code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __A ( _A , _A ): """simple docstring""" __a = [[] for _ in range(_A )] __a = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(_A ) <= key: return input_string for position, character in enumerate(_A ): __a = position % (lowest * 2) # puts it in bounds __a = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_A ) __a = ["".join(_A ) for row in temp_grid] __a = "".join(_A ) return output_string def __A ( _A , _A ): """simple docstring""" __a = [] __a = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __a = [[] for _ in range(_A )] # generates template for position in range(len(_A ) ): __a = position % (lowest * 2) # puts it in bounds __a = min(_A , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __a = 0 for row in temp_grid: # fills in the characters __a = input_string[counter : counter + len(_A )] grid.append(list(_A ) ) counter += len(_A ) __a = "" # reads as zigzag for position in range(len(_A ) ): __a = position % (lowest * 2) # puts it in bounds __a = min(_A , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __A ( _A ): """simple docstring""" __a = {} for key_guess in range(1 , len(_A ) ): # tries every key __a = decrypt(_A , _A ) return results if __name__ == "__main__": import doctest doctest.testmod()
197
from typing import Any def __A ( _A ): """simple docstring""" if not input_list: return [] __a = [input_list.count(_A ) for value in input_list] __a = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
197
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
712
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=0.9 , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __UpperCAmelCase: List[Any] = size if size is not None else {"""shortest_edge""": 30} __UpperCAmelCase: str = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __UpperCAmelCase: Dict = parent __UpperCAmelCase: Union[str, Any] = batch_size __UpperCAmelCase: List[Any] = num_channels __UpperCAmelCase: List[str] = min_resolution __UpperCAmelCase: List[str] = max_resolution __UpperCAmelCase: Tuple = do_resize_and_center_crop __UpperCAmelCase: Union[str, Any] = size __UpperCAmelCase: str = crop_pct __UpperCAmelCase: List[Any] = crop_size __UpperCAmelCase: str = do_normalize __UpperCAmelCase: Union[str, Any] = image_mean __UpperCAmelCase: List[str] = image_std def lowercase_ ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = PoolFormerImageProcessingTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """crop_pct""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __UpperCAmelCase: Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __UpperCAmelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase: Any = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __UpperCAmelCase: Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase: str = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __UpperCAmelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase: Optional[int] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
466
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCamelCase ( snake_case__ : Dict ,snake_case__ : Tuple ): '''simple docstring''' assert isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" ,[False, True] ) def UpperCamelCase ( snake_case__ : Dict ,snake_case__ : int ,snake_case__ : str ,snake_case__ : List[Any] ): '''simple docstring''' __snake_case :Optional[int] = tmp_path / """cache""" __snake_case :int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __snake_case :str = SqlDatasetReader( """dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=lowerCAmelCase_ ,keep_in_memory=lowerCAmelCase_ ).read() _check_sql_dataset(lowerCAmelCase_ ,lowerCAmelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" ,[ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] ,) def UpperCamelCase ( snake_case__ : int ,snake_case__ : List[Any] ,snake_case__ : List[Any] ,snake_case__ : Optional[Any] ): '''simple docstring''' __snake_case :List[Any] = tmp_path / """cache""" __snake_case :Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __snake_case :Optional[Any] = features.copy() if features else default_expected_features __snake_case :Dict = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case :Optional[Any] = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,features=lowerCAmelCase_ ,cache_dir=lowerCAmelCase_ ).read() _check_sql_dataset(lowerCAmelCase_ ,lowerCAmelCase_ ) def UpperCamelCase ( snake_case__ : str ): '''simple docstring''' with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: __snake_case :Union[str, Any] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def UpperCamelCase ( snake_case__ : str ,snake_case__ : List[Any] ,snake_case__ : Dict ): '''simple docstring''' __snake_case :Dict = tmp_path / """cache""" __snake_case :Optional[int] = os.path.join(lowerCAmelCase_ ,"""tmp.sql""" ) __snake_case :Any = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=lowerCAmelCase_ ).read() SqlDatasetWriter(lowerCAmelCase_ ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=1 ).write() __snake_case :Dict = iter_sql_file(lowerCAmelCase_ ) __snake_case :int = iter_sql_file(lowerCAmelCase_ ) for rowa, rowa in zip(lowerCAmelCase_ ,lowerCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( snake_case__ : List[str] ,snake_case__ : Union[str, Any] ,snake_case__ : Union[str, Any] ): '''simple docstring''' __snake_case :List[Any] = tmp_path / """cache""" __snake_case :List[str] = os.path.join(lowerCAmelCase_ ,"""tmp.sql""" ) __snake_case :Optional[int] = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=lowerCAmelCase_ ).read() SqlDatasetWriter(lowerCAmelCase_ ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=2 ).write() __snake_case :Union[str, Any] = iter_sql_file(lowerCAmelCase_ ) __snake_case :List[Any] = iter_sql_file(lowerCAmelCase_ ) for rowa, rowa in zip(lowerCAmelCase_ ,lowerCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def UpperCamelCase ( snake_case__ : Union[str, Any] ,snake_case__ : List[str] ,snake_case__ : Dict ): '''simple docstring''' __snake_case :int = tmp_path / """cache""" __snake_case :List[Any] = os.path.join(lowerCAmelCase_ ,"""tmp.sql""" ) __snake_case :int = SqlDatasetReader("""dataset""" ,"""sqlite:///""" + sqlite_path ,cache_dir=lowerCAmelCase_ ).read() with pytest.raises(lowerCAmelCase_ ): SqlDatasetWriter(lowerCAmelCase_ ,"""dataset""" ,"""sqlite:///""" + output_sqlite_path ,num_proc=0 ).write()
455
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a__ : str = logging.get_logger(__name__) class UpperCamelCase_ ( enum.Enum): """simple docstring""" snake_case__ : Optional[int] = 0 snake_case__ : Dict = 1 @add_end_docstrings(UpperCamelCase) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Tuple = "generated" def __init__( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : str ) -> Dict: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Union[str, Any] , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = {} if truncation is not None: __SCREAMING_SNAKE_CASE = truncation __SCREAMING_SNAKE_CASE = generate_kwargs __SCREAMING_SNAKE_CASE = {} if return_tensors is not None and return_type is None: __SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __SCREAMING_SNAKE_CASE = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) __SCREAMING_SNAKE_CASE = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> List[str]: return True def UpperCAmelCase_ ( self : Any , *UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> Any: __SCREAMING_SNAKE_CASE = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , UpperCAmelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) __SCREAMING_SNAKE_CASE = ([prefix + arg for arg in args[0]],) __SCREAMING_SNAKE_CASE = True elif isinstance(args[0] , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = (prefix + args[0],) __SCREAMING_SNAKE_CASE = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) __SCREAMING_SNAKE_CASE = self.tokenizer(*UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[str] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) if ( isinstance(args[0] , UpperCAmelCase__ ) and all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for el in args[0] ) and all(len(UpperCAmelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCAmelCase__ : int ) -> Tuple: __SCREAMING_SNAKE_CASE = self._parse_and_tokenize(UpperCAmelCase__ , truncation=UpperCAmelCase__ , **UpperCAmelCase__ ) return inputs def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , **UpperCAmelCase__ : Any ) -> Any: if self.framework == "pt": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_inputs["input_ids"].shape elif self.framework == "tf": __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tf.shape(model_inputs["input_ids"] ).numpy() __SCREAMING_SNAKE_CASE = generate_kwargs.get("min_length" , self.model.config.min_length ) __SCREAMING_SNAKE_CASE = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(UpperCAmelCase__ , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) __SCREAMING_SNAKE_CASE = self.model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output_ids.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = output_ids.reshape(UpperCAmelCase__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.reshape(UpperCAmelCase__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict=ReturnType.TEXT , UpperCAmelCase__ : str=False ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: __SCREAMING_SNAKE_CASE = { F"""{self.return_name}_text""": self.tokenizer.decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , ) } records.append(UpperCAmelCase__ ) return records @add_end_docstrings(UpperCamelCase) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = "summary" def __call__( self : Tuple , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Any ) -> Optional[int]: return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ "a summarization task, where outputs shorter than the input are typically wanted, you might " F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = "translation" def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Optional[Any]: if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def UpperCAmelCase_ ( self : Any , *UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[Any]=None ) -> List[Any]: if getattr(self.tokenizer , "_build_translation_inputs" , UpperCAmelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase__ , return_tensors=self.framework , truncation=UpperCAmelCase__ , src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ ) else: return super()._parse_and_tokenize(*UpperCAmelCase__ , truncation=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : str=None , **UpperCAmelCase__ : List[str] ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super()._sanitize_parameters(**UpperCAmelCase__ ) if src_lang is not None: __SCREAMING_SNAKE_CASE = src_lang if tgt_lang is not None: __SCREAMING_SNAKE_CASE = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __SCREAMING_SNAKE_CASE = kwargs.get("task" , self.task ) __SCREAMING_SNAKE_CASE = task.split("_" ) if task and len(UpperCAmelCase__ ) == 4: # translation, XX, to YY __SCREAMING_SNAKE_CASE = items[1] __SCREAMING_SNAKE_CASE = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Any ) -> List[Any]: return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ )
682
0
from __future__ import annotations def lowerCamelCase_ ( A : list[list[int]] ): """simple docstring""" lowerCAmelCase_ = len(A ) # We need to create solution object to save path. lowerCAmelCase_ = [[0 for _ in range(A )] for _ in range(A )] lowerCAmelCase_ = run_maze(A , 0 , 0 , A ) if solved: print('''\n'''.join(str(A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def lowerCamelCase_ ( A : list[list[int]] , A : int , A : int , A : list[list[int]] ): """simple docstring""" lowerCAmelCase_ = len(A ) # Final check point. if i == j == (size - 1): lowerCAmelCase_ = 1 return True lowerCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase_ = 1 # check for directions if ( run_maze(A , i + 1 , A , A ) or run_maze(A , A , j + 1 , A ) or run_maze(A , i - 1 , A , A ) or run_maze(A , A , j - 1 , A ) ): return True lowerCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
705
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self): lowerCAmelCase_ = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''c''']) self.assertEqual(_UpperCAmelCase , [2]) # Out indices set to match out features lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(['''a''', '''c'''] , _UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [0, 2]) # Out features set to match out indices lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [0, 2]) # Out features selected from negative indices lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , ['''a''', '''c''']) self.assertEqual(_UpperCAmelCase , [-3, -1]) def lowercase__ ( self): # Stage names must be set with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _UpperCAmelCase) # Out features must be a list with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b''']) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a''']) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['''a''', '''b''']) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['''a''']) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c''']) # Out features should match out indices with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c''']) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b''']) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d''']) def lowercase__ ( self): lowerCAmelCase_ = BackboneMixin() lowerCAmelCase_ = ['''a''', '''b''', '''c'''] lowerCAmelCase_ = ['''a''', '''c'''] lowerCAmelCase_ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c''']) self.assertEqual(backbone.out_indices , [0, 2]) # Check out features and indices are updated correctly lowerCAmelCase_ = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b''']) self.assertEqual(backbone.out_indices , [0, 1]) lowerCAmelCase_ = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c''']) self.assertEqual(backbone.out_indices , [-3, -1])
413
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __A = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __A = { "ctrl": 2_56, } __A = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def lowercase__ ( A_: List[Any] ) -> Dict: """simple docstring""" __UpperCAmelCase =set() __UpperCAmelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase =char __UpperCAmelCase =set(A_ ) return pairs class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = CONTROL_CODES def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any="<unk>" , **__SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: super().__init__(unk_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle: __UpperCAmelCase =json.load(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as merges_handle: __UpperCAmelCase =merges_handle.read().split("""\n""" )[1:-1] __UpperCAmelCase =[tuple(merge.split() ) for merge in merges] __UpperCAmelCase =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __UpperCAmelCase ={} @property def _a ( self : int ) -> List[Any]: return len(self.encoder ) def _a ( self : List[Any] ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] ) -> Any: if token in self.cache: return self.cache[token] __UpperCAmelCase =tuple(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __UpperCAmelCase =get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __UpperCAmelCase =min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase =bigram __UpperCAmelCase =[] __UpperCAmelCase =0 while i < len(__SCREAMING_SNAKE_CASE ): try: __UpperCAmelCase =word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase =j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase =tuple(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __UpperCAmelCase =get_pairs(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ="""@@ """.join(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =word[:-4] __UpperCAmelCase =word return word def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: __UpperCAmelCase =[] __UpperCAmelCase =re.findall(R"""\S+\n?""" , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple ) -> str: return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]: return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _a ( self : str , __SCREAMING_SNAKE_CASE : int ) -> List[str]: __UpperCAmelCase =""" """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ """ , """""" ).strip() return out_string def _a ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase =os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + """\n""" ) __UpperCAmelCase =0 with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __UpperCAmelCase =token_index writer.write(""" """.join(__SCREAMING_SNAKE_CASE ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
68
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _A ): snake_case_ = "sew-d" def __init__( self , a_=32 , a_=768 , a_=12 , a_=12 , a_=3_072 , a_=2 , a_=512 , a_=256 , a_=True , a_=True , a_=("p2c", "c2p") , a_="layer_norm" , a_="gelu_python" , a_=0.1 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.1 , a_=0.02 , a_=1e-7 , a_=1e-5 , a_="group" , a_="gelu" , a_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a_=False , a_=128 , a_=16 , a_=True , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_="mean" , a_=False , a_=False , a_=256 , a_=0 , a_=1 , a_=2 , **a_ , ): super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[int] = feat_extract_norm lowerCAmelCase : str = feat_extract_activation lowerCAmelCase : Dict = list(a_ ) lowerCAmelCase : int = list(a_ ) lowerCAmelCase : Any = list(a_ ) lowerCAmelCase : Optional[Any] = conv_bias lowerCAmelCase : Tuple = num_conv_pos_embeddings lowerCAmelCase : int = num_conv_pos_embedding_groups lowerCAmelCase : Optional[int] = len(self.conv_dim ) lowerCAmelCase : Dict = num_hidden_layers lowerCAmelCase : str = intermediate_size lowerCAmelCase : Any = squeeze_factor lowerCAmelCase : Optional[int] = max_position_embeddings lowerCAmelCase : Tuple = position_buckets lowerCAmelCase : Union[str, Any] = share_att_key lowerCAmelCase : str = relative_attention lowerCAmelCase : List[str] = norm_rel_ebd lowerCAmelCase : int = list(a_ ) lowerCAmelCase : str = hidden_act lowerCAmelCase : Dict = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_dropout lowerCAmelCase : int = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Any = feat_proj_dropout lowerCAmelCase : Optional[int] = final_dropout lowerCAmelCase : Union[str, Any] = layer_norm_eps lowerCAmelCase : str = feature_layer_norm_eps lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : List[str] = apply_spec_augment lowerCAmelCase : List[Any] = mask_time_prob lowerCAmelCase : Tuple = mask_time_length lowerCAmelCase : List[Any] = mask_time_min_masks lowerCAmelCase : List[str] = mask_feature_prob lowerCAmelCase : Union[str, Any] = mask_feature_length lowerCAmelCase : List[Any] = mask_feature_min_masks # ctc loss lowerCAmelCase : Any = ctc_loss_reduction lowerCAmelCase : str = ctc_zero_infinity # sequence classification lowerCAmelCase : Dict = use_weighted_layer_sum lowerCAmelCase : Tuple = classifier_proj_size @property def _lowerCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
525
0
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _lowercase = True from torch.cuda.amp import autocast _lowercase = logging.getLogger(__name__) def __UpperCamelCase ( a : Optional[Any]=None , a : List[str]=None ) ->Optional[Any]: return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class _lowercase : _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCAmelCase = field( default=__a , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) _UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) _UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) _UpperCAmelCase = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) _UpperCAmelCase = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) _UpperCAmelCase = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) _UpperCAmelCase = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class _lowercase : _UpperCAmelCase = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _UpperCAmelCase = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) _UpperCAmelCase = field( default=__a , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) _UpperCAmelCase = field( default=__a , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _UpperCAmelCase = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCAmelCase = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) _UpperCAmelCase = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class _lowercase : _UpperCAmelCase = 42 _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None def __call__( self , A__ ) -> Dict: # split inputs and labels since they have to be of different lenghts and need # different padding methods snake_case = [{'''input_values''': feature['''input_values''']} for feature in features] snake_case = [{'''input_ids''': feature['''labels''']} for feature in features] snake_case = self.processor.pad( snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) snake_case = self.processor.pad( labels=snake_case__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly snake_case = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) snake_case = labels return batch class _lowercase ( __a ): def UpperCamelCase ( self , A__ , A__ ) -> int: model.train() snake_case = self._prepare_inputs(snake_case__ ) if self.use_amp: with autocast(): snake_case = self.compute_loss(snake_case__ , snake_case__ ) else: snake_case = self.compute_loss(snake_case__ , snake_case__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": snake_case = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case__ ).backward() elif self.use_apex: with amp.scale_loss(snake_case__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case__ ) else: loss.backward() return loss.detach() def __UpperCamelCase ( ) ->Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: snake_case = datasets.load_dataset( '''common_voice''' , data_args.dataset_config_name , split=data_args.train_split_name ) snake_case = datasets.load_dataset('''common_voice''' , data_args.dataset_config_name , split='''test''' ) # Create and save tokenizer snake_case = f"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(a : Optional[int] ): snake_case = re.sub(lowerCAmelCase__ , '''''' , batch['''sentence'''] ).lower() + ''' ''' return batch snake_case = train_dataset.map(lowerCAmelCase__ , remove_columns=['''sentence'''] ) snake_case = eval_dataset.map(lowerCAmelCase__ , remove_columns=['''sentence'''] ) def extract_all_chars(a : str ): snake_case = ''' '''.join(batch['''text'''] ) snake_case = list(set(lowerCAmelCase__ ) ) return {"vocab": [vocab], "all_text": [all_text]} snake_case = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , batch_size=-1 , keep_in_memory=lowerCAmelCase__ , remove_columns=train_dataset.column_names , ) snake_case = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , batch_size=-1 , keep_in_memory=lowerCAmelCase__ , remove_columns=eval_dataset.column_names , ) snake_case = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) snake_case = {v: k for k, v in enumerate(lowerCAmelCase__ )} snake_case = vocab_dict[''' '''] del vocab_dict[" "] snake_case = len(lowerCAmelCase__ ) snake_case = len(lowerCAmelCase__ ) with open('''vocab.json''' , '''w''' ) as vocab_file: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = WavaVecaCTCTokenizer( '''vocab.json''' , unk_token='''[UNK]''' , pad_token='''[PAD]''' , word_delimiter_token='''|''' , ) snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ ) snake_case = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) snake_case = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='''mean''' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: snake_case = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) snake_case = train_dataset.select(range(lowerCAmelCase__ ) ) if data_args.max_val_samples is not None: snake_case = eval_dataset.select(range(data_args.max_val_samples ) ) snake_case = torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(a : Tuple ): snake_case , snake_case = torchaudio.load(batch['''path'''] ) snake_case = resampler(lowerCAmelCase__ ).squeeze().numpy() snake_case = 1_6000 snake_case = batch['''text'''] return batch snake_case = train_dataset.map( lowerCAmelCase__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) snake_case = eval_dataset.map( lowerCAmelCase__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(a : Optional[Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" snake_case = processor( audio=batch['''speech'''] , text=batch['''target_text'''] , sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowerCAmelCase__ ) return batch snake_case = train_dataset.map( lowerCAmelCase__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , ) snake_case = eval_dataset.map( lowerCAmelCase__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , ) # Metric snake_case = datasets.load_metric('''wer''' ) def compute_metrics(a : int ): snake_case = pred.predictions snake_case = np.argmax(lowerCAmelCase__ , axis=-1 ) snake_case = processor.tokenizer.pad_token_id snake_case = processor.batch_decode(lowerCAmelCase__ ) # we do not want to group tokens when computing the metrics snake_case = processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase__ ) snake_case = wer_metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator snake_case = DataCollatorCTCWithPadding(processor=lowerCAmelCase__ , padding=lowerCAmelCase__ ) # Initialize our Trainer snake_case = CTCTrainer( model=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): snake_case = model_args.model_name_or_path else: snake_case = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) snake_case = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() snake_case = train_result.metrics snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) snake_case = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('''train''' , lowerCAmelCase__ ) trainer.save_metrics('''train''' , lowerCAmelCase__ ) trainer.save_state() # Evaluation snake_case = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case = trainer.evaluate() snake_case = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase__ ) snake_case = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) return results if __name__ == "__main__": main()
705
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowercase ( yaml.SafeLoader ): def UpperCamelCase ( self , A__ ) -> List[str]: snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case = [tuple(A__ ) if isinstance(A__ , A__ ) else key for key in keys] snake_case = Counter(A__ ) snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self , A__ , A__=False ) -> List[Any]: snake_case = super().construct_mapping(A__ , deep=A__ ) self._check_no_duplicates_on_constructed_node(A__ ) return mapping def __UpperCamelCase ( a : str ) ->Tuple[Optional[str], str]: snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case = full_content[1:].index('''---''' ) + 1 snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _lowercase ( __a ): # class attributes _UpperCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case , snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A__ ) else: return cls() def UpperCamelCase ( self , A__ ) -> str: if path.exists(): with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case = readme_file.read() else: snake_case = None snake_case = self._to_readme(A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(A__ ) def UpperCamelCase ( self , A__ = None ) -> str: if readme_content is not None: snake_case , snake_case = _split_yaml_from_readme(A__ ) snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": snake_case = yaml.load(A__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A__ ) def UpperCamelCase ( self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A__ , allow_unicode=A__ , encoding='''utf-8''' , ).decode('''utf-8''' ) _lowercase = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowercase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowercase = ap.parse_args() _lowercase = Path(args.readme_filepath) _lowercase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
44
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Union[str, Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __lowercase ( _a , _a , _a , _a , _a ): for attribute in key.split('''.''' ): snake_case_ : Optional[int] = getattr(_a , _a ) if weight_type is not None: snake_case_ : Dict = getattr(_a , _a ).shape else: snake_case_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case_ : int = value elif weight_type == "weight_g": snake_case_ : Tuple = value elif weight_type == "weight_v": snake_case_ : List[str] = value elif weight_type == "bias": snake_case_ : List[str] = value else: snake_case_ : Any = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowercase ( _a , _a ): snake_case_ : Optional[Any] = [] snake_case_ : str = fairseq_model.state_dict() snake_case_ : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) snake_case_ : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Optional[int] = name.split(_a )[0].split('''.''' )[-2] snake_case_ : Dict = mapped_key.replace('''*''' , _a ) if "weight_g" in name: snake_case_ : str = '''weight_g''' elif "weight_v" in name: snake_case_ : Tuple = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: snake_case_ : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ : Tuple = '''weight''' else: snake_case_ : List[Any] = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"Unused weights: {unused_weights}" ) def __lowercase ( _a , _a , _a , _a , _a ): snake_case_ : Tuple = full_name.split('''conv_layers.''' )[-1] snake_case_ : List[str] = name.split('''.''' ) snake_case_ : List[str] = int(items[0] ) snake_case_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case_ : Any = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case_ : Optional[int] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case_ : List[str] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_a ) @torch.no_grad() def __lowercase ( _a , _a , _a=None ): # load the pre-trained checkpoints snake_case_ : int = torch.load(_a ) snake_case_ : int = WavLMConfigOrig(checkpoint['''cfg'''] ) snake_case_ : List[str] = WavLMOrig(_a ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: snake_case_ : List[str] = WavLMConfig.from_pretrained(_a ) else: snake_case_ : List[str] = WavLMConfig() snake_case_ : int = WavLMModel(_a ) recursively_load_weights(_a , _a ) hf_wavlm.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
123
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = KandinskyInpaintPipeline _lowerCAmelCase : Tuple = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowerCAmelCase : Optional[int] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowerCAmelCase : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCAmelCase : List[str] = False @property def _snake_case ( self : Optional[Any] ): return 32 @property def _snake_case ( self : List[Any] ): return 32 @property def _snake_case ( self : List[Any] ): return self.time_input_dim @property def _snake_case ( self : Any ): return self.time_input_dim * 4 @property def _snake_case ( self : Any ): return 100 @property def _snake_case ( self : str ): snake_case_ : str = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _snake_case ( self : Dict ): torch.manual_seed(0 ) snake_case_ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) snake_case_ : Tuple = MultilingualCLIP(lowercase_ ) snake_case_ : List[Any] = text_encoder.eval() return text_encoder @property def _snake_case ( self : int ): torch.manual_seed(0 ) snake_case_ : Dict = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case_ : Union[str, Any] = UNetaDConditionModel(**lowercase_ ) return model @property def _snake_case ( self : int ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self : Optional[int] ): torch.manual_seed(0 ) snake_case_ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : Optional[int] ): snake_case_ : Any = self.dummy_text_encoder snake_case_ : Optional[int] = self.dummy_tokenizer snake_case_ : Any = self.dummy_unet snake_case_ : Tuple = self.dummy_movq snake_case_ : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowercase_ , ) snake_case_ : int = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _snake_case ( self : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=0 ): snake_case_ : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ ) # create init_image snake_case_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) snake_case_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Any = Image.fromarray(np.uinta(lowercase_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask snake_case_ : Tuple = np.ones((64, 64) , dtype=np.floataa ) snake_case_ : Dict = 0 if str(lowercase_ ).startswith('''mps''' ): snake_case_ : List[Any] = torch.manual_seed(lowercase_ ) else: snake_case_ : List[str] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ : List[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def _snake_case ( self : str ): snake_case_ : Any = '''cpu''' snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Tuple = self.pipeline_class(**lowercase_ ) snake_case_ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ : str = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case_ : int = output.images snake_case_ : Tuple = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] snake_case_ : Optional[int] = image[0, -3:, -3:, -1] snake_case_ : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f"image.shape {image.shape}" ) assert image.shape == (1, 64, 64, 3) snake_case_ : str = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" def _snake_case ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Dict ): snake_case_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) snake_case_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case_ : int = np.ones((768, 768) , dtype=np.floataa ) snake_case_ : str = 0 snake_case_ : Tuple = '''a hat''' snake_case_ : Any = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) snake_case_ : List[str] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) snake_case_ : Optional[Any] = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) snake_case_ : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case_, snake_case_ : Tuple = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case_ : Any = pipeline( lowercase_ , image=lowercase_ , mask_image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) snake_case_ : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
123
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = {"vocab_file": "spiece.model"} lowercase : Dict = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: A : Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) A : int = 3 A : List[str] = do_lower_case A : Optional[Any] = remove_space A : str = keep_accents A : Any = vocab_file A : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) A : int = jieba A : str = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case ( self ) -> Union[str, Any]: return len(self.sp_model ) def snake_case ( self ) -> List[str]: A : List[Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: A : Optional[int] = self.__dict__.copy() A : Any = None return state def __setstate__( self , __UpperCAmelCase ) -> Optional[int]: A : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A : Dict = {} A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , __UpperCAmelCase ) -> Union[str, Any]: if self.remove_space: A : List[Any] = ''' '''.join(inputs.strip().split() ) else: A : Dict = inputs A : Optional[int] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A : Dict = unicodedata.normalize('''NFKD''' , __UpperCAmelCase ) A : int = ''''''.join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: A : Tuple = outputs.lower() return outputs def snake_case ( self , __UpperCAmelCase ) -> List[str]: A : str = self.preprocess_text(__UpperCAmelCase ) A : int = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) A : Optional[int] = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A : Optional[int] = cur_pieces[1:] else: A : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def snake_case ( self , __UpperCAmelCase ) -> Dict: return self.sp_model.PieceToId(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ) -> Any: return self.sp_model.IdToPiece(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ) -> List[Any]: A : List[str] = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: A : Dict = [self.sep_token_id] A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: A : Any = [self.sep_token_id] A : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A : Tuple = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: A : List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: A : Union[str, Any] = super()._decode(*__UpperCAmelCase , **__UpperCAmelCase ) A : str = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
423
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase : Any = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def snake_case__ ( lowerCamelCase_ ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ ): from diffusers.utils.testing_utils import pytest_terminal_summary_main A : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase_ , id=lowerCamelCase_ )
423
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __UpperCamelCase = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] __UpperCamelCase = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] __UpperCamelCase = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) __UpperCamelCase = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) __UpperCamelCase = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def UpperCamelCase_( _A :Union[str, Any] , _A :Optional[Any] )-> Optional[Any]: for tf_name, hf_name in patterns: UpperCamelCase__ = k.replace(__UpperCamelCase , __UpperCamelCase ) return k def UpperCamelCase_( _A :dict , _A :dict )-> BigBirdPegasusForConditionalGeneration: UpperCamelCase__ = BigBirdPegasusConfig(**__UpperCamelCase ) UpperCamelCase__ = BigBirdPegasusForConditionalGeneration(__UpperCamelCase ) UpperCamelCase__ = torch_model.state_dict() UpperCamelCase__ = {} # separating decoder weights UpperCamelCase__ = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} UpperCamelCase__ = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): UpperCamelCase__ = [k.endswith(__UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(__UpperCamelCase ): continue UpperCamelCase__ = DECODER_PATTERNS UpperCamelCase__ = rename_state_dict_key(__UpperCamelCase , __UpperCamelCase ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCamelCase__ = v.T UpperCamelCase__ = torch.from_numpy(__UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): UpperCamelCase__ = [k.endswith(__UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(__UpperCamelCase ): continue UpperCamelCase__ = REMAINING_PATTERNS UpperCamelCase__ = rename_state_dict_key(__UpperCamelCase , __UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCamelCase__ = v.T UpperCamelCase__ = torch.from_numpy(__UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' UpperCamelCase__ = mapping["model.embed_positions.weight"] UpperCamelCase__ = mapping.pop("model.embed_positions.weight" ) UpperCamelCase__, UpperCamelCase__ = torch_model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) UpperCamelCase__ = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase_( _A :int )-> Dict: UpperCamelCase__ = tf.train.list_variables(__UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = ["global_step"] for name, shape in tqdm(__UpperCamelCase , desc="converting tf checkpoint to dict" ): UpperCamelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase__ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase__ = array return tf_weights def UpperCamelCase_( _A :str , _A :str , _A :dict )-> str: UpperCamelCase__ = get_tf_weights_as_numpy(__UpperCamelCase ) UpperCamelCase__ = convert_bigbird_pegasus(__UpperCamelCase , __UpperCamelCase ) torch_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') __UpperCamelCase = parser.parse_args() __UpperCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
551
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : str=0.999 , lowerCAmelCase : Dict="cosine" , ) -> str: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCAmelCase = [] for i in range(lowerCAmelCase ): UpperCAmelCase = i / num_diffusion_timesteps UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase ) / alpha_bar_fn(lowerCAmelCase ) , lowerCAmelCase ) ) return torch.tensor(lowerCAmelCase , dtype=torch.floataa ) class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Any = [e.name for e in KarrasDiffusionSchedulers] __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 @register_to_config def __init__( self , lowercase_ = 1_0_0_0 , lowercase_ = 0.0_0_0_8_5 , lowercase_ = 0.0_1_2 , lowercase_ = "linear" , lowercase_ = None , lowercase_ = "epsilon" , lowercase_ = "linspace" , lowercase_ = 0 , ) -> Tuple: if trained_betas is not None: UpperCAmelCase = torch.tensor(lowercase_ , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase = torch.linspace(lowercase_ , lowercase_ , lowercase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowercase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase = betas_for_alpha_bar(lowercase_ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) UpperCAmelCase = 1.0 - self.betas UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowercase_ , lowercase_ , lowercase_ ) def a_ ( self , lowercase_ , lowercase_=None ) -> Dict: if schedule_timesteps is None: UpperCAmelCase = self.timesteps UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase = 1 if len(lowercase_ ) > 1 else 0 else: UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def a_ ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a_ ( self , lowercase_ , lowercase_ , ) -> torch.FloatTensor: UpperCAmelCase = self.index_for_timestep(lowercase_ ) if self.state_in_first_order: UpperCAmelCase = self.sigmas[step_index] else: UpperCAmelCase = self.sigmas_interpol[step_index] UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def a_ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , ) -> Any: UpperCAmelCase = num_inference_steps UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , lowercase_ , dtype=lowercase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(lowercase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase = (np.arange(lowercase_ , 0 , -step_ratio )).round().copy().astype(lowercase_ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase = torch.from_numpy(np.log(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase = np.interp(lowercase_ , np.arange(0 , len(lowercase_ ) ) , lowercase_ ) UpperCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase = torch.from_numpy(lowercase_ ).to(device=lowercase_ ) # interpolate sigmas UpperCAmelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowercase_ ).startswith('mps' ): # mps does not support float64 UpperCAmelCase = torch.from_numpy(lowercase_ ).to(lowercase_ , dtype=torch.floataa ) else: UpperCAmelCase = torch.from_numpy(lowercase_ ).to(lowercase_ ) # interpolate timesteps UpperCAmelCase = self.sigma_to_t(lowercase_ ).to(lowercase_ , dtype=timesteps.dtype ) UpperCAmelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() UpperCAmelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase = defaultdict(lowercase_ ) def a_ ( self , lowercase_ ) -> int: # get log sigma UpperCAmelCase = sigma.log() # get distribution UpperCAmelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCAmelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCAmelCase = low_idx + 1 UpperCAmelCase = self.log_sigmas[low_idx] UpperCAmelCase = self.log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase = (low - log_sigma) / (low - high) UpperCAmelCase = w.clamp(0 , 1 ) # transform interpolation to time range UpperCAmelCase = (1 - w) * low_idx + w * high_idx UpperCAmelCase = t.view(sigma.shape ) return t @property def a_ ( self ) -> Dict: return self.sample is None def a_ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = True , ) -> Union[SchedulerOutput, Tuple]: UpperCAmelCase = self.index_for_timestep(lowercase_ ) # advance index counter by 1 UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(lowercase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase = self.sigmas[step_index] UpperCAmelCase = self.sigmas_interpol[step_index + 1] UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCAmelCase = self.sigmas[step_index - 1] UpperCAmelCase = self.sigmas_interpol[step_index] UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase = 0 UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase = sigma_interpol - sigma_hat # store for 2nd order step UpperCAmelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCAmelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCAmelCase = sigma_next - sigma_hat UpperCAmelCase = self.sample UpperCAmelCase = None UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_ ) def a_ ( self , lowercase_ , lowercase_ , lowercase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase_ ): # mps does not support float64 UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase = self.timesteps.to(original_samples.device ) UpperCAmelCase = timesteps.to(original_samples.device ) UpperCAmelCase = [self.index_for_timestep(lowercase_ , lowercase_ ) for t in timesteps] UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase = sigma.unsqueeze(-1 ) UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
183
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : str = (DDPMScheduler,) def a_ ( self , **lowercase_ ) -> Union[str, Any]: UpperCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase_ ) return config def a_ ( self ) -> int: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def a_ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def a_ ( self ) -> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def a_ ( self ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def a_ ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def a_ ( self ) -> Tuple: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def a_ ( self ) -> Any: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def a_ ( self ) -> Union[str, Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowercase_ ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.0_2 ) ) < 1E-5 def a_ ( self ) -> str: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: UpperCAmelCase = -1 else: UpperCAmelCase = timesteps[i + 1] UpperCAmelCase = scheduler.previous_timestep(lowercase_ ) UpperCAmelCase = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowercase_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase_ ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] UpperCAmelCase = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def a_ ( self ) -> str: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowercase_ )
183
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> list: SCREAMING_SNAKE_CASE__ = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = arr[i + 1], arr[i] return arr if __name__ == "__main__": _A = list(range(1_0, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
159
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Dict = {"vocab_file": "vocab.json"} _UpperCAmelCase : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } _UpperCAmelCase : Tuple = {"mgp-str": 27} class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase_ :Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]="[GO]" , SCREAMING_SNAKE_CASE_ : List[Any]="[GO]" , SCREAMING_SNAKE_CASE_ : Optional[Any]="[s]" , SCREAMING_SNAKE_CASE_ : Any="[GO]" , **SCREAMING_SNAKE_CASE_ : Dict ): super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __snake_case ( self : List[Any] ): return len(self.vocab ) def __snake_case ( self : Optional[int] ): return dict(self.vocab , **self.added_tokens_encoder ) def __snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase__ = [] for s in text: char_tokens.extend(SCREAMING_SNAKE_CASE_ ) return char_tokens def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : str ): return self.vocab.get(SCREAMING_SNAKE_CASE_ , self.vocab.get(self.unk_token ) ) def __snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE_ ) ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) return (vocab_file,)
668
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case_ = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = R'''\w+[.]\d+''' UpperCAmelCase_ : Tuple = re.findall(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for pat in pats: UpperCAmelCase_ : Optional[int] = key.replace(SCREAMING_SNAKE_CASE__, '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : Union[str, Any] = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Dict=42 ) -> List[str]: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase_ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : Optional[int] = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Any = flatten_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : List[str] = rename_key(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_ : Optional[Any] = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Dict = jnp.asarray(SCREAMING_SNAKE_CASE__ ) return unflatten_dict(SCREAMING_SNAKE_CASE__ )
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp _a : List[Any] = 5 _a : Dict = 10 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = SpeechaTextTokenizer A = False A = True def snake_case_ ( self ): '''simple docstring''' super().setUp() lowerCAmelCase__ :Any = sp.SentencePieceProcessor() spm_model.Load(_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowerCAmelCase ) )] lowerCAmelCase__ :Optional[int] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowerCAmelCase__ :Optional[Any] = Path(self.tmpdirname ) save_json(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowerCAmelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) lowerCAmelCase__ :Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :int = "<pad>" lowerCAmelCase__ :Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_lowerCAmelCase ) , 1_001 ) def snake_case_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ :Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ :Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCAmelCase__ :Tuple = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ :Any = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def snake_case_ ( self ): '''simple docstring''' # fmt: off lowerCAmelCase__ :Any = {"input_ids": [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" A = '''valhalla/s2t_mustc_multilinguial_medium''' A = '''C\'est trop cool''' A = '''Esto es genial''' @classmethod def snake_case_ ( cls ): '''simple docstring''' lowerCAmelCase__ :SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case_ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def snake_case_ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def snake_case_ ( self ): '''simple docstring''' self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) lowerCAmelCase__ :str = [ES_CODE, 4, 1_601, 47, 7_647, 2] lowerCAmelCase__ :int = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowerCAmelCase__ :List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = "fr" lowerCAmelCase__ :List[str] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowerCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ :int = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
145
from __future__ import annotations def snake_case__ ( UpperCAmelCase : str ): return [ord(UpperCAmelCase ) - 9_6 for elem in plain] def snake_case__ ( UpperCAmelCase : list[int] ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case__ ( ): lowerCAmelCase__ :Optional[int] = encode(input("-> " ).strip().lower() ) print("Encoded: " , UpperCAmelCase ) print("Decoded:" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
145
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self : Any , __A : List[Any] , __A : int=1_3 , __A : List[Any]=3_0 , __A : Dict=2 , __A : Any=3 , __A : List[Any]=True , __A : List[str]=True , __A : Optional[int]=3_2 , __A : List[str]=5 , __A : int=4 , __A : int=3_7 , __A : List[Any]="gelu" , __A : int=0.1 , __A : List[Any]=0.1 , __A : Optional[Any]=1_0 , __A : Optional[int]=0.0_2 , __A : Union[str, Any]=None , __A : List[Any]=2 , ): """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = patch_size _lowercase = num_channels _lowercase = is_training _lowercase = use_labels _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = scope _lowercase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase = (image_size // patch_size) ** 2 _lowercase = num_patches + 1 def snake_case ( self : List[str] ): """simple docstring""" _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase = self.get_config() return config, pixel_values, labels def snake_case ( self : List[str] ): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case ( self : Tuple , __A : int , __A : str , __A : List[str] ): """simple docstring""" _lowercase = ViTModel(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[Any] , __A : Tuple , __A : List[str] , __A : Optional[int] ): """simple docstring""" _lowercase = ViTForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() _lowercase = model(__A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowercase = 1 _lowercase = ViTForMaskedImageModeling(__A ) model.to(__A ) model.eval() _lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase = model(__A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case ( self : Optional[int] , __A : List[str] , __A : Optional[int] , __A : int ): """simple docstring""" _lowercase = self.type_sequence_label_size _lowercase = ViTForImageClassification(__A ) model.to(__A ) model.eval() _lowercase = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase = 1 _lowercase = ViTForImageClassification(__A ) model.to(__A ) model.eval() _lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def snake_case ( self : Dict ): """simple docstring""" _lowercase = ViTModelTester(self ) _lowercase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def snake_case ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def snake_case ( self : Tuple ): """simple docstring""" pass def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def snake_case ( self : str ): """simple docstring""" _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def snake_case ( self : Any ): """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def snake_case ( self : str ): """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def snake_case ( self : Optional[Any] ): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = ViTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def A__ ( ) -> Any: _lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : str ): """simple docstring""" return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def snake_case ( self : str ): """simple docstring""" _lowercase = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__A ) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): _lowercase = model(**__A ) # verify the logits _lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __A ) _lowercase = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow def snake_case ( self : Any ): """simple docstring""" _lowercase = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__A ) _lowercase = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=4_8_0 ) _lowercase = prepare_img() _lowercase = image_processor(images=__A , return_tensors="pt" ) _lowercase = inputs.pixel_values.to(__A ) # forward pass with torch.no_grad(): _lowercase = model(__A , interpolate_pos_encoding=__A ) # verify the logits _lowercase = torch.Size((1, 3_6_0_1, 3_8_4) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) _lowercase = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case ( self : Any ): """simple docstring""" _lowercase = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _lowercase = self.default_image_processor _lowercase = prepare_img() _lowercase = image_processor(images=__A , return_tensors="pt" ) _lowercase = inputs.pixel_values.to(__A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowercase = model(__A )
712
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A__ ( A_ , A_ , A_ ) -> str: # Construct model if gpta_config_file == "": _lowercase = GPTaConfig() else: _lowercase = GPTaConfig.from_json_file(A_ ) _lowercase = GPTaModel(A_ ) # Load weights from numpy load_tf_weights_in_gpta(A_ , A_ , A_ ) # Save pytorch-model _lowercase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _lowercase = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , A_ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __magic_name__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __magic_name__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
602
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowercase : """simple docstring""" _UpperCAmelCase = BlenderbotConfig _UpperCAmelCase = {} _UpperCAmelCase = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : List[Any] = bos_token_id def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE_ : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TFBlenderbotModel(config=lowerCAmelCase__ ).get_decoder() SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids[:1, :] SCREAMING_SNAKE_CASE_ : List[str] = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE_ : Dict = 1 # first forward pass SCREAMING_SNAKE_CASE_ : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def a__ ( A__, A__, A__, A__=None, A__=None, A__=None, A__=None, A__=None, ): if attention_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.cast(tf.math.not_equal(A__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _UpperCAmelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _UpperCAmelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFBlenderbotModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict = ConfigTester(self , config_class=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_tokenizers @require_tf class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = ["""My friends are cool but they eat too many carbs."""] _UpperCAmelCase = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.generate( model_inputs.input_ids , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
101
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray] __lowerCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
181
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _a: Dict = logging.get_logger(__name__) _a: Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _a: List[str] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } _a: str = { """yjernite/retribert-base-uncased""": 512, } _a: List[str] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = RetriBertTokenizer SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self : Dict , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[Any]="[UNK]" , lowerCAmelCase : List[str]="[SEP]" , lowerCAmelCase : List[str]="[PAD]" , lowerCAmelCase : str="[CLS]" , lowerCAmelCase : List[str]="[MASK]" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Any , ): '''simple docstring''' super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase_ = getattr(lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = strip_accents UpperCAmelCase_ = tokenize_chinese_chars UpperCAmelCase_ = normalizer_class(**lowerCAmelCase ) UpperCAmelCase_ = do_lower_case def __A ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int=None ): '''simple docstring''' UpperCAmelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
709
def __lowerCAmelCase ( A ): UpperCAmelCase_ = generate_pascal_triangle(A ) for row_idx in range(A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __lowerCAmelCase ( A ): if not isinstance(A , A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase_ = [] for current_row_idx in range(A ): UpperCAmelCase_ = populate_current_row(A , A ) triangle.append(A ) return triangle def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 for current_col_idx in range(1 , A ): calculate_current_element( A , A , A , A ) return current_row def __lowerCAmelCase ( A , A , A , A , ): UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase_ = above_to_left_elt + above_to_right_elt def __lowerCAmelCase ( A ): if not isinstance(A , A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase_ = [[1]] for row_index in range(1 , A ): UpperCAmelCase_ = [0] + result[-1] + [0] UpperCAmelCase_ = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase_ = sum(divmod(A , 2 ) ) UpperCAmelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase_ = row_first_half + row_second_half result.append(A ) return result def __lowerCAmelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(A , A ) -> None: UpperCAmelCase_ = F"{func.__name__}({value})" UpperCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(A , A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
268
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Any =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] ) class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Dict =["speech"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["speech"] )
71
_a = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a = [{"type": "code", "content": INSTALL_CONTENT}] _a = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
481
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def __SCREAMING_SNAKE_CASE( *_A , **_A ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class a__ ( unittest.TestCase ): _a : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowerCAmelCase = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = object_detector(examples[0] , threshold=0.0 ) __lowerCAmelCase = len(_A ) self.assertGreater(_A , 0 ) self.assertEqual( _A , [ { "score": ANY(_A ), "label": ANY(_A ), "box": {"xmin": ANY(_A ), "ymin": ANY(_A ), "xmax": ANY(_A ), "ymax": ANY(_A )}, } for i in range(_A ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __lowerCAmelCase = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) __lowerCAmelCase = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) __lowerCAmelCase = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @require_torch @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = 0.2 __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = 2 __lowerCAmelCase = pipeline("zero-shot-object-detection" ) __lowerCAmelCase = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
552
def _a ( SCREAMING_SNAKE_CASE_ : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 while repunit: __lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
552
1
import argparse import os import re import packaging.version A_ : Tuple = 'examples/' A_ : Union[str, Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } A_ : Dict = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } A_ : Union[str, Any] = 'README.md' def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: with open(UpperCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase_: List[str] = f.read() UpperCamelCase_ ,UpperCamelCase_: int = REPLACE_PATTERNS[pattern] UpperCamelCase_: Tuple = replace.replace('VERSION' , UpperCAmelCase__ ) UpperCamelCase_: Tuple = re_pattern.sub(UpperCAmelCase__ , UpperCAmelCase__ ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Any: for folder, directories, fnames in os.walk(UpperCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , pattern='examples' ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if not patch: update_version_in_examples(UpperCAmelCase__ ) def snake_case () -> List[str]: UpperCamelCase_: Any = '🤗 Transformers currently provides the following architectures' UpperCamelCase_: Any = '1. Want to contribute a new model?' with open(UpperCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase_: List[Any] = f.readlines() # Find the start of the list. UpperCamelCase_: Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase_: List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): UpperCamelCase_: Union[str, Any] = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(UpperCAmelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase__ ) def snake_case () -> Tuple: with open(REPLACE_FILES['init'] , 'r' ) as f: UpperCamelCase_: List[Any] = f.read() UpperCamelCase_: int = REPLACE_PATTERNS['init'][0].search(UpperCAmelCase__ ).groups()[0] return packaging.version.parse(UpperCAmelCase__ ) def snake_case (UpperCAmelCase__=False ) -> int: UpperCamelCase_: Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: UpperCamelCase_: Dict = default_version.base_version elif patch: UpperCamelCase_: str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCamelCase_: Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCamelCase_: Tuple = input(F'''Which version are you releasing? [{default_version}]''' ) if len(UpperCAmelCase__ ) == 0: UpperCamelCase_: Optional[Any] = default_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__ , patch=UpperCAmelCase__ ) def snake_case () -> int: UpperCamelCase_: Optional[int] = get_version() UpperCamelCase_: int = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCamelCase_: Optional[Any] = current_version.base_version # Check with the user we got that right. UpperCamelCase_: List[Any] = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCAmelCase__ ) == 0: UpperCamelCase_: Dict = dev_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') A_ : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
57
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=a , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=a , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=a ) return parser.parse_args() def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE_ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = script_fpath.stem SCREAMING_SNAKE_CASE_ : int = importlib.import_module(a ) # Patch sys.argv SCREAMING_SNAKE_CASE_ : int = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
511
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = """Hello world! cécé herlolip""" def __A ( _A , _A , _A ): """simple docstring""" __a = FairseqRobertaModel.from_pretrained(_A ) roberta.eval() # disable dropout __a = roberta.model.encoder.sentence_encoder __a = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __a = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , _A ) __a = XLMRobertaXLForSequenceClassification(_A ) if classification_head else XLMRobertaXLForMaskedLM(_A ) model.eval() # Now let's copy all the weights. # Embeddings __a = roberta_sent_encoder.embed_tokens.weight __a = roberta_sent_encoder.embed_positions.weight __a = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __a = roberta_sent_encoder.layer_norm.weight __a = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __a = model.roberta.encoder.layer[i] __a = roberta_sent_encoder.layers[i] __a = layer.attention __a = roberta_layer.self_attn_layer_norm.weight __a = roberta_layer.self_attn_layer_norm.bias # self attention __a = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __a = roberta_layer.self_attn.q_proj.weight __a = roberta_layer.self_attn.q_proj.bias __a = roberta_layer.self_attn.k_proj.weight __a = roberta_layer.self_attn.k_proj.bias __a = roberta_layer.self_attn.v_proj.weight __a = roberta_layer.self_attn.v_proj.bias # self-attention output __a = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __a = roberta_layer.self_attn.out_proj.weight __a = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __a = roberta_layer.final_layer_norm.weight __a = roberta_layer.final_layer_norm.bias # intermediate __a = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __a = roberta_layer.fca.weight __a = roberta_layer.fca.bias # output __a = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __a = roberta_layer.fca.weight __a = roberta_layer.fca.bias # end of layer if classification_head: __a = roberta.model.classification_heads["mnli"].dense.weight __a = roberta.model.classification_heads["mnli"].dense.bias __a = roberta.model.classification_heads["mnli"].out_proj.weight __a = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head __a = roberta.model.encoder.lm_head.dense.weight __a = roberta.model.encoder.lm_head.dense.bias __a = roberta.model.encoder.lm_head.layer_norm.weight __a = roberta.model.encoder.lm_head.layer_norm.bias __a = roberta.model.encoder.lm_head.weight __a = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __a = roberta.encode(_A ).unsqueeze(0 ) # batch of size 1 __a = model(_A )[0] if classification_head: __a = roberta.model.classification_heads["mnli"](roberta.extract_features(_A ) ) else: __a = roberta.model(_A )[0] print(our_output.shape , their_output.shape ) __a = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __a = torch.allclose(_A , _A , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(_A ).mkdir(parents=_A , exist_ok=_A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
525
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __A ( _A , _A=False , _A=False ): """simple docstring""" __a = "backbone." if is_semantic else "" __a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __A ( _A , _A , _A=False , _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): __a = "backbone." if is_semantic else "" # queries, keys and values __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) __a = in_proj_weight[ : config.hidden_size, : ] __a = q_bias __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) __a = gamma_a __a = gamma_a def __A ( _A , _A , _A ): """simple docstring""" __a = dct.pop(_A ) __a = val def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __A ( _A , _A , _A=False ): """simple docstring""" __a = False if "rvlcdip" in checkpoint_url else True __a = BeitConfig(use_absolute_position_embeddings=_A , use_mask_token=_A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 # labels if "rvlcdip" in checkpoint_url: __a = 16 __a = "huggingface/label-files" __a = "rvlcdip-id2label.json" __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __a = torch.hub.load_state_dict_from_url(_A , map_location="cpu" )["model"] __a = create_rename_keys(_A , has_lm_head=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , has_lm_head=_A ) # load HuggingFace model __a = BeitForMaskedImageModeling(_A ) if has_lm_head else BeitForImageClassification(_A ) model.eval() model.load_state_dict(_A ) # Check outputs on an image __a = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_A ) __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ) __a = encoding["pixel_values"] __a = model(_A ) __a = outputs.logits # verify logits __a = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_A ), "Shape of logits not as expected" Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: if has_lm_head: __a = "dit-base" if "base" in checkpoint_url else "dit-large" else: __a = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_A , ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_A , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
525
1
from __future__ import annotations def snake_case_ (__A : list[float] ) -> bool: if len(__A ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowerCAmelCase : List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
651
from __future__ import annotations import requests def snake_case_ (__A : str ) -> dict: __lowerCAmelCase : Tuple = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(__A ).json() def snake_case_ (__A : int = 1_0 ) -> list[dict]: __lowerCAmelCase : List[Any] = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" __lowerCAmelCase : Union[str, Any] = requests.get(__A ).json()[:max_stories] return [get_hackernews_story(__A ) for story_id in story_ids] def snake_case_ (__A : int = 1_0 ) -> str: __lowerCAmelCase : Optional[Any] = hackernews_top_stories(__A ) return "\n".join("""* [{title}]({url})""".format(**__A ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
651
1
from __future__ import annotations from math import gcd def _A ( lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: return (pow(lowerCamelCase , 2 ) + step) % modulus for _ in range(lowerCamelCase ): # These track the position within the cycle detection logic. a__ : str = seed a__ : Optional[int] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. a__ : Union[str, Any] = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) a__ : Optional[Any] = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) a__ : Tuple = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. a__ : Optional[Any] = gcd(hare - tortoise , lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. a__ : Optional[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[int] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: SCREAMING_SNAKE_CASE__ : Optional[int] = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
708
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE__ : List[str] = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def _A ( lowerCamelCase ): a__ : Optional[int] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[str] = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def _A ( lowerCamelCase ): a__ : Tuple = list(s_dict.keys() ) for key in keys: a__ : Optional[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: a__ : Optional[int] = new_key.replace(lowerCamelCase , lowerCamelCase ) print(F"""{key} -> {new_key}""" ) a__ : Dict = s_dict.pop(lowerCamelCase ) return s_dict def _A ( lowerCamelCase ): a__ , a__ : Any = emb.weight.shape a__ : Optional[Any] = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) a__ : Optional[Any] = emb.weight.data return lin_layer def _A ( lowerCamelCase , lowerCamelCase ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) a__ : Optional[Any] = os.path.basename(lowerCamelCase ) a__ : List[Any] = url.split("/" )[-2] a__ : Tuple = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not os.path.isfile(lowerCamelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowerCamelCase ): a__ : Any = open(lowerCamelCase , "rb" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowerCamelCase ) as source, open(lowerCamelCase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=lowerCamelCase , unit_divisor=1024 ) as loop: while True: a__ : Optional[Any] = source.read(8192 ) if not buffer: break output.write(lowerCamelCase ) loop.update(len(lowerCamelCase ) ) a__ : Optional[int] = open(lowerCamelCase , "rb" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def _A ( lowerCamelCase , lowerCamelCase ): if ".pt" not in checkpoint_path: a__ : str = _download(_MODELS[checkpoint_path] ) else: a__ : str = torch.load(lowerCamelCase , map_location="cpu" ) a__ : Dict = original_checkpoint["dims"] a__ : Optional[int] = original_checkpoint["model_state_dict"] a__ : Any = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(lowerCamelCase ) rename_keys(lowerCamelCase ) a__ : Optional[Any] = True a__ : Optional[Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] a__ : Tuple = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=lowerCamelCase , decoder_ffn_dim=lowerCamelCase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) a__ : Optional[Any] = WhisperForConditionalGeneration(lowerCamelCase ) a__ , a__ : Tuple = model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: a__ : Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a__ : str = proj_out_weights model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
629
0
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : int = PhobertTokenizer _snake_case : str = False def A ( self : Tuple )-> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = ["T@@", "i", "I", "R@@", "r", "e@@"] __UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase = ["#version: 0.2", "l à</w>"] __UpperCamelCase = {"unk_token": "<unk>"} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A_ ) ) def A ( self : Tuple , **A_ : Union[str, Any] )-> Union[str, Any]: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def A ( self : Optional[Any] , A_ : Optional[Any] )-> Any: __UpperCamelCase = "Tôi là VinAI Research" __UpperCamelCase = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def A ( self : Dict )-> List[str]: __UpperCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = "Tôi là VinAI Research" __UpperCamelCase = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() __UpperCamelCase = tokenizer.tokenize(A_ ) print(A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _A = { "RUCAIBox/mvp": 1_024, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = ['input_ids', 'attention_mask'] _snake_case : Any = MvpTokenizer def __init__( self : str , A_ : int=None , A_ : List[Any]=None , A_ : Optional[Any]=None , A_ : int="replace" , A_ : int="<s>" , A_ : Any="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Optional[int]="<unk>" , A_ : Optional[int]="<pad>" , A_ : Union[str, Any]="<mask>" , A_ : str=False , A_ : List[str]=True , **A_ : Union[str, Any] , )-> Any: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = getattr(A_ , pre_tok_state.pop("type" ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**A_ ) __UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase = "post_processor" __UpperCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state["sep"] ) if "cls" in state: __UpperCamelCase = tuple(state["cls"] ) __UpperCamelCase = False if state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get("trim_offsets" , A_ ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(A_ , state.pop("type" ) ) __UpperCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def A ( self : List[str] )-> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Any , A_ : List[Any] )-> List[Any]: __UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __UpperCamelCase = value def A ( self : str , *A_ : Dict , **A_ : Dict )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def A ( self : Tuple , *A_ : str , **A_ : List[str] )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def A ( self : Optional[int] , A_ : str , A_ : Optional[str] = None )-> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def A ( self : Any , A_ : Dict , A_ : Dict=None )-> Union[str, Any]: __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None )-> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
505
1
__SCREAMING_SNAKE_CASE = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
708
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Tuple=13 , __lowerCamelCase : List[str]=30 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : int=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=10 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=2 , ) -> str: A : List[Any] = parent A : Optional[int] = batch_size A : Any = image_size A : Optional[Any] = patch_size A : Optional[Any] = num_channels A : Tuple = is_training A : Optional[Any] = use_labels A : Union[str, Any] = hidden_size A : Tuple = num_hidden_layers A : Union[str, Any] = num_attention_heads A : Union[str, Any] = intermediate_size A : Any = hidden_act A : Tuple = hidden_dropout_prob A : Dict = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Tuple = initializer_range A : List[Any] = scope A : Optional[int] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[str] = (image_size // patch_size) ** 2 A : List[str] = num_patches + 2 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : List[Any] = None if self.use_labels: A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE__ ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> int: A : Optional[int] = DeiTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any ) -> Any: A : List[Any] = DeiTForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : List[str] = 1 A : Optional[int] = DeiTForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : int ) -> Dict: A : str = self.type_sequence_label_size A : List[str] = DeiTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Any = 1 A : str = DeiTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() A : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: A : Dict = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ) : Tuple = config_and_inputs A : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _A ,_A ,unittest.TestCase ): '''simple docstring''' a__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) a__ = False a__ = False a__ = False def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: A : str = DeiTModelTester(self ) A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: pass def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Dict = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[str]: A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Union[str, Any] = model_class(__lowerCamelCase ) A : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Any = [*signature.parameters.keys()] A : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=False ) -> str: A : Union[str, Any] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: if not self.model_tester.is_training: return A , A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A : Union[str, Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) A : Dict = model(**__lowerCamelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A : Tuple = False A : Any = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A : List[str] = model_class(__lowerCamelCase ) model.gradient_checkpointing_enable() model.to(__lowerCamelCase ) model.train() A : Dict = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) A : Tuple = model(**__lowerCamelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A : int = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): A : Tuple = problem_type["title"] A : Optional[Any] = problem_type["num_labels"] A : List[str] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if problem_type["num_labels"] > 1: A : List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) A : int = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list: A : Optional[Any] = model(**__lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[Any] = DeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase ( ): A : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: A : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( __lowerCamelCase ) A : List[Any] = self.default_image_processor A : List[Any] = prepare_img() A : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): A : List[str] = model(**__lowerCamelCase ) # verify the logits A : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) A : List[str] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: A : str = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) A : Dict = self.default_image_processor A : Optional[int] = prepare_img() A : Union[str, Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ) A : Union[str, Any] = inputs.pixel_values.to(__lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A : List[str] = model(__lowerCamelCase )
17
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[str]: __a = tempfile.mkdtemp() # fmt: off __a = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __a = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) __a = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __a = {'unk_token': '<unk>'} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) __a = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __a = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self , **UpperCamelCase ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ ( self , **UpperCamelCase ) -> int: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ ( self , **UpperCamelCase ) -> List[str]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) -> List[Any]: __a = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ) -> Optional[int]: __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = self.get_image_processor() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __a = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __a = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def UpperCamelCase__ ( self ) -> str: __a = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) __a = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[Any]: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __a = self.prepare_image_inputs() __a = image_processor(UpperCamelCase , return_tensors='np' ) __a = processor(images=UpperCamelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) -> Any: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __a = 'lower newer' __a = processor(text=UpperCamelCase ) __a = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) -> List[str]: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __a = 'lower newer' __a = self.prepare_image_inputs() __a = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase__ ( self ) -> List[str]: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(UpperCamelCase ) __a = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> int: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __a = 'lower newer' __a = self.prepare_image_inputs() __a = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
539
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] UpperCAmelCase_ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1E-12 ) -> Tuple: lowercase__ : Tuple = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__A ,axis=1 ) ,a_min=__A ) ).T lowercase__ : Any = jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(__A ,axis=1 ) ,a_min=__A ) ).T return jnp.matmul(__A ,norm_emb_a.T ) class UpperCAmelCase( nn.Module ): """simple docstring""" a : Dict = 4_2 a : Union[str, Any] = jnp.floataa def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) lowercase__ : Dict = nn.Dense(self.config.projection_dim , use_bias=_UpperCamelCase , dtype=self.dtype ) lowercase__ : str = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase__ : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase__ : Any = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) lowercase__ : Dict = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self , lowerCamelCase ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.vision_model(_UpperCamelCase )[1] lowercase__ : int = self.visual_projection(_UpperCamelCase ) lowercase__ : int = jax_cosine_distance(_UpperCamelCase , self.special_care_embeds ) lowercase__ : Dict = jax_cosine_distance(_UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase__ : Optional[Any] = 0.0 lowercase__ : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase__ : List[str] = jnp.round(_UpperCamelCase , 3 ) lowercase__ : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCamelCase ) # Use a lower threshold if an image has any special care concept lowercase__ : List[Any] = is_special_care * 0.01 lowercase__ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase__ : Optional[Any] = jnp.round(_UpperCamelCase , 3 ) lowercase__ : Union[str, Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class UpperCAmelCase( __lowerCAmelCase ): """simple docstring""" a : Optional[int] = CLIPConfig a : Dict = """clip_input""" a : Optional[int] = FlaxStableDiffusionSafetyCheckerModule def __init__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = 0 , lowerCamelCase = jnp.floataa , lowerCamelCase = True , **lowerCamelCase , ) -> Dict: """simple docstring""" if input_shape is None: lowercase__ : int = (1, 224, 224, 3) lowercase__ : Union[str, Any] = self.module_class(config=_UpperCamelCase , dtype=_UpperCamelCase , **_UpperCamelCase ) super().__init__(_UpperCamelCase , _UpperCamelCase , input_shape=_UpperCamelCase , seed=_UpperCamelCase , dtype=_UpperCamelCase , _do_init=_do_init ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None ) -> FrozenDict: """simple docstring""" lowercase__ : List[Any] = jax.random.normal(_UpperCamelCase , _UpperCamelCase ) lowercase__ : Optional[Any] = jax.random.split(_UpperCamelCase ) lowercase__ : Tuple = {"""params""": params_rng, """dropout""": dropout_rng} lowercase__ : Tuple = self.module.init(_UpperCamelCase , _UpperCamelCase )["""params"""] return random_params def __call__( self , lowerCamelCase , lowerCamelCase = None , ) -> Union[str, Any]: """simple docstring""" lowercase__ : List[Any] = jnp.transpose(_UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(_UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
715
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __a , __a , __a : Optional[Any] = False, False, False @dataclass class UpperCAmelCase: """simple docstring""" a : Optional[int] = None a : bool = True a : bool = True a : Optional[str] = None # Automatically constructed a : ClassVar[str] = "dict" a : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) a : str = field(default="""Audio""" , init=snake_case_ , repr=snake_case_ ) def __call__( self ) -> Optional[int]: """simple docstring""" return self.pa_type def __a ( self , lowerCamelCase ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(lowerCamelCase , lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(lowerCamelCase , lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase__ : int = BytesIO() sf.write(lowerCamelCase , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase__ : List[str] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowercase__ : int = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 lowercase__ : str = BytesIO(bytes() ) sf.write(lowerCamelCase , lowerCamelCase , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) lowercase__ , lowercase__ : Optional[Any] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err lowercase__ : List[str] = xsplitext(lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: lowercase__ : List[str] = token_per_repo_id or {} lowercase__ : Union[str, Any] = path.split("::" )[-1] try: lowercase__ : Optional[Any] = string_to_dict(lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] lowercase__ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase__ : List[Any] = None with xopen(lowerCamelCase , "rb" , use_auth_token=lowerCamelCase ) as f: lowercase__ , lowercase__ : List[str] = sf.read(lowerCamelCase ) else: lowercase__ , lowercase__ : Dict = sf.read(lowerCamelCase ) lowercase__ : List[str] = array.T if self.mono: lowercase__ : List[Any] = librosa.to_mono(lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase__ : List[Any] = librosa.resample(lowerCamelCase , orig_sr=lowerCamelCase , target_sr=self.sampling_rate ) lowercase__ : Tuple = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def __a ( self , lowerCamelCase ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): lowercase__ : List[Any] = pa.array([None] * len(lowerCamelCase ) , type=pa.binary() ) lowercase__ : int = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : Union[str, Any] = pa.array([None] * len(lowerCamelCase ) , type=pa.string() ) lowercase__ : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): lowercase__ : List[Any] = pa.array([Audio().encode_example(lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowercase__ : Optional[int] = storage.field("bytes" ) else: lowercase__ : Optional[int] = pa.array([None] * len(lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowercase__ : str = storage.field("path" ) else: lowercase__ : Any = pa.array([None] * len(lowerCamelCase ) , type=pa.string() ) lowercase__ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(lowerCamelCase , self.pa_type ) def __a ( self , lowerCamelCase ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCamelCase ): with xopen(lowerCamelCase , "rb" ) as f: lowercase__ : Tuple = f.read() return bytes_ lowercase__ : List[str] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ : Tuple = pa.array( [os.path.basename(lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowercase__ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase , self.pa_type )
298
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : int = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["MobileViTFeatureExtractor"] a : str = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
679
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a : Optional[int] = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = R"\w+[.]\d+" UpperCAmelCase : Dict = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCAmelCase : Tuple = key.replace(__magic_name__ , "_".join(pat.split("." ) ) ) return key def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=42 ): '''simple docstring''' UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase : Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCAmelCase : Optional[Any] = flatten_dict(__magic_name__ ) UpperCAmelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Tuple = rename_key(__magic_name__ ) UpperCAmelCase : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase : Optional[int] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
679
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ : int = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : snake_case__ : Union[str, Any] = PegasusConfig snake_case__ : int = {} snake_case__ : str = '''gelu''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : int=9_9 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=2_0 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : str=0 , ) -> Optional[Any]: a_ : List[Any] = parent a_ : Optional[int] = batch_size a_ : str = seq_length a_ : Any = is_training a_ : str = use_labels a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Any = num_hidden_layers a_ : Tuple = num_attention_heads a_ : int = intermediate_size a_ : Union[str, Any] = hidden_dropout_prob a_ : Optional[Any] = attention_probs_dropout_prob a_ : Union[str, Any] = max_position_embeddings a_ : List[str] = eos_token_id a_ : Optional[Any] = pad_token_id a_ : List[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: a_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a_ : int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a_ : Dict = np.concatenate([input_ids, eos_tensor] , axis=1 ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a_ : int = prepare_pegasus_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: a_ : List[str] = 2_0 a_ : Optional[Any] = model_class_name(SCREAMING_SNAKE_CASE__ ) a_ : Any = model.encode(inputs_dict['input_ids'] ) a_ , a_ : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a_ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) a_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a_ : List[str] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a_ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : List[Any] = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: a_ : List[str] = 2_0 a_ : Tuple = model_class_name(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = model.encode(inputs_dict['input_ids'] ) a_ , a_ : Optional[int] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) a_ : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a_ : str = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a_ : List[str] = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) a_ : List[Any] = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) a_ : Optional[Any] = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ ) a_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Any , __A : List[str] , __A : Any=None , __A : Any=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: a_ : Optional[int] = np.not_equal(__A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a_ : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): snake_case__ : Any = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) snake_case__ : str = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () snake_case__ : List[Any] = True snake_case__ : Optional[Any] = False snake_case__ : Optional[int] = False snake_case__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : List[str] = FlaxPegasusModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a_ : List[str] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) with self.subTest('JIT Enabled' ): a_ : Optional[int] = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a_ : Any = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a_ : int = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) a_ : Dict = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , ) with self.subTest('JIT Enabled' ): a_ : Dict = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): a_ : List[str] = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> int: for model_class_name in self.all_model_classes: a_ : int = model_class_name.from_pretrained('google/pegasus-large' , from_pt=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = np.ones((1, 1) ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> int: a_ : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-xsum' ) a_ : str = PegasusTokenizer.from_pretrained('google/pegasus-xsum' ) a_ : Optional[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] a_ : Dict = [ 'California\'s largest electricity provider has turned off power to hundreds of thousands of customers.', 'Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.', ] a_ : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='np' , truncation=SCREAMING_SNAKE_CASE__ , max_length=5_1_2 , padding=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = model.generate(**SCREAMING_SNAKE_CASE__ , num_beams=2 ).sequences a_ : int = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) assert tgt_text == decoded
443
import unittest import numpy as np def SCREAMING_SNAKE_CASE_ ( __A : np.ndarray , __A : np.ndarray , __A : np.ndarray , __A : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" a_ : List[str] = np.shape(__A ) a_ : Any = np.shape(__A ) a_ : List[Any] = np.shape(__A ) if shape_a[0] != shape_b[0]: a_ : List[Any] = ( 'Expected the same number of rows for A and B. ' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(__A ) if shape_b[1] != shape_c[1]: a_ : int = ( 'Expected the same number of columns for B and C. ' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(__A ) a_ : Any = pseudo_inv if a_inv is None: try: a_ : List[str] = np.linalg.inv(__A ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Tuple ) -> None: a_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : List[str] = np.array([[2, 1], [6, 3]] ) a_ : int = schur_complement(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = np.block([[a, b], [b.T, c]] ) a_ : str = np.linalg.det(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = np.linalg.det(SCREAMING_SNAKE_CASE__ ) a_ : str = np.linalg.det(SCREAMING_SNAKE_CASE__ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , det_a * det_s ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> None: a_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : str = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): schur_complement(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: a_ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) a_ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) a_ : List[str] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): schur_complement(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
443
1
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A_ ( _a , _a ): @register_to_config def __init__( self: Optional[Any] ,__lowerCAmelCase: bool ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: Optional[int] = None ): '''simple docstring''' super().__init__() _lowerCamelCase : List[str] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowerCamelCase : List[Any] = torch.zeros(__lowerCAmelCase ,__lowerCAmelCase ) else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : Union[str, Any] = torch.nn.Parameter(__lowerCAmelCase ) class A_ ( _a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self: Tuple ,__lowerCAmelCase: VQModel ,__lowerCAmelCase: CLIPTextModel ,__lowerCAmelCase: CLIPTokenizer ,__lowerCAmelCase: TransformeraDModel ,__lowerCAmelCase: VQDiffusionScheduler ,__lowerCAmelCase: LearnedClassifierFreeSamplingEmbeddings ,): '''simple docstring''' super().__init__() self.register_modules( vqvae=__lowerCAmelCase ,transformer=__lowerCAmelCase ,text_encoder=__lowerCAmelCase ,tokenizer=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,learned_classifier_free_sampling_embeddings=__lowerCAmelCase ,) def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Tuple = len(__lowerCAmelCase ) if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) else 1 # get prompt text embeddings _lowerCamelCase : Dict = self.tokenizer( __lowerCAmelCase ,padding="max_length" ,max_length=self.tokenizer.model_max_length ,return_tensors="pt" ,) _lowerCamelCase : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCamelCase : Optional[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowerCamelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCamelCase : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowerCamelCase : int = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=__lowerCAmelCase ) # duplicate text embeddings for each generation per prompt _lowerCamelCase : Union[str, Any] = prompt_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowerCamelCase : Optional[int] = self.learned_classifier_free_sampling_embeddings.embeddings _lowerCamelCase : int = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCAmelCase ,1 ,1 ) else: _lowerCamelCase : str = [""] * batch_size _lowerCamelCase : Optional[Any] = text_input_ids.shape[-1] _lowerCamelCase : Dict = self.tokenizer( __lowerCAmelCase ,padding="max_length" ,max_length=__lowerCAmelCase ,truncation=__lowerCAmelCase ,return_tensors="pt" ,) _lowerCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowerCamelCase : Union[str, Any] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=__lowerCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCamelCase : Any = negative_prompt_embeds.shape[1] _lowerCamelCase : int = negative_prompt_embeds.repeat(1 ,__lowerCAmelCase ,1 ) _lowerCamelCase : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__lowerCAmelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCamelCase : int = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple ,__lowerCAmelCase: Union[str, List[str]] ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 5.0 ,__lowerCAmelCase: float = 1.0 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[torch.FloatTensor] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__lowerCAmelCase: int = 1 ,): '''simple docstring''' if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = 1 elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = len(__lowerCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Dict = batch_size * num_images_per_prompt _lowerCamelCase : Tuple = guidance_scale > 1.0 _lowerCamelCase : Optional[Any] = self._encode_prompt(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCAmelCase ,__lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__lowerCAmelCase )}.""" ) # get the initial completely masked latents unless the user supplied it _lowerCamelCase : Any = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowerCamelCase : int = self.transformer.num_vector_embeds - 1 _lowerCamelCase : List[Any] = torch.full(__lowerCAmelCase ,__lowerCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _lowerCamelCase : Union[str, Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCAmelCase ,device=self.device ) _lowerCamelCase : List[Any] = self.scheduler.timesteps.to(self.device ) _lowerCamelCase : List[Any] = latents for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the sample if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowerCamelCase : List[Any] = self.transformer(__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,timestep=__lowerCAmelCase ).sample if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Optional[int] = model_output.chunk(2 ) _lowerCamelCase : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__lowerCAmelCase ,dim=1 ,keepdim=__lowerCAmelCase ) _lowerCamelCase : Dict = self.truncate(__lowerCAmelCase ,__lowerCAmelCase ) # remove `log(0)`'s (`-inf`s) _lowerCamelCase : Any = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Dict = self.scheduler.step(__lowerCAmelCase ,timestep=__lowerCAmelCase ,sample=__lowerCAmelCase ,generator=__lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Optional[int] = self.vqvae.config.vq_embed_dim _lowerCamelCase : Any = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowerCamelCase : List[Any] = self.vqvae.quantize.get_codebook_entry(__lowerCAmelCase ,shape=__lowerCAmelCase ) _lowerCamelCase : Any = self.vqvae.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase ).sample _lowerCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 ,1 ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _lowerCamelCase : Dict = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase ) def _lowercase ( self: Tuple ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: float ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Tuple = torch.sort(__lowerCAmelCase ,1 ,descending=__lowerCAmelCase ) _lowerCamelCase : int = torch.exp(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowerCamelCase : Tuple = torch.full_like(keep_mask[:, 0:1, :] ,__lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.cat((all_true, keep_mask) ,dim=1 ) _lowerCamelCase : List[str] = keep_mask[:, :-1, :] _lowerCamelCase : Optional[Any] = keep_mask.gather(1 ,indices.argsort(1 ) ) _lowerCamelCase : List[str] = log_p_x_0.clone() _lowerCamelCase : Optional[Any] = -torch.inf # -inf = log(0) return rv
46
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) def _lowercase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, Iterable[int]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : List[Any]=None ): UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase = math.ceil(val / multiple ) * multiple return x UpperCamelCase = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else output_size UpperCamelCase , UpperCamelCase = get_image_size(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = output_size # determine new height and width UpperCamelCase = output_height / input_height UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase = scale_width else: # fit height UpperCamelCase = scale_height UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE_ ) return (new_height, new_width) class UpperCAmelCase ( __snake_case ): lowercase = ["""pixel_values"""] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = False , __magic_name__ : int = 1 , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_5_5 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase = size if size is not None else {"""height""": 3_8_4, """width""": 3_8_4} UpperCamelCase = get_size_dict(__magic_name__ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = keep_aspect_ratio UpperCamelCase = ensure_multiple_of UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : bool = False , __magic_name__ : int = 1 , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase = get_resize_output_image_size( __magic_name__ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=__magic_name__ , multiple=__magic_name__ , ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(__magic_name__ ) UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Tuple] = None ): """simple docstring""" UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__magic_name__ ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(__magic_name__ ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__magic_name__ ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
386
0
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase__ ( UpperCAmelCase__ :Any , UpperCAmelCase__ :str , UpperCAmelCase__ :Dict , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :List[Any] , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Dict , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :List[str] , ): '''simple docstring''' a = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } a , a = input_paths_and_base_extractors[compression_format] if input_path is None: a = F"""for \'{compression_format}\' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) assert base_extractor.is_extractable(_A ) a = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(_A , _A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name a = file_path.read_text(encoding="utf-8" ) else: a = output_path.read_text(encoding="utf-8" ) a = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :Any , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Optional[int] , UpperCAmelCase__ :List[str] , UpperCAmelCase__ :Any , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :str , ): '''simple docstring''' a = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } a = input_paths[compression_format] if input_path is None: a = F"""for \'{compression_format}\' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_A ) a = Extractor.infer_extractor_format(_A ) assert extractor_format is not None a = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(_A , _A , _A ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name a = file_path.read_text(encoding="utf-8" ) else: a = output_path.read_text(encoding="utf-8" ) a = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[Any] , UpperCAmelCase__ :str ): '''simple docstring''' import tarfile a = tmp_path / "data_dot_dot" directory.mkdir() a = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(_A , "w" ) as f: f.add(_A , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' import tarfile a = tmp_path / "data_sym_link" directory.mkdir() a = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=_A ) with tarfile.TarFile(_A , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def UpperCAmelCase__ ( UpperCAmelCase__ :str , UpperCAmelCase__ :Union[str, Any] , UpperCAmelCase__ :List[Any] , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :Tuple , UpperCAmelCase__ :List[str] ): '''simple docstring''' a = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } a = insecure_tar_files[insecure_tar_file] a = tmp_path / "extracted" TarExtractor.extract(_A , _A ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[int] ): '''simple docstring''' a = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 a = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(_A ) assert zipfile.is_zipfile(str(_A ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(_A ) # but we're right
708
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = embedding_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def A ( self : Optional[int] ) -> Optional[int]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> List[str]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" a = MobileBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> str: """simple docstring""" a = MobileBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" a = MobileBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" a = MobileBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" a = MobileBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" a = self.num_labels a = MobileBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" a = self.num_labels a = MobileBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" a = self.num_choices a = MobileBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=False ) -> Any: """simple docstring""" a = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self : Optional[int] ) -> List[Any]: """simple docstring""" a = MobileBertModelTester(self ) a = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A ( self : str ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def A ( self : str ) -> str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def A ( self : int ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def A ( self : List[Any] ) -> int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def A ( self : int ) -> Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) A_ : Dict = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__lowerCAmelCase ) a = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a = model(__lowerCAmelCase )[0] a = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __lowerCAmelCase ) a = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=__lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = "gpt_bigcode" lowerCAmelCase__ : List[Any] = ["past_key_values"] lowerCAmelCase__ : Any = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str ,UpperCamelCase : Optional[int]=5_0257 ,UpperCamelCase : int=1024 ,UpperCamelCase : str=768 ,UpperCamelCase : int=12 ,UpperCamelCase : int=12 ,UpperCamelCase : Optional[Any]=None ,UpperCamelCase : Tuple="gelu_pytorch_tanh" ,UpperCamelCase : Dict=0.1 ,UpperCamelCase : str=0.1 ,UpperCamelCase : Optional[int]=0.1 ,UpperCamelCase : List[str]=1e-5 ,UpperCamelCase : Tuple=0.0_2 ,UpperCamelCase : str=True ,UpperCamelCase : str=True ,UpperCamelCase : List[Any]=5_0256 ,UpperCamelCase : Tuple=5_0256 ,UpperCamelCase : Union[str, Any]=True ,UpperCamelCase : Optional[int]=True ,UpperCamelCase : Optional[Any]=True ,**UpperCamelCase : Dict ,) -> Any: _lowercase : List[str] = vocab_size _lowercase : str = n_positions _lowercase : Union[str, Any] = n_embd _lowercase : int = n_layer _lowercase : Any = n_head _lowercase : Dict = n_inner _lowercase : Dict = activation_function _lowercase : str = resid_pdrop _lowercase : str = embd_pdrop _lowercase : Tuple = attn_pdrop _lowercase : Any = layer_norm_epsilon _lowercase : Tuple = initializer_range _lowercase : Tuple = scale_attn_weights _lowercase : int = use_cache _lowercase : Union[str, Any] = attention_softmax_in_fpaa _lowercase : List[str] = scale_attention_softmax_in_fpaa _lowercase : str = multi_query _lowercase : List[str] = bos_token_id _lowercase : int = eos_token_id super().__init__(bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,**UpperCamelCase )
125
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : int) -> int: '''simple docstring''' return int((input_a, input_a).count(0) != 0) def SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert nand_gate(0 , 0) == 1 assert nand_gate(0 , 1) == 1 assert nand_gate(1 , 0) == 1 assert nand_gate(1 , 1) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
125
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = "RegNetConfig" # Base docstring UpperCamelCase_ = "facebook/regnet-y-040" UpperCamelCase_ = [1, 1_0_8_8, 7, 7] # Image classification docstring UpperCamelCase_ = "facebook/regnet-y-040" UpperCamelCase_ = "tabby, tabby cat" UpperCamelCase_ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A = 3, A = 1, A = 1, A = "relu", ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = nn.Convad( A, A, kernel_size=A, stride=A, padding=kernel_size // 2, groups=A, bias=A, ) SCREAMING_SNAKE_CASE : int = nn.BatchNormad(A ) SCREAMING_SNAKE_CASE : str = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.convolution(A ) SCREAMING_SNAKE_CASE : Dict = self.normalization(A ) SCREAMING_SNAKE_CASE : str = self.activation(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = RegNetConvLayer( config.num_channels, config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_channels def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) SCREAMING_SNAKE_CASE : int = self.embedder(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A = 2 ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = nn.Convad(A, A, kernel_size=1, stride=A, bias=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.convolution(A ) SCREAMING_SNAKE_CASE : Any = self.normalization(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE : List[str] = nn.Sequential( nn.Convad(A, A, kernel_size=1 ), nn.ReLU(), nn.Convad(A, A, kernel_size=1 ), nn.Sigmoid(), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.pooler(A ) SCREAMING_SNAKE_CASE : str = self.attention(A ) SCREAMING_SNAKE_CASE : List[str] = hidden_state * attention return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A, A = 1 ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Any = max(1, out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Optional[Any] = ( RegNetShortCut(A, A, stride=A ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential( RegNetConvLayer(A, A, kernel_size=1, activation=config.hidden_act ), RegNetConvLayer(A, A, stride=A, groups=A, activation=config.hidden_act ), RegNetConvLayer(A, A, kernel_size=1, activation=A ), ) SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_state SCREAMING_SNAKE_CASE : Any = self.layer(A ) SCREAMING_SNAKE_CASE : str = self.shortcut(A ) hidden_state += residual SCREAMING_SNAKE_CASE : int = self.activation(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A, A = 1 ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : str = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Union[str, Any] = max(1, out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( RegNetShortCut(A, A, stride=A ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : List[str] = nn.Sequential( RegNetConvLayer(A, A, kernel_size=1, activation=config.hidden_act ), RegNetConvLayer(A, A, stride=A, groups=A, activation=config.hidden_act ), RegNetSELayer(A, reduced_channels=int(round(in_channels / 4 ) ) ), RegNetConvLayer(A, A, kernel_size=1, activation=A ), ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = hidden_state SCREAMING_SNAKE_CASE : Union[str, Any] = self.layer(A ) SCREAMING_SNAKE_CASE : Tuple = self.shortcut(A ) hidden_state += residual SCREAMING_SNAKE_CASE : Optional[Any] = self.activation(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A, A, A, A = 2, A = 2, ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : str = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( A, A, A, stride=A, ), *[layer(A, A, A ) for _ in range(depth - 1 )], ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.layers(A ) return hidden_state class _a ( nn.Module ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( A, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) SCREAMING_SNAKE_CASE : List[Any] = zip(config.hidden_sizes, config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A, config.depths[1:] ): self.stages.append(RegNetStage(A, A, A, depth=A ) ) def UpperCamelCase_ ( self, A, A = False, A = True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : List[Any] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : Optional[int] = stage_module(A ) if output_hidden_states: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=A, hidden_states=A ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = RegNetConfig A : Optional[Any] = '''regnet''' A : Tuple = '''pixel_values''' A : Dict = True def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, nn.Convad ): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu' ) elif isinstance(A, (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight, 1 ) nn.init.constant_(module.bias, 0 ) def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if isinstance(A, A ): SCREAMING_SNAKE_CASE : int = value UpperCamelCase_ = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase_ = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__(A ) SCREAMING_SNAKE_CASE : Optional[int] = config SCREAMING_SNAKE_CASE : List[str] = RegNetEmbeddings(A ) SCREAMING_SNAKE_CASE : Tuple = RegNetEncoder(A ) SCREAMING_SNAKE_CASE : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=A, config_class=_CONFIG_FOR_DOC, modality='vision', expected_output=_EXPECTED_OUTPUT_SHAPE, ) def UpperCamelCase_ ( self, A, A = None, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Tuple = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : int = self.embedder(A ) SCREAMING_SNAKE_CASE : List[str] = self.encoder( A, output_hidden_states=A, return_dict=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE : int = self.pooler(A ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A, pooler_output=A, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , SCREAMING_SNAKE_CASE , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super().__init__(A ) SCREAMING_SNAKE_CASE : List[Any] = config.num_labels SCREAMING_SNAKE_CASE : str = RegNetModel(A ) # classification head SCREAMING_SNAKE_CASE : Dict = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels ) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=A, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def UpperCamelCase_ ( self, A = None, A = None, A = None, A = None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Any = self.regnet(A, output_hidden_states=A, return_dict=A ) SCREAMING_SNAKE_CASE : List[str] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Dict = self.classifier(A ) SCREAMING_SNAKE_CASE : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : str = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : List[Any] = 'single_label_classification' else: SCREAMING_SNAKE_CASE : Optional[Any] = 'multi_label_classification' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Optional[Any] = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[str] = loss_fct(logits.squeeze(), labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Tuple = loss_fct(A, A ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : int = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Tuple = loss_fct(logits.view(-1, self.num_labels ), labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : Tuple = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : str = loss_fct(A, A ) if not return_dict: SCREAMING_SNAKE_CASE : List[str] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A, logits=A, hidden_states=outputs.hidden_states )
508
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool ,__UpperCamelCase: list[int] ,__UpperCamelCase: float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__UpperCamelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) return min( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE : List[Any] = math.log(len(__UpperCamelCase ) ,2 ) print('Optimal value : ' ,end='' ) print(minimax(0 ,0 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
508
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="None" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : Dict = is_training UpperCAmelCase : Tuple = use_input_mask UpperCAmelCase : List[str] = use_token_type_ids UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Union[str, Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : List[str] = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : str = num_labels UpperCAmelCase : Tuple = num_choices UpperCAmelCase : int = relative_attention UpperCAmelCase : Optional[Any] = position_biased_input UpperCAmelCase : List[Any] = pos_att_type UpperCAmelCase : str = scope def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : int = None UpperCAmelCase : int = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = self.get_config() UpperCAmelCase : Optional[int] = 300 return config def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Dict = DebertaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = DebertaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Dict = DebertaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : Dict = DebertaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] = DebertaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Union[str, Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Dict = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase : Dict = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : str = False def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = DebertaModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = DebertaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) UpperCAmelCase : Union[str, Any] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. UpperCAmelCase : Union[str, Any] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
160
0
from math import factorial def _lowerCamelCase( lowerCAmelCase__ : int = 20 ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ : List[str] = n // 2 return int(factorial(lowerCAmelCase__ ) / (factorial(lowerCAmelCase__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
97
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A = spec.loader.load_module() A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') A = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def _lowerCamelCase( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE_ : int = False # source code of `config_class` SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.getsource(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = _re_checkpoint.findall(lowerCAmelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE_ : List[str] = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE_ : Optional[int] = True break SCREAMING_SNAKE_CASE_ : Tuple = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE_ : str = '\n'.join(sorted(lowerCAmelCase__ ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
97
1
"""simple docstring""" def snake_case ( A__ = 3 ,A__ = 7 ,A__ = 1_00_00_00 ): UpperCAmelCase_ : int = 0 UpperCAmelCase_ : str = 1 for current_denominator in range(1 ,limit + 1 ): UpperCAmelCase_ : Tuple = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : Optional[int] = current_numerator UpperCAmelCase_ : Any = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
95
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = torch.device('''cpu''') def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(A__ ,stream=A__ ).raw ) return im def snake_case ( A__ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = dct.pop(A__ ) UpperCAmelCase_ : Optional[Any] = val def snake_case ( A__ ): UpperCAmelCase_ : List[str] = [] for k in state_dict.keys(): UpperCAmelCase_ : Union[str, Any] = k if ".pwconv" in k: UpperCAmelCase_ : Dict = k_new.replace(".pwconv" ,".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ : Any = k_new.replace(".dwconv" ,".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ : Dict = k_new.replace(".Proj." ,".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ : Tuple = k_new.replace("patch_embed" ,"swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ : List[Any] = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ : Tuple = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ : Optional[Any] = k_new.replace("network" ,"swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Optional[Any] = 10_00 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(A__ ,A__ ,repo_type="dataset" ) ,"r" ) ) UpperCAmelCase_ : Tuple = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ : Tuple = [3, 3, 6, 4] UpperCAmelCase_ : str = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ : Optional[Any] = [3, 3, 9, 6] UpperCAmelCase_ : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ : int = [4, 3, 10, 5] UpperCAmelCase_ : Union[str, Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ : Dict = [4, 4, 12, 6] UpperCAmelCase_ : Optional[int] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(A__ ,map_location="cpu" ,check_hash=A__ ) else: UpperCAmelCase_ : Any = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : List[str] = checkpoint UpperCAmelCase_ : Dict = create_rename_keys(A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ ,A__ ,A__ ) # load HuggingFace model UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification(A__ ).eval() hf_model.load_state_dict(A__ ) # prepare test inputs UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ : int = processor(images=A__ ,return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ : List[Any] = get_expected_output(A__ ) UpperCAmelCase_ : int = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] ,A__ ,atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
95
1
'''simple docstring''' lowerCAmelCase_ : List[str] = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : int = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
709
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] , A : Any ): SCREAMING_SNAKE_CASE : List[str] = 1.5 SCREAMING_SNAKE_CASE : str = int(factor * num_class_images ) SCREAMING_SNAKE_CASE : Union[str, Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=A , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=A ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE : Union[str, Any] = client.query(text=A ) if len(A ) >= factor * num_class_images or num_images > 1e4: break else: SCREAMING_SNAKE_CASE : Optional[int] = int(factor * num_images ) SCREAMING_SNAKE_CASE : str = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=A , aesthetic_weight=0.1 , ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Tuple = tqdm(desc='''downloading real regularization images''' , total=A ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE : int = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE : int = requests.get(images['''url'''] ) if img.status_code == 200: SCREAMING_SNAKE_CASE : List[str] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase ( ): SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser('''''' , add_help=A ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=A , type=A ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=A , type=A ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=A ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ : List[str] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
464
0
from __future__ import annotations def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = array[indexa], array[indexa] def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if length > 1: SCREAMING_SNAKE_CASE_ = int(length / 2 ) for i in range(__UpperCAmelCase , low + middle ): comp_and_swap(__UpperCAmelCase , __UpperCAmelCase , i + middle , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) bitonic_merge(__UpperCAmelCase , low + middle , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> None: if length > 1: SCREAMING_SNAKE_CASE_ = int(length / 2 ) bitonic_sort(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , 1 ) bitonic_sort(__UpperCAmelCase , low + middle , __UpperCAmelCase , 0 ) bitonic_merge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
31
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=True , snake_case__="pt" ): A_ : Dict = {"""add_prefix_space""": True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(""" """ ) else {} A_ : int = padding_side return tokenizer( [line] , max_length=snake_case__ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , ): A_ : int = input_ids.ne(snake_case__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="train" , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="" , ): super().__init__() A_ : str = Path(lowerCAmelCase_ ).joinpath(type_path + """.source""" ) A_ : Tuple = Path(lowerCAmelCase_ ).joinpath(type_path + """.target""" ) A_ : Optional[Any] = self.get_char_lens(self.src_file ) A_ : Optional[Any] = max_source_length A_ : Tuple = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" A_ : Tuple = tokenizer A_ : Optional[int] = prefix if n_obs is not None: A_ : Union[str, Any] = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Union[str, Any] = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowerCAmelCase_ ): A_ : Optional[Any] = index + 1 # linecache starts at 1 A_ : int = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) A_ : Any = linecache.getline(str(self.tgt_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer ) A_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer A_ : str = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_source_length , """right""" ) A_ : Optional[Any] = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_target_length , """right""" ) A_ : int = source_inputs["""input_ids"""].squeeze() A_ : int = target_inputs["""input_ids"""].squeeze() A_ : Tuple = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase(lowerCAmelCase_ ): return [len(lowerCAmelCase_ ) for x in Path(lowerCAmelCase_ ).open().readlines()] def lowerCamelCase(self , lowerCAmelCase_ ): A_ : List[str] = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[int] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : Any = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ ) A_ , A_ : Dict = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) A_ : Optional[Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch _lowerCAmelCase = getLogger(__name__) def __UpperCamelCase ( snake_case__ ): return list(itertools.chain.from_iterable(snake_case__ ) ) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = get_git_info() save_json(snake_case__ , os.path.join(snake_case__ , """git_log.json""" ) ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=4 , **snake_case__ ): with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ ) def __UpperCamelCase ( snake_case__ ): with open(snake_case__ ) as f: return json.load(snake_case__ ) def __UpperCamelCase ( ): A_ : Optional[int] = git.Repo(search_parent_directories=snake_case__ ) A_ : Union[str, Any] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( snake_case__ , snake_case__ ): return list(map(snake_case__ , snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): with open(snake_case__ , """wb""" ) as f: return pickle.dump(snake_case__ , snake_case__ ) def __UpperCamelCase ( snake_case__ ): def remove_articles(snake_case__ ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , snake_case__ ) def white_space_fix(snake_case__ ): return " ".join(text.split() ) def remove_punc(snake_case__ ): A_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Tuple = normalize_answer(snake_case__ ).split() A_ : Dict = normalize_answer(snake_case__ ).split() A_ : int = Counter(snake_case__ ) & Counter(snake_case__ ) A_ : Dict = sum(common.values() ) if num_same == 0: return 0 A_ : str = 1.0 * num_same / len(snake_case__ ) A_ : Any = 1.0 * num_same / len(snake_case__ ) A_ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( snake_case__ , snake_case__ ): return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) def __UpperCamelCase ( snake_case__ , snake_case__ ): assert len(snake_case__ ) == len(snake_case__ ) A_ : Optional[Any] = 0 for hypo, pred in zip(snake_case__ , snake_case__ ): em += exact_match_score(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: em /= len(snake_case__ ) return {"em": em} def __UpperCamelCase ( snake_case__ ): return model_prefix.startswith("""rag""" ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : List[Any] = """dropout_rate""" for p in extra_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case__ ) ) delattr(snake_case__ , snake_case__ ) continue A_ : Dict = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p] setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) delattr(snake_case__ , snake_case__ ) return hparams, config
180
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''PoolFormerFeatureExtractor'''] lowerCamelCase_ = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
700
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def snake_case ( A__ ): UpperCAmelCase_ : Tuple = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", "stage2.cls_token") ) return token def snake_case ( ): UpperCAmelCase_ : str = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def snake_case ( A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = "imagenet-1k-id2label.json" UpperCAmelCase_ : Union[str, Any] = 10_00 UpperCAmelCase_ : Any = "huggingface/label-files" UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(A__ ,A__ ,repo_type="dataset" ) ) ,"r" ) ) UpperCAmelCase_ : Optional[int] = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : str = CvtConfig(num_labels=A__ ,idalabel=A__ ,labelaid=A__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" ,1 )[-1][4:6] == "13": UpperCAmelCase_ : Optional[int] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" ,1 )[-1][4:6] == "21": UpperCAmelCase_ : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase_ : Optional[int] = [2, 2, 20] UpperCAmelCase_ : List[str] = [3, 12, 16] UpperCAmelCase_ : Optional[Any] = [1_92, 7_68, 10_24] UpperCAmelCase_ : Tuple = CvtForImageClassification(A__ ) UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) UpperCAmelCase_ : int = image_size UpperCAmelCase_ : List[str] = torch.load(A__ ,map_location=torch.device("cpu" ) ) UpperCAmelCase_ : int = OrderedDict() UpperCAmelCase_ : Optional[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase_ : Optional[Any] = list_of_state_dict + cls_token(A__ ) UpperCAmelCase_ : Any = list_of_state_dict + embeddings(A__ ) for cnt in range(config.depth[idx] ): UpperCAmelCase_ : Dict = list_of_state_dict + attention(A__ ,A__ ) UpperCAmelCase_ : Union[str, Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(A__ ) for i in range(len(A__ ) ): UpperCAmelCase_ : Any = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
463
0
import cva import numpy as np class __lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , _snake_case : float , _snake_case : int ): """simple docstring""" if k in (0.04, 0.06): A__ = k A__ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ): """simple docstring""" return str(self.k ) def _a ( self : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = cva.imread(_snake_case , 0 ) A__ , A__ = img.shape A__ = [] A__ = img.copy() A__ = cva.cvtColor(_snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ = np.gradient(_snake_case ) A__ = dx**2 A__ = dy**2 A__ = dx * dy A__ = 0.04 A__ = self.window_size // 2 for y in range(_snake_case , h - offset ): for x in range(_snake_case , w - offset ): A__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ = (wxx * wyy) - (wxy**2) A__ = wxx + wyy A__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = HarrisCorner(0.04, 3) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
9
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Union[str, Any]: __snake_case = torch.load(_UpperCAmelCase , map_location="cpu" ) if "model" in sd.keys(): __snake_case = torch.load(_UpperCAmelCase , map_location="cpu" )["model"] # pop unnecessary weights __snake_case = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCAmelCase ) __snake_case = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __snake_case = sd.pop(_UpperCAmelCase ) __snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __snake_case = sd[key] # We split QKV in separate Q,K,V __snake_case = key.replace(".qkv_proj." , ".q_proj." ) __snake_case = key.replace(".qkv_proj." , ".k_proj." ) __snake_case = key.replace(".qkv_proj." , ".v_proj." ) __snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __snake_case , __snake_case , __snake_case = torch.split(_UpperCAmelCase , depth // 3 , dim=0 ) __snake_case = q __snake_case = k __snake_case = v del sd[key] return sd @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int=None ) -> Any: __snake_case = load_checkpoint(_UpperCAmelCase ) if config is not None: __snake_case = OPTConfig.from_pretrained(_UpperCAmelCase ) else: __snake_case = OPTConfig() __snake_case = OPTModel(_UpperCAmelCase ).half().eval() model.load_state_dict(_UpperCAmelCase ) # Check results Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') a : Optional[int] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
69
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE__ : List[str] = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
233
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : List[str] = ['image_processor', 'tokenizer'] __snake_case : Optional[int] = 'Pix2StructImageProcessor' __snake_case : Optional[int] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = False super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __call__( self : Tuple , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = 2_048 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE : str , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.tokenizer SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ :Any = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ :Any = self.tokenizer( text=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , stride=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_special_tokens_mask=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , return_token_type_ids=SCREAMING_SNAKE_CASE , return_length=SCREAMING_SNAKE_CASE , verbose=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ :List[Any] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ :Any = text_encoding.pop('input_ids' ) else: SCREAMING_SNAKE_CASE_ :Any = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE ) return encoding_image_processor def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def _lowercase ( self : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ :Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
233
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
128
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any]=13 , SCREAMING_SNAKE_CASE : Optional[int]=30 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=3 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : str=32 , SCREAMING_SNAKE_CASE : Any=5 , SCREAMING_SNAKE_CASE : Union[str, Any]=4 , SCREAMING_SNAKE_CASE : Any=37 , SCREAMING_SNAKE_CASE : Tuple="gelu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : str=10 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Dict=2 , ): _A : Dict = parent _A : Optional[Any] = batch_size _A : int = image_size _A : Tuple = patch_size _A : Dict = num_channels _A : Union[str, Any] = is_training _A : Optional[int] = use_labels _A : Optional[Any] = hidden_size _A : Dict = num_hidden_layers _A : Any = num_attention_heads _A : int = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : List[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Optional[Any] = scope _A : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : int = (image_size // patch_size) ** 2 _A : List[str] = num_patches + 1 def A ( self : Dict): _A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[Any] = self.get_config() return config, pixel_values, labels def A ( self : Union[str, Any]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int): _A : int = ViTModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple): _A : int = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _A : Any = 1 _A : Optional[Any] = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : int = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A ( self : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict): _A : Union[str, Any] = self.type_sequence_label_size _A : int = ViTForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _A : Any = 1 _A : str = ViTForImageClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _A : Any = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A ( self : str): _A : Dict = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ) : List[Any] = config_and_inputs _A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a = True a = False a = False a = False def A ( self : str): _A : Optional[int] = ViTModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Dict): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A ( self : Optional[int]): pass def A ( self : Any): _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear)) def A ( self : Any): _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[str] = model_class(SCREAMING_SNAKE_CASE) _A : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : Dict): _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def lowerCAmelCase__ ( ): _A : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Tuple): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A ( self : str): _A : Optional[int] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(SCREAMING_SNAKE_CASE) _A : List[str] = self.default_image_processor _A : List[str] = prepare_img() _A : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt').to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : str = model(**SCREAMING_SNAKE_CASE) # verify the logits _A : int = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE) _A : int = torch.tensor([-0.2744, 0.8215, -0.0836]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def A ( self : str): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _A : int = ViTModel.from_pretrained('facebook/dino-vits8').to(SCREAMING_SNAKE_CASE) _A : Optional[Any] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480) _A : Union[str, Any] = prepare_img() _A : List[str] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt') _A : List[str] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): _A : str = model(SCREAMING_SNAKE_CASE , interpolate_pos_encoding=SCREAMING_SNAKE_CASE) # verify the logits _A : Any = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE) _A : Optional[int] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A ( self : str): _A : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') _A : List[str] = self.default_image_processor _A : Any = prepare_img() _A : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt') _A : Tuple = inputs.pixel_values.to(SCREAMING_SNAKE_CASE) # forward pass to make sure inference works in fp16 with torch.no_grad(): _A : Optional[int] = model(SCREAMING_SNAKE_CASE)
128
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase = 50003 lowercase = 50002 @require_sentencepiece @require_tokenizers class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = PLBartTokenizer UpperCAmelCase__ = None UpperCAmelCase__ = False def _snake_case ( self : Union[str, Any] ) -> int: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : int ) -> Dict: __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="base" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __magic_name__ = tokenizer.vocab_size __magic_name__ = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 4 , __lowerCamelCase )] self.assertListEqual(__lowerCamelCase , ["__java__", "__python__", "__en_XX__", "<mask>"] ) __magic_name__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __magic_name__ = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) def _snake_case ( self : Union[str, Any] ) -> str: __magic_name__ = PLBartTokenizer(__lowerCamelCase , language_codes="multi" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) __magic_name__ = tokenizer.vocab_size __magic_name__ = [tokenizer.convert_ids_to_tokens(__lowerCamelCase ) for x in range(end - 7 , __lowerCamelCase )] self.assertListEqual( __lowerCamelCase , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) __magic_name__ = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" __magic_name__ = tokenizer(__lowerCamelCase ).input_ids self.assertEqual( tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) , __lowerCamelCase , ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): UpperCAmelCase__ = '''uclanlp/plbart-python-en_XX''' UpperCAmelCase__ = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] UpperCAmelCase__ = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] UpperCAmelCase__ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _snake_case ( cls : List[str] ) -> List[str]: __magic_name__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) __magic_name__ = 1 return cls def _snake_case ( self : Union[str, Any] ) -> Tuple: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def _snake_case ( self : List[Any] ) -> Tuple: __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def _snake_case ( self : Tuple ) -> Dict: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) __magic_name__ = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] __magic_name__ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def _snake_case ( self : List[str] ) -> Union[str, Any]: __magic_name__ = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , __lowerCamelCase ) __magic_name__ = 1_0 __magic_name__ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : Any ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def _snake_case ( self : Optional[int] ) -> Any: __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = PLBartTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def _snake_case ( self : Union[str, Any] ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __lowerCamelCase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _snake_case ( self : str ) -> Union[str, Any]: __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _snake_case ( self : List[Any] ) -> List[str]: __magic_name__ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt" ) __magic_name__ = targets["input_ids"] __magic_name__ = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _snake_case ( self : Tuple ) -> List[Any]: __magic_name__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
721
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class A_ : UpperCAmelCase__ = LEDConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=1_3 , __lowerCamelCase : str=7 , __lowerCamelCase : Any=True , __lowerCamelCase : int=False , __lowerCamelCase : List[Any]=9_9 , __lowerCamelCase : Any=3_2 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Dict=4 , __lowerCamelCase : int=3_7 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=2_0 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : str=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Dict=4 , ) -> Optional[Any]: __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id __magic_name__ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self : Dict ) -> Optional[Any]: __magic_name__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ = prepare_led_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = tf.concat( [tf.zeros_like(__lowerCamelCase )[:, :-1], tf.ones_like(__lowerCamelCase )[:, -1:]] , axis=-1 , ) __magic_name__ = global_attention_mask return config, inputs_dict def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> Union[str, Any]: __magic_name__ = TFLEDModel(config=__lowerCamelCase ).get_decoder() __magic_name__ = inputs_dict["input_ids"] __magic_name__ = input_ids[:1, :] __magic_name__ = inputs_dict["attention_mask"][:1, :] __magic_name__ = 1 # first forward pass __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) __magic_name__ , __magic_name__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __magic_name__ = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) def _lowerCAmelCase ( __lowerCamelCase:str , __lowerCamelCase:str , __lowerCamelCase:List[Any] , __lowerCamelCase:Any=None , __lowerCamelCase:Dict=None , __lowerCamelCase:List[Any]=None , __lowerCamelCase:Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: __magic_name__ = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class A_ ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _snake_case ( self : int ) -> Optional[int]: __magic_name__ = TFLEDModelTester(self ) __magic_name__ = ConfigTester(self , config_class=__lowerCamelCase ) def _snake_case ( self : Optional[Any] ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self : Optional[int] ) -> List[Any]: __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def _snake_case ( self : List[str] ) -> str: __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ = 2 __magic_name__ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ = True __magic_name__ = self.model_tester.seq_length __magic_name__ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowerCamelCase : int ): __magic_name__ = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowerCamelCase : Any ): __magic_name__ = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(__lowerCamelCase ) __magic_name__ = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _snake_case ( self : Union[str, Any] ) -> List[str]: pass def _snake_case ( self : int ) -> str: # TODO: Head-masking not yet implement pass def _lowerCAmelCase ( __lowerCamelCase:Optional[int] ): '''simple docstring''' return tf.constant(__lowerCamelCase , dtype=tf.intaa ) lowercase = 1e-4 @slow @require_tf class A_ ( unittest.TestCase ): def _snake_case ( self : Optional[Any] ) -> List[str]: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 ) def _snake_case ( self : Any ) -> Dict: __magic_name__ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) __magic_name__ = prepare_led_inputs_dict(model.config , __lowerCamelCase , __lowerCamelCase ) __magic_name__ = model(**__lowerCamelCase )[0] __magic_name__ = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , __lowerCamelCase ) # change to expected output here __magic_name__ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-3 , rtol=1e-3 )
468
0
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : List[str] = HfArgumentParser(_lowerCamelCase ) __lowerCamelCase : Tuple = parser.parse_args_into_dataclasses()[0] __lowerCamelCase : Optional[int] = TensorFlowBenchmark(args=_lowerCamelCase ) try: __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowerCamelCase : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." __lowerCamelCase : Any = " ".join(str(_lowerCamelCase ).split(" " )[:-1] ) __lowerCamelCase : Dict = "" __lowerCamelCase : Optional[Any] = eval(str(_lowerCamelCase ).split(" " )[-1] ) __lowerCamelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __lowerCamelCase : Union[str, Any] = full_error_msg + begin_error_msg + str(_lowerCamelCase ) raise ValueError(_lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
646
"""simple docstring""" import math def lowercase_ ( _lowerCamelCase: int ) -> list[int]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Tuple = 2 __lowerCamelCase : str = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment __lowerCamelCase : str = [True] * (end + 1) __lowerCamelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): __lowerCamelCase : List[str] = False start += 1 prime += in_prime __lowerCamelCase : Union[str, Any] = end + 1 __lowerCamelCase : Union[str, Any] = min(2 * end , _lowerCamelCase ) while low <= n: __lowerCamelCase : List[Any] = [True] * (high - low + 1) for each in in_prime: __lowerCamelCase : int = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): __lowerCamelCase : Dict = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) __lowerCamelCase : List[str] = high + 1 __lowerCamelCase : Union[str, Any] = min(high + end , _lowerCamelCase ) return prime print(sieve(10**6))
646
1
from dataclasses import dataclass, field from typing import Optional @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."}) __UpperCAmelCase = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size for training."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size for evaluation."}) __UpperCAmelCase = field(default=0.1 , metadata={"help": "Value of weight decay."}) __UpperCAmelCase = field( default=1_0_0_0_0 , metadata={"help": "Size of buffer used to shuffle streaming dataset."}) __UpperCAmelCase = field(default=2E-4 , metadata={"help": "Learning rate fo training."}) __UpperCAmelCase = field(default="cosine" , metadata={"help": "Learning rate."}) __UpperCAmelCase = field( default=7_5_0 , metadata={"help": "Number of warmup steps in the learning rate schedule."}) __UpperCAmelCase = field( default=1_6 , metadata={"help": "Number of gradient accumulation steps."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."}) __UpperCAmelCase = field(default=5_0_0_0_0 , metadata={"help": "Maximum number of training steps."}) __UpperCAmelCase = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}) __UpperCAmelCase = field(default=1_0_2_4 , metadata={"help": "Sequence lengths used for training."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Training seed."}) __UpperCAmelCase = field( default=1_0_2_4 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "If True the data is pretokenized."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size used for evaluation."}) __UpperCAmelCase = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}) __UpperCAmelCase = field(default=1_0_2_4 , metadata={"help": "Length of sequences to be evaluated."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Random seed used for evaluation."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Sample from the language model's output distribution."}) __UpperCAmelCase = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."}) __UpperCAmelCase = field(default=2_5_6 , metadata={"help": "Maximum number of newly generated tokens."}) __UpperCAmelCase = field(default=0 , metadata={"help": "Top-k parameter used for generation."}) __UpperCAmelCase = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."}) __UpperCAmelCase = field(default=1_0 , metadata={"help": "Number of generations to run in parallel."}) __UpperCAmelCase = field( default=2_0_0 , metadata={"help": "Number of completions to generate for each sample."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Random seed used for evaluation."}) __UpperCAmelCase = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."}) __UpperCAmelCase = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"}) __UpperCAmelCase = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) __UpperCAmelCase = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."}) __UpperCAmelCase = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."}) __UpperCAmelCase = field( default=1_0_0_0_0_0 , metadata={"help": "Number of files to save per JSON output file."}) __UpperCAmelCase = field(default="content" , metadata={"help": "Column containing text data to process."}) __UpperCAmelCase = field( default=1_0_0_0 , metadata={"help": "Maximum line length in file, otherwise file is filtered."}) __UpperCAmelCase = field( default=1_0_0 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."}) __UpperCAmelCase = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."}) __UpperCAmelCase = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."}) __UpperCAmelCase = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."}) __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "If True, near-duplicate samples are removed."}) __UpperCAmelCase = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."}) __UpperCAmelCase = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."}) __UpperCAmelCase = field(default="content" , metadata={"help": "Column containing text data to process."}) __UpperCAmelCase = field(default=2_0_0_0_0_0 , metadata={"help": "Number of examples to train tokenizer on."}) __UpperCAmelCase = field( default=3_2_7_6_8 , metadata={"help": "Number of examples to train the tokenizer on."}) __UpperCAmelCase = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."}) __UpperCAmelCase = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."}) __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."}) __UpperCAmelCase = field(default="codeparrot" , metadata={"help": "Name of the created model."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."})
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ : int = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id')) for partition_id in partition_order: SCREAMING_SNAKE_CASE = df_with_partition_id.select('*').where(F'''part_id = {partition_id}''').drop('part_id') SCREAMING_SNAKE_CASE = partition_df.collect() SCREAMING_SNAKE_CASE = 0 for row in rows: yield F'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self , a , a=None , ) -> Tuple: SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = partition_order or range(self.df.rdd.getNumPartitions()) SCREAMING_SNAKE_CASE = _generate_iterable_examples(self.df , self.partition_order) def __iter__( self) -> Dict: yield from self.generate_examples_fn() def SCREAMING_SNAKE_CASE__ ( self , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = list(range(self.df.rdd.getNumPartitions())) generator.shuffle(a) return SparkExamplesIterable(self.df , partition_order=a) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> "SparkExamplesIterable": SCREAMING_SNAKE_CASE = self.split_shard_indices_by_worker(a , a) return SparkExamplesIterable(self.df , partition_order=a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.partition_order) class _snake_case ( datasets.DatasetBuilder ): _lowercase : List[Any] = SparkConfig def __init__( self , a , a = None , a = None , **a , ) -> List[Any]: import pyspark SCREAMING_SNAKE_CASE = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE = df SCREAMING_SNAKE_CASE = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash()) , **a , ) def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Returns the path of the created file. def create_cache_and_write_probe(a): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a) SCREAMING_SNAKE_CASE = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , 'a') return [probe_file] if self._spark.conf.get('spark.master' , '').startswith('local'): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE = ( self._spark.sparkContext.parallelize(range(1) , 1).mapPartitions(a).collect() ) if os.path.isfile(probe[0]): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir') def SCREAMING_SNAKE_CASE__ ( self) -> Dict: return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: import pyspark def get_arrow_batch_size(a): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]}) SCREAMING_SNAKE_CASE = self.df.count() SCREAMING_SNAKE_CASE = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE = ( self.df.limit(a) .repartition(1) .mapInArrow(a , 'batch_bytes: long') .agg(pyspark.sql.functions.sum('batch_bytes').alias('sample_bytes')) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE = min(a , int(approx_total_size / max_shard_size)) SCREAMING_SNAKE_CASE = self.df.repartition(a) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark SCREAMING_SNAKE_CASE = ParquetWriter if file_format == 'parquet' else ArrowWriter SCREAMING_SNAKE_CASE = os.path.join(self._working_dir , os.path.basename(a)) if self._working_dir else fpath SCREAMING_SNAKE_CASE = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE = self.config.features SCREAMING_SNAKE_CASE = self._writer_batch_size SCREAMING_SNAKE_CASE = self._fs.storage_options def write_arrow(a): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE = next(a , a) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = writer_class( features=a , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([first_batch]) writer.write_table(a) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 SCREAMING_SNAKE_CASE = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE = pa.Table.from_batches([batch]) writer.write_table(a) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a)): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(a) , os.path.basename(a)) shutil.move(a , a) SCREAMING_SNAKE_CASE = ( self.df.mapInArrow(a , 'task_id: long, num_examples: long, num_bytes: long') .groupBy('task_id') .agg( pyspark.sql.functions.sum('num_examples').alias('total_num_examples') , pyspark.sql.functions.sum('num_bytes').alias('total_num_bytes') , pyspark.sql.functions.count('num_bytes').alias('num_shards') , pyspark.sql.functions.collect_list('num_examples').alias('shard_lengths') , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def SCREAMING_SNAKE_CASE__ ( self , a , a = "arrow" , a = None , a = None , **a , ) -> List[str]: self._validate_cache_dir() SCREAMING_SNAKE_CASE = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE) self._repartition_df_if_needed(a) SCREAMING_SNAKE_CASE = not is_remote_filesystem(self._fs) SCREAMING_SNAKE_CASE = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE = '-TTTTT-SSSSS-of-NNNNN' SCREAMING_SNAKE_CASE = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' SCREAMING_SNAKE_CASE = path_join(self._output_dir , a) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for task_id, content in self._prepare_split_single(a , a , a): ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards)) all_shard_lengths.extend(a) SCREAMING_SNAKE_CASE = total_num_examples SCREAMING_SNAKE_CASE = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''') if total_shards > 1: SCREAMING_SNAKE_CASE = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a , a , a , ): rename( a , fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace('TTTTT-SSSSS' , f'''{global_shard_id:05d}''').replace('NNNNN' , f'''{total_shards:05d}''') , ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 for i in range(len(a)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = task_id_and_num_shards[i] for shard_id in range(a): args.append([task_id, shard_id, global_shard_id]) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a)).map(lambda a: _rename_shard(*a)).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'''{shard_id:05d}''').replace('TTTTT' , f'''{task_id:05d}''') , fpath.replace(a , '') , ) def SCREAMING_SNAKE_CASE__ ( self , a , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df)
73
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( lowerCamelCase__ : float ) -> float: if edge <= 0 or not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
572
0
import os from collections.abc import Iterator def lowerCamelCase__ (_UpperCAmelCase = "."): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase): SCREAMING_SNAKE_CASE = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase)[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase).lstrip('./') def lowerCamelCase__ (_UpperCAmelCase): return F'''{i * ' '}*''' if i else "\n##" def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = old_path.split(os.sep) for i, new_part in enumerate(new_path.split(os.sep)): if (i + 1 > len(_UpperCAmelCase) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_UpperCAmelCase)} {new_part.replace('_' , ' ').title()}''') return new_path def lowerCamelCase__ (_UpperCAmelCase = "."): SCREAMING_SNAKE_CASE = '' for filepath in sorted(good_file_paths(_UpperCAmelCase)): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = os.path.split(_UpperCAmelCase) if filepath != old_path: SCREAMING_SNAKE_CASE = print_path(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = (filepath.count(os.sep) + 1) if filepath else 0 SCREAMING_SNAKE_CASE = F'''{filepath}/{filename}'''.replace(' ' , '%20') SCREAMING_SNAKE_CASE = os.path.splitext(filename.replace('_' , ' ').title())[0] print(F'''{md_prefix(_UpperCAmelCase)} [{filename}]({url})''') if __name__ == "__main__": print_directory_md('.')
444
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=400 , a=True , a=None , a=True , a=None , a=True , ) -> Any: SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 20} SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _snake_case ( A__ , unittest.TestCase ): _lowercase : Optional[int] = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = MobileViTImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE__ ( self) -> str: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(a , 'do_resize')) self.assertTrue(hasattr(a , 'size')) self.assertTrue(hasattr(a , 'do_center_crop')) self.assertTrue(hasattr(a , 'center_crop')) self.assertTrue(hasattr(a , 'do_flip_channel_order')) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 20}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: pass def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a) for image in image_inputs: self.assertIsInstance(a , Image.Image) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a) for image in image_inputs: self.assertIsInstance(a , np.ndarray) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a) for image in image_inputs: self.assertIsInstance(a , torch.Tensor) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
444
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowercase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowercase_ = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } lowercase_ = '▁' class __lowerCAmelCase ( A_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase = None , **lowerCAmelCase , ) -> Tuple: '''simple docstring''' _lowercase =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token _lowercase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) _lowercase =vocab_file _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) _lowercase ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _lowercase =len(self.sp_model ) - 1 _lowercase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase =[self.cls_token_id] _lowercase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ) -> str: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[str]: '''simple docstring''' _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ) -> Tuple: '''simple docstring''' return len(self.sp_model ) def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase ={self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , lowerCAmelCase ) -> Any: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def A__ ( self , lowerCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase =self.sp_model.PieceToId(_lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def A__ ( self , lowerCAmelCase ) -> Dict: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_lowerCamelCase ) def A__ ( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =[] _lowercase ='' _lowercase =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token _lowercase =True _lowercase =[] else: current_sub_tokens.append(_lowerCamelCase ) _lowercase =False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __getstate__( self ) -> Tuple: '''simple docstring''' _lowercase =self.__dict__.copy() _lowercase =None return state def __setstate__( self , lowerCAmelCase ) -> List[str]: '''simple docstring''' _lowercase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase ={} _lowercase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[str]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase =os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , 'wb' ) as fi: _lowercase =self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
291
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase__ = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' UpperCAmelCase__ = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' UpperCAmelCase__ = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowercase ( self : List[str] ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowercase ( self : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , ): _snake_case = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _snake_case = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] _snake_case = TER( normalized=_lowerCamelCase , no_punct=_lowerCamelCase , asian_support=_lowerCamelCase , case_sensitive=_lowerCamelCase , ) _snake_case = sb_ter.corpus_score(_lowerCamelCase , _lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
224
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __snake_case :Optional[int] = TypeVar('''KEY''') __snake_case :str = TypeVar('''VAL''') @dataclass(frozen=UpperCAmelCase__ ,slots=UpperCAmelCase__ ) class _A ( Generic[KEY, VAL] ): UpperCamelCase__ : KEY UpperCamelCase__ : VAL class _A ( _Item ): def __init__( self : Dict): '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__) def __bool__( self : List[str]): '''simple docstring''' return False __snake_case :Optional[Any] = _DeletedItem() class _A ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : float = 0.75): '''simple docstring''' __a = initial_block_size __a = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __a = capacity_factor __a = 0 def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : KEY): '''simple docstring''' return hash(lowerCamelCase__) % len(self._buckets) def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' return (ind + 1) % len(self._buckets) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL): '''simple docstring''' __a = self._buckets[ind] if not stored: __a = _Item(lowerCamelCase__ , lowerCamelCase__) self._len += 1 return True elif stored.key == key: __a = _Item(lowerCamelCase__ , lowerCamelCase__) return True else: return False def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = len(self._buckets) * self._capacity_factor return len(self) >= int(lowerCamelCase__) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' if len(self._buckets) <= self._initial_block_size: return False __a = len(self._buckets) * self._capacity_factor / 2 return len(self) < limit def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = self._buckets __a = [None] * new_size __a = 0 for item in old_buckets: if item: self._add_item(item.key , item.val) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self._resize(len(self._buckets) * 2) def _lowerCamelCase ( self : List[str]): '''simple docstring''' self._resize(len(self._buckets) // 2) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : KEY): '''simple docstring''' __a = self._get_bucket_index(lowerCamelCase__) for _ in range(len(self._buckets)): yield ind __a = self._get_next_ind(lowerCamelCase__) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__): if self._try_set(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__): break def __setitem__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : KEY , __SCREAMING_SNAKE_CASE : VAL): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase__ , lowerCamelCase__) def __delitem__( self : str , __SCREAMING_SNAKE_CASE : KEY): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__): __a = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase__) if item is _deleted: continue if item.key == key: __a = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[int] , __SCREAMING_SNAKE_CASE : KEY): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase__): __a = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase__) def __len__( self : int): '''simple docstring''' return self._len def __iter__( self : Optional[Any]): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : str): '''simple docstring''' __a = " ,".join( F'{item.key}: {item.val}' for item in self._buckets if item) return F'HashMap({val_string})'
718
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case :int = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class _A ( tr.AbstractTransform ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str = " "): '''simple docstring''' __a = sentence_delimiter def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return list(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] for sent_idx, sentence in enumerate(__SCREAMING_SNAKE_CASE): chars.extend(self.process_string(__SCREAMING_SNAKE_CASE)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__SCREAMING_SNAKE_CASE) - 1: chars.append(self.sentence_delimiter) return chars __snake_case :Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case :Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case :Optional[int] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __snake_case :Tuple = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __snake_case :Tuple = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict=False): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , )["wer"] __a = 0 __a = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = jiwer.compute_measures( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , truth_transform=__SCREAMING_SNAKE_CASE , hypothesis_transform=__SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
60
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=1_8 , _UpperCamelCase=3_0 , _UpperCamelCase=4_0_0 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=True , ) -> List[str]: UpperCAmelCase_ : Tuple = size if size is not None else {'height': 1_8, 'width': 1_8} UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Union[str, Any] = batch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : int = min_resolution UpperCAmelCase_ : List[str] = max_resolution UpperCAmelCase_ : Optional[Any] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : int = apply_ocr def __UpperCAmelCase ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Any = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'apply_ocr' ) ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) UpperCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass def __UpperCAmelCase ( self ) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCamelCase ) self.assertIsInstance(encoding.boxes , _UpperCamelCase ) # Test batched UpperCAmelCase_ : Dict = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ) -> int: # Initialize image_processing UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(_UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self ) -> int: # with apply_OCR = True UpperCAmelCase_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ : Dict = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) UpperCAmelCase_ : Tuple = Image.open(ds[0]['file'] ).convert('RGB' ) UpperCAmelCase_ : List[Any] = image_processing(_UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ : Optional[Any] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 UpperCAmelCase_ : List[Any] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCamelCase ) self.assertListEqual(encoding.boxes , _UpperCamelCase ) # with apply_OCR = False UpperCAmelCase_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = image_processing(_UpperCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
406
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Optional[Any] = ['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = True , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_5_5 , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) UpperCAmelCase_ : List[Any] = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCAmelCase_ : List[str] = get_size_dict(_UpperCamelCase ) UpperCAmelCase_ : int = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} UpperCAmelCase_ : Optional[int] = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase , param_name='crop_size' ) UpperCAmelCase_ : str = do_resize UpperCAmelCase_ : Dict = do_rescale UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : str = do_center_crop UpperCAmelCase_ : Optional[Any] = crop_size UpperCAmelCase_ : Tuple = size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : List[str] = rescale_factor UpperCAmelCase_ : Tuple = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: UpperCAmelCase_ : List[str] = get_size_dict(_UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase_ : Any = get_resize_output_image_size(_UpperCamelCase , size=size['shortest_edge'] , default_to_square=_UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_ : str = (size['height'], size['width']) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: UpperCAmelCase_ : Union[str, Any] = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_UpperCamelCase , size=(size['height'], size['width']) , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> np.ndarray: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> BatchFeature: UpperCAmelCase_ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[str] = get_size_dict(_UpperCamelCase , param_name='crop_size' , default_to_square=_UpperCamelCase ) UpperCAmelCase_ : str = resample if resample is not None else self.resample UpperCAmelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : int = get_size_dict(_UpperCamelCase ) if not is_batched(_UpperCamelCase ): UpperCAmelCase_ : List[str] = [images] if not valid_images(_UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[str] = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: UpperCAmelCase_ : int = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: UpperCAmelCase_ : Any = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: UpperCAmelCase_ : Any = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] UpperCAmelCase_ : Dict = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] UpperCAmelCase_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
406
1
snake_case = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) snake_case = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : List[Any] = from_type.lower().strip("s" ) _lowerCAmelCase : str = to_type.lower().strip("s" ) _lowerCAmelCase : str = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase : int = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase : Union[str, Any] = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase : Dict = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) _lowerCAmelCase : Dict = METRIC_CONVERSION[from_sanitized] _lowerCAmelCase : List[str] = METRIC_CONVERSION[to_sanitized] _lowerCAmelCase : Any = 1 if from_exponent > to_exponent: _lowerCAmelCase : Optional[int] = from_exponent - to_exponent else: _lowerCAmelCase : Optional[int] = -(to_exponent - from_exponent) return value * pow(10 , lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
587
from __future__ import annotations import math def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : str = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _lowerCAmelCase : Dict = math.log(len(lowerCAmelCase__ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
587
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _lowerCAmelCase ( lowerCamelCase ): lowercase_ : Tuple = '''time_series_transformer''' lowercase_ : Any = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , a_ = None , a_ = None , a_ = "student_t" , a_ = "nll" , a_ = 1 , a_ = [1, 2, 3, 4, 5, 6, 7] , a_ = "mean" , a_ = 0 , a_ = 0 , a_ = 0 , a_ = 0 , a_ = None , a_ = None , a_ = 32 , a_ = 32 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = True , a_ = "gelu" , a_ = 64 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 100 , a_ = 0.02 , a_=True , **a_ , ) -> List[Any]: # time series specific configuration _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length or prediction_length _UpperCAmelCase = distribution_output _UpperCAmelCase = loss _UpperCAmelCase = input_size _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = scaling _UpperCAmelCase = num_dynamic_real_features _UpperCAmelCase = num_static_real_features _UpperCAmelCase = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase = cardinality else: _UpperCAmelCase = [0] if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase = embedding_dimension else: _UpperCAmelCase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase = input_size * len(a_ ) + self._number_of_features _UpperCAmelCase = d_model _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = decoder_layers _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = use_cache super().__init__(is_encoder_decoder=a_ , **a_ ) @property def _a ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
657
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowerCAmelCase : def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ) -> List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = self.vocab_size - 1 def _a ( self ) -> Union[str, Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _UpperCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , head_mask=a_ ) _UpperCAmelCase = model(a_ , token_type_ids=a_ ) _UpperCAmelCase = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> List[Any]: _UpperCAmelCase = OpenAIGPTLMHeadModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Optional[Any]: _UpperCAmelCase = OpenAIGPTDoubleHeadsModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , a_ , a_ , a_ , a_ , *a_ ) -> Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = OpenAIGPTForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase_ : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase_ : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase_ : Union[str, Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , a_ , a_ , a_ , a_ , a_ ) -> Any: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _a ( self , a_ , a_ , a_=False ) -> Optional[int]: _UpperCAmelCase = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = inputs_dict["labels"] _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=a_ , ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def _a ( self ) -> Optional[int]: _UpperCAmelCase = OpenAIGPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=a_ , n_embd=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*a_ ) def _a ( self ) -> Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*a_ ) def _a ( self ) -> List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*a_ ) def _a ( self ) -> List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*a_ ) @slow def _a ( self ) -> int: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = OpenAIGPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a ( self ) -> Any: _UpperCAmelCase = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(a_ ) _UpperCAmelCase = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=a_ ) # the president is _UpperCAmelCase = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _UpperCAmelCase = model.generate(a_ , do_sample=a_ ) self.assertListEqual(output_ids[0].tolist() , a_ )
657
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : str = [0] * len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Tuple = [] lowerCAmelCase : Any = [] lowerCAmelCase : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) while queue: lowerCAmelCase : Any = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE__ ) if cnt != len(SCREAMING_SNAKE_CASE__ ): print("""Cycle exists""" ) else: print(SCREAMING_SNAKE_CASE__ ) # Adjacency List of Graph lowerCAmelCase : Dict ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
693
import os import string import sys lowerCAmelCase : Optional[int] =1 << 8 lowerCAmelCase : List[Any] ={ 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } lowerCAmelCase : Optional[Any] =KEYMAP['up'] lowerCAmelCase : Tuple =KEYMAP['left'] if sys.platform == "win32": lowerCAmelCase : Dict =[] lowerCAmelCase : int ={ b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): lowerCAmelCase : Optional[Any] =ord(str(i)) def _UpperCAmelCase ( ): '''simple docstring''' if os.name == "nt": import msvcrt lowerCAmelCase : Any = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE__ ) == 0: # Read the keystroke lowerCAmelCase : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase : Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE__ ) if ord(SCREAMING_SNAKE_CASE__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase : Optional[Any] = chr(KEYMAP["""esc"""] ) except KeyError: lowerCAmelCase : Optional[int] = cha[1] else: lowerCAmelCase : Any = ch.decode(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase : List[Any] = sys.stdin.fileno() lowerCAmelCase : str = termios.tcgetattr(SCREAMING_SNAKE_CASE__ ) try: tty.setraw(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE__ ,termios.TCSADRAIN ,SCREAMING_SNAKE_CASE__ ) return ch def _UpperCAmelCase ( ): '''simple docstring''' lowerCAmelCase : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["esc"]: lowerCAmelCase : int = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) == KEYMAP["mod_int"]: lowerCAmelCase : Tuple = get_raw_chars() if ord(SCREAMING_SNAKE_CASE__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
693
1
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _lowerCAmelCase ( *UpperCamelCase_ ): with open(UpperCamelCase_ , """r""" ) as fh: fcntl.flock(UpperCamelCase_ , fcntl.LOCK_EX ) try: print(*UpperCamelCase_ ) finally: fcntl.flock(UpperCamelCase_ , fcntl.LOCK_UN ) __magic_name__ = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __magic_name__ = torch.device("cuda", local_rank) __magic_name__ = socket.gethostname() __magic_name__ = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __magic_name__ = dist.get_rank() __magic_name__ = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
155
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : UNetaDModel __lowercase : KarrasVeScheduler def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__) @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 5_0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = self.unet.config.sample_size __SCREAMING_SNAKE_CASE = (batch_size, 3, img_size, img_size) __SCREAMING_SNAKE_CASE = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) __SCREAMING_SNAKE_CASE = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase__) for t in self.progress_bar(self.scheduler.timesteps): # here sigma_t == t_i from the paper __SCREAMING_SNAKE_CASE = self.scheduler.schedule[t] __SCREAMING_SNAKE_CASE = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.scheduler.add_noise_to_input(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. __SCREAMING_SNAKE_CASE = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev __SCREAMING_SNAKE_CASE = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. __SCREAMING_SNAKE_CASE = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2).sample __SCREAMING_SNAKE_CASE = self.scheduler.step_correct( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , step_output.prev_sample , step_output["""derivative"""] , ) __SCREAMING_SNAKE_CASE = step_output.prev_sample __SCREAMING_SNAKE_CASE = (sample / 2 + 0.5).clamp(0 , 1) __SCREAMING_SNAKE_CASE = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
155
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct_text_model" lowerCamelCase_ = ["past_key_values"] lowerCamelCase_ = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , __A :Any=5_0244 , __A :Optional[Any]=768 , __A :Tuple=64 , __A :List[str]=2048 , __A :int=12 , __A :str=12 , __A :Any=32 , __A :Tuple=128 , __A :int=0.1 , __A :str=1E-6 , __A :Optional[Any]=1.0 , __A :Union[str, Any]="gelu_new" , __A :Any=0 , __A :List[str]=False , __A :Optional[Any]=0 , __A :int=1 , __A :Optional[int]=False , __A :Optional[Any]=True , **__A :List[Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = d_kv SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = num_layers SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = decoder_start_token_id # for backwards compatibility SCREAMING_SNAKE_CASE__ = dense_act_fn super().__init__( pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , tie_word_embeddings=__A , is_decoder=__A , **__A , ) @classmethod def _snake_case ( cls :Optional[int] , __A :Union[str, os.PathLike] , **__A :Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct_vision_model" def __init__( self :Optional[int] , __A :int=768 , __A :Optional[Any]=768 , __A :Union[str, Any]=2048 , __A :int=64 , __A :Union[str, Any]=12 , __A :str=12 , __A :Any="gelu_new" , __A :List[Any]=1E-6 , __A :Dict=0.0 , __A :int=0.0 , __A :int=1E-10 , __A :Dict=1.0 , __A :int=4096 , __A :int=32 , __A :int=128 , **__A :Tuple , ) -> str: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = patch_embed_hidden_size SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = dense_act_fn SCREAMING_SNAKE_CASE__ = seq_len SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = relative_attention_max_distance SCREAMING_SNAKE_CASE__ = d_kv @classmethod def _snake_case ( cls :str , __A :Union[str, os.PathLike] , **__A :str ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__A ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": SCREAMING_SNAKE_CASE__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "pix2struct" lowerCamelCase_ = True def __init__( self :str , __A :Optional[Any]=None , __A :List[str]=None , __A :Optional[Any]=1.0 , __A :Optional[Any]=0.0_2 , __A :Any=False , __A :Tuple=False , __A :Any=True , **__A :Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__(tie_word_embeddings=__A , is_encoder_decoder=__A , **__A ) if text_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: SCREAMING_SNAKE_CASE__ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE__ = PixaStructTextConfig(**__A ) SCREAMING_SNAKE_CASE__ = PixaStructVisionConfig(**__A ) SCREAMING_SNAKE_CASE__ = self.text_config.decoder_start_token_id SCREAMING_SNAKE_CASE__ = self.text_config.pad_token_id SCREAMING_SNAKE_CASE__ = self.text_config.eos_token_id SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = self.initializer_range SCREAMING_SNAKE_CASE__ = is_vqa @classmethod def _snake_case ( cls :Union[str, Any] , __A :PixaStructTextConfig , __A :PixaStructVisionConfig , **__A :Optional[int] ) -> Optional[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def _snake_case ( self :str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.text_config.to_dict() SCREAMING_SNAKE_CASE__ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
59
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __snake_case = XGLMTokenizer __snake_case = XGLMTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : int ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =XGLMTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' A__ : Tuple ="""<pad>""" A__ : Tuple =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__lowerCamelCase ) , 10_08 ) def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =XGLMTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : int =tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCamelCase , f.name ) A__ : List[str] =XGLMTokenizer(f.name , keep_accents=__lowerCamelCase ) A__ : Union[str, Any] =pickle.dumps(__lowerCamelCase ) pickle.loads(__lowerCamelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return A__ : Union[str, Any] =self.get_tokenizer() A__ : Optional[Any] =self.get_rust_tokenizer() A__ : Optional[int] ="""I was born in 92000, and this is falsé.""" A__ : Any =tokenizer.tokenize(__lowerCamelCase ) A__ : str =rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) A__ : Optional[int] =tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) A__ : Dict =rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) A__ : Optional[int] =self.get_rust_tokenizer() A__ : Union[str, Any] =tokenizer.encode(__lowerCamelCase ) A__ : List[str] =rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : str ="""Hello World!""" A__ : Union[str, Any] =[2, 3_12_27, 44_47, 35] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Any =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off A__ : List[str] =[2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[Any] ={ """input_ids""": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""facebook/xglm-564M""" , padding=__lowerCamelCase , )
215
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) _snake_case = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) _snake_case = '''The dog is cute and lives in the garden house''' _snake_case = jnp.array([tokenizer.encode(__lowerCamelCase )] ) _snake_case = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) _snake_case = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowerCamelCase , atol=1E-3 ) )
103
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : List[str] , A_ : str ) -> str: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : str ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : str ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
718
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class A: '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = None UpperCamelCase = None lowerCamelCase : str = namedtuple("CoinsDistribResult", "moves excess") def _SCREAMING_SNAKE_CASE ( lowercase : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.left ) lowerCamelCase_ , lowerCamelCase_ = get_distrib(node.right ) lowerCamelCase_ = 1 - left_distrib_excess lowerCamelCase_ = 1 - right_distrib_excess lowerCamelCase_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) lowerCamelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
651
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase : Dict = TypeVar('T') class SCREAMING_SNAKE_CASE__ ( Generic[T]): def __init__( self , A_ )-> None: '''simple docstring''' UpperCamelCase = data UpperCamelCase = self UpperCamelCase = 0 class SCREAMING_SNAKE_CASE__ ( Generic[T]): def __init__( self )-> None: '''simple docstring''' UpperCamelCase = {} def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' UpperCamelCase = DisjointSetTreeNode(A_ ) def UpperCAmelCase_ ( self , A_ )-> DisjointSetTreeNode[T]: '''simple docstring''' UpperCamelCase = self.map[data] if elem_ref != elem_ref.parent: UpperCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ ( self , A_ , A_ )-> None: '''simple docstring''' if nodea.rank > nodea.rank: UpperCamelCase = nodea else: UpperCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ ( self , A_ , A_ )-> None: '''simple docstring''' self.link(self.find_set(A_ ) , self.find_set(A_ ) ) class SCREAMING_SNAKE_CASE__ ( Generic[T]): def __init__( self )-> None: '''simple docstring''' UpperCamelCase = {} def UpperCAmelCase_ ( self , A_ )-> None: '''simple docstring''' if node not in self.connections: UpperCamelCase = {} def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> None: '''simple docstring''' self.add_node(A_ ) self.add_node(A_ ) UpperCamelCase = weight UpperCamelCase = weight def UpperCAmelCase_ ( self )-> GraphUndirectedWeighted[T]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda A_ : x[2] ) # creating the disjoint set UpperCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(A_ ) # MST generation UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: UpperCamelCase , UpperCamelCase , UpperCamelCase = edges[index] index += 1 UpperCamelCase = disjoint_set.find_set(A_ ) UpperCamelCase = disjoint_set.find_set(A_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(A_ , A_ , A_ ) disjoint_set.union(A_ , A_ ) return graph
3
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) def _lowerCamelCase( a ): if isinstance(a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(a ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class snake_case__ ( snake_case_ ): _snake_case : List[Any] = ["""pixel_values"""] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) __a = size if size is not None else {"shortest_edge": 256} __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else {"height": 224, "width": 224} __a = get_size_dict(lowerCamelCase , param_name="crop_size" ) __a = do_resize __a = size __a = do_center_crop __a = crop_size __a = resample __a = do_rescale __a = rescale_factor __a = offset __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" in size: __a = get_resize_output_image_size(lowerCamelCase , size["shortest_edge"] , default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: __a = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): __a = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , lowerCamelCase = None , **lowerCamelCase , ): __a = image.astype(np.floataa ) if offset: __a = image - (scale / 2) return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. __a = to_numpy_array(lowerCamelCase ) if do_resize: __a = self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) if do_center_crop: __a = self.center_crop(lowerCamelCase , size=lowerCamelCase ) if do_rescale: __a = self.rescale(image=lowerCamelCase , scale=lowerCamelCase , offset=lowerCamelCase ) if do_normalize: __a = self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) __a = to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) return image def a__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = offset if offset is not None else self.offset __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(lowerCamelCase , param_name="crop_size" ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) __a = make_batched(lowerCamelCase ) __a = [ [ self._preprocess_image( image=lowerCamelCase , do_resize=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , do_center_crop=lowerCamelCase , crop_size=lowerCamelCase , do_rescale=lowerCamelCase , rescale_factor=lowerCamelCase , offset=lowerCamelCase , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , data_format=lowerCamelCase , ) for img in video ] for video in videos ] __a = {"pixel_values": videos} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
528
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument _lowerCAmelCase :int = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __lowerCAmelCase ( a_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE : List[str] = R'.*/layers_(\d+)' SCREAMING_SNAKE_CASE : Dict = key if re.match(a_ , a_ ): SCREAMING_SNAKE_CASE : Optional[int] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , a_ ) SCREAMING_SNAKE_CASE : Tuple = R'(encoder|decoder)\/' if re.match(a_ , a_ ): SCREAMING_SNAKE_CASE : List[str] = re.match(a_ , a_ ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , a_ ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE : int = re.sub(R'/mlp/' , R'/2/mlp/' , a_ ) SCREAMING_SNAKE_CASE : int = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , a_ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE : Any = new_key.replace(a_ , a_ ) print(f"""{key} -> {new_key}""" ) SCREAMING_SNAKE_CASE : int = s_dict.pop(a_ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE : Tuple = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE : Dict = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE : Dict = s_dict[key].shape[0] SCREAMING_SNAKE_CASE : List[str] = s_dict[key] for idx in range(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(a_ ) return s_dict _lowerCAmelCase :int = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __lowerCAmelCase ( a_ , a_ ) -> int: '''simple docstring''' import regex as re with open(a_ , 'r' ) as f: SCREAMING_SNAKE_CASE : Dict = f.read() SCREAMING_SNAKE_CASE : Optional[Any] = re.findall(R'(.*) = ([0-9.]*)' , a_ ) SCREAMING_SNAKE_CASE : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE : str = float(a_ ) if '.' in value else int(a_ ) SCREAMING_SNAKE_CASE : Any = re.findall(R'(.*activations) = \(\'(.*)\',\)' , a_ )[0] SCREAMING_SNAKE_CASE : int = str(activation[1] ) SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : int = SwitchTransformersConfig(**a_ ) return config def __lowerCAmelCase ( a_ , a_ , a_=None , a_="./" , a_=8 ) -> Any: '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(a_ ) if gin_file is not None: SCREAMING_SNAKE_CASE : str = convert_gin_to_config(a_ , a_ ) else: SCREAMING_SNAKE_CASE : str = SwitchTransformersConfig.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : str = SwitchTransformersForConditionalGeneration(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = flax_params['target'] SCREAMING_SNAKE_CASE : Optional[int] = flatten_dict(a_ , sep='/' ) SCREAMING_SNAKE_CASE : List[str] = rename_keys(a_ ) SCREAMING_SNAKE_CASE : Tuple = unflatten_dict(a_ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(a_ , a_ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(a_ ) if __name__ == "__main__": _lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") _lowerCAmelCase :Dict = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
179
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase :int = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
179
1
"""simple docstring""" from math import factorial def lowerCamelCase_( _lowerCamelCase = 100 ) -> int: '''simple docstring''' return sum(map(_lowerCamelCase , str(factorial(_lowerCamelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
46
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self: Dict ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: int=13 ,__lowerCAmelCase: List[str]=30 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Dict=3 ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: List[str]=True ,__lowerCAmelCase: Optional[Any]=32 ,__lowerCAmelCase: List[Any]=5 ,__lowerCAmelCase: int=4 ,__lowerCAmelCase: Optional[int]=37 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: str=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Optional[Any]=10 ,__lowerCAmelCase: List[str]=0.02 ,__lowerCAmelCase: Union[str, Any]=3 ,__lowerCAmelCase: Tuple=0.6 ,__lowerCAmelCase: Dict=None ,): '''simple docstring''' _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : Any = image_size _lowerCamelCase : List[str] = patch_size _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = is_training _lowerCamelCase : str = use_labels _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Any = attention_probs_dropout_prob _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Dict = mask_ratio _lowerCamelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCamelCase : str = (image_size // patch_size) ** 2 _lowerCamelCase : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase : int = None if self.use_labels: _lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _lowercase ( self: Union[str, Any] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowerCAmelCase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = ViTMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self: List[str] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Dict = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = (self.image_size // self.patch_size) ** 2 _lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = ViTMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase ) _lowerCamelCase : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : int = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( _a , _a , unittest.TestCase ): lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCAmelCase__ = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = ViTMAEModelTester(self ) _lowerCamelCase : List[str] = ConfigTester(self ,config_class=__lowerCAmelCase ,has_text_modality=__lowerCAmelCase ,hidden_size=37 ) def _lowercase ( self: List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase ,nn.Linear ) ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : Dict = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCamelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) def _lowercase ( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[Any] ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCamelCase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCamelCase : Dict = pt_noise super().check_pt_tf_models(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : int = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) _lowerCamelCase : Any = outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : str = model_class.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCAmelCase ,__lowerCAmelCase ) ) # Make sure we don't have nans _lowerCamelCase : Union[str, Any] = after_outputs[0].cpu().numpy() _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase ,1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: str ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase ( self: Tuple ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase ( self: int ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowercase ( self: Dict ): '''simple docstring''' pass @slow def _lowercase ( self: Dict ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Optional[Any] = ViTMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def lowerCamelCase_( ) -> str: '''simple docstring''' _lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def _lowercase ( self: str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase ( self: int ): '''simple docstring''' np.random.seed(2 ) _lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__lowerCAmelCase ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : int = prepare_img() _lowerCamelCase : Tuple = image_processor(images=__lowerCAmelCase ,return_tensors="pt" ).to(__lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCamelCase : Tuple = ViTMAEConfig() _lowerCamelCase : Union[str, Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCamelCase : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCamelCase : Dict = model(**__lowerCAmelCase ,noise=torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ) ) # verify the logits _lowerCamelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape ,__lowerCAmelCase ) _lowerCamelCase : Tuple = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(__lowerCAmelCase ) ,atol=1e-4 ) )
46
1
'''simple docstring''' def __A ( a_ : int = 1_0**9 ): lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : Tuple = 2 lowerCAmelCase : Any = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
713
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __A ( a_ : Any=None ,a_ : List[Any]=None ): return field(default_factory=lambda: default ,metadata=a_ ) @dataclass class lowerCamelCase : snake_case_ = field( metadata={"help": "The csv file to plot."} , ) snake_case_ = field( default=_A , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) snake_case_ = field( default=_A , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) snake_case_ = field( default=_A , metadata={"help": "Disable logarithmic scale when plotting"} , ) snake_case_ = field( default=_A , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) snake_case_ = field( default=_A , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) snake_case_ = list_field( default=_A , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __A ( a_ : Tuple ): try: int(a_ ) return True except ValueError: return False def __A ( a_ : int ): try: float(a_ ) return True except ValueError: return False class lowerCamelCase : def __init__( self , a_ ): lowerCAmelCase : Optional[Any] = args lowerCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowerCAmelCase : str = csv.DictReader(a_ ) for row in reader: lowerCAmelCase : Tuple = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowerCAmelCase : Union[str, Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowerCAmelCase : Optional[int] = float(row["result"] ) def _lowerCamelCase ( self ): lowerCAmelCase , lowerCAmelCase : Any = plt.subplots() lowerCAmelCase : int = "Time usage" if self.args.is_time else "Memory usage" lowerCAmelCase : List[Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCAmelCase : str = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowerCAmelCase : List[str] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowerCAmelCase : Union[str, Any] = self.result_dict[model_name]["result"] ((lowerCAmelCase) , (lowerCAmelCase)) : str = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCAmelCase : Union[str, Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCAmelCase : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a_ , ) else: lowerCAmelCase : Any = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowerCAmelCase) , (lowerCAmelCase)) : Any = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowerCAmelCase : Union[str, Any] = np.asarray(a_ , a_ )[: len(a_ )] plt.scatter( a_ , a_ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(a_ , a_ , "--" ) title_str += F''' {label_model_name} vs.''' lowerCAmelCase : List[str] = title_str[:-4] lowerCAmelCase : List[Any] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(a_ ) plt.xlabel(a_ ) plt.ylabel(a_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __A ( ): lowerCAmelCase : Optional[Any] = HfArgumentParser(a_ ) lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase : str = Plot(args=a_ ) plot.plot() if __name__ == "__main__": main()
551
0
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase_ = re.compile(R'\b(a|an|the)\b', re.UNICODE) UpperCamelCase_ = None def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__UpperCamelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__UpperCamelCase , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase__ =bool(qa["answers"]["text"] ) return qid_to_has_ans def _UpperCAmelCase ( A ): '''simple docstring''' def remove_articles(A ): return ARTICLES_REGEX.sub(" " , __UpperCamelCase ) def white_space_fix(A ): return " ".join(text.split() ) def remove_punc(A ): UpperCAmelCase__ =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def _UpperCAmelCase ( A ): '''simple docstring''' if not s: return [] return normalize_answer(__UpperCamelCase ).split() def _UpperCAmelCase ( A , A ): '''simple docstring''' return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ =get_tokens(__UpperCamelCase ) UpperCAmelCase__ =get_tokens(__UpperCamelCase ) UpperCAmelCase__ =collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) UpperCAmelCase__ =sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase__ =1.0 * num_same / len(__UpperCamelCase ) UpperCAmelCase__ =1.0 * num_same / len(__UpperCamelCase ) UpperCAmelCase__ =(2 * precision * recall) / (precision + recall) return fa def _UpperCAmelCase ( A , A ): '''simple docstring''' UpperCAmelCase__ ={} UpperCAmelCase__ ={} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase__ =qa["id"] UpperCAmelCase__ =[t for t in qa["answers"]["text"] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase__ =[""] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue UpperCAmelCase__ =preds[qid] # Take max over all gold answers UpperCAmelCase__ =max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) UpperCAmelCase__ =max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ ={} for qid, s in scores.items(): UpperCAmelCase__ =na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase__ =float(not qid_to_has_ans[qid] ) else: UpperCAmelCase__ =s return new_scores def _UpperCAmelCase ( A , A , A=None ): '''simple docstring''' if not qid_list: UpperCAmelCase__ =len(__UpperCamelCase ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores.values() ) / total), ("f1", 1_00.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCAmelCase__ =len(__UpperCamelCase ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def _UpperCAmelCase ( A , A , A ): '''simple docstring''' for k in new_eval: UpperCAmelCase__ =new_eval[k] def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' plt.step(__UpperCamelCase , __UpperCamelCase , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def _UpperCAmelCase ( A , A , A , A , A=None , A=None ): '''simple docstring''' UpperCAmelCase__ =sorted(__UpperCamelCase , key=lambda A : na_probs[k] ) UpperCAmelCase__ =0.0 UpperCAmelCase__ =1.0 UpperCAmelCase__ =0.0 UpperCAmelCase__ =[1.0] UpperCAmelCase__ =[0.0] UpperCAmelCase__ =0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase__ =true_pos / float(i + 1 ) UpperCAmelCase__ =true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def _UpperCAmelCase ( A , A , A , A , A , A ): '''simple docstring''' if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) UpperCAmelCase__ =sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase__ =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCAmelCase__ =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCAmelCase__ ={k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} UpperCAmelCase__ =make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_exact" ) merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_f1" ) merge_eval(__UpperCamelCase , __UpperCamelCase , "pr_oracle" ) def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' if not qid_list: return UpperCAmelCase__ =[na_probs[k] for k in qid_list] UpperCAmelCase__ =np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__UpperCamelCase , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase__ =num_no_ans UpperCAmelCase__ =cur_score UpperCAmelCase__ =0.0 UpperCAmelCase__ =sorted(__UpperCamelCase , key=lambda A : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase__ =scores[qid] else: if preds[qid]: UpperCAmelCase__ =-1 else: UpperCAmelCase__ =0 cur_score += diff if cur_score > best_score: UpperCAmelCase__ =cur_score UpperCAmelCase__ =na_probs[qid] return 1_00.0 * best_score / len(__UpperCamelCase ), best_thresh def _UpperCAmelCase ( A , A , A , A , A , A ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ =find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ =best_exact UpperCAmelCase__ =exact_thresh UpperCAmelCase__ =best_fa UpperCAmelCase__ =fa_thresh def _UpperCAmelCase ( ): '''simple docstring''' with open(OPTS.data_file ) as f: UpperCAmelCase__ =json.load(__UpperCamelCase ) UpperCAmelCase__ =dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCAmelCase__ =json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase__ =json.load(__UpperCamelCase ) else: UpperCAmelCase__ ={k: 0.0 for k in preds} UpperCAmelCase__ =make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False UpperCAmelCase__ =[k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase__ =[k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase__ , UpperCAmelCase__ =get_raw_scores(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ =apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) UpperCAmelCase__ =apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) UpperCAmelCase__ =make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: UpperCAmelCase__ =make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , "HasAns" ) if no_ans_qids: UpperCAmelCase__ =make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": UpperCamelCase_ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
625
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list ) -> list: if len(SCREAMING_SNAKE_CASE__ ) <= 1: return lst UpperCAmelCase_ : Optional[int] = 1 while i < len(SCREAMING_SNAKE_CASE__ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase_ : Any = 1 return lst if __name__ == "__main__": snake_case_ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() snake_case_ : str = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
644
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): UpperCAmelCase_ : Union[str, Any] = True from torch.cuda.amp import autocast UpperCAmelCase_ : Tuple = logging.getLogger(__name__) def A_ ( _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_lowerCAmelCase ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) lowerCAmelCase_ = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) lowerCAmelCase_ = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) lowerCAmelCase_ = field( default=0.0_5 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) lowerCAmelCase_ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = field( default=A , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase_ = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCAmelCase_ = field( default=A , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase_ = field( default=A , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = field( default=A , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) lowerCAmelCase_ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__( self : List[str],__A : List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _lowerCamelCase : Optional[Any] = [{"input_values": feature["input_values"]} for feature in features] _lowerCamelCase : List[str] = [{"input_ids": feature["labels"]} for feature in features] _lowerCamelCase : Union[str, Any] = self.processor.pad( __A,padding=self.padding,max_length=self.max_length,pad_to_multiple_of=self.pad_to_multiple_of,return_tensors="pt",) _lowerCamelCase : Union[str, Any] = self.processor.pad( labels=__A,padding=self.padding,max_length=self.max_length_labels,pad_to_multiple_of=self.pad_to_multiple_of_labels,return_tensors="pt",) # replace padding with -100 to ignore loss correctly _lowerCamelCase : Dict = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ),-1_0_0 ) _lowerCamelCase : Optional[Any] = labels return batch class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Dict,__A : nn.Module,__A : Dict[str, Union[torch.Tensor, Any]] ): model.train() _lowerCamelCase : Dict = self._prepare_inputs(__A ) if self.use_amp: with autocast(): _lowerCamelCase : Union[str, Any] = self.compute_loss(__A,__A ) else: _lowerCamelCase : Union[str, Any] = self.compute_loss(__A,__A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowerCamelCase : Optional[int] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCamelCase : Union[str, Any] = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: _lowerCamelCase : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() return loss.detach() def A_ ( ): """simple docstring""" _lowerCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCamelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCamelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowerCamelCase : List[str] = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowerCamelCase : Any = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer _lowerCamelCase : List[str] = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(_lowerCAmelCase : Optional[int] ): _lowerCamelCase : List[str] = re.sub(_lowerCAmelCase , "" , batch["sentence"] ).lower() + " " return batch _lowerCamelCase : int = train_dataset.map(_lowerCAmelCase , remove_columns=["sentence"] ) _lowerCamelCase : Optional[int] = eval_dataset.map(_lowerCAmelCase , remove_columns=["sentence"] ) def extract_all_chars(_lowerCAmelCase : Optional[Any] ): _lowerCamelCase : List[Any] = " ".join(batch["text"] ) _lowerCamelCase : List[Any] = list(set(_lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=train_dataset.column_names , ) _lowerCamelCase : List[str] = train_dataset.map( _lowerCAmelCase , batched=_lowerCAmelCase , batch_size=-1 , keep_in_memory=_lowerCAmelCase , remove_columns=eval_dataset.column_names , ) _lowerCamelCase : Dict = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) _lowerCamelCase : Any = {v: k for k, v in enumerate(_lowerCAmelCase )} _lowerCamelCase : str = vocab_dict[" "] del vocab_dict[" "] _lowerCamelCase : List[str] = len(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = len(_lowerCAmelCase ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCamelCase : str = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) _lowerCamelCase : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowerCamelCase : List[Any] = min(len(_lowerCAmelCase ) , data_args.max_train_samples ) _lowerCamelCase : Any = train_dataset.select(range(_lowerCAmelCase ) ) if data_args.max_val_samples is not None: _lowerCamelCase : str = eval_dataset.select(range(data_args.max_val_samples ) ) _lowerCamelCase : Any = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_lowerCAmelCase : Optional[int] ): _lowerCamelCase , _lowerCamelCase : Dict = torchaudio.load(batch["path"] ) _lowerCamelCase : Dict = resampler(_lowerCAmelCase ).squeeze().numpy() _lowerCamelCase : List[str] = 16000 _lowerCamelCase : str = batch["text"] return batch _lowerCamelCase : Optional[Any] = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_lowerCAmelCase : List[str] ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' _lowerCamelCase : str = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_lowerCAmelCase ) return batch _lowerCamelCase : Tuple = train_dataset.map( _lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) _lowerCamelCase : Optional[int] = eval_dataset.map( _lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowerCamelCase : Optional[Any] = datasets.load_metric("wer" ) def compute_metrics(_lowerCAmelCase : int ): _lowerCamelCase : Any = pred.predictions _lowerCamelCase : str = np.argmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase : Tuple = processor.tokenizer.pad_token_id _lowerCamelCase : str = processor.batch_decode(_lowerCAmelCase ) # we do not want to group tokens when computing the metrics _lowerCamelCase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=_lowerCAmelCase ) _lowerCamelCase : str = wer_metric.compute(predictions=_lowerCAmelCase , references=_lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowerCamelCase : Tuple = DataCollatorCTCWithPadding(processor=_lowerCAmelCase , padding=_lowerCAmelCase ) # Initialize our Trainer _lowerCamelCase : Any = CTCTrainer( model=_lowerCAmelCase , data_collator=_lowerCAmelCase , args=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCamelCase : str = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowerCamelCase : Optional[int] = model_args.model_name_or_path else: _lowerCamelCase : Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowerCamelCase : Optional[int] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) trainer.save_model() _lowerCamelCase : Union[str, Any] = train_result.metrics _lowerCamelCase : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) _lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("train" , _lowerCAmelCase ) trainer.save_metrics("train" , _lowerCAmelCase ) trainer.save_state() # Evaluation _lowerCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCamelCase : Optional[Any] = trainer.evaluate() _lowerCamelCase : Optional[int] = data_args.max_val_samples if data_args.max_val_samples is not None else len(_lowerCAmelCase ) _lowerCamelCase : List[str] = min(_lowerCAmelCase , len(_lowerCAmelCase ) ) trainer.log_metrics("eval" , _lowerCAmelCase ) trainer.save_metrics("eval" , _lowerCAmelCase ) return results if __name__ == "__main__": main()
44
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : List[Any] = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['ConditionalDetrFeatureExtractor'] UpperCAmelCase_ : str = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
1
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
430
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase__ : __a = 42 __a = None # Automatically constructed __a = "dict" __a = None __a = field(default="""Translation""" , init=A_ , repr=A_ ) def __call__( self : Optional[Any] ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase ( self : Any ): from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase__ : __a = None __a = None __a = None # Automatically constructed __a = "dict" __a = None __a = field(default="""TranslationVariableLanguages""" , init=A_ , repr=A_ ) def lowercase ( self : str ): _snake_case = sorted(set(self.languages ) ) if self.languages else None _snake_case = len(self.languages ) if self.languages else None def __call__( self : List[Any] ): return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def lowercase ( self : Tuple , _lowerCamelCase : List[Any] ): _snake_case = set(self.languages ) if self.languages and set(_lowerCamelCase ) - lang_set: raise ValueError( f'''Some languages in example ({', '.join(sorted(set(_lowerCamelCase ) - lang_set ) )}) are not in valid set ({', '.join(_lowerCamelCase )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _snake_case = [] for lang, text in translation_dict.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _snake_case , _snake_case = zip(*sorted(_lowerCamelCase ) ) return {"language": languages, "translation": translations} def lowercase ( self : List[Any] ): from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
430
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class snake_case ( UpperCamelCase_ ): lowercase_ = 'mvp' lowercase_ = ['past_key_values'] lowercase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[str] , a_ : List[Any]=5_0267 , a_ : List[Any]=1024 , a_ : Union[str, Any]=12 , a_ : Union[str, Any]=4096 , a_ : Dict=16 , a_ : int=12 , a_ : List[Any]=4096 , a_ : int=16 , a_ : List[Any]=0.0 , a_ : List[str]=0.0 , a_ : Optional[int]="gelu" , a_ : List[Any]=1024 , a_ : Union[str, Any]=0.1 , a_ : str=0.0 , a_ : List[str]=0.0 , a_ : Dict=0.02 , a_ : Dict=0.0 , a_ : Dict=False , a_ : List[Any]=True , a_ : List[Any]=1 , a_ : Optional[int]=0 , a_ : int=2 , a_ : Tuple=True , a_ : Optional[Any]=2 , a_ : Any=2 , a_ : List[str]=False , a_ : List[Any]=100 , a_ : List[Any]=800 , **a_ : Tuple , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : str = d_model SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE__ : List[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = dropout SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE__ : Optional[int] = activation_function SCREAMING_SNAKE_CASE__ : Optional[Any] = init_std SCREAMING_SNAKE_CASE__ : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Optional[Any] = classifier_dropout SCREAMING_SNAKE_CASE__ : Dict = use_cache SCREAMING_SNAKE_CASE__ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE__ : str = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : List[Any] = use_prompt SCREAMING_SNAKE_CASE__ : Any = prompt_length SCREAMING_SNAKE_CASE__ : Any = prompt_mid_dim super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , a_ ): SCREAMING_SNAKE_CASE__ : Dict = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
85
def _a ( lowercase__ : int = 60_08_51_47_51_43 ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : Dict = int(lowercase__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ : str = i while n % i == 0: SCREAMING_SNAKE_CASE__ : List[Any] = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
85
1
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 1 for i in range(1 , num + 1 ): fact *= i return fact def _a ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = 0 while number > 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE__ : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def _a ( SCREAMING_SNAKE_CASE__ : int = 1_00 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = factorial(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = split_and_add(SCREAMING_SNAKE_CASE__ ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
700
class lowerCamelCase : """simple docstring""" def __init__( self : str, _UpperCAmelCase : list ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = set_counts SCREAMING_SNAKE_CASE__ : Dict = max(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = [1] * num_sets SCREAMING_SNAKE_CASE__ : Optional[int] = list(range(_UpperCAmelCase ) ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : int ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_parent(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_parent(_UpperCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : str = src_parent SCREAMING_SNAKE_CASE__ : int = self.set_counts[src_parent] SCREAMING_SNAKE_CASE__ : Optional[int] = max(self.max_set, _UpperCAmelCase ) return True def A_ ( self : int, _UpperCAmelCase : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
157
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=False ) -> Any: '''simple docstring''' snake_case_ : str = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): snake_case_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=3_2 , _lowercase=2 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = parent snake_case_ : List[str] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : List[str] = is_training snake_case_ : Dict = use_input_mask snake_case_ : int = use_token_type_ids snake_case_ : List[Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : List[Any] = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : List[Any] = intermediate_size snake_case_ : int = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Union[str, Any] = initializer_range snake_case_ : str = num_labels snake_case_ : Any = num_choices snake_case_ : Optional[int] = scope snake_case_ : Tuple = embedding_size def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_input_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None if self.use_token_type_ids: snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Optional[int] = None snake_case_ : Any = None snake_case_ : Dict = None if self.use_labels: snake_case_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : int = TFMobileBertModel(config=_lowercase ) snake_case_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(_lowercase ) snake_case_ : Dict = [input_ids, input_mask] snake_case_ : Any = model(_lowercase ) snake_case_ : Any = model(_lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: '''simple docstring''' snake_case_ : str = TFMobileBertForMaskedLM(config=_lowercase ) snake_case_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : str = TFMobileBertForNextSentencePrediction(config=_lowercase ) snake_case_ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: '''simple docstring''' snake_case_ : Optional[int] = TFMobileBertForPreTraining(config=_lowercase ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Dict = model(_lowercase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Optional[int] = self.num_labels snake_case_ : Optional[Any] = TFMobileBertForSequenceClassification(config=_lowercase ) snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.num_choices snake_case_ : str = TFMobileBertForMultipleChoice(config=_lowercase ) snake_case_ : Union[str, Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Any = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) snake_case_ : List[Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) snake_case_ : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case_ : Dict = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ : Any = self.num_labels snake_case_ : Dict = TFMobileBertForTokenClassification(config=_lowercase ) snake_case_ : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Tuple = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = TFMobileBertForQuestionAnswering(config=_lowercase ) snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case_ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : List[str] = config_and_inputs snake_case_ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowercase ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowercase ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowercase ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowercase ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowercase ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: snake_case_ : int = TFMobileBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Optional[int] = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) snake_case_ : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ : int = model(_lowercase )[0] snake_case_ : str = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , _lowercase ) snake_case_ : int = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
58
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(UpperCamelCase ) __lowerCAmelCase = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(UpperCamelCase , UpperCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase , "__name__" , UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("transformers" ) if hasattr(UpperCamelCase , UpperCamelCase ): return getattr(UpperCamelCase , UpperCamelCase ) return None def _UpperCAmelCase ( UpperCamelCase: Union[str, os.PathLike] , UpperCamelCase: Optional[Union[str, os.PathLike]] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: Optional[Dict[str, str]] = None , UpperCamelCase: Optional[Union[bool, str]] = None , UpperCamelCase: Optional[str] = None , UpperCamelCase: bool = False , **UpperCamelCase: List[Any] , ): """simple docstring""" __lowerCAmelCase = get_file_from_repo( UpperCamelCase , UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , resume_download=UpperCamelCase , proxies=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , local_files_only=UpperCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase , encoding="utf-8" ) as reader: return json.load(UpperCamelCase ) class a : def __init__( self : Optional[Any] ): """simple docstring""" raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Dict , **snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , snake_case__ ) __lowerCAmelCase = kwargs.pop("trust_remote_code" , snake_case__ ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ ) __lowerCAmelCase = config_dict.get("image_processor_type" , snake_case__ ) __lowerCAmelCase = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowerCAmelCase = config_dict.pop("feature_extractor_type" , snake_case__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __lowerCAmelCase = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"] __lowerCAmelCase = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): __lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.image_processor_type`` __lowerCAmelCase = getattr(snake_case__ , "image_processor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __lowerCAmelCase = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __lowerCAmelCase = image_processor_class_from_name(snake_case__ ) __lowerCAmelCase = image_processor_auto_map is not None __lowerCAmelCase = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) __lowerCAmelCase = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__ , **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: __lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase__ ( snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
611
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __a = logging.getLogger(__name__) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ) ->Optional[int]: UpperCAmelCase = bnb_quantization_config.load_in_abit UpperCAmelCase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) UpperCAmelCase = [] # custom device map if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(device_map.keys() ) > 1: UpperCAmelCase = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase = get_keys_to_not_convert(lowerCAmelCase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase_ ) UpperCAmelCase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase = [] UpperCAmelCase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase_ ) # compatibility with peft UpperCAmelCase = load_in_abit UpperCAmelCase = load_in_abit UpperCAmelCase = get_parameter_device(lowerCAmelCase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) UpperCAmelCase = replace_with_bnb_layers(lowerCAmelCase_ , lowerCAmelCase_ , modules_to_not_convert=lowerCAmelCase_ ) # convert param to the right dtype UpperCAmelCase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) UpperCAmelCase = getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase_ ): param.to(lowerCAmelCase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): UpperCAmelCase = replace_with_bnb_layers( lowerCAmelCase_ , lowerCAmelCase_ , modules_to_not_convert=lowerCAmelCase_ ) UpperCAmelCase = get_quantized_model_device_map( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , max_memory=lowerCAmelCase_ , no_split_module_classes=lowerCAmelCase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase = True UpperCAmelCase = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase_ , offload_state_dict=lowerCAmelCase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase_ , device_map=lowerCAmelCase_ , offload_dir=lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None ) ->Tuple: if device_map is None: if torch.cuda.is_available(): UpperCAmelCase = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) UpperCAmelCase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase = {} UpperCAmelCase = special_dtypes UpperCAmelCase = no_split_module_classes UpperCAmelCase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase = get_balanced_memory( lowerCAmelCase_ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase_ , **lowerCAmelCase_ , ) UpperCAmelCase = max_memory UpperCAmelCase = infer_auto_device_map(lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # check if don't have any quantized module on the cpu UpperCAmelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) ->Optional[int]: if modules_to_not_convert is None: UpperCAmelCase = [] UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_layers( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) ->Optional[int]: UpperCAmelCase = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase = [] current_key_name.append(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase = """.""".join(lowerCAmelCase_ ) UpperCAmelCase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) UpperCAmelCase = module.weight.data if module.bias is not None: UpperCAmelCase = module.bias.data bnb_module.requires_grad_(lowerCAmelCase_ ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = True if len(list(module.children() ) ) > 0: UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_layers( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _UpperCamelCase ( lowerCAmelCase_ ) ->Optional[Any]: # Create a copy of the model with init_empty_weights(): UpperCAmelCase = deepcopy(lowerCAmelCase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase = find_tied_parameters(lowerCAmelCase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase = sum(lowerCAmelCase_ , [] ) UpperCAmelCase = len(lowerCAmelCase_ ) > 0 # Check if it is a base model UpperCAmelCase = False if hasattr(lowerCAmelCase_ , """base_model_prefix""" ): UpperCAmelCase = not hasattr(lowerCAmelCase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase = list(model.named_children() ) UpperCAmelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase = set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) UpperCAmelCase = list(set(lowerCAmelCase_ ) ) + list(lowerCAmelCase_ ) # remove ".weight" from the keys UpperCAmelCase = [""".weight""", """.bias"""] UpperCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase = name.replace(lowerCAmelCase_ , """""" ) filtered_module_names.append(lowerCAmelCase_ ) return filtered_module_names def _UpperCamelCase ( lowerCAmelCase_ ) ->List[str]: for m in model.modules(): if isinstance(lowerCAmelCase_ , bnb.nn.Linearabit ): return True return False def _UpperCamelCase ( lowerCAmelCase_ ) ->str: return next(parameter.parameters() ).device def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Any: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase_ , lowerCAmelCase_ , 0 , dtype=lowerCAmelCase_ , value=lowerCAmelCase_ ) UpperCAmelCase = param_name UpperCAmelCase = model if "." in tensor_name: UpperCAmelCase = tensor_name.split(""".""" ) for split in splits[:-1]: UpperCAmelCase = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) UpperCAmelCase = new_module UpperCAmelCase = splits[-1] # offload weights UpperCAmelCase = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase_ , lowerCAmelCase_ , index=lowerCAmelCase_ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase_ , index=lowerCAmelCase_ , ) else: offload_weight(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , index=lowerCAmelCase_ ) offload_weight(lowerCAmelCase_ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase_ , index=lowerCAmelCase_ ) set_module_tensor_to_device(lowerCAmelCase_ , lowerCAmelCase_ , """meta""" , dtype=lowerCAmelCase_ , value=torch.empty(*param.size() ) )
716
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __a = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) __a = """sshleifer/student_marian_en_ro_6_1""" __a = """sshleifer/tiny-mbart""" @require_torch class __lowercase ( __snake_case ): def _lowercase ( self : Dict , __lowerCamelCase : List[Any]=False , __lowerCamelCase : str=None , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=True , ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=__lowerCamelCase , num_train_epochs=1 , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , predict_with_generate=__lowerCamelCase , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , ) UpperCAmelCase = TrainerState.load_from_json(os.path.join(__lowerCamelCase , """trainer_state.json""" ) ).log_history if not do_eval: return UpperCAmelCase = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __lowerCamelCase ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _lowercase ( self : Dict ) -> str: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def _lowercase ( self : Tuple ) -> Any: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase ) @require_torch_multi_gpu def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__lowerCamelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" self.run_seqaseq_quick( distributed=__lowerCamelCase , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__lowerCamelCase ) @require_apex @require_torch_gpu def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__lowerCamelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } UpperCAmelCase = experiments[experiment_id] UpperCAmelCase = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} UpperCAmelCase = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__lowerCamelCase , extra_args_str=data["""extra_args_str"""] ) UpperCAmelCase = len(re.findall(__lowerCamelCase , cl.err ) ) self.assertEqual(__lowerCamelCase , data["""n_matches"""] ) @slow def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1_0 , distributed=__lowerCamelCase , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(os.path.join(__lowerCamelCase , """trainer_state.json""" ) ).log_history UpperCAmelCase = [log for log in logs if """eval_loss""" in log.keys()] UpperCAmelCase = eval_metrics[0] UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __lowerCamelCase ) # test if do_predict saves generations and metrics UpperCAmelCase = os.listdir(__lowerCamelCase ) UpperCAmelCase = {os.path.basename(__lowerCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _lowercase ( self : str ) -> int: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(__lowerCamelCase : str ) -> Tuple[int, float]: UpperCAmelCase = """--skip_memory_metrics 0""" UpperCAmelCase = self.run_trainer( max_len=1_2_8 , model_name=__lowerCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=__lowerCamelCase , distributed=__lowerCamelCase , extra_args_str=__lowerCamelCase , do_eval=__lowerCamelCase , do_predict=__lowerCamelCase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(Path(__lowerCamelCase , """trainer_state.json""" ) ).log_history UpperCAmelCase = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**2_0 ) UpperCAmelCase = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**2_0 ) UpperCAmelCase = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __lowerCamelCase , __lowerCamelCase , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( __lowerCamelCase , __lowerCamelCase , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( __lowerCamelCase , __lowerCamelCase , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def _lowercase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : float = 3e-3 , __lowerCamelCase : str = "adafactor" , __lowerCamelCase : bool = False , __lowerCamelCase : str = None , __lowerCamelCase : int = 0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : int = None , ) -> Dict: """simple docstring""" UpperCAmelCase = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__lowerCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__lowerCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() UpperCAmelCase = F""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__lowerCamelCase )} """.split() UpperCAmelCase = """ --do_predict """.split() UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase = get_gpu_count() UpperCAmelCase = get_torch_dist_unique_port() UpperCAmelCase = F""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) else: UpperCAmelCase = ["""run_translation.py"""] + args with patch.object(__lowerCamelCase , """argv""" , __lowerCamelCase ): main() return output_dir
627
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure)
412
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = len(UpperCAmelCase__ ) lowercase_ = [[0] * n for i in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): lowercase_ = y_points[i] for i in range(2 , UpperCAmelCase__ ): for j in range(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
412
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _a : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *A, **A ): '''simple docstring''' pass def lowercase__( __UpperCamelCase: Image ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase__( __UpperCamelCase: Image ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _a ( unittest.TestCase ): '''simple docstring''' A : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = MaskGenerationPipeline(model=A, image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @slow @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = pipeline('mask-generation', model='facebook/sam-vit-huge' ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg', points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE : Any = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A, decimals=4 ), [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_21}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.99_67}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_93}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.99_09}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.98_79}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.98_34}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.97_16}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.96_12}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.95_99}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.95_52}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.95_32}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.95_16}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.94_99}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.94_83}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.94_64}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_43}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.94_08}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.93_35}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.93_26}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.92_62}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.89_99}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.89_86}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.89_84}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.88_73}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.88_71} ], ) # fmt: on @require_torch @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'facebook/sam-vit-huge' SCREAMING_SNAKE_CASE : int = pipeline('mask-generation', model=A ) SCREAMING_SNAKE_CASE : Optional[Any] = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg', pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing SCREAMING_SNAKE_CASE : List[Any] = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A, decimals=4 ), [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.04_44}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.02_10}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.01_67}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.01_32}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.00_53}, ], )
508
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''pixel_values'''] def __init__( self, A = True, A = None, A = PILImageResampling.BICUBIC, A = True, A = True, A = 1 / 255, A = None, A = True, A = None, A = None, **A, ): '''simple docstring''' super().__init__(**A ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(A ) SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : str = get_size_dict(A, default_to_square=A, param_name='crop_size' ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE : Optional[int] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self, A, A, A = PILImageResampling.BILINEAR, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(A ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size(A, size=size['shortest_edge'], default_to_square=A ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(A, size=A, resample=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(A, size=(size['height'], size['width']), data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A = None, **A ): '''simple docstring''' return rescale(A, scale=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A, A, A = None, **A, ): '''simple docstring''' return normalize(A, mean=A, std=A, data_format=A, **A ) def UpperCamelCase_ ( self, A, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = None, A = ChannelDimension.FIRST, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(A, param_name='crop_size', default_to_square=A ) SCREAMING_SNAKE_CASE : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Dict = get_size_dict(A ) if not is_batched(A ): SCREAMING_SNAKE_CASE : List[Any] = [images] if not valid_images(A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.resize(image=A, size=A, resample=A ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(image=A, size=A ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=A, scale=A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=A, mean=A, std=A ) for image in images] SCREAMING_SNAKE_CASE : List[Any] = [to_channel_dimension_format(A, A ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=A, tensor_type=A )
508
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Union[str, Any] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _snake_case ( A__ ): _lowercase : Optional[int] = '''levit''' def __init__( self , a=224 , a=3 , a=3 , a=2 , a=1 , a=16 , a=[128, 256, 384] , a=[4, 8, 12] , a=[4, 4, 4] , a=[16, 16, 16] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , **a , ) -> List[Any]: super().__init__(**a) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = kernel_size SCREAMING_SNAKE_CASE = stride SCREAMING_SNAKE_CASE = padding SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _snake_case ( A__ ): _lowercase : int = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE__ ( self) -> float: return 1E-4
73
'''simple docstring''' import socket def lowerCAmelCase__ ( ): _A : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _A : List[Any] = socket.gethostname() _A : List[str] = 12312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _A : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
128
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__: str = logging.get_logger(__name__) A__: Dict = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class _a ( _lowercase): """simple docstring""" UpperCamelCase__ = '''conditional_detr''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self: Optional[int] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=3 , __lowerCamelCase: str=300 , __lowerCamelCase: List[Any]=6 , __lowerCamelCase: List[str]=2048 , __lowerCamelCase: int=8 , __lowerCamelCase: str=6 , __lowerCamelCase: str=2048 , __lowerCamelCase: Union[str, Any]=8 , __lowerCamelCase: str=0.0 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Tuple=True , __lowerCamelCase: int="relu" , __lowerCamelCase: int=256 , __lowerCamelCase: Any=0.1 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: int=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[Any]=False , __lowerCamelCase: List[Any]="sine" , __lowerCamelCase: Optional[Any]="resnet50" , __lowerCamelCase: Any=True , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: int=1 , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Any=2 , __lowerCamelCase: Any=0.25 , **__lowerCamelCase: Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCamelCase__: List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ , A_ ): UpperCamelCase__: Tuple = backbone_config.get("model_type" ) UpperCamelCase__: str = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__: List[str] = config_class.from_dict(A_ ) UpperCamelCase__: Union[str, Any] = use_timm_backbone UpperCamelCase__: Tuple = backbone_config UpperCamelCase__: List[Any] = num_channels UpperCamelCase__: Optional[int] = num_queries UpperCamelCase__: Optional[Any] = d_model UpperCamelCase__: str = encoder_ffn_dim UpperCamelCase__: str = encoder_layers UpperCamelCase__: List[Any] = encoder_attention_heads UpperCamelCase__: Any = decoder_ffn_dim UpperCamelCase__: str = decoder_layers UpperCamelCase__: Tuple = decoder_attention_heads UpperCamelCase__: Dict = dropout UpperCamelCase__: str = attention_dropout UpperCamelCase__: Dict = activation_dropout UpperCamelCase__: Union[str, Any] = activation_function UpperCamelCase__: Optional[int] = init_std UpperCamelCase__: Optional[int] = init_xavier_std UpperCamelCase__: Tuple = encoder_layerdrop UpperCamelCase__: List[str] = decoder_layerdrop UpperCamelCase__: Optional[int] = encoder_layers UpperCamelCase__: List[str] = auxiliary_loss UpperCamelCase__: Optional[int] = position_embedding_type UpperCamelCase__: Optional[int] = backbone UpperCamelCase__: Optional[Any] = use_pretrained_backbone UpperCamelCase__: Dict = dilation # Hungarian matcher UpperCamelCase__: str = class_cost UpperCamelCase__: Tuple = bbox_cost UpperCamelCase__: List[str] = giou_cost # Loss coefficients UpperCamelCase__: int = mask_loss_coefficient UpperCamelCase__: List[Any] = dice_loss_coefficient UpperCamelCase__: Tuple = cls_loss_coefficient UpperCamelCase__: Union[str, Any] = bbox_loss_coefficient UpperCamelCase__: Union[str, Any] = giou_loss_coefficient UpperCamelCase__: Tuple = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase__: List[Any] = self.backbone_config.to_dict() UpperCamelCase__: int = self.__class__.model_type return output class _a ( _lowercase): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def UpperCAmelCase_ ( self: str ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase_ ( self: int ): '''simple docstring''' return 1e-5 @property def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return 12
700
def lowerCAmelCase_ ( A_ = 50): UpperCamelCase__: Optional[int] = [1] * (length + 1) for row_length in range(length + 1): for tile_length in range(2 ,5): for tile_start in range(row_length - tile_length + 1): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
221
0
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" UpperCAmelCase = str(bin(UpperCamelCase__ ) )[2:] UpperCAmelCase = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
130
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaImgaImgPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCAmelCase__ = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return 3_2 @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ): '''simple docstring''' return 1_0_0 @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**_A ) return model @property def _lowercase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**_A ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase ( self , _A , _A=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(_A ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_A ) else: UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**_A ) UpperCAmelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase = pipe(**self.get_dummy_inputs(_A ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = '''A red cartoon frog, 4k''' UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) UpperCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
130
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase : str = TypeVar("T") def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return (2 * position) + 2 class UpperCAmelCase ( Generic[T] ): def __init__(self : List[str] ) -> None: lowercase = [] lowercase = {} lowercase = 0 def __len__(self : Tuple ) -> int: return self.elements def __repr__(self : Optional[int] ) -> str: return str(self.heap ) def UpperCAmelCase__ (self : Optional[Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def UpperCAmelCase__ (self : str , A__ : T , A__ : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) lowercase = self.elements self.elements += 1 self._bubble_up(A__ ) def UpperCAmelCase__ (self : Union[str, Any] ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase , lowercase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase , lowercase = self.heap[0] self._bubble_down(A__ ) return elem def UpperCAmelCase__ (self : Optional[int] , A__ : T , A__ : int ) -> None: # Update the weight of the given key lowercase = self.position_map[elem] lowercase = (elem, weight) if position > 0: lowercase = get_parent_position(A__ ) lowercase , lowercase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(A__ ) else: self._bubble_down(A__ ) else: self._bubble_down(A__ ) def UpperCAmelCase__ (self : str , A__ : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] lowercase = self.position_map[elem] if curr_pos == 0: return None lowercase = get_parent_position(A__ ) lowercase , lowercase = self.heap[curr_pos] lowercase , lowercase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(A__ , A__ ) return self._bubble_up(A__ ) return None def UpperCAmelCase__ (self : Dict , A__ : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] lowercase = self.position_map[elem] lowercase , lowercase = self.heap[curr_pos] lowercase = get_child_left_position(A__ ) lowercase = get_child_right_position(A__ ) if child_left_position < self.elements and child_right_position < self.elements: lowercase , lowercase = self.heap[child_left_position] lowercase , lowercase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(A__ , A__ ) return self._bubble_down(A__ ) if child_left_position < self.elements: lowercase , lowercase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(A__ , A__ ) return self._bubble_down(A__ ) else: return None if child_right_position < self.elements: lowercase , lowercase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(A__ , A__ ) return self._bubble_down(A__ ) return None def UpperCAmelCase__ (self : Union[str, Any] , A__ : int , A__ : int ) -> None: # Swap the nodes at the given positions lowercase = self.heap[nodea_pos][0] lowercase = self.heap[nodea_pos][0] lowercase , lowercase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase = nodea_pos lowercase = nodea_pos class UpperCAmelCase ( Generic[T] ): def __init__(self : List[Any] ) -> None: lowercase = {} lowercase = 0 def __repr__(self : Any ) -> str: return str(self.connections ) def __len__(self : Dict ) -> int: return self.nodes def UpperCAmelCase__ (self : Any , A__ : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: lowercase = {} self.nodes += 1 def UpperCAmelCase__ (self : Dict , A__ : T , A__ : T , A__ : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(A__ ) self.add_node(A__ ) lowercase = weight lowercase = weight def UpperCAmelCase_ ( lowerCAmelCase_ , ): """simple docstring""" lowercase = {node: maxsize for node in graph.connections} lowercase = {node: None for node in graph.connections} lowercase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase_ , lowerCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization lowercase = priority_queue.extract_min() lowercase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) lowercase = node # running prim's algorithm while not priority_queue.is_empty(): lowercase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) lowercase = node return dist, parent
459
'''simple docstring''' import functools def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowerCAmelCase_ ) != 3 or not all(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowerCAmelCase_ ) == 0: return 0 if min(lowerCAmelCase_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowerCAmelCase_ ) >= 366: raise ValueError("All days elements should be less than 366" ) lowercase = set(lowerCAmelCase_ ) @functools.cache def dynamic_programming(lowerCAmelCase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
459
1
import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float('''nan''') class __a : def __init__( self : Union[str, Any] , snake_case_ : Tuple)-> Optional[int]: __lowerCAmelCase =sys.stdout __lowerCAmelCase =open(_SCREAMING_SNAKE_CASE , """a""") def __getattr__( self : Optional[int] , snake_case_ : Any)-> str: return getattr(self.stdout , _SCREAMING_SNAKE_CASE) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : Dict)-> str: self.stdout.write(_SCREAMING_SNAKE_CASE) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" , """""" , _SCREAMING_SNAKE_CASE , 0 , re.M)) def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any]=80 , __lowerCamelCase : Optional[int]=False ) -> str: __lowerCAmelCase =[] # deal with critical env vars __lowerCAmelCase =["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: __lowerCAmelCase =os.environ.get(__lowerCamelCase , __lowerCamelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) __lowerCAmelCase =sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(__lowerCamelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __lowerCAmelCase =[] __lowerCAmelCase ="""""" while len(__lowerCamelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__lowerCamelCase ) __lowerCAmelCase ="""""" return "\\\n".join(__lowerCamelCase ) def __lowerCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> str: # unwrap multi-line input __lowerCAmelCase =re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own __lowerCAmelCase =re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir __lowerCAmelCase =re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> List[str]: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __lowerCAmelCase =subprocess.run(__lowerCamelCase , capture_output=__lowerCamelCase , text=__lowerCamelCase ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams __lowerCAmelCase =variation.replace(""" """ , """-""" ) with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stdout.txt""" , """w""" ) as f: f.write(result.stdout ) with open(Path(__lowerCamelCase ) / f"""log.{prefix}.stderr.txt""" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase =json.load(__lowerCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __lowerCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , ) -> Optional[int]: __lowerCAmelCase =[] __lowerCAmelCase =[] __lowerCAmelCase =f"""{id}: {variation:<{longest_variation_len}}""" __lowerCAmelCase =f"""{preamble}: """ __lowerCAmelCase =set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__lowerCamelCase ) , desc=__lowerCamelCase , leave=__lowerCamelCase ): __lowerCAmelCase =process_run_single( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowerCAmelCase =single_run_metrics[target_metric_key] if not math.isnan(__lowerCamelCase ): metrics.append(__lowerCamelCase ) results.append(__lowerCamelCase ) outcome += "✓" else: outcome += "✘" __lowerCAmelCase =f"""\33[2K\r{outcome}""" if len(__lowerCamelCase ) > 0: __lowerCAmelCase ={k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __lowerCAmelCase =round(mean_metrics[target_metric_key] , 2 ) __lowerCAmelCase =f"""{outcome} {mean_target}""" if len(__lowerCamelCase ) > 1: results_str += f""" {tuple(round(__lowerCamelCase , 2 ) for x in results )}""" print(__lowerCamelCase ) __lowerCAmelCase =variation return mean_metrics else: print(__lowerCamelCase ) return {variation_key: variation, target_metric_key: nan} def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase =torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f"""\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n""" def __lowerCAmelCase ( __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> Optional[Any]: __lowerCAmelCase =pd.DataFrame(__lowerCamelCase ) __lowerCAmelCase ="""variation""" __lowerCAmelCase ="""diff_%""" __lowerCAmelCase =nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __lowerCAmelCase =df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__lowerCamelCase ): # as a fallback, use the minimal value as the sentinel __lowerCAmelCase =df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__lowerCamelCase ): __lowerCAmelCase =df.apply( lambda __lowerCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns __lowerCAmelCase =[variation_key, target_metric_key, diff_key, *report_metric_keys] __lowerCAmelCase =df.reindex(__lowerCamelCase , axis="""columns""" ) # reorder cols # capitalize __lowerCAmelCase =df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible __lowerCAmelCase =df.rename(lambda __lowerCamelCase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) __lowerCAmelCase =df.rename(lambda __lowerCamelCase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) __lowerCAmelCase =["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__lowerCamelCase , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__lowerCamelCase , floatfmt=""".2f""" )] print("""\n\n""".join(__lowerCamelCase ) ) def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCAmelCase =argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=__lowerCamelCase , type=__lowerCamelCase , nargs="""+""" , required=__lowerCamelCase , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=__lowerCamelCase , type=__lowerCamelCase , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=__lowerCamelCase , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=__lowerCamelCase , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=__lowerCamelCase , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=__lowerCamelCase , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) __lowerCAmelCase =parser.parse_args() __lowerCAmelCase =args.output_dir Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) __lowerCAmelCase =get_base_command(__lowerCamelCase , __lowerCamelCase ) # split each dimension into its --foo variations __lowerCAmelCase =[list(map(str.strip , re.split(r"""\|""" , __lowerCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __lowerCAmelCase =list(map(str.strip , map(""" """.join , itertools.product(*__lowerCamelCase ) ) ) ) __lowerCAmelCase =max(len(__lowerCamelCase ) for x in variations ) # split wanted keys __lowerCAmelCase =args.report_metric_keys.split() # capture prints into a log file for convenience __lowerCAmelCase =f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) __lowerCAmelCase =Tee(__lowerCamelCase ) print(f"""\n*** Running {len(__lowerCamelCase )} benchmarks:""" ) print(f"""Base command: {' '.join(__lowerCamelCase )}""" ) __lowerCAmelCase ="""variation""" __lowerCAmelCase =[] for id, variation in enumerate(tqdm(__lowerCamelCase , desc="""Total completion: """ , leave=__lowerCamelCase ) ): __lowerCAmelCase =base_cmd + variation.split() results.append( process_run( id + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.repeat_times , __lowerCamelCase , args.verbose , ) ) process_results(__lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.base_variation , __lowerCamelCase ) if __name__ == "__main__": main()
354
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version A: Union[str, Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize A: Tuple = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" A: Tuple = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" A: Any = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.5 ) -> Optional[Any]: '''simple docstring''' if NLTK_VERSION >= version.Version("""3.6.5""" ): UpperCAmelCase : int = [ meteor_score.single_meteor_score( word_tokenize(_SCREAMING_SNAKE_CASE ) , word_tokenize(_SCREAMING_SNAKE_CASE ) , alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , gamma=_SCREAMING_SNAKE_CASE ) for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] else: UpperCAmelCase : List[str] = [ meteor_score.single_meteor_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , alpha=_SCREAMING_SNAKE_CASE , beta=_SCREAMING_SNAKE_CASE , gamma=_SCREAMING_SNAKE_CASE ) for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return {"meteor": np.mean(_SCREAMING_SNAKE_CASE )}
160
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __lowerCamelCase ( *_lowerCAmelCase : Any , **_lowerCAmelCase : Tuple): '''simple docstring''' pass @is_pipeline_test @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __lowercase =image_classifier(_lowerCAmelCase , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCAmelCase) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) __lowercase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], ] , ) @require_tf def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __lowercase =image_classifier(_lowerCAmelCase , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(_lowerCAmelCase) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) __lowercase =image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], [ {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, {'score': 0.333, 'label': ANY(_lowerCAmelCase)}, ], ] , ) @slow @require_torch def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __lowercase =image_classifier(_lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) __lowercase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes __lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __lowercase =image_classifier(_lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) __lowercase =image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(_lowerCAmelCase) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
454
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _A ( _lowerCAmelCase ): """simple docstring""" if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __lowercase =precision __lowercase =ceil(precision / 14 ) __lowercase =426_880 * Decimal(10_005 ).sqrt() __lowercase =1 __lowercase =13_591_409 __lowercase =Decimal(_lowerCAmelCase ) for k in range(1 , _lowerCAmelCase ): __lowercase =factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCAmelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCamelCase = 50 print(f"The first {n} digits of pi is: {pi(n)}")
454
1
'''simple docstring''' import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any="attention" ) -> Optional[int]: __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=False ) -> Optional[int]: if split_mlp_wi: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __snake_case = (wi_a, wi_a) else: __snake_case = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __snake_case = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> int: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def __UpperCAmelCase ( _UpperCAmelCase : dict , *, _UpperCAmelCase : int , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = traverse_util.flatten_dict(variables["target"] ) __snake_case = {"/".join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __snake_case = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , _UpperCAmelCase ) __snake_case = collections.OrderedDict() # Shared embeddings. __snake_case = old["token_embedder/embedding"] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "encoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old[ "encoder/relpos_bias/rel_embedding" ].T __snake_case = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "self_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 1 (Cross Attention). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) __snake_case , __snake_case , __snake_case , __snake_case = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) __snake_case = layer_norm __snake_case = k.T __snake_case = o.T __snake_case = q.T __snake_case = v.T # Block i, layer 2 (MLP). __snake_case = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) __snake_case , __snake_case = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , "decoder" , _UpperCAmelCase ) __snake_case = layer_norm if split_mlp_wi: __snake_case = wi[0].T __snake_case = wi[1].T else: __snake_case = wi.T __snake_case = wo.T __snake_case = old["decoder/decoder_norm/scale"] __snake_case = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __snake_case = old["decoder/logits_dense/kernel"].T return new def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : bool ) -> Optional[int]: __snake_case = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __snake_case = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __snake_case = state_dict["shared.weight"] return state_dict def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Dict: __snake_case = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case = convert_tax_to_pytorch(_UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase ) __snake_case = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : bool = False ) -> Optional[Any]: __snake_case = TaConfig.from_json_file(_UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __snake_case = TaEncoderModel(_UpperCAmelCase ) else: __snake_case = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print("Done" ) if __name__ == "__main__": a : Any = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) a : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
69
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Any = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Tuple = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Union[str, Any]): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`.") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Sequence(datasets.Value("string" , id="sequence") , id="references"), }) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def UpperCAmelCase__ ( self : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , _UpperCamelCase : bool = False , ): _lowercase: Dict = len(references[0]) if any(len(_UpperCamelCase) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") _lowercase: List[Any] = [[refs[i] for refs in references] for i in range(_UpperCamelCase)] _lowercase: Optional[int] = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) _lowercase: str = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
206
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Optional[int] = """data2vec-text""" def __init__( self : List[str] , _UpperCamelCase : List[str]=30_522 , _UpperCamelCase : Union[str, Any]=768 , _UpperCamelCase : Dict=12 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : Optional[Any]=3_072 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Dict=512 , _UpperCamelCase : Optional[Any]=2 , _UpperCamelCase : Any=0.0_2 , _UpperCamelCase : Dict=1e-12 , _UpperCamelCase : Union[str, Any]=1 , _UpperCamelCase : Optional[Any]=0 , _UpperCamelCase : Dict=2 , _UpperCamelCase : Optional[Any]="absolute" , _UpperCamelCase : Any=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : Tuple , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: str = vocab_size _lowercase: Tuple = hidden_size _lowercase: Optional[int] = num_hidden_layers _lowercase: Optional[Any] = num_attention_heads _lowercase: Any = hidden_act _lowercase: Any = intermediate_size _lowercase: List[Any] = hidden_dropout_prob _lowercase: Optional[int] = attention_probs_dropout_prob _lowercase: Optional[Any] = max_position_embeddings _lowercase: str = type_vocab_size _lowercase: List[Any] = initializer_range _lowercase: List[str] = layer_norm_eps _lowercase: int = position_embedding_type _lowercase: Union[str, Any] = use_cache _lowercase: Any = classifier_dropout class A ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Optional[Any]): if self.task == "multiple-choice": _lowercase: str = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase: Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
206
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __A ( _A ): """simple docstring""" if is_torch_version("<" , "2.0.0" ) or not hasattr(_A , "_dynamo" ): return False return isinstance(_A , torch._dynamo.eval_frame.OptimizedModule ) def __A ( _A , _A = True ): """simple docstring""" __a = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __a = is_compiled_module(_A ) if is_compiled: __a = model __a = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_A , _A ): __a = model.module if not keep_fpaa_wrapper: __a = getattr(_A , "forward" ) __a = model.__dict__.pop("_original_forward" , _A ) if original_forward is not None: while hasattr(_A , "__wrapped__" ): __a = forward.__wrapped__ if forward == original_forward: break __a = forward if getattr(_A , "_converted_to_transformer_engine" , _A ): convert_model(_A , to_transformer_engine=_A ) if is_compiled: __a = model __a = compiled_model return model def __A ( ): """simple docstring""" PartialState().wait_for_everyone() def __A ( _A , _A ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_A , _A ) elif PartialState().local_process_index == 0: torch.save(_A , _A ) @contextmanager def __A ( **_A ): """simple docstring""" for key, value in kwargs.items(): __a = str(_A ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __A ( _A ): """simple docstring""" if not hasattr(_A , "__qualname__" ) and not hasattr(_A , "__name__" ): __a = getattr(_A , "__class__" , _A ) if hasattr(_A , "__qualname__" ): return obj.__qualname__ if hasattr(_A , "__name__" ): return obj.__name__ return str(_A ) def __A ( _A , _A ): """simple docstring""" for key, value in source.items(): if isinstance(_A , _A ): __a = destination.setdefault(_A , {} ) merge_dicts(_A , _A ) else: __a = value return destination def __A ( _A = None ): """simple docstring""" if port is None: __a = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
197
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """canine""" def __init__( self : int , __SCREAMING_SNAKE_CASE : List[str]=7_68 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : int=30_72 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : List[Any]=1_63_84 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : List[str]=0xE000 , __SCREAMING_SNAKE_CASE : int=0xE001 , __SCREAMING_SNAKE_CASE : Optional[int]=4 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : List[Any]=8 , __SCREAMING_SNAKE_CASE : List[str]=1_63_84 , __SCREAMING_SNAKE_CASE : Optional[Any]=1_28 , **__SCREAMING_SNAKE_CASE : List[str] , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = max_position_embeddings __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = type_vocab_size __a = layer_norm_eps # Character config: __a = downsampling_rate __a = upsampling_kernel_size __a = num_hash_functions __a = num_hash_buckets __a = local_transformer_stride
197
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase__ : List[str] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCAmelCase__ : int = { """allenai/led-base-16384""": 16_384, } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Dict =VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] =LEDTokenizer UpperCAmelCase__ : Dict =["""input_ids""", """attention_mask"""] def __init__( self : Dict , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Any="replace" , UpperCAmelCase__ : str="<s>" , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Tuple="<s>" , UpperCAmelCase__ : Optional[Any]="<unk>" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : List[str]="<mask>" , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=True , **UpperCAmelCase__ : Any , ) ->Optional[int]: """simple docstring""" super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(UpperCAmelCase__ , pre_tok_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : Dict = """post_processor""" SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Tuple = tuple(state["""sep"""] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state["""cls"""] ) SCREAMING_SNAKE_CASE : Optional[int] = False if state.get("""add_prefix_space""" , UpperCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : Any = True if state.get("""trim_offsets""" , UpperCAmelCase__ ) != trim_offsets: SCREAMING_SNAKE_CASE : int = trim_offsets SCREAMING_SNAKE_CASE : int = True if changes_to_apply: SCREAMING_SNAKE_CASE : Dict = getattr(UpperCAmelCase__ , state.pop("""type""" ) ) SCREAMING_SNAKE_CASE : Tuple = component_class(**UpperCAmelCase__ ) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowercase ( self : str ) ->str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self : Dict , UpperCAmelCase__ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else value SCREAMING_SNAKE_CASE : Any = value def _lowercase ( self : Optional[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : int ) ->BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = kwargs.get("""is_split_into_words""" , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : str ) ->BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE : Any = kwargs.get("""is_split_into_words""" , UpperCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " """to use it with pretokenized inputs.""" ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=None ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : int , UpperCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , ) ->dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = super()._pad( encoded_inputs=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding_strategy=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : List[str] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Optional[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(UpperCAmelCase__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : Optional[int] = len(UpperCAmelCase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : int = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
446
from math import ceil def __lowercase ( _A = 1001 ) -> int: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : Dict = 2 * i + 1 SCREAMING_SNAKE_CASE : Optional[int] = 2 * i SCREAMING_SNAKE_CASE : str = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCAmelCase__ : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
446
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = '''vision-encoder-decoder''' __magic_name__ = True def __init__( self : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCAmelCase_ : str = kwargs.pop("encoder" ) UpperCAmelCase_ : Dict = encoder_config.pop("model_type" ) UpperCAmelCase_ : List[Any] = kwargs.pop("decoder" ) UpperCAmelCase_ : Dict = decoder_config.pop("model_type" ) UpperCAmelCase_ : Union[str, Any] = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = True @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Dict ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.encoder.to_dict() UpperCAmelCase_ : List[Any] = self.decoder.to_dict() UpperCAmelCase_ : Any = self.__class__.model_type return output class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class UpperCamelCase_ (__A ): @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : List[Any] = OrderedDict() UpperCAmelCase_ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} UpperCAmelCase_ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} UpperCAmelCase_ : Union[str, Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : "PreTrainedTokenizerBase" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch UpperCAmelCase_ : Optional[int] = OrderedDict() UpperCAmelCase_ : Any = super().generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dummy_input["input_ids"].shape UpperCAmelCase_ : List[str] = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCAmelCase_ : List[str] = dummy_input.pop("input_ids" ) UpperCAmelCase_ : List[str] = dummy_input.pop("attention_mask" ) UpperCAmelCase_ : List[Any] = torch.zeros(lowerCAmelCase_ ) return common_inputs class UpperCamelCase_ (__A ): @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: pass def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : str = "default" ) -> OnnxConfig: UpperCAmelCase_ : Optional[int] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase_ , lowerCAmelCase_ )
95
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ : __magic_name__ = 42 __magic_name__ = None @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> str: raise NotImplementedError def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple ) -> List[str]: return f"""`pip install {cls.pip_package or cls.name}`""" class UpperCamelCase_ (__A ): __magic_name__ = '''optuna''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[str]: return is_optuna_available() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> int: return run_hp_search_optuna(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: return default_hp_space_optuna(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''ray''' __magic_name__ = '''\'ray[tune]\'''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return is_ray_available() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> List[str]: return run_hp_search_ray(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Tuple ) -> Optional[int]: return default_hp_space_ray(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''sigopt''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: return is_sigopt_available() def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : str ) -> str: return run_hp_search_sigopt(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any ) -> Any: return default_hp_space_sigopt(lowerCAmelCase_ ) class UpperCamelCase_ (__A ): __magic_name__ = '''wandb''' @staticmethod def _SCREAMING_SNAKE_CASE ( ) -> int: return is_wandb_available() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return run_hp_search_wandb(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Any: return default_hp_space_wandb(lowerCAmelCase_ ) lowerCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case ( ): UpperCAmelCase_ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A__ ) > 0: UpperCAmelCase_ : Optional[Any] = available_backends[0].name if len(A__ ) > 1: logger.info( F"""{len(A__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
95
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = '''\ Text data. Second line of data.''' lowerCAmelCase__ = '''file''' @pytest.fixture(scope='''session''' ) def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') _lowerCamelCase : List[Any] = bytes(A_, '''utf-8''' ) with zstd.open(A_, '''wb''' ) as f: f.write(A_ ) return path @pytest.fixture def snake_case_ ( A_ : Dict ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir, A_ ), '''w''' ) as f: f.write(A_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''', ['''gzip''', '''xz''', '''zstd'''] ) def snake_case_ ( A_ : List[str], A_ : str, A_ : Optional[int], A_ : Dict, A_ : Optional[Any], A_ : Dict ): '''simple docstring''' _lowerCamelCase : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} _lowerCamelCase : int = input_paths[compression_format] _lowerCamelCase : Any = tmp_path / '''cache''' _lowerCamelCase : str = DownloadConfig(cache_dir=A_, extract_compressed_file=A_ ) _lowerCamelCase : Dict = cached_path(A_, download_config=A_ ) with open(A_ ) as f: _lowerCamelCase : Optional[int] = f.read() with open(A_ ) as f: _lowerCamelCase : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''', [True, False] ) @pytest.mark.parametrize('''default_cache_dir''', [True, False] ) def snake_case_ ( A_ : Dict, A_ : List[Any], A_ : Any, A_ : Optional[Any], A_ : str ): '''simple docstring''' _lowerCamelCase : Any = '''custom_cache''' _lowerCamelCase : List[str] = '''custom_extracted_dir''' _lowerCamelCase : Union[str, Any] = tmp_path / '''custom_extracted_path''' if default_extracted: _lowerCamelCase : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''', A_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(A_ ) ) _lowerCamelCase : Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCamelCase : int = xz_file _lowerCamelCase : int = ( DownloadConfig(extract_compressed_file=A_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=A_ ) ) _lowerCamelCase : Any = cached_path(A_, download_config=A_ ) assert Path(A_ ).parent.parts[-2:] == expected def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = str(Path(A_ ).resolve() ) assert cached_path(A_ ) == text_file # relative path _lowerCamelCase : Any = str(Path(A_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(A_ ) == text_file def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : int = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(A_ ): cached_path(A_ ) # relative path _lowerCamelCase : Optional[int] = '''./__missing_file__.txt''' with pytest.raises(A_ ): cached_path(A_ ) def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(A_ ) as f: _lowerCamelCase : Dict = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''', A_ ) def snake_case_ ( ): '''simple docstring''' with pytest.raises(A_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', A_ ) def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Any = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A_ ): http_get('''https://huggingface.co''', temp_file=A_ ) with pytest.raises(A_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', A_ ) def snake_case_ ( A_ : Dict ): '''simple docstring''' _lowerCamelCase : str = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A_ ): ftp_get('''ftp://huggingface.co''', temp_file=A_ ) with pytest.raises(A_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', A_ ) def snake_case_ ( A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(A_ ): fsspec_get('''s3://huggingface.co''', temp_file=A_ ) with pytest.raises(A_ ): fsspec_head('''s3://huggingface.co''' )
702
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __snake_case ( _lowercase): snake_case__ : Dict = "blenderbot-small" snake_case__ : Optional[int] = ["past_key_values"] snake_case__ : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __lowerCAmelCase : Dict=5_0_2_6_5 , __lowerCAmelCase : str=5_1_2 , __lowerCAmelCase : Any=8 , __lowerCAmelCase : Any=2_0_4_8 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : Dict=8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : Union[str, Any]=5_1_2 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Union[str, Any]=2 , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Dict = vocab_size _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : Tuple = d_model _lowerCamelCase : Optional[Any] = encoder_ffn_dim _lowerCamelCase : Optional[int] = encoder_layers _lowerCamelCase : Any = encoder_attention_heads _lowerCamelCase : int = decoder_ffn_dim _lowerCamelCase : str = decoder_layers _lowerCamelCase : str = decoder_attention_heads _lowerCamelCase : int = dropout _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : str = activation_function _lowerCamelCase : Dict = init_std _lowerCamelCase : Optional[int] = encoder_layerdrop _lowerCamelCase : List[str] = decoder_layerdrop _lowerCamelCase : Optional[int] = use_cache _lowerCamelCase : Dict = encoder_layers _lowerCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) class __snake_case ( _lowercase): @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase : List[Any] = {0: '''batch'''} _lowerCamelCase : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _lowerCamelCase : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} _lowerCamelCase : Any = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCamelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _lowerCamelCase , _lowerCamelCase : str = self.num_layers for i in range(__lowerCAmelCase ): _lowerCamelCase : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _lowerCamelCase : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : List[str] = super().outputs else: _lowerCamelCase : int = super(__lowerCAmelCase , self ).outputs if self.use_past: _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.num_layers for i in range(__lowerCAmelCase ): _lowerCamelCase : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} _lowerCamelCase : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Generate decoder inputs _lowerCamelCase : Dict = seq_length if not self.use_past else 1 _lowerCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCamelCase : str = dict(**__lowerCAmelCase , **__lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase : Optional[Any] = common_inputs['''input_ids'''].shape _lowerCamelCase : str = common_inputs['''decoder_input_ids'''].shape[1] _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.num_attention_heads _lowerCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Any = decoder_seq_length + 3 _lowerCamelCase : List[str] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCamelCase : int = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowerCAmelCase , __lowerCAmelCase )] , dim=1 ) _lowerCamelCase : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCamelCase , _lowerCamelCase : int = self.num_layers _lowerCamelCase : Union[str, Any] = min(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = max(__lowerCAmelCase , __lowerCAmelCase ) - min_num_layers _lowerCamelCase : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase ), ) ) # TODO: test this. _lowerCamelCase : Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowerCAmelCase , __lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _lowerCamelCase , _lowerCamelCase : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _lowerCamelCase : Dict = seqlen + 2 _lowerCamelCase , _lowerCamelCase : Tuple = self.num_layers _lowerCamelCase , _lowerCamelCase : List[Any] = self.num_attention_heads _lowerCamelCase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCamelCase : Tuple = common_inputs['''attention_mask'''].dtype _lowerCamelCase : Union[str, Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) _lowerCamelCase : List[Any] = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(__lowerCAmelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" _lowerCamelCase : Optional[Any] = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase : Optional[int] = tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase : Union[str, Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCamelCase : Optional[Any] = dict(tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) elif self.task == "causal-lm": _lowerCamelCase : Dict = self._generate_dummy_inputs_for_causal_lm( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) else: _lowerCamelCase : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) return common_inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _lowerCamelCase : Any = super()._flatten_past_key_values_(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: _lowerCamelCase : Dict = super(__lowerCAmelCase , self )._flatten_past_key_values_( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
598
0
from __future__ import annotations class __magic_name__ : def __init__( self : List[Any] , UpperCamelCase__ : str=None ) -> Tuple: '''simple docstring''' UpperCAmelCase = data UpperCAmelCase = None def __repr__( self : str ) -> Any: '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = self while temp: string_rep.append(F'{temp.data}' ) UpperCAmelCase = temp.next return "->".join(UpperCamelCase__ ) def lowerCamelCase_(lowerCamelCase_ ) -> Tuple: if not elements_list: raise Exception("The Elements List is empty" ) UpperCAmelCase = UpperCAmelCase = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase_ ) ): UpperCAmelCase = Node(elements_list[i] ) UpperCAmelCase = current.next return head def lowerCamelCase_(lowerCamelCase_ ) -> None: if head_node is not None and isinstance(lowerCamelCase_ , lowerCamelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def lowerCamelCase_() -> Optional[Any]: from doctest import testmod testmod() UpperCAmelCase = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(lowerCamelCase_ ) print("Elements in Reverse:" ) print_reverse(lowerCamelCase_ ) if __name__ == "__main__": main()
323
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCamelCase : Tuple = "\nHuman: <<task>>\n\nAssistant: " __lowerCamelCase : Tuple = "huggingface-tools/default-prompts" __lowerCamelCase : List[str] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , lowerCamelCase_ ) is not None: return prompt_or_repo_id UpperCAmelCase = cached_file( lowerCamelCase_ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(lowerCamelCase_ , "r" , encoding="utf-8" ) as f: return f.read()
323
1
from functools import lru_cache def UpperCAmelCase_ ( __lowerCAmelCase ) -> set: __lowercase : List[str] = 2 __lowercase : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: return len(unique_prime_factors(__lowerCAmelCase ) ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> bool: return len(set(__lowerCAmelCase ) ) in (0, 1) def UpperCAmelCase_ ( __lowerCAmelCase ) -> list: __lowercase : str = 2 while True: # Increment each value of a generated range __lowercase : Optional[int] = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase : int = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase_ ( __lowerCAmelCase = 4 ) -> int: __lowercase : Optional[Any] = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
284
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : List[Any] = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : List[Any] = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __lowercase : int = TextIteratorStreamer(_snake_case ) __lowercase : int = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[Any] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() __lowercase : Optional[int] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : List[str] ): __lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[Any] = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : str = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : List[Any] = greedy_ids[:, input_ids.shape[1] :] __lowercase : Optional[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : int = TextStreamer(_snake_case , skip_prompt=_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : int = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase : Dict = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase : List[str] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_snake_case ) __lowercase : str = -1 __lowercase : Dict = torch.ones((1, 5) , device=_snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case , skip_special_tokens=_snake_case ) model.generate(_snake_case , max_new_tokens=1 , do_sample=_snake_case , streamer=_snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase : Dict = cs.out[:-1] # Remove the final "\n" __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case_ ( self : Any ): __lowercase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : Dict = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = TextIteratorStreamer(_snake_case , timeout=0.0_01 ) __lowercase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[int] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_snake_case ): __lowercase : List[Any] = '''''' for new_text in streamer: streamer_text += new_text
284
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = "isbn/0140328726" ): snake_case_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: snake_case_ = F'''{olid} is not a valid Open Library olid''' raise ValueError(SCREAMING_SNAKE_CASE__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } snake_case_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] snake_case_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = ''', '''.join(SCREAMING_SNAKE_CASE__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase_ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: lowerCAmelCase_ = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
39
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase =logging.get_logger(__name__) UpperCamelCase ={ "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : Optional[Any] = '''conditional_detr''' __a : Tuple = ['''past_key_values'''] __a : Any = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=3 , __lowerCAmelCase=3_00 , __lowerCAmelCase=6 , __lowerCAmelCase=20_48 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=20_48 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=2_56 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=False , __lowerCAmelCase="sine" , __lowerCAmelCase="resnet50" , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.25 , **__lowerCAmelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase_ : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = backbone_config.get("""model_type""" ) UpperCamelCase_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ : Any = config_class.from_dict(__lowerCAmelCase ) UpperCamelCase_ : int = use_timm_backbone UpperCamelCase_ : int = backbone_config UpperCamelCase_ : Dict = num_channels UpperCamelCase_ : Optional[Any] = num_queries UpperCamelCase_ : List[Any] = d_model UpperCamelCase_ : Any = encoder_ffn_dim UpperCamelCase_ : Dict = encoder_layers UpperCamelCase_ : List[str] = encoder_attention_heads UpperCamelCase_ : str = decoder_ffn_dim UpperCamelCase_ : str = decoder_layers UpperCamelCase_ : str = decoder_attention_heads UpperCamelCase_ : Optional[int] = dropout UpperCamelCase_ : Tuple = attention_dropout UpperCamelCase_ : Optional[int] = activation_dropout UpperCamelCase_ : List[Any] = activation_function UpperCamelCase_ : str = init_std UpperCamelCase_ : Dict = init_xavier_std UpperCamelCase_ : Optional[int] = encoder_layerdrop UpperCamelCase_ : Optional[Any] = decoder_layerdrop UpperCamelCase_ : Union[str, Any] = encoder_layers UpperCamelCase_ : List[str] = auxiliary_loss UpperCamelCase_ : Dict = position_embedding_type UpperCamelCase_ : Optional[Any] = backbone UpperCamelCase_ : Any = use_pretrained_backbone UpperCamelCase_ : Union[str, Any] = dilation # Hungarian matcher UpperCamelCase_ : Dict = class_cost UpperCamelCase_ : Dict = bbox_cost UpperCamelCase_ : Tuple = giou_cost # Loss coefficients UpperCamelCase_ : Tuple = mask_loss_coefficient UpperCamelCase_ : Optional[Any] = dice_loss_coefficient UpperCamelCase_ : Union[str, Any] = cls_loss_coefficient UpperCamelCase_ : Union[str, Any] = bbox_loss_coefficient UpperCamelCase_ : Optional[int] = giou_loss_coefficient UpperCamelCase_ : List[str] = focal_alpha super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def _UpperCAmelCase ( self ): return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): return self.d_model def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase_ : str = self.backbone_config.to_dict() UpperCamelCase_ : Optional[int] = self.__class__.model_type return output class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : str = version.parse('''1.11''' ) @property def _UpperCAmelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCAmelCase ( self ): return 1E-5 @property def _UpperCAmelCase ( self ): return 12
543
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case ( a_ : List[Any] ) -> Any: """simple docstring""" for param in module.parameters(): UpperCamelCase_ : Dict = False def snake_case ( ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ : int = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def snake_case ( a_ : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def snake_case ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = datetime.now() UpperCamelCase_ : int = current_time.strftime("""%H:%M:%S""" ) return timestamp
543
1
'''simple docstring''' __A : List[str] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : Optional[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
394
'''simple docstring''' def lowerCAmelCase_ ( a : int , a : int ): return 1 if input_a == input_a else 0 def lowerCAmelCase_ ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
394
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig UpperCamelCase : int = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "tapas" def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1024 , __UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase=1_0.0 , __UpperCAmelCase=0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase="ratio" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=64 , __UpperCAmelCase=32 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_sizes __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps # Fine-tuning task hyperparameters __UpperCamelCase = positive_label_weight __UpperCamelCase = num_aggregation_labels __UpperCamelCase = aggregation_loss_weight __UpperCamelCase = use_answer_as_supervision __UpperCamelCase = answer_loss_importance __UpperCamelCase = use_normalized_answer_loss __UpperCamelCase = huber_loss_delta __UpperCamelCase = temperature __UpperCamelCase = aggregation_temperature __UpperCamelCase = use_gumbel_for_cells __UpperCamelCase = use_gumbel_for_aggregation __UpperCamelCase = average_approximation_function __UpperCamelCase = cell_selection_preference __UpperCamelCase = answer_loss_cutoff __UpperCamelCase = max_num_rows __UpperCamelCase = max_num_columns __UpperCamelCase = average_logits_per_cell __UpperCamelCase = select_one_column __UpperCamelCase = allow_empty_column_selection __UpperCamelCase = init_cell_selection_weights_to_zero __UpperCamelCase = reset_position_index_per_cell __UpperCamelCase = disable_per_token_loss # Aggregation hyperparameters __UpperCamelCase = aggregation_labels __UpperCamelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , __UpperCAmelCase ): __UpperCamelCase = {int(__UpperCAmelCase ): v for k, v in aggregation_labels.items()}
293
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A ( ) -> List[Any]: __UpperCamelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=snake_case , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=snake_case , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=snake_case ) return parser.parse_args() def A ( ) -> Optional[int]: __UpperCamelCase = parse_args() # Import training_script as a module. __UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCamelCase = script_fpath.stem __UpperCamelCase = importlib.import_module(snake_case ) # Patch sys.argv __UpperCamelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
293
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ) -> Tuple: UpperCAmelCase : List[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" UpperCAmelCase : List[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert('''RGB''' ) return image def snake_case_ ( _lowerCAmelCase : Any ) -> Tuple: UpperCAmelCase : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : str ) -> Any: UpperCAmelCase : int = dct.pop(lowerCAmelCase__ ) UpperCAmelCase : Optional[int] = val def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase : Optional[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) UpperCAmelCase : List[str] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict UpperCAmelCase : Dict = torch.cat((q_bias, torch.zeros_like(lowerCAmelCase__ , requires_grad=lowerCAmelCase__ ), v_bias) ) UpperCAmelCase : Optional[Any] = qkv_bias def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = 364 if """coco""" in model_name else 224 UpperCAmelCase : List[str] = BlipaVisionConfig(image_size=lowerCAmelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase : List[Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowerCAmelCase__ ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase : Dict = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase : List[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase : Dict = BlipaConfig(vision_config=lowerCAmelCase__ , text_config=lowerCAmelCase__ ) return config, image_size @torch.no_grad() def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Any=False ) -> int: UpperCAmelCase : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if """opt""" in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase : Dict = tokenizer('''\n''' , add_special_tokens=lowerCAmelCase__ ).input_ids[0] UpperCAmelCase : Optional[Any] = get_blipa_config(lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) UpperCAmelCase : Tuple = BlipaForConditionalGeneration(lowerCAmelCase__ ).eval() UpperCAmelCase : Optional[Any] = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } UpperCAmelCase : List[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase : Any = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase : int = load_model_and_preprocess( name=lowerCAmelCase__ , model_type=lowerCAmelCase__ , is_eval=lowerCAmelCase__ , device=lowerCAmelCase__ ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase : List[Any] = original_model.state_dict() UpperCAmelCase : Union[str, Any] = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase : List[str] = state_dict.pop(lowerCAmelCase__ ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase : Optional[Any] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase : int = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase : Optional[Any] = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase : Optional[int] = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase : List[Any] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase : str = key.replace('''t5''' , '''language''' ) UpperCAmelCase : int = val # read in qv biases read_in_q_v_bias(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : int = hf_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase : str = load_demo_image() UpperCAmelCase : str = vis_processors["""eval"""](lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) UpperCAmelCase : Tuple = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) # create processor UpperCAmelCase : List[str] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ ) UpperCAmelCase : Dict = BlipaProcessor(image_processor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values.to(lowerCAmelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) hf_model.to(lowerCAmelCase__ ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase : Tuple = hf_model(lowerCAmelCase__ , lowerCAmelCase__ ).logits else: UpperCAmelCase : List[str] = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCAmelCase : List[Any] = hf_model(lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowerCAmelCase__ ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase : int = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowerCAmelCase__ ) else: # cast to same type UpperCAmelCase : Union[str, Any] = logits.dtype assert torch.allclose(original_logits.to(lowerCAmelCase__ ) , lowerCAmelCase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase : Tuple = """""" UpperCAmelCase : int = tokenizer(lowerCAmelCase__ , return_tensors='''pt''' ).input_ids.to(lowerCAmelCase__ ) UpperCAmelCase : Tuple = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase : Tuple = hf_model.generate( lowerCAmelCase__ , lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowerCAmelCase__ ) UpperCAmelCase : str = input_ids.shape[1] UpperCAmelCase : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCAmelCase__ ) UpperCAmelCase : Dict = [text.strip() for text in output_text] print('''HF generation:''' , lowerCAmelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCAmelCase__ ) hf_model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": UpperCamelCase__: Union[str, Any] = argparse.ArgumentParser() UpperCamelCase__: int = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) UpperCamelCase__: int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
127
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): A = CLIPConfig A = ['''CLIPEncoderLayer'''] def __init__(self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = CLIPVisionModelWithProjection(config.vision_config ) UpperCAmelCase_: Tuple = nn.Linear(config.vision_config.projection_dim, 1 ) UpperCAmelCase_: Tuple = nn.Linear(config.vision_config.projection_dim, 1 ) @torch.no_grad() def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0.5, SCREAMING_SNAKE_CASE_=0.5 ) -> Tuple: UpperCAmelCase_: Optional[Any] = self.vision_model(SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: List[str] = self.p_head(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = nsfw_detected.flatten() UpperCAmelCase_: List[Any] = nsfw_detected > p_threshold UpperCAmelCase_: Any = nsfw_detected.tolist() if any(SCREAMING_SNAKE_CASE_ ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(SCREAMING_SNAKE_CASE_ ): if nsfw_detected_: UpperCAmelCase_: Tuple = np.zeros(images[idx].shape ) UpperCAmelCase_: str = self.w_head(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = watermark_detected.flatten() UpperCAmelCase_: Tuple = watermark_detected > w_threshold UpperCAmelCase_: int = watermark_detected.tolist() if any(SCREAMING_SNAKE_CASE_ ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(SCREAMING_SNAKE_CASE_ ): if watermark_detected_: UpperCAmelCase_: Any = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
556
0
class _lowerCamelCase : """simple docstring""" def __init__( self : int , snake_case : Any , snake_case : Any , snake_case : Optional[Any] ): __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = graph self._normalize_graph(snake_case , snake_case ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = None def snake_case ( self : str , snake_case : Optional[int] , snake_case : int ): if sources is int: __UpperCamelCase = [sources] if sinks is int: __UpperCamelCase = [sinks] if len(snake_case ) == 0 or len(snake_case ) == 0: return __UpperCamelCase = sources[0] __UpperCamelCase = sinks[0] # make fake vertex if there are more # than one source or sink if len(snake_case ) > 1 or len(snake_case ) > 1: __UpperCamelCase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCamelCase = max_input_flow __UpperCamelCase = 0 __UpperCamelCase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCamelCase = max_input_flow __UpperCamelCase = size - 1 def snake_case ( self : Dict ): if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def snake_case ( self : List[Any] , snake_case : List[str] ): __UpperCamelCase = algorithm(self ) class _lowerCamelCase : """simple docstring""" def __init__( self : str , snake_case : Any ): __UpperCamelCase = flow_network __UpperCamelCase = flow_network.verticesCount __UpperCamelCase = flow_network.sourceIndex __UpperCamelCase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCamelCase = flow_network.graph __UpperCamelCase = False def snake_case ( self : List[str] ): if not self.executed: self._algorithm() __UpperCamelCase = True def snake_case ( self : Optional[int] ): pass class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , snake_case : Optional[int] ): super().__init__(snake_case ) # use this to save your result __UpperCamelCase = -1 def snake_case ( self : Tuple ): if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Optional[int] , snake_case : Tuple ): super().__init__(snake_case ) __UpperCamelCase = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCamelCase = [0] * self.verticies_count __UpperCamelCase = [0] * self.verticies_count def snake_case ( self : Union[str, Any] ): __UpperCamelCase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCamelCase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCamelCase = 0 while i < len(snake_case ): __UpperCamelCase = vertices_list[i] __UpperCamelCase = self.heights[vertex_index] self.process_vertex(snake_case ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(snake_case ) ) __UpperCamelCase = 0 else: i += 1 __UpperCamelCase = sum(self.preflow[self.source_index] ) def snake_case ( self : Union[str, Any] , snake_case : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(snake_case , snake_case ) self.relabel(snake_case ) def snake_case ( self : Union[str, Any] , snake_case : List[str] , snake_case : int ): __UpperCamelCase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def snake_case ( self : Optional[Any] , snake_case : Dict ): __UpperCamelCase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCamelCase = self.heights[to_index] if min_height is not None: __UpperCamelCase = min_height + 1 if __name__ == "__main__": a_ = [0] a_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a_ = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
711
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : int = "mctct" def __init__( self : List[Any] , snake_case : Optional[Any]=8065 , snake_case : Optional[int]=1536 , snake_case : Any=36 , snake_case : List[str]=6144 , snake_case : Dict=4 , snake_case : str=384 , snake_case : List[str]=920 , snake_case : Dict=1E-5 , snake_case : Union[str, Any]=0.3 , snake_case : Optional[Any]="relu" , snake_case : str=0.02 , snake_case : Optional[int]=0.3 , snake_case : int=0.3 , snake_case : Any=1 , snake_case : int=0 , snake_case : Union[str, Any]=2 , snake_case : List[Any]=1 , snake_case : Dict=0.3 , snake_case : int=1 , snake_case : Optional[int]=(7,) , snake_case : List[Any]=(3,) , snake_case : Optional[int]=80 , snake_case : List[str]=1 , snake_case : int=None , snake_case : List[str]="sum" , snake_case : Tuple=False , **snake_case : List[str] , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = max_position_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = layerdrop __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = conv_glu_dim __UpperCamelCase = conv_dropout __UpperCamelCase = num_conv_layers __UpperCamelCase = input_feat_per_channel __UpperCamelCase = input_channels __UpperCamelCase = conv_channels __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
375
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: UpperCamelCase : str = tempfile.mkdtemp() # fmt: off UpperCamelCase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on UpperCamelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCamelCase : Tuple = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } UpperCamelCase : str = os.path.join(self.tmpdirname, SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[str] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] UpperCamelCase : Dict = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) UpperCamelCase : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) UpperCamelCase : Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=SCREAMING_SNAKE_CASE_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase : Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors='np' ) UpperCamelCase : str = processor(images=SCREAMING_SNAKE_CASE_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case_ ( self ) -> str: UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 'lower newer' UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def snake_case_ ( self ) -> int: UpperCamelCase : str = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[Any] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : Tuple = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_, image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = 'lower newer' UpperCamelCase : str = self.prepare_image_inputs() UpperCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_, images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
40
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
40
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class snake_case_ (unittest.TestCase ): """simple docstring""" def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_activation("swish") self.assertIsInstance(lowercase ,nn.SiLU) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa)).item() ,0) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa)).item() ,20) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[Any] = get_activation("silu") self.assertIsInstance(lowercase ,nn.SiLU) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa)).item() ,0) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa)).item() ,20) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Tuple = get_activation("mish") self.assertIsInstance(lowercase ,nn.Mish) self.assertEqual(act(torch.tensor(-200 ,dtype=torch.floataa)).item() ,0) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa)).item() ,20) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_activation("gelu") self.assertIsInstance(lowercase ,nn.GELU) self.assertEqual(act(torch.tensor(-100 ,dtype=torch.floataa)).item() ,0) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa)).item() ,0) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa)).item() ,20)
719
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ (lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = AltDiffusionPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def A_ ( self): """simple docstring""" torch.manual_seed(0) UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) UpperCAmelCase_ : Any = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowercase ,set_alpha_to_one=lowercase ,) torch.manual_seed(0) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) UpperCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=5002 ,) UpperCAmelCase_ : Dict = CLIPTextModel(lowercase) UpperCAmelCase_ : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") UpperCAmelCase_ : List[str] = 77 UpperCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A_ ( self ,lowercase ,lowercase=0): """simple docstring""" if str(lowercase).startswith("mps"): UpperCAmelCase_ : Any = torch.manual_seed(lowercase) else: UpperCAmelCase_ : Dict = torch.Generator(device=lowercase).manual_seed(lowercase) UpperCAmelCase_ : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A_ ( self): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3) def A_ ( self): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Any = self.get_dummy_components() torch.manual_seed(0) UpperCAmelCase_ : List[Any] = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Any = RobertaSeriesModelWithTransformation(lowercase) UpperCAmelCase_ : Optional[Any] = text_encoder UpperCAmelCase_ : List[Any] = AltDiffusionPipeline(**lowercase) UpperCAmelCase_ : Union[str, Any] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(lowercase) UpperCAmelCase_ : Optional[Any] = "A photo of an astronaut" UpperCAmelCase_ : str = alt_pipe(**lowercase) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[Any] = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=lowercase) torch.manual_seed(0) UpperCAmelCase_ : Any = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=5002 ,) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : Union[str, Any] = RobertaSeriesModelWithTransformation(lowercase) UpperCAmelCase_ : Dict = text_encoder UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline(**lowercase) UpperCAmelCase_ : List[Any] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : str = self.get_dummy_inputs(lowercase) UpperCAmelCase_ : Union[str, Any] = alt_pipe(**lowercase) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class snake_case_ (unittest.TestCase ): """simple docstring""" def A_ ( self): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,safety_checker=lowercase) UpperCAmelCase_ : Any = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : Any = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Any = torch.manual_seed(0) UpperCAmelCase_ : Optional[int] = alt_pipe([prompt] ,generator=lowercase ,guidance_scale=6.0 ,num_inference_steps=20 ,output_type="np") UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Dict = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" ,subfolder="scheduler") UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" ,scheduler=lowercase ,safety_checker=lowercase) UpperCAmelCase_ : List[str] = alt_pipe.to(lowercase) alt_pipe.set_progress_bar_config(disable=lowercase) UpperCAmelCase_ : str = "A painting of a squirrel eating a burger" UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0) UpperCAmelCase_ : List[str] = alt_pipe([prompt] ,generator=lowercase ,num_inference_steps=2 ,output_type="numpy") UpperCAmelCase_ : int = output.images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : List[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
455
0
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> Any: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase ,n - 1 ,__lowercase ) * a) % mod else: _UpperCamelCase : Tuple = binary_exponentiation(__lowercase ,n / 2 ,__lowercase ) return (b * b) % mod # a prime number lowerCAmelCase_ : List[str] = 701 lowerCAmelCase_ : Union[str, Any] = 10_0000_0000 lowerCAmelCase_ : Union[str, Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
435
'''simple docstring''' from math import pi, sqrt, tan def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __UpperCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(__lowercase , 2 ) * torus_radius * tube_radius def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __UpperCamelCase = (sidea + sidea + sidea) / 2 __UpperCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowercase__ ( __lowercase : int , __lowercase : float ) -> float: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'Rectangle: {area_rectangle(10, 20) = }') print(f'Square: {area_square(10) = }') print(f'Triangle: {area_triangle(10, 10) = }') print(f'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(f'Parallelogram: {area_parallelogram(10, 20) = }') print(f'Rhombus: {area_rhombus(10, 20) = }') print(f'Trapezium: {area_trapezium(10, 20, 30) = }') print(f'Circle: {area_circle(20) = }') print(f'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(f'Cube: {surface_area_cube(20) = }') print(f'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(f'Sphere: {surface_area_sphere(20) = }') print(f'Hemisphere: {surface_area_hemisphere(20) = }') print(f'Cone: {surface_area_cone(10, 20) = }') print(f'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(f'Cylinder: {surface_area_cylinder(10, 20) = }') print(f'Torus: {surface_area_torus(20, 10) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(f'Square: {area_reg_polygon(4, 10) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
399
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _lowerCamelCase =logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") _lowerCamelCase ={ "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _lowerCamelCase ={ "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _lowerCamelCase =sorted(arg_to_scheduler.keys()) _lowerCamelCase ="{" + ", ".join(arg_to_scheduler_choices) + "}" class a_ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any ,snake_case : argparse.Namespace ,snake_case : Tuple=None ,snake_case : Optional[int]="base" ,snake_case : Dict=None ,snake_case : int=None ,snake_case : List[Any]=None ,**snake_case : List[str] ,): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCamelCase_ ) SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =Path(self.hparams.output_dir ) SCREAMING_SNAKE_CASE =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path ,**({'num_labels': num_labels} if num_labels is not None else {}) ,cache_dir=lowerCamelCase_ ,**lowerCamelCase_ ,) else: SCREAMING_SNAKE_CASE =config SCREAMING_SNAKE_CASE =("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams ,lowerCamelCase_ ,lowerCamelCase_ ): assert hasattr(self.config ,lowerCamelCase_ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config ,lowerCamelCase_ ,getattr(self.hparams ,lowerCamelCase_ ) ) if tokenizer is None: SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path ,cache_dir=lowerCamelCase_ ,) else: SCREAMING_SNAKE_CASE =tokenizer SCREAMING_SNAKE_CASE =MODEL_MODES[mode] if model is None: SCREAMING_SNAKE_CASE =self.model_type.from_pretrained( self.hparams.model_name_or_path ,from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) ,config=self.config ,cache_dir=lowerCamelCase_ ,) else: SCREAMING_SNAKE_CASE =model def _lowerCAmelCase ( self : Optional[Any] ,*snake_case : Tuple ,**snake_case : List[Any] ): SCREAMING_SNAKE_CASE =self.model_type.from_pretrained(*lowerCamelCase_ ,**lowerCamelCase_ ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =arg_to_scheduler[self.hparams.lr_scheduler] SCREAMING_SNAKE_CASE =get_schedule_func( self.opt ,num_warmup_steps=self.hparams.warmup_steps ,num_training_steps=self.total_steps() ) SCREAMING_SNAKE_CASE ={"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model SCREAMING_SNAKE_CASE =["""bias""", """LayerNorm.weight"""] SCREAMING_SNAKE_CASE =[ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: SCREAMING_SNAKE_CASE =Adafactor( lowerCamelCase_ ,lr=self.hparams.learning_rate ,scale_parameter=lowerCamelCase_ ,relative_step=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE =AdamW( lowerCamelCase_ ,lr=self.hparams.learning_rate ,eps=self.hparams.adam_epsilon ) SCREAMING_SNAKE_CASE =optimizer SCREAMING_SNAKE_CASE =self.get_lr_scheduler() return [optimizer], [scheduler] def _lowerCAmelCase ( self : Dict ,snake_case : Dict ,snake_case : List[str] ): return self.validation_step(lowerCamelCase_ ,lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Optional[int] ): return self.validation_end(lowerCamelCase_ ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =max(1 ,self.hparams.gpus ) # TODO: consider num_tpu_cores SCREAMING_SNAKE_CASE =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _lowerCAmelCase ( self : str ,snake_case : Optional[int] ): if stage == "test": SCREAMING_SNAKE_CASE =len(self.test_dataloader().dataset ) else: SCREAMING_SNAKE_CASE =self.get_dataloader('train' ,self.hparams.train_batch_size ,shuffle=lowerCamelCase_ ) SCREAMING_SNAKE_CASE =len(self.train_dataloader().dataset ) def _lowerCAmelCase ( self : Any ,snake_case : str ,snake_case : int ,snake_case : bool = False ): raise NotImplementedError('You must implement this for your task' ) def _lowerCAmelCase ( self : int ): return self.train_loader def _lowerCAmelCase ( self : Any ): return self.get_dataloader('dev' ,self.hparams.eval_batch_size ,shuffle=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ): return self.get_dataloader('test' ,self.hparams.eval_batch_size ,shuffle=lowerCamelCase_ ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ): return os.path.join( self.hparams.data_dir ,'cached_{}_{}_{}'.format( lowerCamelCase_ ,list(filter(lowerCamelCase_ ,self.hparams.model_name_or_path.split('/' ) ) ).pop() ,str(self.hparams.max_seq_length ) ,) ,) @pl.utilities.rank_zero_only def _lowerCAmelCase ( self : Dict ,snake_case : Dict[str, Any] ): SCREAMING_SNAKE_CASE =self.output_dir.joinpath('best_tfmr' ) SCREAMING_SNAKE_CASE =self.step_count self.model.save_pretrained(lowerCamelCase_ ) self.tokenizer.save_pretrained(lowerCamelCase_ ) @staticmethod def _lowerCAmelCase ( snake_case : List[Any] ,snake_case : Optional[Any] ): parser.add_argument( '--model_name_or_path' ,default=lowerCamelCase_ ,type=lowerCamelCase_ ,required=lowerCamelCase_ ,help='Path to pretrained model or model identifier from huggingface.co/models' ,) parser.add_argument( '--config_name' ,default='' ,type=lowerCamelCase_ ,help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' ,default=lowerCamelCase_ ,type=lowerCamelCase_ ,help='Pretrained tokenizer name or path if not the same as model_name' ,) parser.add_argument( '--cache_dir' ,default=str(Path(lowerCamelCase_ ).parent / 'test_run' / 'cache' ) ,type=lowerCamelCase_ ,help='Where do you want to store the pre-trained models downloaded from huggingface.co' ,) parser.add_argument( '--encoder_layerdrop' ,type=lowerCamelCase_ ,help='Encoder layer dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--decoder_layerdrop' ,type=lowerCamelCase_ ,help='Decoder layer dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--dropout' ,type=lowerCamelCase_ ,help='Dropout probability (Optional). Goes into model.config' ,) parser.add_argument( '--attention_dropout' ,type=lowerCamelCase_ ,help='Attention dropout probability (Optional). Goes into model.config' ,) parser.add_argument('--learning_rate' ,default=5e-5 ,type=lowerCamelCase_ ,help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' ,default='linear' ,choices=lowerCamelCase_ ,metavar=lowerCamelCase_ ,type=lowerCamelCase_ ,help='Learning rate scheduler' ,) parser.add_argument('--weight_decay' ,default=0.0 ,type=lowerCamelCase_ ,help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' ,default=1e-8 ,type=lowerCamelCase_ ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' ,default=0 ,type=lowerCamelCase_ ,help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' ,default=4 ,type=lowerCamelCase_ ,help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' ,dest='max_epochs' ,default=3 ,type=lowerCamelCase_ ) parser.add_argument('--train_batch_size' ,default=32 ,type=lowerCamelCase_ ) parser.add_argument('--eval_batch_size' ,default=32 ,type=lowerCamelCase_ ) parser.add_argument('--adafactor' ,action='store_true' ) class a_ ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : int ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a_ ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : List[str] ): for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCamelCase_ ) class a_ ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Any ,snake_case : Union[str, Any] ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =trainer.lr_schedulers[0]["""scheduler"""] SCREAMING_SNAKE_CASE ={f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCamelCase_ ) def _lowerCAmelCase ( self : List[str] ,snake_case : pl.Trainer ,snake_case : pl.LightningModule ): rank_zero_info('***** Validation results *****' ) SCREAMING_SNAKE_CASE =trainer.callback_metrics # Log results for key in sorted(lowerCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase_ ,str(metrics[key] ) ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : pl.Trainer ,snake_case : pl.LightningModule ): rank_zero_info('***** Test results *****' ) SCREAMING_SNAKE_CASE =trainer.callback_metrics # Log and save results to file SCREAMING_SNAKE_CASE =os.path.join(pl_module.hparams.output_dir ,'test_results.txt' ) with open(lowerCamelCase_ ,'w' ) as writer: for key in sorted(lowerCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCamelCase_ ,str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(lowerCamelCase_ ,str(metrics[key] ) ) ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '--output_dir', default=str(Path(lowerCamelCase_ ).parent / 'test_run' / 'model_checkpoints' ), type=lowerCamelCase_, help='The output directory where the model predictions and checkpoints will be written.', ) parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit', ) parser.add_argument( '--fp16_opt_level', type=lowerCamelCase_, default='O2', help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ), ) parser.add_argument('--n_tpu_cores', dest='tpu_cores', type=lowerCamelCase_ ) parser.add_argument('--max_grad_norm', dest='gradient_clip_val', default=1.0, type=lowerCamelCase_, help='Max gradient norm' ) parser.add_argument('--do_train', action='store_true', help='Whether to run training.' ) parser.add_argument('--do_predict', action='store_true', help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps', dest='accumulate_grad_batches', type=lowerCamelCase_, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.', ) parser.add_argument('--seed', type=lowerCamelCase_, default=42, help='random seed for initialization' ) parser.add_argument( '--data_dir', default=str(Path(lowerCamelCase_ ).parent / 'test_run' / 'dummy-train-data' ), type=lowerCamelCase_, help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.', ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=None, lowerCAmelCase_=True, lowerCAmelCase_=[], lowerCAmelCase_=None, lowerCAmelCase_=None, **lowerCAmelCase_, ): """simple docstring""" pl.seed_everything(args.seed ) # init model SCREAMING_SNAKE_CASE =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCamelCase_ ) # add custom checkpoints if checkpoint_callback is None: SCREAMING_SNAKE_CASE =pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix='checkpoint', monitor='val_loss', mode='min', save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCamelCase_ ) if logging_callback is None: SCREAMING_SNAKE_CASE =LoggingCallback() SCREAMING_SNAKE_CASE ={} if args.fpaa: SCREAMING_SNAKE_CASE =16 if args.gpus > 1: SCREAMING_SNAKE_CASE ="""auto""" SCREAMING_SNAKE_CASE ="""ddp""" SCREAMING_SNAKE_CASE =args.accumulate_grad_batches SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE ="""auto""" SCREAMING_SNAKE_CASE =pl.Trainer.from_argparse_args( lowerCamelCase_, weights_summary=lowerCamelCase_, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=lowerCamelCase_, val_check_interval=1, num_sanity_val_steps=2, **lowerCamelCase_, ) if args.do_train: trainer.fit(lowerCamelCase_ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
713
from ...processing_utils import ProcessorMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['image_processor', 'feature_extractor'] __UpperCAmelCase = 'TvltImageProcessor' __UpperCAmelCase = 'TvltFeatureExtractor' def __init__( self : Optional[int] ,snake_case : List[str] ,snake_case : Dict ): super().__init__(image_processor=snake_case ,feature_extractor=snake_case ) SCREAMING_SNAKE_CASE =image_processor SCREAMING_SNAKE_CASE =feature_extractor def __call__( self : Dict ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]=None ,snake_case : List[Any]=None ,snake_case : int=None ,snake_case : List[Any]=False ,snake_case : Optional[int]=False ,*snake_case : int ,**snake_case : str ,): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) SCREAMING_SNAKE_CASE =None if images is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,mask_pixel=snake_case ,*snake_case ,**snake_case ) if images_mixed is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,is_mixed=snake_case ,*snake_case ,**snake_case ) if audio is not None: SCREAMING_SNAKE_CASE =self.feature_extractor( snake_case ,*snake_case ,sampling_rate=snake_case ,mask_audio=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE ={} if audio is not None: output_dict.update(snake_case ) if images is not None: output_dict.update(snake_case ) if images_mixed_dict is not None: output_dict.update(snake_case ) return output_dict @property def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.image_processor.model_input_names SCREAMING_SNAKE_CASE =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
252
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase__ ( snake_case_ :Union[str, Any] ): return 1 / (1 + np.exp(-z )) def lowercase__ ( snake_case_ :int , snake_case_ :Dict ): return (-y * np.log(snake_case_ ) - (1 - y) * np.log(1 - h )).mean() def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :Tuple , snake_case_ :int ): __UpperCAmelCase = np.dot(snake_case_ , snake_case_ ) return np.sum(y * scores - np.log(1 + np.exp(snake_case_ ) ) ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :Dict=70_000 ): __UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(snake_case_ ): __UpperCAmelCase = np.dot(snake_case_ , snake_case_ ) __UpperCAmelCase = sigmoid_function(snake_case_ ) __UpperCAmelCase = np.dot(x.T , h - y ) / y.size __UpperCAmelCase = theta - alpha * gradient # updating the weights __UpperCAmelCase = np.dot(snake_case_ , snake_case_ ) __UpperCAmelCase = sigmoid_function(snake_case_ ) __UpperCAmelCase = cost_function(snake_case_ , snake_case_ ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _lowercase : Optional[Any] = datasets.load_iris() _lowercase : Optional[int] = iris.data[:, :2] _lowercase : List[str] = (iris.target != 0) * 1 _lowercase : str = 0.1 _lowercase : Union[str, Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def lowercase__ ( snake_case_ :int ): return sigmoid_function( np.dot(snake_case_ , snake_case_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_lowercase) ,(_lowercase)) : List[Any] = (x[:, 0].min(), x[:, 0].max()) ((_lowercase) ,(_lowercase)) : Optional[int] = (x[:, 1].min(), x[:, 1].max()) ((_lowercase) ,(_lowercase)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _lowercase : Optional[Any] = np.c_[xxa.ravel(), xxa.ravel()] _lowercase : Optional[int] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
49
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCAmelCase : def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=2 , ): _UpperCAmelCase : Any = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Any = is_training _UpperCAmelCase : Any = use_labels _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Optional[int] = scope _UpperCAmelCase : Any = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 _UpperCAmelCase : Dict = num_patches + 2 def snake_case_ (self ): _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def snake_case_ (self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = TFDeiTModel(config=lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = TFDeiTForMaskedImageModeling(config=lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Optional[int] = TFDeiTForMaskedImageModeling(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = self.type_sequence_label_size _UpperCAmelCase : Optional[int] = TFDeiTForImageClassification(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : int = 1 _UpperCAmelCase : Optional[int] = TFDeiTForImageClassification(lowerCAmelCase__ ) _UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ (self ): _UpperCAmelCase : int = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : List[str] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case : Any = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case : List[str] = False snake_case : Any = False snake_case : Optional[Any] = False snake_case : Any = False def snake_case_ (self ): _UpperCAmelCase : Any = TFDeiTModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def snake_case_ (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , tf.keras.layers.Dense ) ) def snake_case_ (self ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[Any] = [*signature.parameters.keys()] _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def snake_case_ (self ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): _UpperCAmelCase : Optional[Any] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def snake_case_ (self ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = TFDeiTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __A ( ): _UpperCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case_ (self ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass _UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : Dict = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
414
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _A = True except (ImportError, AttributeError): _A = object def SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: pass _A = False _A = logging.get_logger('transformers-cli/serving') def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__UpperCAmelCase , args.host , args.port , args.workers ) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = 42 class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = 42 a = 42 class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = 42 class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = 42 class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( _snake_case : ArgumentParser ) -> int: SCREAMING_SNAKE_CASE__ = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=_snake_case , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=_snake_case , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=_snake_case , default=8888 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=_snake_case , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=_snake_case , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=_snake_case , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=_snake_case , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=_snake_case , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=_snake_case ) def __init__( self : Dict , _snake_case : Pipeline , _snake_case : str , _snake_case : int , _snake_case : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = pipeline SCREAMING_SNAKE_CASE__ = host SCREAMING_SNAKE_CASE__ = port SCREAMING_SNAKE_CASE__ = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(F"""Serving model over {host}:{port}""" ) SCREAMING_SNAKE_CASE__ = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=_snake_case , response_class=_snake_case , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=_snake_case , response_class=_snake_case , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=_snake_case , response_class=_snake_case , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=_snake_case , response_class=_snake_case , methods=["POST"] , ), ] , timeout=600 , ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowerCAmelCase_ ( self : int ) -> Optional[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowerCAmelCase_ ( self : int , _snake_case : str = Body(_snake_case , embed=_snake_case ) , _snake_case : bool = Body(_snake_case , embed=_snake_case ) ) -> List[str]: try: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.tokenize(_snake_case ) if return_ids: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.convert_tokens_to_ids(_snake_case ) return ServeTokenizeResult(tokens=_snake_case , tokens_ids=_snake_case ) else: return ServeTokenizeResult(tokens=_snake_case ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(_snake_case )} ) def lowerCAmelCase_ ( self : str , _snake_case : List[int] = Body(_snake_case , embed=_snake_case ) , _snake_case : bool = Body(_snake_case , embed=_snake_case ) , _snake_case : bool = Body(_snake_case , embed=_snake_case ) , ) -> Optional[int]: try: SCREAMING_SNAKE_CASE__ = self._pipeline.tokenizer.decode(_snake_case , _snake_case , _snake_case ) return ServeDeTokenizeResult(model="" , text=_snake_case ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(_snake_case )} ) async def lowerCAmelCase_ ( self : List[Any] , _snake_case : Dict=Body(_snake_case , embed=_snake_case ) ) -> List[Any]: # Check we don't have empty string if len(_snake_case ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model SCREAMING_SNAKE_CASE__ = self._pipeline(_snake_case ) return ServeForwardResult(output=_snake_case ) except Exception as e: raise HTTPException(500 , {"error": str(_snake_case )} )
538
"""simple docstring""" from math import pi def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
538
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) set_seed(7_7_0) lowerCamelCase_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowerCamelCase_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowerCamelCase_ = os.path.dirname(os.path.abspath(__file__)) lowerCamelCase_ = os.path.join(os.path.expanduser("~"), ".cache") lowerCamelCase_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def __lowerCamelCase ( a_ : List[Any] , a_ : List[str]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Optional[Any] = model_type if use_small: key += "_small" return os.path.join(a_ , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[Any] ) -> List[Any]: os.makedirs(a_ , exist_ok=a_ ) hf_hub_download(repo_id=a_ , filename=a_ , local_dir=a_ ) def __lowerCamelCase ( a_ : Tuple , a_ : int , a_ : List[str]=False , a_ : str="text" ) -> Optional[int]: if model_type == "text": __SCREAMING_SNAKE_CASE :Union[str, Any] = BarkSemanticModel __SCREAMING_SNAKE_CASE :Optional[Any] = BarkSemanticConfig __SCREAMING_SNAKE_CASE :List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __SCREAMING_SNAKE_CASE :Union[str, Any] = BarkCoarseModel __SCREAMING_SNAKE_CASE :Tuple = BarkCoarseConfig __SCREAMING_SNAKE_CASE :Optional[Any] = BarkCoarseGenerationConfig elif model_type == "fine": __SCREAMING_SNAKE_CASE :str = BarkFineModel __SCREAMING_SNAKE_CASE :List[str] = BarkFineConfig __SCREAMING_SNAKE_CASE :List[Any] = BarkFineGenerationConfig else: raise NotImplementedError() __SCREAMING_SNAKE_CASE :Dict = f'''{model_type}_small''' if use_small else model_type __SCREAMING_SNAKE_CASE :List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a_ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __SCREAMING_SNAKE_CASE :Dict = torch.load(a_ , map_location=a_ ) # this is a hack __SCREAMING_SNAKE_CASE :Tuple = checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __SCREAMING_SNAKE_CASE :Optional[Any] = model_args['''vocab_size'''] __SCREAMING_SNAKE_CASE :Optional[int] = model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __SCREAMING_SNAKE_CASE :Any = model_args.pop('''n_head''' ) __SCREAMING_SNAKE_CASE :List[Any] = model_args.pop('''n_embd''' ) __SCREAMING_SNAKE_CASE :Dict = model_args.pop('''n_layer''' ) __SCREAMING_SNAKE_CASE :Dict = ConfigClass(**checkpoint['''model_args'''] ) __SCREAMING_SNAKE_CASE :int = ModelClass(config=a_ ) __SCREAMING_SNAKE_CASE :List[Any] = GenerationConfigClass() __SCREAMING_SNAKE_CASE :Any = model_generation_config __SCREAMING_SNAKE_CASE :List[Any] = checkpoint['''model'''] # fixup checkpoint __SCREAMING_SNAKE_CASE :Any = '''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(a_ ): # replace part of the key with corresponding layer name in HF implementation __SCREAMING_SNAKE_CASE :Tuple = k[len(a_ ) :] for old_layer_name in new_layer_name_dict: __SCREAMING_SNAKE_CASE :int = new_k.replace(a_ , new_layer_name_dict[old_layer_name] ) __SCREAMING_SNAKE_CASE :Dict = state_dict.pop(a_ ) __SCREAMING_SNAKE_CASE :Dict = set(state_dict.keys() ) - set(model.state_dict().keys() ) __SCREAMING_SNAKE_CASE :List[Any] = {k for k in extra_keys if not k.endswith('''.attn.bias''' )} __SCREAMING_SNAKE_CASE :Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __SCREAMING_SNAKE_CASE :Optional[Any] = {k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(a_ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(a_ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(a_ , strict=a_ ) __SCREAMING_SNAKE_CASE :int = model.num_parameters(exclude_embeddings=a_ ) __SCREAMING_SNAKE_CASE :str = checkpoint['''best_val_loss'''].item() logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(a_ , 3 )} loss''' ) model.eval() model.to(a_ ) del checkpoint, state_dict return model def __lowerCamelCase ( a_ : Any , a_ : List[Any]=False , a_ : List[str]="text" ) -> Optional[Any]: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __SCREAMING_SNAKE_CASE :int = '''cpu''' # do conversion on cpu __SCREAMING_SNAKE_CASE :int = _get_ckpt_path(a_ , use_small=a_ ) __SCREAMING_SNAKE_CASE :int = _load_model(a_ , a_ , model_type=a_ , use_small=a_ ) # load bark initial model __SCREAMING_SNAKE_CASE :Optional[Any] = _bark_load_model(a_ , '''cpu''' , model_type=a_ , use_small=a_ ) if model_type == "text": __SCREAMING_SNAKE_CASE :List[Any] = bark_model['''model'''] if model.num_parameters(exclude_embeddings=a_ ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __SCREAMING_SNAKE_CASE :Optional[Any] = 5 __SCREAMING_SNAKE_CASE :int = 10 if model_type in ["text", "coarse"]: __SCREAMING_SNAKE_CASE :List[str] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int ) __SCREAMING_SNAKE_CASE :Optional[Any] = bark_model(a_ )[0] __SCREAMING_SNAKE_CASE :List[str] = model(a_ ) # take last logits __SCREAMING_SNAKE_CASE :Any = output_new_model_total.logits[:, [-1], :] else: __SCREAMING_SNAKE_CASE :List[str] = 3 __SCREAMING_SNAKE_CASE :Any = 8 __SCREAMING_SNAKE_CASE :Any = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __SCREAMING_SNAKE_CASE :Any = model(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = bark_model(a_ , a_ ) __SCREAMING_SNAKE_CASE :List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) def __lowerCamelCase ( a_ : Dict , a_ : str , a_ : Optional[Any] , a_ : List[str] , a_ : Tuple , a_ : Tuple , ) -> List[str]: __SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join(a_ , a_ ) __SCREAMING_SNAKE_CASE :str = BarkSemanticConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) __SCREAMING_SNAKE_CASE :Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) __SCREAMING_SNAKE_CASE :Optional[Any] = BarkFineConfig.from_pretrained(os.path.join(a_ , '''config.json''' ) ) __SCREAMING_SNAKE_CASE :Optional[int] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __SCREAMING_SNAKE_CASE :List[str] = BarkSemanticModel.from_pretrained(a_ ) __SCREAMING_SNAKE_CASE :str = BarkCoarseModel.from_pretrained(a_ ) __SCREAMING_SNAKE_CASE :Any = BarkFineModel.from_pretrained(a_ ) __SCREAMING_SNAKE_CASE :Optional[int] = EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __SCREAMING_SNAKE_CASE :Any = BarkConfig.from_sub_model_configs( a_ , a_ , a_ , a_ ) __SCREAMING_SNAKE_CASE :Optional[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __SCREAMING_SNAKE_CASE :Tuple = BarkModel(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = semantic __SCREAMING_SNAKE_CASE :List[str] = coarseAcoustic __SCREAMING_SNAKE_CASE :Union[str, Any] = fineAcoustic __SCREAMING_SNAKE_CASE :str = codec __SCREAMING_SNAKE_CASE :Union[str, Any] = bark_generation_config Path(a_ ).mkdir(exist_ok=a_ ) bark.save_pretrained(a_ , repo_id=a_ , push_to_hub=a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") lowerCamelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
498
"""simple docstring""" import argparse import os import re lowerCamelCase_ = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase_ = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowerCamelCase_ = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def __lowerCamelCase ( a_ : Optional[Any] , a_ : bool = False ) -> Tuple: with open(a_ , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE :Union[str, Any] = f.read() __SCREAMING_SNAKE_CASE :Dict = content.split('''\n''' ) __SCREAMING_SNAKE_CASE :List[Any] = [] __SCREAMING_SNAKE_CASE :Optional[int] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __SCREAMING_SNAKE_CASE :str = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 __SCREAMING_SNAKE_CASE :Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __SCREAMING_SNAKE_CASE :List[str] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __SCREAMING_SNAKE_CASE :Optional[Any] = sorted(a_ , key=lambda a_ : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(a_ ) ) elif "\n".join(a_ ) != content: return True def __lowerCamelCase ( a_ : bool = False ) -> int: __SCREAMING_SNAKE_CASE :str = [os.path.join(a_ , a_ ) for f in os.listdir(a_ ) if f.endswith('''.py''' )] __SCREAMING_SNAKE_CASE :List[str] = [sort_auto_mapping(a_ , overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): __SCREAMING_SNAKE_CASE :str = [f for f, d in zip(a_ , a_ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {", ".join(a_ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
498
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Optional[int] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : List[Any] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Tuple = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
545
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase_ : def __init__( self , __lowerCAmelCase = None ): """simple docstring""" if components is None: __magic_name__ :List[Any] = [] __magic_name__ :str = list(__lowerCAmelCase ) def __len__( self ): """simple docstring""" return len(self.__components ) def __str__( self ): """simple docstring""" return "(" + ",".join(map(__lowerCAmelCase , self.__components ) ) + ")" def __add__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = len(self ) if size == len(__lowerCAmelCase ): __magic_name__ :Dict = [self.__components[i] + other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) else: raise Exception('''must have the same size''' ) def __sub__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = len(self ) if size == len(__lowerCAmelCase ): __magic_name__ :Tuple = [self.__components[i] - other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... def __mul__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , (float, int) ): __magic_name__ :List[str] = [c * other for c in self.__components] return Vector(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(self ) == len(__lowerCAmelCase ): __magic_name__ :Optional[int] = len(self ) __magic_name__ :Union[str, Any] = [self.__components[i] * other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return sum(__lowerCAmelCase ) else: # error case raise Exception('''invalid operand!''' ) def A ( self ): """simple docstring""" return Vector(self.__components ) def A ( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ :Optional[int] = value def A ( self ): """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) __magic_name__ :Dict = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCAmelCase ) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" __magic_name__ :str = self * other __magic_name__ :int = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowercase ( snake_case ): """simple docstring""" assert isinstance(snake_case, snake_case ) return Vector([0] * dimension ) def __lowercase ( snake_case, snake_case ): """simple docstring""" assert isinstance(snake_case, snake_case ) and (isinstance(snake_case, snake_case )) __magic_name__ :List[str] = [0] * dimension __magic_name__ :int = 1 return Vector(snake_case ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" assert ( isinstance(snake_case, snake_case ) and isinstance(snake_case, snake_case ) and (isinstance(snake_case, (int, float) )) ) return x * scalar + y def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" random.seed(snake_case ) __magic_name__ :Any = [random.randint(snake_case, snake_case ) for _ in range(snake_case )] return Vector(snake_case ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = matrix __magic_name__ :Union[str, Any] = w __magic_name__ :Union[str, Any] = h def __str__( self ): """simple docstring""" __magic_name__ :List[Any] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , __lowerCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __magic_name__ :str = [] for i in range(self.__height ): __magic_name__ :List[str] = [ self.__matrix[i][j] + other.component(__lowerCAmelCase , __lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(__lowerCAmelCase ) return Matrix(__lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , __lowerCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __magic_name__ :int = [] for i in range(self.__height ): __magic_name__ :Tuple = [ self.__matrix[i][j] - other.component(__lowerCAmelCase , __lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(__lowerCAmelCase ) return Matrix(__lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... def __mul__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # matrix-vector if len(__lowerCAmelCase ) == self.__width: __magic_name__ :Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ :Optional[int] = [ self.__matrix[i][j] * other.component(__lowerCAmelCase ) for j in range(self.__width ) ] ans.change_component(__lowerCAmelCase , sum(__lowerCAmelCase ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(__lowerCAmelCase , (int, float) ): # matrix-scalar __magic_name__ :Optional[Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowerCAmelCase , self.__width , self.__height ) return None def A ( self ): """simple docstring""" return self.__height def A ( self ): """simple docstring""" return self.__width def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ :Union[str, Any] = value else: raise Exception('''change_component: indices out of bounds''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) __magic_name__ :Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCAmelCase ) ): __magic_name__ :Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCAmelCase , __lowerCAmelCase ) else: raise Exception('''Indices out of bounds''' ) def A ( self ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ :int = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCAmelCase ) for y in range(self.__width ) ] return sum(__lowerCAmelCase ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :list[list[float]] = [[0] * n for _ in range(snake_case )] return Matrix(snake_case, snake_case, snake_case ) def __lowercase ( snake_case, snake_case, snake_case, snake_case ): """simple docstring""" random.seed(snake_case ) __magic_name__ :list[list[float]] = [ [random.randint(snake_case, snake_case ) for _ in range(snake_case )] for _ in range(snake_case ) ] return Matrix(snake_case, snake_case, snake_case )
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_= FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa ) UpperCAmelCase_, UpperCAmelCase_= FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__UpperCAmelCase , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa ) UpperCAmelCase_= controlnet_params UpperCAmelCase_= """bird""" UpperCAmelCase_= jax.device_count() UpperCAmelCase_= pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) UpperCAmelCase_= pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase_= jax.random.PRNGKey(0 ) UpperCAmelCase_= jax.random.split(__UpperCAmelCase , jax.device_count() ) UpperCAmelCase_= replicate(__UpperCAmelCase ) UpperCAmelCase_= shard(__UpperCAmelCase ) UpperCAmelCase_= shard(__UpperCAmelCase ) UpperCAmelCase_= pipe( prompt_ids=__UpperCAmelCase , image=__UpperCAmelCase , params=__UpperCAmelCase , prng_seed=__UpperCAmelCase , num_inference_steps=50 , jit=__UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase_= images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase_= images[0, 253:256, 253:256, -1] UpperCAmelCase_= jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_= jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_, UpperCAmelCase_= FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa ) UpperCAmelCase_, UpperCAmelCase_= FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=__UpperCAmelCase , from_pt=__UpperCAmelCase , dtype=jnp.bfloataa ) UpperCAmelCase_= controlnet_params UpperCAmelCase_= """Chef in the kitchen""" UpperCAmelCase_= jax.device_count() UpperCAmelCase_= pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase_= load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) UpperCAmelCase_= pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase_= jax.random.PRNGKey(0 ) UpperCAmelCase_= jax.random.split(__UpperCAmelCase , jax.device_count() ) UpperCAmelCase_= replicate(__UpperCAmelCase ) UpperCAmelCase_= shard(__UpperCAmelCase ) UpperCAmelCase_= shard(__UpperCAmelCase ) UpperCAmelCase_= pipe( prompt_ids=__UpperCAmelCase , image=__UpperCAmelCase , params=__UpperCAmelCase , prng_seed=__UpperCAmelCase , num_inference_steps=50 , jit=__UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase_= images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase_= images[0, 253:256, 253:256, -1] UpperCAmelCase_= jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_= jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
593
0
def _snake_case (__lowercase): if not isinstance(lowercase_ , lowercase_): UpperCamelCase_ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_) if number < 1: UpperCamelCase_ = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowercase_) UpperCamelCase_ = 1 for i in range(1 , lowercase_): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
707
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
618
0