Add dataset loading script.
Browse files- hls_burn_scars.py +92 -0
hls_burn_scars.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
+
_CITATION = """\
|
7 |
+
@software{HLS_Foundation_2023,
|
8 |
+
author = {Phillips, Christopher and Roy, Sujit and Ankur, Kumar and Ramachandran, Rahul},
|
9 |
+
doi = {10.57967/hf/0956},
|
10 |
+
month = aug,
|
11 |
+
title = {{HLS Foundation Burnscars Dataset}},
|
12 |
+
url = {https://huggingface.co/ibm-nasa-geospatial/hls_burn_scars},
|
13 |
+
year = {2023}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
This dataset contains Harmonized Landsat and Sentinel-2 imagery of burn scars and the associated masks for the years 2018-2021 over the contiguous United States. There are 804 512x512 scenes. Its primary purpose is for training geospatial machine learning models.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars"
|
22 |
+
|
23 |
+
_LICENSE = "cc-by-4.0"
|
24 |
+
|
25 |
+
_URLS = {
|
26 |
+
"burn_scars": {
|
27 |
+
"train/val": "https://huggingface.co/datasets/ibm-nasa-geospatial/hls_burn_scars/resolve/main/hls_burn_scars.tar.gz"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
|
31 |
+
class HLSBurnScars(datasets.GeneratorBasedBuilder):
|
32 |
+
"""MIT Scene Parsing Benchmark dataset."""
|
33 |
+
|
34 |
+
VERSION = datasets.Version("0.0.1")
|
35 |
+
|
36 |
+
BUILDER_CONFIGS = [
|
37 |
+
datasets.BuilderConfig(name="hls_burn_scars", version=VERSION, description=_DESCRIPTION),
|
38 |
+
]
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
features = datasets.Features(
|
42 |
+
{
|
43 |
+
"image": datasets.Image(),
|
44 |
+
"annotation": datasets.Image(),
|
45 |
+
}
|
46 |
+
)
|
47 |
+
return datasets.DatasetInfo(
|
48 |
+
description=_DESCRIPTION,
|
49 |
+
features=features,
|
50 |
+
homepage=_HOMEPAGE,
|
51 |
+
license=_LICENSE,
|
52 |
+
citation=_CITATION,
|
53 |
+
)
|
54 |
+
|
55 |
+
def _split_generators(self, dl_manager):
|
56 |
+
urls = _URLS[self.config.name]
|
57 |
+
|
58 |
+
data_dirs = dl_manager.download_and_extract(urls)
|
59 |
+
train_data = os.path.join(data_dirs["training"], "hls_burn_scars")
|
60 |
+
val_data = os.path.join(data_dirs["validation"], "hls_burn_scars")
|
61 |
+
|
62 |
+
return [
|
63 |
+
datasets.SplitGenerator(
|
64 |
+
name=datasets.Split.TRAIN,
|
65 |
+
gen_kwargs={
|
66 |
+
"data": train_data,
|
67 |
+
"split": "training",
|
68 |
+
},
|
69 |
+
),
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.VALIDATION,
|
72 |
+
gen_kwargs={
|
73 |
+
"data": val_data,
|
74 |
+
"split": "validation",
|
75 |
+
},
|
76 |
+
),
|
77 |
+
datasets.SplitGenerator(
|
78 |
+
name=datasets.Split.VALIDATION,
|
79 |
+
gen_kwargs={
|
80 |
+
"data": val_data,
|
81 |
+
"split": "testing",
|
82 |
+
},
|
83 |
+
)
|
84 |
+
]
|
85 |
+
|
86 |
+
def _generate_examples(self, data, split):
|
87 |
+
for idx, (path, file) in enumerate(data):
|
88 |
+
if path.endswith("_merged.tif"):
|
89 |
+
yield idx, {
|
90 |
+
"image": {"path": path, "bytes": file.read()},
|
91 |
+
"annotation": {"path": path.replace('_merged.tif', '.mask.tif'), "bytes": file.read()},
|
92 |
+
}
|