# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import textwrap | |
import csv | |
import pandas as pd | |
import json | |
import os | |
import datasets | |
_VERSION = datasets.Version("1.1.0") | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_DAISO_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={Igor Kuzmin | |
}, | |
year={2023} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DAISO_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://raw.githubusercontent.com/igorktech/DAISO-benchmark/dev" | |
class DAISOConfig(datasets.BuilderConfig): | |
"""BuilderConfig for DAISO.""" | |
def __init__(self,label_classes, features, data_url, citation, url, **kwargs): | |
"""BuilderConfig for DAISO. | |
Args: | |
features: `list[string]`, list of the features that will appear in the | |
feature dict. Should not include "label". | |
data_url: `string`, url to download the csv file from. | |
citation: `string`, citation for the data set. | |
url: `string`, url for information about the data set. | |
label_classes: `list[string]`, the list of classes for the label if the | |
label is present as a string. Non-string labels will be cast to either | |
'False' or 'True'. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(DAISOConfig, self).__init__(version=_VERSION, **kwargs) | |
self.label_classes = label_classes | |
self.features = features | |
self.data_url = data_url | |
self.citation = citation | |
self.url = url | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class DAISO(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
DAISOConfig( | |
name="dyda", | |
description=textwrap.dedent( | |
"""\ | |
""" | |
), | |
label_classes = | |
{"commissive": { | |
"base": "Commissive", | |
"ISO": "commissive" | |
}, | |
"directive": { | |
"base": "Directive", | |
"ISO": "directive" | |
}, | |
"inform": { | |
"base": "Inform", | |
"ISO": "inform" | |
}, | |
"question": { | |
"base": "Question", | |
"ISO": "" | |
} | |
}, | |
features=[ | |
"Utterance", | |
"Dialogue_Act", | |
"Emotion", | |
"Dialogue_ID", | |
"Dialogue_Act_ISO" | |
], | |
data_url={ | |
"train": _URL + "/dyda/train.csv", | |
"dev": _URL + "/dyda/dev.csv", | |
"test": _URL + "/dyda/test.csv", | |
}, | |
citation=textwrap.dedent( | |
"""\ | |
@InProceedings{li2017dailydialog, | |
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi}, | |
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset}, | |
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)}, | |
year = {2017} | |
}""" | |
), | |
url="http://yanran.li/dailydialog.html", | |
) | |
] | |
DEFAULT_CONFIG_NAME = "dyda" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
features = {feature: datasets.Value("string") for feature in self.config.features} | |
if self.config.label_classes: | |
features["Label"] = datasets.features.ClassLabel(names=list(self.config.label_classes.keys())) | |
features["Idx"] = datasets.Value("int32") | |
# if self.config.name == "": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
# features = datasets.Features( | |
# { | |
# "sentence": datasets.Value("string"), | |
# "option1": datasets.Value("string"), | |
# "answer": datasets.Value("string") | |
# # These are the features of your dataset like images, labels ... | |
# } | |
# ) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DAISO_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=datasets.Features(features), | |
# Here we define them above because they are different between the two configurations | |
# Homepage of the dataset for documentation | |
homepage=self.config.url, | |
# License for the dataset if available | |
# license=_LICENSE, | |
# Citation for the dataset | |
citation=self.config.citation + "\n" + _DAISO_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_files = dl_manager.download(self.config.data_url) | |
splits = [] | |
if "train" in data_files: | |
splits.append(datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file": data_files["train"], | |
"split": "train", | |
}, | |
)) | |
if "dev" in data_files: | |
splits.append(datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file": data_files["dev"], | |
"split": "dev", | |
}, | |
)) | |
if "test" in data_files: | |
splits.append(datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"file": data_files["test"], | |
"split": "test" | |
}, | |
)) | |
return splits | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, file, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
df = pd.read_csv(file, delimiter=",", header=0, quotechar='"', dtype=str)[ | |
self.config.features | |
] | |
rows = df.to_dict(orient="records") | |
for n, row in enumerate(rows): | |
example = row | |
example["Idx"] = n | |
if "Dialogue_Act" in example: | |
label = example["Dialogue_Act"] | |
example["Label"] = label | |
example["Label_ISO"] = self.config.label_classes.get(label).get("ISO") | |
yield example["Idx"], example | |