File size: 8,869 Bytes
2a5f91a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import textwrap
import csv
import pandas as pd
import json
import os
import datasets
_VERSION = datasets.Version("1.1.0")
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_DAISO_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={Igor Kuzmin
},
year={2023}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DAISO_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://raw.githubusercontent.com/igorktech/DAISO-benchmark/dev"
class DAISOConfig(datasets.BuilderConfig):
"""BuilderConfig for DAISO."""
def __init__(self, features, data_url, citation, url, **kwargs):
"""BuilderConfig for DAISO.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the csv file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
super(DAISOConfig, self).__init__(version=_VERSION, **kwargs)
# self.label_classes = label_classes
self.features = features
self.data_url = data_url
self.citation = citation
self.url = url
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class DAISO(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
DAISOConfig(
name="",
description=textwrap.dedent(
"""\
"""
),
features=[
"Utterance",
"Dialogue_Act",
"Emotion",
"Dialogue_ID",
"Dialogue_Act_ISO"
],
data_url={
"train": _URL + "/dyda/train.csv",
"dev": _URL + "/dyda/dev.csv",
"test": _URL + "/dyda/test.csv",
},
citation=textwrap.dedent(
"""\
@InProceedings{li2017dailydialog,
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
year = {2017}
}"""
),
url="http://yanran.li/dailydialog.html",
)
]
DEFAULT_CONFIG_NAME = "dyda" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
features = {feature: datasets.Value("string") for feature in self.config.features}
features["Idx"] = datasets.Value("int32")
# if self.config.name == "": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DAISO_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(features),
# Here we define them above because they are different between the two configurations
# Homepage of the dataset for documentation
homepage=self.config.url,
# License for the dataset if available
# license=_LICENSE,
# Citation for the dataset
citation=self.config.citation + "\n" + _DAISO_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_files = dl_manager.download(self.config.data_url)
splits = []
if "train" in data_files:
splits.append(datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file": data_files["train"],
"split": "train",
},
))
if "dev" in data_files:
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file": data_files["dev"],
"split": "dev",
},
)
if "test" in data_files:
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file": data_files["test"],
"split": "test"
},
)
return splits
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, file, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
df = pd.read_csv(file, delimiter=",", header=0, quotechar='"', dtype=str)[
self.config.text_features.keys()
]
rows = df.to_dict(orient="records")
for n, row in enumerate(rows):
example = row
example["Idx"] = n
if "Dialogue_Act" in example:
label = example["Dialogue_Act"]
example["Label"] = label
yield example["Idx"], example
|