi/OneStopEnglishCorpus"
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International License"
_URL = "https://github.com/purvimisal/OneStopCorpus-Compiled/raw/main/Texts-SeparatedByReadingLevel.zip"
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class OnestopEnglish(datasets.GeneratorBasedBuilder):
"""OneStopEnglish Corpus: Dataset of texts classified into reading levels"""
VERSION = datasets.Version("1.1.0")
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["ele", "int", "adv"])}
),
supervised_keys=[""],
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="text", label_column="label")],
)
def _vocab_text_gen(self, train_file):
for _, ex in self._generate_examples(train_file):
yield ex["text"]
def _split_generators(self, dl_manager):
"""Downloads OneStopEnglish corpus"""
extracted_folder_path = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"split_key": "train", "data_dir": extracted_folder_path},
)
]
def _get_examples_from_split(self, split_key, data_dir):
"""Reads the downloaded and extracted files and combines the individual text files to one dataset."""
data_dir = os.path.join(data_dir, "Texts-SeparatedByReadingLevel")
ele_samples = []
dir_path = os.path.join(data_dir, "Ele-Txt")
files = os.listdir(dir_path)
for f in sorted(files):
try:
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile:
text = myfile.read().strip()
ele_samples.append(text)
except Exception as e:
logger.info("Error with:", os.path.join(dir_path, f), e)
int_samples = []
dir_path = os.path.join(data_dir, "Int-Txt")
files = os.listdir(dir_path)
for f in sorted(files):
try:
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile:
text = myfile.read().strip()
int_samples.append(text)
except Exception as e:
logger.info("Error with:", os.path.join(dir_path, f), e)
adv_samples = []
dir_path = os.path.join(data_dir, "Adv-Txt")
files = os.listdir(dir_path)
for f in sorted(files):
try:
with open(os.path.join(dir_path, f), encoding="utf-8-sig") as myfile:
text = myfile.read().strip()
adv_samples.append(text)
except Exception as e:
logger.info("Error with:", os.path.join(dir_path, f), e)
train_samples = ele_samples + int_samples + adv_samples
train_labels = (["ele"] * len(ele_samples)) + (["int"] * len(int_samples)) + (["adv"] * len(adv_samples))
if split_key == "train":
return (train_samples, train_labels)
else:
raise ValueError(f"Invalid split key {split_key}")
def _generate_examples(self, split_key, data_dir):
"""Yields examples for a given split of dataset."""
split_text, split_labels = self._get_examples_from_split(split_key, data_dir)
for id_, (text, label) in enumerate(zip(split_text, split_labels)):
feature_dict = {"text": text, "label": label}
yield id_, feature_dict