Datasets:
Commit
·
9a70efe
1
Parent(s):
b4ab9d2
Dataset loading script (#5)
Browse files- Provide bash script for simple dataset access (547112a51577caf8456e69a10c9c5154020d9ace)
- Use curl instead of wget for better platform compatibility (ef2fb675c2491908c8b0fd1554e4a5bf7c96ea9b)
- Convert download script to Python (3f19446e290ae71aa3a74532567c0505ae937946)
- Remove bash script (1f3d066c0cf9912b1784812f07d3fc201ea60794)
- Reduce memory usage and improve storage efficiency during dataset processing (3ed547e2b80f2a3a6f1c6f79d1739f6309f010b8)
Co-authored-by: Matthew Thompson <[email protected]>
- download.py +154 -0
download.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import time
|
4 |
+
import zipfile
|
5 |
+
import glob
|
6 |
+
from hashlib import md5
|
7 |
+
import concurrent.futures
|
8 |
+
|
9 |
+
base_url = "https://huggingface.co/datasets/imageomics/KABR/resolve/main/KABR"
|
10 |
+
|
11 |
+
"""
|
12 |
+
To extend the dataset, add additional animals and parts ranges to the list and dictionary below.
|
13 |
+
"""
|
14 |
+
|
15 |
+
animals = ["giraffes", "zebras_grevys", "zebras_plains"]
|
16 |
+
|
17 |
+
animal_parts_range = {
|
18 |
+
"giraffes": ("aa", "ad"),
|
19 |
+
"zebras_grevys": ("aa", "am"),
|
20 |
+
"zebras_plains": ("aa", "al"),
|
21 |
+
}
|
22 |
+
|
23 |
+
dataset_prefix = "dataset/image/"
|
24 |
+
|
25 |
+
# Define the static files that are not dependent on the animals list
|
26 |
+
static_files = [
|
27 |
+
"README.txt",
|
28 |
+
"annotation/classes.json",
|
29 |
+
"annotation/distribution.xlsx",
|
30 |
+
"annotation/train.csv",
|
31 |
+
"annotation/val.csv",
|
32 |
+
"configs/I3D.yaml",
|
33 |
+
"configs/SLOWFAST.yaml",
|
34 |
+
"configs/X3D.yaml",
|
35 |
+
"dataset/image2video.py",
|
36 |
+
"dataset/image2visual.py",
|
37 |
+
]
|
38 |
+
|
39 |
+
def generate_part_files(animal, start, end):
|
40 |
+
start_a, start_b = ord(start[0]), ord(start[1])
|
41 |
+
end_a, end_b = ord(end[0]), ord(end[1])
|
42 |
+
return [
|
43 |
+
f"{dataset_prefix}{animal}_part_{chr(a)}{chr(b)}"
|
44 |
+
for a in range(start_a, end_a + 1)
|
45 |
+
for b in range(start_b, end_b + 1)
|
46 |
+
]
|
47 |
+
|
48 |
+
# Generate the part files for each animal
|
49 |
+
part_files = [
|
50 |
+
part
|
51 |
+
for animal, (start, end) in animal_parts_range.items()
|
52 |
+
for part in generate_part_files(animal, start, end)
|
53 |
+
]
|
54 |
+
|
55 |
+
archive_md5_files = [f"{dataset_prefix}{animal}_md5.txt" for animal in animals]
|
56 |
+
|
57 |
+
files = static_files + archive_md5_files + part_files
|
58 |
+
|
59 |
+
def progress_bar(iteration, total, message, bar_length=50):
|
60 |
+
progress = (iteration / total)
|
61 |
+
bar = '=' * int(round(progress * bar_length) - 1)
|
62 |
+
spaces = ' ' * (bar_length - len(bar))
|
63 |
+
message = f'{message:<100}'
|
64 |
+
print(f'[{bar + spaces}] {int(progress * 100)}% {message}', end='\r', flush=True)
|
65 |
+
|
66 |
+
if iteration == total:
|
67 |
+
print()
|
68 |
+
|
69 |
+
# Directory to save files
|
70 |
+
save_dir = "KABR_files"
|
71 |
+
|
72 |
+
# Loop through each relative file path
|
73 |
+
|
74 |
+
print(f"Downloading the Kenyan Animal Behavior Recognition (KABR) dataset ...")
|
75 |
+
|
76 |
+
total = len(files)
|
77 |
+
for i, file_path in enumerate(files):
|
78 |
+
# Construct the full URL
|
79 |
+
save_path = os.path.join(save_dir, file_path)
|
80 |
+
|
81 |
+
if os.path.exists(save_path):
|
82 |
+
print(f"File {save_path} already exists. Skipping download.")
|
83 |
+
continue
|
84 |
+
|
85 |
+
full_url = f"{base_url}/{file_path}"
|
86 |
+
|
87 |
+
# Create the necessary directories based on the file path
|
88 |
+
os.makedirs(os.path.join(save_dir, os.path.dirname(file_path)), exist_ok=True)
|
89 |
+
|
90 |
+
# Download the file and save it with the preserved file path
|
91 |
+
response = requests.get(full_url)
|
92 |
+
with open(save_path, 'wb') as file:
|
93 |
+
file.write(response.content)
|
94 |
+
|
95 |
+
progress_bar(i+1, total, f"downloaded: {save_path}")
|
96 |
+
|
97 |
+
print("Download of repository contents completed.")
|
98 |
+
|
99 |
+
print(f"Concatenating split files into a full archive for {animals} ...")
|
100 |
+
|
101 |
+
def concatenate_files(animal):
|
102 |
+
print(f"Concatenating files for {animal} ...")
|
103 |
+
part_files_pattern = f"{save_dir}/dataset/image/{animal}_part_*"
|
104 |
+
part_files = sorted(glob.glob(part_files_pattern))
|
105 |
+
if part_files:
|
106 |
+
with open(f"{save_dir}/dataset/image/{animal}.zip", 'wb') as f_out:
|
107 |
+
for f_name in part_files:
|
108 |
+
with open(f_name, 'rb') as f_in:
|
109 |
+
# Read and write in chunks
|
110 |
+
CHUNK_SIZE = 8*1024*1024 # 8MB
|
111 |
+
for chunk in iter(lambda: f_in.read(CHUNK_SIZE), b""):
|
112 |
+
f_out.write(chunk)
|
113 |
+
# Delete part files as they are concatenated
|
114 |
+
os.remove(f_name)
|
115 |
+
print(f"Archive for {animal} concatenated.")
|
116 |
+
else:
|
117 |
+
print(f"No part files found for {animal}.")
|
118 |
+
|
119 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
120 |
+
executor.map(concatenate_files, animals)
|
121 |
+
|
122 |
+
def compute_md5(file_path):
|
123 |
+
hasher = md5()
|
124 |
+
with open(file_path, 'rb') as f:
|
125 |
+
CHUNK_SIZE = 8*1024*1024 # 8MB
|
126 |
+
for chunk in iter(lambda: f.read(CHUNK_SIZE), b""):
|
127 |
+
hasher.update(chunk)
|
128 |
+
return hasher.hexdigest()
|
129 |
+
|
130 |
+
def verify_and_extract(animal):
|
131 |
+
print(f"Confirming data integrity for {animal}.zip ...")
|
132 |
+
zip_md5 = compute_md5(f"{save_dir}/dataset/image/{animal}.zip")
|
133 |
+
|
134 |
+
with open(f"{save_dir}/dataset/image/{animal}_md5.txt", 'r') as file:
|
135 |
+
expected_md5 = file.read().strip().split()[0]
|
136 |
+
|
137 |
+
if zip_md5 == expected_md5:
|
138 |
+
print(f"MD5 sum for {animal}.zip is correct.")
|
139 |
+
|
140 |
+
print(f"Extracting {animal}.zip ...")
|
141 |
+
with zipfile.ZipFile(f"{save_dir}/dataset/image/{animal}.zip", 'r') as zip_ref:
|
142 |
+
zip_ref.extractall(f"{save_dir}/dataset/image/")
|
143 |
+
print(f"{animal}.zip extracted.")
|
144 |
+
print(f"Cleaning up for {animal} ...")
|
145 |
+
os.remove(f"{save_dir}/dataset/image/{animal}.zip")
|
146 |
+
os.remove(f"{save_dir}/dataset/image/{animal}_md5.txt")
|
147 |
+
else:
|
148 |
+
print(f"MD5 sum for {animal}.zip is incorrect. Expected: {expected_md5}, but got: {zip_md5}.")
|
149 |
+
print("There may be data corruption. Please try to download and reconstruct the data again or reach out to the corresponding authors for assistance.")
|
150 |
+
|
151 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
152 |
+
executor.map(verify_and_extract, animals)
|
153 |
+
|
154 |
+
print("Download script finished.")
|