Datasets:
Tasks:
Visual Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
Upload script to reproduce dataset
Browse files
relation_templates/relation_templates_brands.csv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uri,relation,template
|
2 |
+
P17,country,In what country is [subj] located?
|
3 |
+
P112,founded by,Who founded [subj]?
|
4 |
+
P169,chief executive officer,Who is the CEO of [subj]?
|
5 |
+
P127,owned by,Who is the owner of [subj]?
|
6 |
+
P452,industry,In what industry is [subj]?
|
7 |
+
P138,named after,Who was [subj] named after?
|
8 |
+
P571,inception,In what year was [subj] founded?
|
9 |
+
P159,headquarters location,In what country is the headquarters of [subj]?
|
10 |
+
P822,mascot,What or who is the mascot of [subj]?
|
11 |
+
P1056,product or material produced,What is the product or material produced by [subj]?
|
relation_templates/relation_templates_celebs.csv
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uri,relation,template
|
2 |
+
P569,date of birth,In what year was [subj] born?
|
3 |
+
P54,member of sports team,What sports team does [subj] play for?
|
4 |
+
P106,occupation,What is the occupation of [subj]?
|
5 |
+
P27,country of citizenship,What is the country of citizenship of [subj]?
|
6 |
+
P19,place of birth,In what [obj_type] was [subj] born?
|
7 |
+
P641,sport,What sport does [subj] play?
|
8 |
+
P1412,"languages spoken, written or signed",What language does [subj] speak?
|
9 |
+
P413,position played on team / speciality,What sports position does [subj] play?
|
10 |
+
P50,author,Who is the author of [subj]?
|
11 |
+
P20,place of death,In what [obj_type] did [subj] die?
|
12 |
+
P495,country of origin,What is the country of origin of [subj]?
|
13 |
+
P69,educated at,What is the alma mater of [subj]?
|
14 |
+
P407,language of work or name,What is the language of [subj]?
|
15 |
+
P1598,consecrator,Who is the consecrator of [subj]?
|
16 |
+
P123,publisher,Who is the publisher of [subj]?
|
17 |
+
P40,child,Who is the child of [subj]?
|
18 |
+
P140,religion or worldview,What is the religion of [subj]?
|
19 |
+
P57,director,Who was the director of [subj]?
|
20 |
+
P264,record label,What is the record label of [subj]?
|
21 |
+
P58,screenwriter,Who was the screenwriter for [subj]?
|
22 |
+
P103,native language,What is the native language of [subj]?
|
23 |
+
P1532,country for sport,What country does [subj] play for?
|
24 |
+
P22,father,Who is the father of [subj]?
|
25 |
+
P86,composer,Who was the composer of [subj]?
|
26 |
+
P175,performer,Who is the performer of [subj]?
|
27 |
+
P118,league,What sports league does [subj] play in?
|
28 |
+
P26,spouse,Who is the spouse of [subj]?
|
29 |
+
P162,producer,Who was the producer of [subj]?
|
30 |
+
P3373,sibling,Who is the sibling of [subj]?
|
31 |
+
P98,editor,Who is the editor of [subj]?
|
32 |
+
P25,mother,Who is the mother of [subj]?
|
33 |
+
P676,lyrics by,Who wrote the lyrics of [subj]?
|
34 |
+
P166,award received,What award did [subj] receive?
|
35 |
+
P451,unmarried partner,Who is the partner of [subj]?
|
36 |
+
P800,notable work,What notable [obj_type] did [subj] create?
|
37 |
+
P1303,instrument,What instrument does [subj] play?
|
38 |
+
P39,position held,What position is held by [subj]?
|
39 |
+
P101,field of work,What is the field of work of [subj]?
|
40 |
+
P102,member of political party,Which political party is [subj] affiliated with?
|
relation_templates/relation_templates_landmarks.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uri,relation,template
|
2 |
+
P17,country,In what country is [subj] located?
|
3 |
+
P112,founded by,Who founded [subj]?
|
4 |
+
P127,owned by,Who is the owner of [subj]?
|
5 |
+
P149,architectural style,What is the architectural style of [subj]?
|
6 |
+
P571,inception,In what year was [subj] created?
|
7 |
+
P84,architect,Who was the architect of [subj]?
|
8 |
+
P580,start time,In what year did [subj] get its heritage designation?
|
9 |
+
P2048,hight,How high is [subj]?
|
10 |
+
P131,located in the administrative territorial entity,In what administrative territorial entity is [subj] located?
|
11 |
+
P669,located on street,On what street is [subj] located?
|
12 |
+
P1435,heritage designation,What is the heritage designation of [subj]?
|
relation_templates/relation_templates_paintings.csv
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uri,relation,template
|
2 |
+
P127,owned by,Who is the owner of [subj]?
|
3 |
+
P170,creator,Who painted [subj]?
|
4 |
+
P186,made from material,From what material is [subj] made?
|
5 |
+
P195,collection,A part of what collection is [subj]?
|
6 |
+
P2348,time period,From what artistic time period is [subj]?
|
7 |
+
P547,commemorates,What does [subj] commemorate?
|
8 |
+
P138,named after,Who was [subj] named after?
|
9 |
+
P571,inception,In what year was [subj] painted?
|
10 |
+
P17,country,In what country is [subj] located?
|
11 |
+
P495,country of origin,In what country was [subj] created?
|
12 |
+
P88,commissioned by,Who commissioned [subj]?
|
13 |
+
|
scripts/build_dataset.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
load_dotenv()
|
3 |
+
from dataset_utils import *
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
'''
|
7 |
+
This is a script to build (or expand) the PopVQA dataset.
|
8 |
+
Before running this script, make sure your directory contains the following:
|
9 |
+
1. A CSV file with the base dataframe containing the columns 's_uri' (from wikidata) and 'type' (to match against the relation templates).
|
10 |
+
2. a dir named 'relation_templates' containing CSV files with the relation templates for each type. The templates are triplets 'uri' - 'relation' - 'template'.
|
11 |
+
See the existing files for reference.
|
12 |
+
Run the script with the following command:
|
13 |
+
python build_dataset.py --base-df <path_to_base_df> --start <start_step> --end <end_step>
|
14 |
+
'''
|
15 |
+
|
16 |
+
def main(args):
|
17 |
+
dir_name, file_name = os.path.split(args.base_df)
|
18 |
+
base_name, _ = os.path.splitext(file_name)
|
19 |
+
base_df = pd.read_csv(args.base_df).drop_duplicates('s_uri')
|
20 |
+
assert 'type' in base_df.columns, "The base dataframe must contain a 'type' column."
|
21 |
+
|
22 |
+
types = base_df['type'].unique()
|
23 |
+
|
24 |
+
for entity_type in base_df['type'].unique():
|
25 |
+
template_path = os.path.join(dir_name, "relation_templates", f"relation_templates_{entity_type}.csv")
|
26 |
+
assert os.path.isfile(template_path), f"Missing relation template for type '{entity_type}' at: {template_path}"
|
27 |
+
|
28 |
+
all_question_dfs = []
|
29 |
+
|
30 |
+
for entity_type in types:
|
31 |
+
type_df = base_df[base_df['type'] == entity_type].copy()
|
32 |
+
type_dir = os.path.join(dir_name, entity_type)
|
33 |
+
os.makedirs(type_dir, exist_ok=True)
|
34 |
+
|
35 |
+
template_path = os.path.join(dir_name, "relation_templates", f"relation_templates_{entity_type}.csv")
|
36 |
+
templates = pd.read_csv(template_path)
|
37 |
+
|
38 |
+
print(f"Processing type: {entity_type}")
|
39 |
+
if args.start <= 0:
|
40 |
+
subject_to_relation = get_all_properties(type_df)
|
41 |
+
subject_to_relation = subject_to_relation[subject_to_relation['r_uri'].isin(templates['uri'])]
|
42 |
+
subject_to_relation.to_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv"), index=False)
|
43 |
+
|
44 |
+
if args.start <= 1 and args.end >= 1:
|
45 |
+
if args.start == 1:
|
46 |
+
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv"))
|
47 |
+
aliases = get_aliases(subject_to_relation)
|
48 |
+
aliases.to_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv"), index=False)
|
49 |
+
|
50 |
+
if args.start <= 2 and args.end >= 2:
|
51 |
+
if args.start == 2:
|
52 |
+
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv"))
|
53 |
+
aliases = pd.read_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv"))
|
54 |
+
a_types = attribute_type(subject_to_relation)
|
55 |
+
a_types.to_csv(os.path.join(type_dir, f"{base_name}_complete_attribute_types.csv"), index=False)
|
56 |
+
|
57 |
+
if args.start <= 3 and args.end >= 3:
|
58 |
+
if args.start == 3:
|
59 |
+
subject_to_relation = pd.read_csv(os.path.join(type_dir, f"{base_name}_subject_to_relation.csv"))
|
60 |
+
aliases = pd.read_csv(os.path.join(type_dir, f"{base_name}_all_aliases.csv"))
|
61 |
+
a_types = pd.read_csv(os.path.join(type_dir, f"{base_name}_complete_attribute_types.csv"))
|
62 |
+
triplets = aggregate_triplets(type_df, aliases, subject_to_relation, a_types, add_unesco=False)
|
63 |
+
triplets.to_csv(os.path.join(type_dir, f"{base_name}_question_triplets.csv"), index=False)
|
64 |
+
|
65 |
+
if args.start <= 4 and args.end >= 4:
|
66 |
+
if args.start == 4:
|
67 |
+
triplets = pd.read_csv(os.path.join(type_dir, f"{base_name}_question_triplets.csv"))
|
68 |
+
triplets = build_prompts(type_df, triplets, templates)
|
69 |
+
triplets['type'] = entity_type
|
70 |
+
triplets.to_csv(os.path.join(type_dir, f"{base_name}_questions.csv"), index=False)
|
71 |
+
all_question_dfs.append(triplets)
|
72 |
+
|
73 |
+
# Combine all question files and write to the top-level directory
|
74 |
+
if all_question_dfs:
|
75 |
+
combined_df = pd.concat(all_question_dfs, ignore_index=True)
|
76 |
+
combined_df.to_csv(os.path.join(dir_name, f"{base_name}_all_questions.csv"), index=False)
|
77 |
+
print(f"Combined questions file saved to {os.path.join(dir_name, f'{base_name}_all_questions.csv')}")
|
78 |
+
|
79 |
+
|
80 |
+
def get_exp_parser():
|
81 |
+
parser = argparse.ArgumentParser(add_help=False)
|
82 |
+
parser.add_argument('--base-df', type=str)
|
83 |
+
parser.add_argument('--start', type=int, default=0, help="Start step for building the dataset.")
|
84 |
+
parser.add_argument('--end', type=int, default=4, help="End step for building the dataset.")
|
85 |
+
return parser
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
parser = get_exp_parser()
|
90 |
+
args = parser.parse_args()
|
91 |
+
main(args)
|
scripts/dataset_utils.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from ast import literal_eval
|
5 |
+
from SPARQLWrapper import SPARQLWrapper, JSON
|
6 |
+
from tqdm import tqdm
|
7 |
+
from urllib.parse import urlparse
|
8 |
+
import requests
|
9 |
+
import re
|
10 |
+
from ast import literal_eval
|
11 |
+
from tqdm import tqdm
|
12 |
+
tqdm.pandas()
|
13 |
+
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
DATA_DIR = os.environ['DATA_DIR']
|
18 |
+
|
19 |
+
replacements = {"celebs":"the subject of this image",
|
20 |
+
"brands":"the brand in this image",
|
21 |
+
"landmarks":"the place in this image",
|
22 |
+
"paintings":"the painting in this image",
|
23 |
+
}
|
24 |
+
|
25 |
+
def best_obj_type(obj_types):
|
26 |
+
if type(obj_types) == str:
|
27 |
+
obj_types = literal_eval(obj_types)
|
28 |
+
prioritized_obj_types = ["city", "capital city", 'metropolis', 'country', 'occupation', 'language', 'type of sport', 'music genre'] # 'cinematic technique', 'team sport'
|
29 |
+
for ot in prioritized_obj_types:
|
30 |
+
if ot in obj_types:
|
31 |
+
return ot
|
32 |
+
for ot_ in obj_types:
|
33 |
+
if "university" in ot_:
|
34 |
+
return "university"
|
35 |
+
if "city" in ot_:
|
36 |
+
return "city"
|
37 |
+
return obj_types[0]
|
38 |
+
|
39 |
+
def replace_for_image(row):
|
40 |
+
replace_with = replacements[row['type']]
|
41 |
+
return row["template"].replace("[subj]", replace_with)
|
42 |
+
|
43 |
+
class SPARQL:
|
44 |
+
def __init__(self):
|
45 |
+
self.agent = "'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'"
|
46 |
+
self.sparql = SPARQLWrapper("https://query.wikidata.org/sparql", agent=self.agent)
|
47 |
+
self.sparql.setReturnFormat(JSON)
|
48 |
+
|
49 |
+
def parse_value(self, value):
|
50 |
+
parsed_uri = urlparse(value)
|
51 |
+
if all([parsed_uri.scheme, parsed_uri.netloc]):
|
52 |
+
return parsed_uri.path.split('/')[-1]
|
53 |
+
return value
|
54 |
+
|
55 |
+
def execute(self, query):
|
56 |
+
records = []
|
57 |
+
try:
|
58 |
+
self.sparql.setQuery(query)
|
59 |
+
responses = self.sparql.query().convert()
|
60 |
+
for response in responses['results']['bindings']:
|
61 |
+
record = {}
|
62 |
+
for key in response:
|
63 |
+
record[key] = self.parse_value(response[key]['value'])
|
64 |
+
records.append(record)
|
65 |
+
if records == 0:
|
66 |
+
print("request failed")
|
67 |
+
except Exception as e:
|
68 |
+
print(e)
|
69 |
+
return pd.DataFrame(records)
|
70 |
+
|
71 |
+
|
72 |
+
def add_aliases(df):
|
73 |
+
def _query(uris):
|
74 |
+
return f'''
|
75 |
+
SELECT ?s_uri ?alias
|
76 |
+
WHERE {{
|
77 |
+
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
|
78 |
+
?s_uri skos:altLabel ?alias.
|
79 |
+
FILTER(LANG(?alias) = "en")
|
80 |
+
}}
|
81 |
+
'''
|
82 |
+
sparql = SPARQL()
|
83 |
+
|
84 |
+
uris = list(set(df["s_uri"].tolist()))
|
85 |
+
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
|
86 |
+
|
87 |
+
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
|
88 |
+
aliases = aliases.groupby("s_uri")["alias"].agg(list).reset_index(name="aliases")
|
89 |
+
res = pd.merge(df, aliases, how='left', on='s_uri')
|
90 |
+
res['aliases'] = res['aliases'].fillna('[]')
|
91 |
+
return res
|
92 |
+
|
93 |
+
def get_aliases(df):
|
94 |
+
def _query(uris):
|
95 |
+
return f'''
|
96 |
+
SELECT ?uri ?alias
|
97 |
+
WHERE {{
|
98 |
+
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
|
99 |
+
?uri skos:altLabel ?alias.
|
100 |
+
FILTER(LANG(?alias) = "en")
|
101 |
+
}}
|
102 |
+
'''
|
103 |
+
sparql = SPARQL()
|
104 |
+
|
105 |
+
uris = list(set(df["s_uri"].tolist()))# + df["a_uri"].tolist()))
|
106 |
+
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
|
107 |
+
|
108 |
+
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
|
109 |
+
aliases = aliases.groupby("uri")["alias"].agg(list).reset_index(name="aliases")
|
110 |
+
return aliases
|
111 |
+
|
112 |
+
def add_images(df):
|
113 |
+
def _query(uris):
|
114 |
+
return f'''
|
115 |
+
SELECT ?s_uri ?image
|
116 |
+
WHERE {{
|
117 |
+
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
|
118 |
+
?s_uri wdt:P18 ?image .
|
119 |
+
}}
|
120 |
+
'''
|
121 |
+
sparql = SPARQL()
|
122 |
+
|
123 |
+
uris = list(set(df["s_uri"].tolist()))
|
124 |
+
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
|
125 |
+
|
126 |
+
images = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
|
127 |
+
images['image'] = 'http://commons.wikimedia.org/wiki/Special:FilePath/' + images['image']
|
128 |
+
res = pd.merge(df, images, how='inner', on='s_uri')
|
129 |
+
return res
|
130 |
+
|
131 |
+
|
132 |
+
def get_attribute(df, attribute_name, attribute_id):
|
133 |
+
def _query(uris):
|
134 |
+
return f'''
|
135 |
+
SELECT ?s_uri ?attribute_name
|
136 |
+
WHERE {{
|
137 |
+
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
|
138 |
+
?s_uri wdt:{attribute_id} ?{attribute_name} .
|
139 |
+
}}
|
140 |
+
'''
|
141 |
+
sparql = SPARQL()
|
142 |
+
|
143 |
+
uris = list(set(df["s_uri"].tolist()))
|
144 |
+
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
|
145 |
+
|
146 |
+
attributes = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
|
147 |
+
attributes = attributes.groupby("s_uri")[attribute_name].agg(list).reset_index(name=attribute_name)
|
148 |
+
|
149 |
+
res = pd.merge(df, attributes, how='inner', on='s_uri')
|
150 |
+
return res
|
151 |
+
|
152 |
+
def extract_year(timestamp):
|
153 |
+
parts = timestamp.split('-')
|
154 |
+
neg = False
|
155 |
+
if parts[0] == '':
|
156 |
+
year = parts[1]
|
157 |
+
neg = True
|
158 |
+
else:
|
159 |
+
year = parts[0]
|
160 |
+
if year.isdigit():
|
161 |
+
return str(-int(year)) if neg else str(int(year))
|
162 |
+
return np.nan
|
163 |
+
|
164 |
+
def get_all_properties(df):
|
165 |
+
def _query(relation_ids):
|
166 |
+
return f'''
|
167 |
+
SELECT ?item ?itemLabel ?wd ?wdLabel ?ps_ ?ps_Label WHERE {{
|
168 |
+
VALUES ?item {{
|
169 |
+
{" ".join([f"wd:{id}" for id in relation_ids])}
|
170 |
+
}}
|
171 |
+
?item ?p ?statement .
|
172 |
+
?statement ?ps ?ps_ .
|
173 |
+
?wd wikibase:claim ?p .
|
174 |
+
?wd wikibase:statementProperty ?ps .
|
175 |
+
|
176 |
+
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
|
177 |
+
}}
|
178 |
+
'''
|
179 |
+
sparql = SPARQL()
|
180 |
+
|
181 |
+
# df = pd.read_csv(origin)
|
182 |
+
subjects = df["s_uri"].to_list()
|
183 |
+
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
|
184 |
+
|
185 |
+
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
|
186 |
+
df = df[~df["wdLabel"].str.contains(r"ID|category|template|username|instance of|gallery|article|handle|url|wiki|copyright|classification|website|described|tag|archive|reddit|profile|image|list|file", case=False, na=False)]
|
187 |
+
tmp = df[(df['wd'] == 'P569') | (df['wd'] == 'P571')].copy()
|
188 |
+
tmp['ps_Label'] = tmp['ps_Label'].apply(extract_year)
|
189 |
+
tmp.dropna(subset=['ps_Label'], inplace=True)
|
190 |
+
tmp['ps_'] = 'Q000'
|
191 |
+
df = df[~((df['wd'] == 'P569') | (df['wd'] == 'P571'))]
|
192 |
+
df = df[~df["ps_Label"].str.contains(r'\d', na=False)]
|
193 |
+
df = df[df["ps_"].apply(lambda s: bool(re.fullmatch(r"Q\d+", s)))]
|
194 |
+
df = pd.concat([df, tmp])
|
195 |
+
df = df[["item", "itemLabel", "wd", "wdLabel", "ps_", "ps_Label"]]
|
196 |
+
df = df.rename(
|
197 |
+
columns = {
|
198 |
+
"item": "s_uri",
|
199 |
+
"itemLabel": "subject",
|
200 |
+
"wd": "r_uri",
|
201 |
+
"wdLabel": "relation",
|
202 |
+
"ps_": "a_uri",
|
203 |
+
"ps_Label": "attribute",
|
204 |
+
}
|
205 |
+
)
|
206 |
+
return df
|
207 |
+
|
208 |
+
|
209 |
+
def attribute_type(df):
|
210 |
+
def _query(uris):
|
211 |
+
return f'''
|
212 |
+
SELECT ?uri ?typeLabel
|
213 |
+
WHERE {{
|
214 |
+
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
|
215 |
+
?uri wdt:P31 ?type.
|
216 |
+
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
|
217 |
+
}}
|
218 |
+
'''
|
219 |
+
sparql = SPARQL()
|
220 |
+
|
221 |
+
uris = df["a_uri"].drop_duplicates().to_list()
|
222 |
+
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
|
223 |
+
a_types = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
|
224 |
+
a_types = a_types.groupby("uri")["typeLabel"].agg(list).reset_index(name="a_type")
|
225 |
+
a_types['a_type'] = a_types['a_type'].apply(lambda x: x if type(x) == list else [])
|
226 |
+
a_types = pd.concat([a_types, pd.DataFrame([{'uri': 'Q000', 'a_type': str(['year'])}])])
|
227 |
+
return a_types
|
228 |
+
|
229 |
+
|
230 |
+
def get_wikidata_id(name):
|
231 |
+
url = "https://www.wikidata.org/w/api.php"
|
232 |
+
params = {
|
233 |
+
"action": "wbsearchentities",
|
234 |
+
"format": "json",
|
235 |
+
"language": "en",
|
236 |
+
"search": name
|
237 |
+
}
|
238 |
+
response = requests.get(url, params=params).json()
|
239 |
+
if 'search' in response and response['search']:
|
240 |
+
return response['search'][0]['id']
|
241 |
+
return None
|
242 |
+
|
243 |
+
def add_wikidata_ids(df, name_col="subject"):
|
244 |
+
df["wikidata_id"] = df[name_col].apply(get_wikidata_id)
|
245 |
+
return df
|
246 |
+
|
247 |
+
|
248 |
+
def add_unesco_question(base_df):
|
249 |
+
def _query(qids):
|
250 |
+
return f"""
|
251 |
+
SELECT ?item ?itemLabel ?startTime WHERE {{
|
252 |
+
VALUES ?item {{{' '.join(f'wd:{qid}' for qid in qids)}}}
|
253 |
+
?item p:P1435 ?heritageStatement.
|
254 |
+
?heritageStatement ps:P1435 wd:Q9259.
|
255 |
+
OPTIONAL {{
|
256 |
+
?heritageStatement pq:P580 ?startTime.
|
257 |
+
}}
|
258 |
+
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
|
259 |
+
}}
|
260 |
+
"""
|
261 |
+
sparql = SPARQL()
|
262 |
+
|
263 |
+
df = base_df[base_df['type'] == 'landmarks']
|
264 |
+
subjects = df["s_uri"].to_list()
|
265 |
+
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
|
266 |
+
|
267 |
+
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
|
268 |
+
df.dropna(subset=['startTime'], inplace=True)
|
269 |
+
df['startTime'] = df['startTime'].apply(extract_year)
|
270 |
+
df = df.rename(
|
271 |
+
columns = {
|
272 |
+
"item": "s_uri",
|
273 |
+
"startTime": "attribute",
|
274 |
+
"itemLabel": "subject",
|
275 |
+
}
|
276 |
+
)
|
277 |
+
df['possible_answers'] = df['attribute'].apply(lambda x: str([x]))
|
278 |
+
df['r_uri'] = 'P580'
|
279 |
+
df['relation'] = 'start time'
|
280 |
+
df['a_uri'] = 'P580'
|
281 |
+
df['a_type'] = str(['year'])
|
282 |
+
return df
|
283 |
+
|
284 |
+
|
285 |
+
def aggregate_triplets(base, aliases, relations, attributes, add_unesco=False):
|
286 |
+
subjects = base[['s_uri']]
|
287 |
+
relations = relations.merge(subjects, on="s_uri")
|
288 |
+
aliases = pd.read_csv("data/all_aliases.csv", index_col=0)
|
289 |
+
if type(aliases.iloc[0]['aliases']) == str:
|
290 |
+
aliases["aliases"] = aliases["aliases"].apply(lambda x: literal_eval(x))
|
291 |
+
if type(attributes.iloc[0]['a_type']) == str:
|
292 |
+
attributes["a_type"] = attributes["a_type"].apply(lambda x: literal_eval(x))
|
293 |
+
|
294 |
+
relations = relations.merge(aliases, left_on="a_uri", right_on="uri", how="left")
|
295 |
+
relations = relations.drop(columns=["uri"])
|
296 |
+
relations["possible_answers"] = relations['aliases'].apply(lambda x: x if type(x) == list else [])
|
297 |
+
relations["possible_answers"] = relations.progress_apply(lambda x: x["possible_answers"] + [x["attribute"]], axis=1)
|
298 |
+
|
299 |
+
agg_funcs = {col: 'first' for col in relations.columns if col not in ['s_uri', 'r_uri', 'possible_answers']}
|
300 |
+
agg_funcs['possible_answers'] = sum
|
301 |
+
relations = relations.groupby(['s_uri', 'r_uri'], as_index=False).agg(agg_funcs)
|
302 |
+
|
303 |
+
relations = relations.drop(columns=["aliases"])
|
304 |
+
relations = relations.merge(attributes, left_on="a_uri", right_on="uri", how="left")
|
305 |
+
relations = relations.drop(columns=["uri"])
|
306 |
+
|
307 |
+
if add_unesco:
|
308 |
+
unesco = add_unesco_question(base)
|
309 |
+
relations = pd.concat([relations, unesco])
|
310 |
+
|
311 |
+
return relations
|
312 |
+
|
313 |
+
|
314 |
+
def subj_substitute(row):
|
315 |
+
if row['type'] == 'brands':
|
316 |
+
return f"the brand {row['subject']}"
|
317 |
+
if row['type'] == 'paintings':
|
318 |
+
return f"the painting {row['subject']}"
|
319 |
+
return row['subject']
|
320 |
+
|
321 |
+
|
322 |
+
def build_prompts(base_df, triplets, templates):
|
323 |
+
subjects = base_df[["s_uri", "subject"]]
|
324 |
+
base_df = base_df[["s_uri", "type"]]
|
325 |
+
triplets = triplets.drop("subject", axis=1)
|
326 |
+
triplets = triplets.merge(subjects, on=["s_uri"])
|
327 |
+
triplets = triplets.merge(base_df, on=["s_uri"], how='left')
|
328 |
+
triplets = triplets.merge(templates[["uri", "template"]], left_on="r_uri", right_on="uri")
|
329 |
+
triplets = triplets.drop(columns=["uri"])
|
330 |
+
triplets = triplets.dropna()
|
331 |
+
|
332 |
+
query_counts = triplets.drop_duplicates(["s_uri", "r_uri"]).groupby(["s_uri"])["r_uri"].count().reset_index(name="count")
|
333 |
+
triplets = triplets.merge(query_counts[query_counts["count"] > 1][["s_uri"]], on="s_uri")
|
334 |
+
|
335 |
+
triplets["question_for_image"] = triplets.progress_apply(replace_for_image, axis=1)
|
336 |
+
triplets["question_for_image"] = triplets.progress_apply(lambda row: row["question_for_image"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
|
337 |
+
triplets["question"] = triplets.progress_apply(lambda row: row["template"].replace("[subj]", subj_substitute(row)), axis=1)
|
338 |
+
triplets["question"] = triplets.progress_apply(lambda row: row["question"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
|
339 |
+
triplets = triplets.drop(columns=["template"])
|
340 |
+
triplets = triplets[['type','subject','question_for_image','question','possible_answers', 'relation', 's_uri', 'r_uri','a_uri','attribute','a_type']]
|
341 |
+
return triplets
|
342 |
+
|
343 |
+
|