code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ : List[str] = logging.get_logger(__name__) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: UpperCamelCase_: Tuple = b.T UpperCamelCase_: Tuple = np.sum(np.square(UpperCAmelCase__ ) , axis=1 ) UpperCamelCase_: Optional[Any] = np.sum(np.square(UpperCAmelCase__ ) , axis=0 ) UpperCamelCase_: Optional[int] = np.matmul(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: List[str] = x.reshape(-1 , 3 ) UpperCamelCase_: Union[str, Any] = squared_euclidean_distance(UpperCAmelCase__ , UpperCAmelCase__ ) return np.argmin(UpperCAmelCase__ , axis=1 ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Any =['''pixel_values'''] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) UpperCamelCase_: List[str] = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCamelCase_: str = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Any = np.array(_lowerCamelCase ) if clusters is not None else None UpperCamelCase_: Optional[int] = do_resize UpperCamelCase_: List[Any] = size UpperCamelCase_: Optional[int] = resample UpperCamelCase_: str = do_normalize UpperCamelCase_: str = do_color_quantize def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCamelCase_: Any = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['height'], size['width']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None , ): UpperCamelCase_: Optional[Any] = rescale(image=_lowerCamelCase , scale=1 / 1_2_7.5 , data_format=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = image - 1 return image def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): UpperCamelCase_: Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase_: Tuple = size if size is not None else self.size UpperCamelCase_: Union[str, Any] = get_size_dict(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_: Any = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_: str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase_: Dict = clusters if clusters is not None else self.clusters UpperCamelCase_: Dict = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[int] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_: Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCamelCase_: Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase_: Optional[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: UpperCamelCase_: Any = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase_: Optional[Any] = np.array(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCamelCase_: Dict = images.shape[0] UpperCamelCase_: Any = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase_: List[Any] = list(_lowerCamelCase ) else: UpperCamelCase_: int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCamelCase_: str = {'input_ids': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
57
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[int] = inspect.getfile(accelerate.test_utils ) UpperCamelCase_: Dict = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 UpperCamelCase_: Tuple = test_metrics @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _a ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def _a ( self ): self.test_metrics.main() @require_multi_gpu def _a ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) UpperCamelCase_: List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCamelCase , env=os.environ.copy() )
57
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A_ ( a_ ): _SCREAMING_SNAKE_CASE = 42 class A_ ( a_ , a_ ): @register_to_config def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int = 6_55_36 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 0 , __SCREAMING_SNAKE_CASE : str = "fourier" , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __SCREAMING_SNAKE_CASE : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __SCREAMING_SNAKE_CASE : Tuple[str] = "UNetMidBlock1D" , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Tuple[int] = (32, 32, 64) , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = False , ): super().__init__() __a = sample_size # time if time_embedding_type == "fourier": __a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__SCREAMING_SNAKE_CASE , log=__SCREAMING_SNAKE_CASE , flip_sin_to_cos=__SCREAMING_SNAKE_CASE ) __a = 2 * block_out_channels[0] elif time_embedding_type == "positional": __a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__SCREAMING_SNAKE_CASE , downscale_freq_shift=__SCREAMING_SNAKE_CASE ) __a = block_out_channels[0] if use_timestep_embedding: __a = block_out_channels[0] * 4 __a = TimestepEmbedding( in_channels=__SCREAMING_SNAKE_CASE , time_embed_dim=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , out_dim=block_out_channels[0] , ) __a = nn.ModuleList([] ) __a = None __a = nn.ModuleList([] ) __a = None # down __a = in_channels for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __a = output_channel __a = block_out_channels[i] if i == 0: input_channel += extra_in_channels __a = i == len(__SCREAMING_SNAKE_CASE ) - 1 __a = get_down_block( __SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid __a = get_mid_block( __SCREAMING_SNAKE_CASE , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__SCREAMING_SNAKE_CASE , add_downsample=__SCREAMING_SNAKE_CASE , ) # up __a = list(reversed(__SCREAMING_SNAKE_CASE ) ) __a = reversed_block_out_channels[0] if out_block_type is None: __a = out_channels else: __a = block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): __a = output_channel __a = ( reversed_block_out_channels[i + 1] if i < len(__SCREAMING_SNAKE_CASE ) - 1 else final_upsample_channels ) __a = i == len(__SCREAMING_SNAKE_CASE ) - 1 __a = get_up_block( __SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) __a = output_channel # out __a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __a = get_out_block( out_block_type=__SCREAMING_SNAKE_CASE , num_groups_out=__SCREAMING_SNAKE_CASE , embed_dim=block_out_channels[0] , out_channels=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , fc_dim=block_out_channels[-1] // 4 , ) def _UpperCAmelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] , __SCREAMING_SNAKE_CASE : bool = True , ): __a = timestep if not torch.is_tensor(__SCREAMING_SNAKE_CASE ): __a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(sample.device ) __a = self.time_proj(__SCREAMING_SNAKE_CASE ) if self.config.use_timestep_embedding: __a = self.time_mlp(__SCREAMING_SNAKE_CASE ) else: __a = timestep_embed[..., None] __a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __a = () for downsample_block in self.down_blocks: __a , __a = downsample_block(hidden_states=__SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __a = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __a = down_block_res_samples[-1:] __a = down_block_res_samples[:-1] __a = upsample_block(__SCREAMING_SNAKE_CASE , res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE ) # 5. post-process if self.out_block: __a = self.out_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return UNetaDOutput(sample=__SCREAMING_SNAKE_CASE )
525
def __A ( _A ): """simple docstring""" __a = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def __A ( _A , _A ): """simple docstring""" __a = [] for dlist, weight in zip(_A , _A ): __a = min(_A ) __a = max(_A ) __a = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __a = f"""Invalid weight of {weight:f} provided""" raise ValueError(_A ) score_lists.append(_A ) return score_lists def __A ( _A ): """simple docstring""" __a = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): __a = final_scores[j] + ele return final_scores def __A ( _A , _A ): """simple docstring""" __a = get_data(_A ) __a = calculate_each_score(_A , _A ) __a = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
525
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __lowerCAmelCase : list[int] ) -> list[int]: if len(__lowerCAmelCase ) == 0: return array snake_case , snake_case = min(__lowerCAmelCase ), max(__lowerCAmelCase ) # Compute the variables snake_case = _max - _min + 1 snake_case , snake_case = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: snake_case = i - _min snake_case = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. snake_case = 0 for i in range(__lowerCAmelCase ): while holes_repeat[i] > 0: snake_case = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = input("Enter numbers separated by comma:\n") _SCREAMING_SNAKE_CASE = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
369
'''simple docstring''' from manim import * class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] )-> Union[str, Any]: snake_case = Rectangle(height=0.5 , width=0.5 ) snake_case = Rectangle(height=0.25 , width=0.25 ) snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case = [mem.copy() for i in range(6 )] snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text("""CPU""" , font_size=24 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) snake_case = [mem.copy() for i in range(4 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text("""GPU""" , font_size=24 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text("""Model""" , font_size=24 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) snake_case = [] snake_case = [] snake_case = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) snake_case = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) model_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case , *__snake_case ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(__snake_case ) snake_case = [] snake_case = [] for i, rect in enumerate(__snake_case ): snake_case = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) ckpt_arr.append(__snake_case ) snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__snake_case ) self.add(*__snake_case , *__snake_case ) snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) snake_case = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__snake_case ) snake_case = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) snake_case = [meta_mem.copy() for i in range(6 )] snake_case = [meta_mem.copy() for i in range(6 )] snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) snake_case = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) snake_case = Text("""Disk""" , font_size=24 ) snake_case = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__snake_case , run_time=3 ) , Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) snake_case = [] for i, rect in enumerate(__snake_case ): snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(FadeOut(__snake_case ) ) snake_case = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case , run_time=3 ) ) self.play( FadeOut(__snake_case , __snake_case , *__snake_case , *__snake_case ) , ) self.wait()
369
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = "▁" _A = {"vocab_file": "sentencepiece.bpe.model"} _A = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } _A = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off _A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class _lowerCAmelCase ( __lowercase ): _lowercase =VOCAB_FILES_NAMES _lowercase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase =PRETRAINED_VOCAB_FILES_MAP _lowercase =['''input_ids''', '''attention_mask'''] _lowercase =[] _lowercase =[] def __init__( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase = None , **_UpperCamelCase , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A , tgt_lang=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 lowerCAmelCase_ = len(self.sp_model ) lowerCAmelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } lowerCAmelCase_ = {v: k for k, v in self.lang_code_to_id.items()} lowerCAmelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCAmelCase_ = src_lang if src_lang is not None else "en_XX" lowerCAmelCase_ = self.lang_code_to_id[self._src_lang] lowerCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __a ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __a ( self ) -> List[Any]: return self._src_lang @src_lang.setter def __a ( self , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self ) -> Any: lowerCAmelCase_ = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , _UpperCamelCase ) -> Optional[int]: return self.sp_model.encode(_A , out_type=_A ) def __a ( self , _UpperCamelCase ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self , _UpperCamelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = "" lowerCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token lowerCAmelCase_ = True lowerCAmelCase_ = [] else: current_sub_tokens.append(_A ) lowerCAmelCase_ = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> int: if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) lowerCAmelCase_ = [1] * len(self.prefix_tokens ) lowerCAmelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Optional[Any]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase_ = src_lang lowerCAmelCase_ = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) lowerCAmelCase_ = self.convert_tokens_to_ids(_A ) lowerCAmelCase_ = tgt_lang_id return inputs def __a ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> str: lowerCAmelCase_ = src_lang lowerCAmelCase_ = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __a ( self ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __a ( self ) -> List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = self.lang_code_to_id[src_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id] def __a ( self , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = self.lang_code_to_id[tgt_lang] lowerCAmelCase_ = [self.cur_lang_code_id] lowerCAmelCase_ = [self.eos_token_id]
705
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _A = get_logger(__name__) _A = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _lowerCAmelCase : @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase : @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase ( __a ): @add_start_docstrings(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> jnp.ndarray: for processor in self: lowerCAmelCase_ = inspect.signature(processor.__call__ ).parameters if len(_UpperCamelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"""Make sure that all the required parameters: {list(function_args.keys() )} for """ f"""{processor.__class__} are passed to the logits processor.""" ) lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Tuple: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not (temperature > 0): raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" ) lowerCAmelCase_ = temperature def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = scores / self.temperature return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> Union[str, Any]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or (min_tokens_to_keep < 1): raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) lowerCAmelCase_ = top_p lowerCAmelCase_ = filter_value lowerCAmelCase_ = min_tokens_to_keep def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , scores.shape[-1] ) lowerCAmelCase_ = jnp.full_like(_UpperCamelCase , self.filter_value ) lowerCAmelCase_ = jax.nn.softmax(_UpperCamelCase , axis=-1 ).cumsum(axis=-1 ) lowerCAmelCase_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowerCAmelCase_ = jnp.roll(_UpperCamelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_UpperCamelCase ) # min tokens to keep lowerCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCamelCase ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jax.lax.sort_key_val(_UpperCamelCase , _UpperCamelCase )[-1] return next_scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = -float("Inf" ) , _UpperCamelCase = 1 ) -> List[Any]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or top_k <= 0: raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) lowerCAmelCase_ = max(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = filter_value def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ , lowerCAmelCase_ = scores.shape lowerCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value ) lowerCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check lowerCAmelCase_ , lowerCAmelCase_ = lax.top_k(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowerCAmelCase_ = topk_scores.flatten() lowerCAmelCase_ = topk_indices.flatten() + shift lowerCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCamelCase ) lowerCAmelCase_ = next_scores_flat.reshape(_UpperCamelCase , _UpperCamelCase ) return next_scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Any: lowerCAmelCase_ = bos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase_ = 1 - jnp.bool_(cur_len - 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]: lowerCAmelCase_ = max_length lowerCAmelCase_ = eos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: if not isinstance(_UpperCamelCase , _UpperCamelCase ) or min_length < 0: raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or eos_token_id < 0: raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) lowerCAmelCase_ = min_length lowerCAmelCase_ = eos_token_id def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied lowerCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = list(_UpperCamelCase ) lowerCAmelCase_ = begin_index def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index ) lowerCAmelCase_ = jnp.where(_UpperCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCamelCase ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> Optional[Any]: lowerCAmelCase_ = list(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: lowerCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = dict(_UpperCamelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowerCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowerCAmelCase_ = force_token_array.at[index].set(_UpperCamelCase ) lowerCAmelCase_ = jnp.intaa(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> jnp.ndarray: def _force_token(_UpperCamelCase ): lowerCAmelCase_ = scores.shape[0] lowerCAmelCase_ = self.force_token_array[generation_idx] lowerCAmelCase_ = jnp.ones_like(_UpperCamelCase , dtype=scores.dtype ) * -float("inf" ) lowerCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowerCAmelCase_ = lax.dynamic_update_slice(_UpperCamelCase , _UpperCamelCase , (0, current_token) ) return new_scores lowerCAmelCase_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCamelCase ) , lambda: scores , ) , ) return scores class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = generate_config.eos_token_id lowerCAmelCase_ = generate_config.no_timestamps_token_id lowerCAmelCase_ = generate_config.no_timestamps_token_id + 1 lowerCAmelCase_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_UpperCamelCase , "max_initial_timestamp_index" ): lowerCAmelCase_ = generate_config.max_initial_timestamp_index else: lowerCAmelCase_ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowerCAmelCase_ = model_config.vocab_size def __call__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: # suppress <|notimestamps|> which is handled by without_timestamps lowerCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCamelCase , ) lowerCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCamelCase , _UpperCamelCase , ) return jnp.where( _UpperCamelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCamelCase , ) lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCamelCase , ) lowerCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index lowerCAmelCase_ = jnp.where( _UpperCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCamelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowerCAmelCase_ = jax.nn.log_softmax(_UpperCamelCase , axis=-1 ) def handle_cumulative_probs(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowerCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCamelCase , ) lowerCAmelCase_ = jax.vmap(_UpperCamelCase )(_UpperCamelCase , _UpperCamelCase ) return scores
279
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) ) binary_number += "0" * shift_amount return binary_number def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) snake_case_ = str(bin(SCREAMING_SNAKE_CASE__ ) )[2:] if shift_amount >= len(SCREAMING_SNAKE_CASE__ ): return "0b0" snake_case_ = binary_number[: len(SCREAMING_SNAKE_CASE__ ) - shift_amount] return "0b" + shifted_binary_number def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if number >= 0: # Get binary representation of positive number snake_case_ = '''0''' + str(bin(SCREAMING_SNAKE_CASE__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) # Find 2's complement of number snake_case_ = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] snake_case_ = ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + binary_number ) if shift_amount >= len(SCREAMING_SNAKE_CASE__ ): return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(SCREAMING_SNAKE_CASE__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE_ = 2_99_79_24_58 # Symbols SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = symbols('ct x y z') def UpperCamelCase__ ( _lowercase : float ) -> float: if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCamelCase__ ( _lowercase : float ) -> float: return 1 / sqrt(1 - beta(_lowercase ) ** 2 ) def UpperCamelCase__ ( _lowercase : float ) -> np.ndarray: return np.array( [ [gamma(_lowercase ), -gamma(_lowercase ) * beta(_lowercase ), 0, 0], [-gamma(_lowercase ) * beta(_lowercase ), gamma(_lowercase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase__ ( _lowercase : float , _lowercase : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: __UpperCAmelCase: List[str] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowercase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE_ = transform(29_97_92_45) print('Example of four vector: ') print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE_ = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
523
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowercase : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : int = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } lowercase : Tuple = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } lowercase : str = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ElectraTokenizer def __init__( self :Optional[Any] , a :List[Any]=None , a :Tuple=None , a :Tuple=True , a :Dict="[UNK]" , a :Optional[int]="[SEP]" , a :str="[PAD]" , a :Union[str, Any]="[CLS]" , a :int="[MASK]" , a :int=True , a :int=None , **a :List[str] , ) -> str: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) __UpperCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): __UpperCamelCase : Union[str, Any] = getattr(a , normalizer_state.pop("type" ) ) __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : Optional[int] = strip_accents __UpperCamelCase : str = tokenize_chinese_chars __UpperCamelCase : List[str] = normalizer_class(**a ) __UpperCamelCase : List[str] = do_lower_case def _lowerCamelCase ( self :Any , a :Any , a :Union[str, Any]=None ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self :Optional[int] , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : int = [self.sep_token_id] __UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self :int , a :str , a :Optional[str] = None ) -> Tuple[str]: __UpperCamelCase : Optional[Any] = self._tokenizer.model.save(a , name=a ) return tuple(a )
94
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> None: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Optional[Any] = analyze_text(_lowerCamelCase) __UpperCamelCase : List[str] = list(" " + ascii_lowercase) # what is our total sum of probabilities. __UpperCamelCase : Any = sum(single_char_strings.values()) # one length string __UpperCamelCase : Optional[Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __UpperCamelCase : List[Any] = single_char_strings[ch] __UpperCamelCase : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(_lowerCamelCase) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum):.1f}') # two len string __UpperCamelCase : Optional[Any] = sum(two_char_strings.values()) __UpperCamelCase : Tuple = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __UpperCamelCase : List[str] = cha + cha if sequence in two_char_strings: __UpperCamelCase : Optional[Any] = two_char_strings[sequence] __UpperCamelCase : Any = int(_lowerCamelCase) / all_sum my_sec_sum += prob * math.loga(_lowerCamelCase) # print second entropy print(F'{round(-1 * my_sec_sum):.1f}') # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum)):.1f}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> tuple[dict, dict]: '''simple docstring''' __UpperCamelCase : Tuple = Counter() # type: ignore __UpperCamelCase : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowerCamelCase) - 1): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE ( ) -> List[str]: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
94
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowercase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **__UpperCAmelCase ) -> List[str]: super().__init__(**__UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Dict: if "text_queries" in kwargs: A : Optional[int] = kwargs.pop('''text_queries''' ) if isinstance(__UpperCAmelCase , (str, Image.Image) ): A : Optional[Any] = {'''image''': image, '''candidate_labels''': candidate_labels} else: A : Optional[Any] = image A : int = super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) return results def snake_case ( self , **__UpperCAmelCase ) -> Tuple: A : Optional[int] = {} if "threshold" in kwargs: A : Optional[int] = kwargs['''threshold'''] if "top_k" in kwargs: A : int = kwargs['''top_k'''] return {}, {}, postprocess_params def snake_case ( self , __UpperCAmelCase ) -> List[Any]: A : str = load_image(inputs['''image'''] ) A : Optional[int] = inputs['''candidate_labels'''] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): A : Optional[Any] = candidate_labels.split(''',''' ) A : Optional[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__UpperCAmelCase ): A : str = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework ) A : Optional[Any] = self.image_processor(__UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(__UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def snake_case ( self , __UpperCAmelCase ) -> Tuple: A : Optional[int] = model_inputs.pop('''target_size''' ) A : Any = model_inputs.pop('''candidate_label''' ) A : List[Any] = model_inputs.pop('''is_last''' ) A : Dict = self.model(**__UpperCAmelCase ) A : Tuple = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0.1 , __UpperCAmelCase=None ) -> str: A : List[Any] = [] for model_output in model_outputs: A : Tuple = model_output['''candidate_label'''] A : Any = BaseModelOutput(__UpperCAmelCase ) A : List[Any] = self.image_processor.post_process_object_detection( outputs=__UpperCAmelCase , threshold=__UpperCAmelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): A : int = outputs['''scores'''][index].item() A : int = self._get_bounding_box(outputs['''boxes'''][index][0] ) A : int = {'''score''': score, '''label''': label, '''box''': box} results.append(__UpperCAmelCase ) A : List[str] = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : x["score"] , reverse=__UpperCAmelCase ) if top_k: A : Any = results[:top_k] return results def snake_case ( self , __UpperCAmelCase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A : List[str] = box.int().tolist() A : Any = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
542
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Tuple = logging.get_logger(__name__) class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) A : Any = size if size is not None else {'''height''': 2_56, '''width''': 2_56} A : Any = get_size_dict(__UpperCAmelCase ) A : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} A : List[Any] = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) A : Dict = do_resize A : Tuple = size A : Union[str, Any] = resample A : Dict = do_center_crop A : int = crop_size A : Union[str, Any] = do_rescale A : str = rescale_factor A : Optional[Any] = do_normalize A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( __UpperCAmelCase , size=(size['''height'''], size['''width''']) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : Optional[Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: A : Optional[int] = do_resize if do_resize is not None else self.do_resize A : Optional[Any] = resample if resample is not None else self.resample A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop A : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale A : str = rescale_factor if rescale_factor is not None else self.rescale_factor A : Tuple = do_normalize if do_normalize is not None else self.do_normalize A : Optional[int] = image_mean if image_mean is not None else self.image_mean A : Dict = image_std if image_std is not None else self.image_std A : List[Any] = size if size is not None else self.size A : List[Any] = get_size_dict(__UpperCAmelCase ) A : Dict = crop_size if crop_size is not None else self.crop_size A : Tuple = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) A : Any = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : List[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: A : List[str] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: A : Dict = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: A : Union[str, Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: A : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] A : Optional[Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] A : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
542
1
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask snake_case = logging.getLogger(__name__) class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "token-classification" def __init__( self , lowercase__ ) -> List[Any]: """simple docstring""" if type(lowercase__ ) == dict: SCREAMING_SNAKE_CASE = Namespace(**lowercase__ ) SCREAMING_SNAKE_CASE = import_module('tasks' ) try: SCREAMING_SNAKE_CASE = getattr(lowercase__ , hparams.task_type ) SCREAMING_SNAKE_CASE = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) SCREAMING_SNAKE_CASE = self.token_classification_task.get_labels(hparams.labels ) SCREAMING_SNAKE_CASE = CrossEntropyLoss().ignore_index super().__init__(lowercase__ , len(self.labels ) , self.mode ) def A ( self , **lowercase__ ) -> List[str]: """simple docstring""" return self.model(**lowercase__ ) def A ( self , lowercase__ , lowercase__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE = self(**lowercase__ ) SCREAMING_SNAKE_CASE = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def A ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.hparams for mode in ["train", "dev", "test"]: SCREAMING_SNAKE_CASE = self._feature_file(lowercase__ ) if os.path.exists(lowercase__ ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase__ ) SCREAMING_SNAKE_CASE = torch.load(lowercase__ ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) SCREAMING_SNAKE_CASE = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase__ ) SCREAMING_SNAKE_CASE = self.token_classification_task.convert_examples_to_features( lowercase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase__ , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , lowercase__ ) torch.save(lowercase__ , lowercase__ ) def A ( self , lowercase__ , lowercase__ , lowercase__ = False ) -> DataLoader: """simple docstring""" SCREAMING_SNAKE_CASE = self._feature_file(lowercase__ ) logger.info('Loading features from cached file %s' , lowercase__ ) SCREAMING_SNAKE_CASE = torch.load(lowercase__ ) SCREAMING_SNAKE_CASE = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: SCREAMING_SNAKE_CASE = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: SCREAMING_SNAKE_CASE = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) SCREAMING_SNAKE_CASE = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , batch_size=lowercase__ ) def A ( self , lowercase__ , lowercase__ ) -> Any: """simple docstring""" """Compute validation""" "" SCREAMING_SNAKE_CASE = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE = self(**lowercase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs[:2] SCREAMING_SNAKE_CASE = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self , lowercase__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = torch.stack([x['val_loss'] for x in outputs] ).mean() SCREAMING_SNAKE_CASE = np.concatenate([x['pred'] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE = np.argmax(lowercase__ , axis=2 ) SCREAMING_SNAKE_CASE = np.concatenate([x['target'] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE = dict(enumerate(self.labels ) ) SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) SCREAMING_SNAKE_CASE = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(lowercase__ , lowercase__ ), 'precision': precision_score(lowercase__ , lowercase__ ), 'recall': recall_score(lowercase__ , lowercase__ ), 'f1': fa_score(lowercase__ , lowercase__ ), } SCREAMING_SNAKE_CASE = dict(results.items() ) SCREAMING_SNAKE_CASE = results return ret, preds_list, out_label_list def A ( self , lowercase__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(lowercase__ ) SCREAMING_SNAKE_CASE = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self , lowercase__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(lowercase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 SCREAMING_SNAKE_CASE = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase__ , lowercase__ ) -> Union[str, Any]: """simple docstring""" BaseTransformer.add_model_specific_args(lowercase__ , lowercase__ ) parser.add_argument( '--task_type' , default='NER' , type=lowercase__ , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=lowercase__ , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase__ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": snake_case = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) snake_case = NERTransformer.add_model_specific_args(parser, os.getcwd()) snake_case = parser.parse_args() snake_case = NERTransformer(args) snake_case = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 snake_case = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) snake_case = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
406
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging snake_case = logging.get_logger(__name__) snake_case = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCamelCase ( __magic_name__ ): """simple docstring""" @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ = None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = max_position_embeddings @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE = input_ids.shape[-1] SCREAMING_SNAKE_CASE = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' 'exceptions, performance degradation, or nothing at all.' ) return is_done class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ ) -> Optional[int]: """simple docstring""" warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' 'with `max_length = start_length + max_new_tokens` instead.' , lowercase__ , ) SCREAMING_SNAKE_CASE = start_length SCREAMING_SNAKE_CASE = max_new_tokens SCREAMING_SNAKE_CASE = start_length + max_new_tokens @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class UpperCamelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowercase__ , lowercase__ = None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = max_time SCREAMING_SNAKE_CASE = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase ( __magic_name__ ): """simple docstring""" @add_start_docstrings(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , **lowercase__ ) -> bool: """simple docstring""" return any(criteria(lowercase__ , lowercase__ ) for criteria in self ) @property def A ( self ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length elif isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length return None def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = stopping_criteria.max_length SCREAMING_SNAKE_CASE = deepcopy(SCREAMING_SNAKE_CASE_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter', SCREAMING_SNAKE_CASE_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE_ ) ) return new_stopping_criteria
406
1
'''simple docstring''' import re def A_( A : str): if len(re.findall('[ATCG]' , A)) != len(A): raise ValueError('Invalid Strand') return dna.translate(dna.maketrans('ATCG' , 'TAGC')) if __name__ == "__main__": import doctest doctest.testmod()
3
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a : int = logging.get_logger(__name__) def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] ): """simple docstring""" UpperCAmelCase_: str = """huggingface/label-files""" UpperCAmelCase_: Optional[int] = """imagenet-1k-id2label.json""" UpperCAmelCase_: Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase_: Optional[Any] = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_: Tuple = {v: k for k, v in idalabel.items()} UpperCAmelCase_: int = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCAmelCase_: Any = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1_0_0_0 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def lowerCAmelCase_ (lowerCAmelCase__: List[Any] ): """simple docstring""" if "stem.conv" in name: UpperCAmelCase_: Dict = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: UpperCAmelCase_: Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: UpperCAmelCase_: int = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): UpperCAmelCase_: List[Any] = """bit.""" + name if "bit" not in name and "classifier" not in name: UpperCAmelCase_: str = """bit.encoder.""" + name return name def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase_: Optional[int] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: str=False ): """simple docstring""" UpperCAmelCase_: List[str] = get_config(lowerCAmelCase__ ) # load original model from timm UpperCAmelCase_: str = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model UpperCAmelCase_: Optional[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCAmelCase_: Any = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = val.squeeze() if """head""" in key else val # load HuggingFace model UpperCAmelCase_: Union[str, Any] = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor UpperCAmelCase_: Any = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) UpperCAmelCase_: List[Any] = transform.transforms UpperCAmelCase_: Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } UpperCAmelCase_: int = BitImageProcessor( do_resize=lowerCAmelCase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: Tuple = transform(lowerCAmelCase__ ).unsqueeze(0 ) UpperCAmelCase_: Dict = processor(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): UpperCAmelCase_: Dict = model(lowerCAmelCase__ ) UpperCAmelCase_: str = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCAmelCase_: List[str] = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) a : Tuple = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
556
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _UpperCAmelCase : a = 42 a = None a = None def _lowerCAmelCase ( ): '''simple docstring''' A_ : Optional[int] = Node(1 ) A_ : Dict = Node(2 ) A_ : Union[str, Any] = Node(3 ) A_ : Any = Node(4 ) A_ : Union[str, Any] = Node(5 ) return tree def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : list[Any] = [] if root is None: return output A_ : Optional[Any] = deque([root] ) while process_queue: A_ : List[str] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : list[Any] = [] def populate_output(_lowerCAmelCase ,_lowerCAmelCase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(_lowerCAmelCase ,_lowerCAmelCase ) return output def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : list[Any] = [] def populate_output(_lowerCAmelCase ,_lowerCAmelCase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(_lowerCAmelCase ,_lowerCAmelCase ) return output def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if root is None: return [] A_ : list[Sequence[Node | None]] = [] A_ : Optional[Any] = 0 A_ : Union[str, Any] = height(_lowerCAmelCase ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_lowerCAmelCase ,_lowerCAmelCase ) ) A_ : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(_lowerCAmelCase ,_lowerCAmelCase ) ) A_ : int = 0 return output def _lowerCAmelCase ( ): # Main function for testing. '''simple docstring''' A_ : Dict = make_tree() print(f"""In-order Traversal: {inorder(_lowerCAmelCase )}""" ) print(f"""Pre-order Traversal: {preorder(_lowerCAmelCase )}""" ) print(f"""Post-order Traversal: {postorder(_lowerCAmelCase )}""" ,"""\n""" ) print(f"""Height of Tree: {height(_lowerCAmelCase )}""" ,"""\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_lowerCAmelCase ) ,"""\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 ,height(_lowerCAmelCase ) + 1 ): print(f"""Level {level}:""" ,get_nodes_from_left_to_right(_lowerCAmelCase ,level=_lowerCAmelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
481
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' A_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: A_ : str = """""" else: A_ : List[str] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A_ : str = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Optional[Any] = in_proj_bias[: config.hidden_size] A_ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : str = in_proj_weight[ -config.hidden_size :, : ] A_ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : List[str] = dct.pop(_lowerCAmelCase ) A_ : Any = val def _lowerCAmelCase ( ): '''simple docstring''' A_ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Union[str, Any] = Image.open(requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Any = DeiTConfig() # all deit models have fine-tuned heads A_ : Optional[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ : Optional[int] = 1_0_0_0 A_ : List[Any] = """huggingface/label-files""" A_ : str = """imagenet-1k-id2label.json""" A_ : Union[str, Any] = json.load(open(hf_hub_download(_lowerCAmelCase ,_lowerCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) ) A_ : Optional[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A_ : Union[str, Any] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} A_ : Dict = int(deit_name[-6:-4] ) A_ : Any = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A_ : str = 1_9_2 A_ : Dict = 7_6_8 A_ : List[Any] = 1_2 A_ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A_ : Optional[int] = 3_8_4 A_ : List[Any] = 1_5_3_6 A_ : Optional[Any] = 1_2 A_ : List[str] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A_ : Dict = 1_0_2_4 A_ : int = 4_0_9_6 A_ : Any = 2_4 A_ : str = 1_6 # load original model from timm A_ : int = timm.create_model(_lowerCAmelCase ,pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : Union[str, Any] = timm_model.state_dict() A_ : Optional[Any] = create_rename_keys(_lowerCAmelCase ,_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # load HuggingFace model A_ : List[str] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor A_ : List[Any] = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ : Any = DeiTImageProcessor(size=_lowerCAmelCase ,crop_size=config.image_size ) A_ : Optional[int] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) A_ : List[str] = encoding["""pixel_values"""] A_ : List[Any] = model(_lowerCAmelCase ) A_ : Tuple = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase ,outputs.logits ,atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
481
1
'''simple docstring''' import enum import shutil import sys a__ , a__ : Any = shutil.get_terminal_size() a__ : Optional[int] = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class __snake_case ( enum.Enum ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_="" ) ->Optional[Any]: sys.stdout.write(str(UpperCAmelCase_ ) + end ) sys.stdout.flush() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_="" ) ->List[str]: forceWrite(f'''\u001b[{color}m{content}\u001b[0m''' , UpperCAmelCase_ ) def __lowerCamelCase ( ) ->Optional[Any]: forceWrite('\r' ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def __lowerCamelCase ( ) ->str: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def __lowerCamelCase ( ) ->Tuple: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
368
'''simple docstring''' from math import loga def __lowerCamelCase ( UpperCAmelCase_ ) ->int: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
368
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=13 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Tuple=224 , lowerCamelCase_ : Optional[Any]=30 , lowerCamelCase_ : Tuple=400 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : int=None , lowerCamelCase_ : str=True , lowerCamelCase_ : int=[0.5, 0.5, 0.5] , lowerCamelCase_ : Tuple=[0.5, 0.5, 0.5] , ) -> Tuple: __magic_name__ : List[Any] = size if size is not None else {'''height''': 18, '''width''': 18} __magic_name__ : Any = parent __magic_name__ : str = batch_size __magic_name__ : Tuple = num_channels __magic_name__ : str = image_size __magic_name__ : Dict = min_resolution __magic_name__ : str = max_resolution __magic_name__ : int = do_resize __magic_name__ : List[Any] = size __magic_name__ : Tuple = do_normalize __magic_name__ : Dict = image_mean __magic_name__ : str = image_std def UpperCAmelCase__ ( self : str ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase ( _lowerCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =ViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: __magic_name__ : str = EfficientFormerImageProcessorTester(self ) @property def UpperCAmelCase__ ( self : str ) -> int: return self.image_proc_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : str ) -> int: __magic_name__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: pass def UpperCAmelCase__ ( self : int ) -> List[Any]: # Initialize image_processor __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input __magic_name__ : Tuple = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processor __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ : List[Any] = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: # Initialize image_processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input __magic_name__ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched __magic_name__ : List[Any] = image_processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
703
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowerCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase_ : float , lowerCamelCase_ : Callable , lowerCamelCase_ : int , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : str = None , ) -> Optional[int]: super().__init__() __magic_name__ : Union[str, Any] = initial_learning_rate __magic_name__ : Optional[int] = warmup_steps __magic_name__ : Union[str, Any] = power __magic_name__ : List[Any] = decay_schedule_fn __magic_name__ : Dict = name def __call__( self : Any , lowerCamelCase_ : Dict ) -> Optional[Any]: with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __magic_name__ : Union[str, Any] = tf.cast(lowerCamelCase_ , tf.floataa ) __magic_name__ : Dict = tf.cast(self.warmup_steps , tf.floataa ) __magic_name__ : Dict = global_step_float / warmup_steps_float __magic_name__ : List[str] = self.initial_learning_rate * tf.math.pow(lowerCamelCase_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowercase__ ( __A: float ,__A: int ,__A: int ,__A: float = 0.0 ,__A: float = 0.9 ,__A: float = 0.999 ,__A: float = 1e-8 ,__A: Optional[float] = None ,__A: Optional[float] = None ,__A: float = 0.0 ,__A: float = 1.0 ,__A: Optional[List[str]] = None ,): '''simple docstring''' __magic_name__ : Any = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__A ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=__A ,) if num_warmup_steps: __magic_name__ : Tuple = WarmUp( initial_learning_rate=__A ,decay_schedule_fn=__A ,warmup_steps=__A ,) if weight_decay_rate > 0.0: __magic_name__ : Union[str, Any] = AdamWeightDecay( learning_rate=__A ,weight_decay_rate=__A ,beta_a=__A ,beta_a=__A ,epsilon=__A ,clipnorm=__A ,global_clipnorm=__A ,exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] ,include_in_weight_decay=__A ,) else: __magic_name__ : str = tf.keras.optimizers.Adam( learning_rate=__A ,beta_a=__A ,beta_a=__A ,epsilon=__A ,clipnorm=__A ,global_clipnorm=__A ,) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , lowerCamelCase_ : float = 0.9 , lowerCamelCase_ : float = 0.9_9_9 , lowerCamelCase_ : float = 1E-7 , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[List[str]] = None , lowerCamelCase_ : Optional[List[str]] = None , lowerCamelCase_ : str = "AdamWeightDecay" , **lowerCamelCase_ : int , ) -> List[str]: super().__init__(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) __magic_name__ : int = weight_decay_rate __magic_name__ : Tuple = include_in_weight_decay __magic_name__ : Union[str, Any] = exclude_from_weight_decay @classmethod def UpperCAmelCase__ ( cls : int , lowerCamelCase_ : int ) -> Optional[Any]: __magic_name__ : Tuple = {'''WarmUp''': WarmUp} return super(lowerCamelCase_ , cls ).from_config(lowerCamelCase_ , custom_objects=lowerCamelCase_ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ) -> int: super(lowerCamelCase_ , self )._prepare_local(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Any = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ) -> Optional[Any]: __magic_name__ : Optional[int] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase__ ( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int=None , **lowerCamelCase_ : Union[str, Any] ) -> Optional[int]: __magic_name__ , __magic_name__ : Dict = list(zip(*lowerCamelCase_ ) ) return super(lowerCamelCase_ , self ).apply_gradients(zip(lowerCamelCase_ , lowerCamelCase_ ) , name=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __magic_name__ : str = apply_state or {} __magic_name__ : Optional[Any] = apply_state.get((var_device, var_dtype) ) if coefficients is None: __magic_name__ : List[str] = self._fallback_apply_state(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase__ ( self : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict=None ) -> Optional[Any]: __magic_name__ , __magic_name__ : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase_ ) __magic_name__ : Optional[Any] = self._decay_weights_op(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase_ , self )._resource_apply_dense(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any]=None ) -> Any: __magic_name__ , __magic_name__ : Tuple = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase_ ) __magic_name__ : Optional[int] = self._decay_weights_op(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase_ , self )._resource_apply_sparse(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : int ) -> Dict: __magic_name__ : List[Any] = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase_ , lowerCamelCase_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase_ , lowerCamelCase_ ) is not None: return False return True class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] ) -> Any: __magic_name__ : Optional[int] = [] __magic_name__ : Dict = None @property def UpperCAmelCase__ ( self : Optional[int] ) -> Any: if self._accum_steps is None: __magic_name__ : Optional[Any] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Optional[int] , lowerCamelCase_ : Any ) -> List[str]: if not self._gradients: __magic_name__ : int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase_ ) , trainable=lowerCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase_ ) != len(self._gradients ): raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase_ )}''' ) for accum_gradient, gradient in zip(self._gradients , lowerCamelCase_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase_ ) self._accum_steps.assign_add(1 ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase_ ) )
501
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 1 @register_to_config def __init__( self : Union[str, Any] , _UpperCamelCase : Tuple=2_0_0_0 , _UpperCamelCase : str=0.1 , _UpperCamelCase : Any=2_0 , _UpperCamelCase : Optional[int]=1e-3 ) ->List[Any]: snake_case_ = None snake_case_ = None snake_case_ = None def snake_case__( self : str , _UpperCamelCase : Dict , _UpperCamelCase : Union[str, torch.device] = None ) ->List[Any]: snake_case_ = torch.linspace(1 , self.config.sampling_eps , _UpperCamelCase , device=_UpperCamelCase ) def snake_case__( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : int=None ) ->Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case_ = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case_ = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case_ = std.flatten() while len(std.shape ) < len(score.shape ): snake_case_ = std.unsqueeze(-1 ) snake_case_ = -score / std # compute snake_case_ = -1.0 / len(self.timesteps ) snake_case_ = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case_ = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case_ = beta_t.unsqueeze(-1 ) snake_case_ = -0.5 * beta_t * x snake_case_ = torch.sqrt(_UpperCamelCase ) snake_case_ = drift - diffusion**2 * score snake_case_ = x + drift * dt # add noise snake_case_ = randn_tensor(x.shape , layout=x.layout , generator=_UpperCamelCase , device=x.device , dtype=x.dtype ) snake_case_ = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : int ) ->Union[str, Any]: return self.config.num_train_timesteps
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(SCREAMING_SNAKE_CASE__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
39
1
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 _lowerCamelCase : Any = 1 _lowerCamelCase : List[Any] = 1 while repunit: _lowerCamelCase : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def snake_case_ ( A_ : int = 1_00_00_00 ): '''simple docstring''' _lowerCamelCase : Any = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(A_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
714
"""simple docstring""" def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : list[list[int]] = [[0 for _ in range(A_ )] for _ in range(m + 1 )] for i in range(m + 1 ): _lowerCamelCase : Union[str, Any] = 1 for n in range(m + 1 ): for k in range(1, A_ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
598
0
import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase : Any = TypeVar("T") __lowerCAmelCase : Dict = Union[List[T], Tuple[T, ...]] __lowerCAmelCase : Optional[Any] = Union[T, List[T], Dict[str, T]] __lowerCAmelCase : Tuple = Union[str, bytes, os.PathLike]
509
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __UpperCAmelCase ( __a : bytes ,__a : int ) -> np.array: """simple docstring""" _a : int = F"""{sampling_rate}""" _a : str = '''1''' _a : Optional[int] = '''f32le''' _a : Optional[Any] = [ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(__a ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: _a : Any = ffmpeg_process.communicate(__a ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error _a : Optional[Any] = output_stream[0] _a : Optional[int] = np.frombuffer(__a ,np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def __UpperCAmelCase ( __a : int ,__a : float ,__a : str = "f32le" ,) -> str: """simple docstring""" _a : Dict = F"""{sampling_rate}""" _a : Optional[Any] = '''1''' if format_for_conversion == "s16le": _a : Dict = 2 elif format_for_conversion == "f32le": _a : Optional[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) _a : Dict = platform.system() if system == "Linux": _a : Dict = '''alsa''' _a : Union[str, Any] = '''default''' elif system == "Darwin": _a : Union[str, Any] = '''avfoundation''' _a : List[str] = ''':0''' elif system == "Windows": _a : Optional[int] = '''dshow''' _a : str = '''default''' _a : Tuple = [ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] _a : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _a : str = _ffmpeg_stream(__a ,__a ) for item in iterator: yield item def __UpperCAmelCase ( __a : int ,__a : float ,__a : Optional[int] = None ,__a : Optional[Union[Tuple[float, float], float]] = None ,__a : str = "f32le" ,) -> Optional[int]: """simple docstring""" if stream_chunk_s is not None: _a : Tuple = stream_chunk_s else: _a : Tuple = chunk_length_s _a : Tuple = ffmpeg_microphone(__a ,__a ,format_for_conversion=__a ) if format_for_conversion == "s16le": _a : Any = np.intaa _a : Optional[int] = 2 elif format_for_conversion == "f32le": _a : Dict = np.floataa _a : List[Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: _a : List[Any] = chunk_length_s / 6 _a : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__a ,(int, float) ): _a : Optional[Any] = [stride_length_s, stride_length_s] _a : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _a : str = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _a : Optional[Any] = datetime.datetime.now() _a : Tuple = datetime.timedelta(seconds=__a ) for item in chunk_bytes_iter(__a ,__a ,stride=(stride_left, stride_right) ,stream=__a ): # Put everything back in numpy scale _a : Dict = np.frombuffer(item['''raw'''] ,dtype=__a ) _a : Dict = ( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) _a : str = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __UpperCAmelCase ( __a : Optional[int] ,__a : int ,__a : Tuple[int, int] ,__a : bool = False ) -> Optional[int]: """simple docstring""" _a : Any = b'''''' _a , _a : List[str] = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) _a : List[str] = 0 for raw in iterator: acc += raw if stream and len(__a ) < chunk_len: _a : Dict = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__a ) >= chunk_len: # We are flushing the accumulator _a : List[str] = (_stride_left, stride_right) _a : List[Any] = {'''raw''': acc[:chunk_len], '''stride''': stride} if stream: _a : List[Any] = False yield item _a : Optional[Any] = stride_left _a : Optional[Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__a ) > stride_left: _a : Optional[Any] = {'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: _a : Dict = False yield item def __UpperCAmelCase ( __a : int ,__a : int ) -> Tuple: """simple docstring""" _a : Dict = 2**24 # 16Mo try: with subprocess.Popen(__a ,stdout=subprocess.PIPE ,bufsize=__a ) as ffmpeg_process: while True: _a : int = ffmpeg_process.stdout.read(__a ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
14
0
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a_ ( enum.Enum ): lowercase = 0 lowercase = 1 lowercase = 2 @add_end_docstrings(lowerCamelCase ) class a_ ( lowerCamelCase ): lowercase = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase = None if self.model.config.prefix is not None: UpperCamelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase ,UpperCamelCase ,UpperCamelCase = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params ) UpperCamelCase = {**self._preprocess_params, **preprocess_params} UpperCamelCase = {**self._forward_params, **forward_params} def A__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" UpperCamelCase = {} if prefix is not None: UpperCamelCase = prefix if prefix: UpperCamelCase = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) UpperCamelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""" ) UpperCamelCase = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE ) UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) UpperCamelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) UpperCamelCase = ReturnType.TENSORS if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def A__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) UpperCamelCase = prompt_text if handle_long_generation == "hole": UpperCamelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase = generate_kwargs["""max_new_tokens"""] else: UpperCamelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) UpperCamelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def A__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = model_inputs["""input_ids"""] UpperCamelCase = model_inputs.get("""attention_mask""" , _SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = 1 else: UpperCamelCase = input_ids.shape[0] UpperCamelCase = model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase = generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: UpperCamelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase = generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE=True ) -> str: """simple docstring""" UpperCamelCase = model_outputs["""generated_sequence"""][0] UpperCamelCase = model_outputs["""input_ids"""] UpperCamelCase = model_outputs["""prompt_text"""] UpperCamelCase = generated_sequence.numpy().tolist() UpperCamelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase = 0 else: UpperCamelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase = prompt_text + text[prompt_length:] else: UpperCamelCase = text[prompt_length:] UpperCamelCase = {"""generated_text""": all_text} records.append(_SCREAMING_SNAKE_CASE ) return records
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase__ : Tuple = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ lowerCamelCase__ : List[str] = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ lowerCamelCase__ : Optional[int] = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def SCREAMING_SNAKE_CASE__ ( self:str , _a:Union[str, Any] , _a:List[Any] , _a:str=None , _a:Optional[int]=True , _a:Optional[Any]=False ): if rouge_types is None: snake_case__ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] snake_case__ = rouge_scorer.RougeScorer(rouge_types=_a , use_stemmer=_a ) if use_aggregator: snake_case__ = scoring.BootstrapAggregator() else: snake_case__ = [] for ref, pred in zip(_a , _a ): snake_case__ = scorer.score(_a , _a ) if use_aggregator: aggregator.add_scores(_a ) else: scores.append(_a ) if use_aggregator: snake_case__ = aggregator.aggregate() else: snake_case__ = {} for key in scores[0]: snake_case__ = [score[key] for score in scores] return result
33
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self , a = 6): lowercase__ : Node | None = None lowercase__ : Node | None = None self.create_linked_list(a) def snake_case_ ( self , a): lowercase__ : str = Node() lowercase__ : str = current_node lowercase__ : str = current_node lowercase__ : Any = current_node for _ in range(1 , a): lowercase__ : List[str] = Node() lowercase__ : Optional[Any] = current_node lowercase__ : Union[str, Any] = previous_node lowercase__ : List[str] = current_node lowercase__ : Optional[int] = self.front lowercase__ : str = previous_node def snake_case_ ( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def snake_case_ ( self): self.check_can_perform_operation() return self.front.data if self.front else None def snake_case_ ( self , a): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ : Dict = self.rear.next if self.rear: lowercase__ : Any = data def snake_case_ ( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ : Any = self.front.data lowercase__ : Optional[Any] = None return data lowercase__ : Optional[Any] = self.front lowercase__ : str = old_front.next lowercase__ : Union[str, Any] = old_front.data lowercase__ : List[str] = None return data def snake_case_ ( self): if self.is_empty(): raise Exception('Empty Queue') def snake_case_ ( self): if self.rear and self.rear.next == self.front: raise Exception('Full Queue') class SCREAMING_SNAKE_CASE__ : def __init__( self): lowercase__ : Any | None = None lowercase__ : Node | None = None lowercase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
164
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCamelCase ( a__ , a__ , a__ , unittest.TestCase ): lowerCamelCase : str =StableUnCLIPPipeline lowerCamelCase : Optional[Any] =TEXT_TO_IMAGE_PARAMS lowerCamelCase : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : str =TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : int =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Union[str, Any] =False def __a ( self ) -> Any: a : Optional[int] = 32 a : str = embedder_hidden_size # prior components torch.manual_seed(0 ) a : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) a : List[Any] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) a : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowerCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) a : Dict = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=lowerCAmelCase__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) a : str = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ ) a : Optional[int] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) a : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) a : Optional[int] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) a : Dict = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) a : Union[str, Any] = AutoencoderKL() a : int = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Any: if str(lowerCAmelCase__ ).startswith("mps" ): a : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: a : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> Union[str, Any]: a : Optional[int] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ ) def __a ( self ) -> Tuple: a : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> int: a : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) a : Any = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) a : Tuple = pipe("anime turle" , generator=lowerCAmelCase__ , output_type="np" ) a : Tuple = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) a : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Tuple = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) a : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
31
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a : Tuple = None a : Any = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } a : str = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } a : Union[str, Any] = '''▁''' class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] =VOCAB_FILES_NAMES lowerCamelCase : Dict =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] =AlbertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a : Optional[int] = ( AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ , normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token ) super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : Dict = do_lower_case a : Any = remove_space a : Optional[Any] = keep_accents a : List[str] = vocab_file a : Optional[Any] = False if not self.vocab_file else True def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.sep_token_id] a : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.sep_token_id] a : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
31
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''visual_bert''' def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : str = vocab_size snake_case : int = max_position_embeddings snake_case : Any = hidden_size snake_case : Optional[int] = visual_embedding_dim snake_case : Dict = num_hidden_layers snake_case : str = num_attention_heads snake_case : str = intermediate_size snake_case : int = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Optional[int] = initializer_range snake_case : Optional[int] = type_vocab_size snake_case : Any = layer_norm_eps snake_case : Union[str, Any] = bypass_transformer snake_case : List[str] = special_visual_initialize
178
"""simple docstring""" from manim import * class _lowerCAmelCase ( snake_case_ ): def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[str] = Rectangle(height=0.5 , width=0.5 ) snake_case : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case : Tuple = [mem.copy() for i in range(6 )] snake_case : Any = [mem.copy() for i in range(6 )] snake_case : Tuple = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Optional[Any] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Optional[Any] = VGroup(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Optional[Any] = Text("CPU" , font_size=24 ) snake_case : Optional[int] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase__ ) snake_case : Optional[Any] = [mem.copy() for i in range(1 )] snake_case : List[str] = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Optional[int] = Text("GPU" , font_size=24 ) snake_case : Tuple = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) gpu.align_to(UpperCamelCase__ , UpperCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase__ ) snake_case : Any = [mem.copy() for i in range(6 )] snake_case : Any = VGroup(*UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0 ) snake_case : Dict = Text("Model" , font_size=24 ) snake_case : Optional[Any] = Group(UpperCamelCase__ , UpperCamelCase__ ).arrange(UpperCamelCase__ , buff=0.5 , aligned_edge=UpperCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , Create(UpperCamelCase__ , run_time=1 ) , ) snake_case : Optional[Any] = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) snake_case : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case : Any = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase__ , run_time=2.5 ) , Write(UpperCamelCase__ ) , Write(UpperCamelCase__ ) ) self.add(UpperCamelCase__ ) snake_case : Optional[Any] = [] snake_case : Dict = [] snake_case : Union[str, Any] = [] for i, rect in enumerate(UpperCamelCase__ ): snake_case : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase__ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase__ ) cpu_target.generate_target() snake_case : Optional[int] = 0.46 / 4 snake_case : Any = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase__ , buff=0.0 ) cpu_targs.append(UpperCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase__ ) ) second_animations.append(MoveToTarget(UpperCamelCase__ , run_time=1.5 ) ) self.play(*UpperCamelCase__ ) self.play(*UpperCamelCase__ ) self.wait()
178
1
"""simple docstring""" from importlib import import_module from .logging import get_logger A__ : List[Any]= get_logger(__name__) class __lowerCamelCase : def __init__( self , snake_case_ , snake_case_=None ) -> List[str]: UpperCamelCase__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , snake_case_ , getattr(snake_case_ , snake_case_ ) ) UpperCamelCase__ = module._original_module if isinstance(snake_case_ , _PatchedModuleObj ) else module class __lowerCamelCase : a : Any =[] def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=None ) -> List[Any]: UpperCamelCase__ = obj UpperCamelCase__ = target UpperCamelCase__ = new UpperCamelCase__ = target.split('.' )[0] UpperCamelCase__ = {} UpperCamelCase__ = attrs or [] def __enter__( self ) -> Optional[int]: *UpperCamelCase__ , UpperCamelCase__ = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(snake_case_ ) ): try: UpperCamelCase__ = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCamelCase__ = getattr(self.obj , snake_case_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(snake_case_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCamelCase__ = obj_attr # patch at top level setattr(self.obj , snake_case_ , _PatchedModuleObj(snake_case_ , attrs=self.attrs ) ) UpperCamelCase__ = getattr(self.obj , snake_case_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(snake_case_ , snake_case_ , _PatchedModuleObj(getattr(snake_case_ , snake_case_ , snake_case_ ) , attrs=self.attrs ) ) UpperCamelCase__ = getattr(snake_case_ , snake_case_ ) # finally set the target attribute setattr(snake_case_ , snake_case_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCamelCase__ = getattr(import_module('.'.join(snake_case_ ) ) , snake_case_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , snake_case_ ) is attr_value: UpperCamelCase__ = getattr(self.obj , snake_case_ ) setattr(self.obj , snake_case_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCamelCase__ = globals()['__builtins__'][target_attr] setattr(self.obj , snake_case_ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *snake_case_ ) -> str: for attr in list(self.original ): setattr(self.obj , snake_case_ , self.original.pop(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.__enter__() self._active_patches.append(self ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
20
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A__ : Any= """src/diffusers""" # Matches is_xxx_available() A__ : Tuple= re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla A__ : Any= re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") A__ : Optional[Any]= """ {0} = None """ A__ : List[Any]= """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ A__ : Dict= """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( ) -> str: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase__ = 0 UpperCamelCase__ = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 UpperCamelCase__ = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: UpperCamelCase__ = lines[line_index] UpperCamelCase__ = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase__ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCAmelCase_( SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if backend_specific_objects is None: UpperCamelCase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase__ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase__ = '[' + ', '.join(F'"{b}"' for b in backend.split('_and_' ) ) + ']' UpperCamelCase__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) UpperCamelCase__ = dummy_file return dummy_files def lowerCAmelCase_( SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. UpperCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) UpperCamelCase__ = { backend: os.path.join(SCREAMING_SNAKE_CASE , F'dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } UpperCamelCase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' F'diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' 'to fix this.' ) if __name__ == "__main__": A__ : Any= argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[int]= parser.parse_args() check_dummies(args.fix_and_overwrite)
20
1
import operator as op def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Dict: _a = [] _a = lambda _UpperCAmelCase , _UpperCAmelCase : int(x / y ) # noqa: E731 integer division operation _a = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(_UpperCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_UpperCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) else: _a = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) _a = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' ) stack.append( str(opr[x](int(_UpperCAmelCase ) , int(_UpperCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(_UpperCAmelCase ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": lowercase_ = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
562
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = 42 class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @register_to_config def __init__( self : int , SCREAMING_SNAKE_CASE_ : int = 6_5_5_3_6 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (3_2, 3_2, 6_4) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ): super().__init__() _a = sample_size # time if time_embedding_type == "fourier": _a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) _a = 2 * block_out_channels[0] elif time_embedding_type == "positional": _a = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) _a = block_out_channels[0] if use_timestep_embedding: _a = block_out_channels[0] * 4 _a = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) _a = nn.ModuleList([] ) _a = None _a = nn.ModuleList([] ) _a = None # down _a = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): _a = output_channel _a = block_out_channels[i] if i == 0: input_channel += extra_in_channels _a = i == len(SCREAMING_SNAKE_CASE_ ) - 1 _a = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid _a = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up _a = list(reversed(SCREAMING_SNAKE_CASE_ ) ) _a = reversed_block_out_channels[0] if out_block_type is None: _a = out_channels else: _a = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): _a = output_channel _a = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) _a = i == len(SCREAMING_SNAKE_CASE_ ) - 1 _a = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) _a = output_channel # out _a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _a = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ): _a = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): _a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(sample.device ) _a = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: _a = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: _a = timestep_embed[..., None] _a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a = () for downsample_block in self.down_blocks: _a , _a = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a = down_block_res_samples[-1:] _a = down_block_res_samples[:-1] _a = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: _a = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
562
1
def _SCREAMING_SNAKE_CASE ( snake_case_ : list[list[int]] , snake_case_ : int , snake_case_ : int , snake_case_ : set ): __magic_name__ , __magic_name__ = len(snake_case_ ), len(grid[0] ) if ( min(snake_case_ , snake_case_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __magic_name__ = 0 count += depth_first_search(snake_case_ , row + 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , row - 1 , snake_case_ , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col + 1 , snake_case_ ) count += depth_first_search(snake_case_ , snake_case_ , col - 1 , snake_case_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
678
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ): __magic_name__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } __magic_name__ = f'{src_lang}-{tgt_lang}' __magic_name__ = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case_ , exist_ok=snake_case_ ) __magic_name__ = os.path.join(snake_case_ , '''README.md''' ) print(f'Generating {path}' ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case_ ) # make sure we are under the root of the project a_ : Tuple = Path(__file__).resolve().parent.parent.parent a_ : Dict = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ : List[str] = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
678
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency a = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } a = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def a_ ( __UpperCAmelCase ) -> int: """simple docstring""" snake_case: List[str] ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" return x[0] def a_ ( __UpperCAmelCase ) -> Tuple: """simple docstring""" snake_case: Dict =get_letter_count(__lowerCAmelCase ) snake_case: str ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCAmelCase ) snake_case: Optional[int] ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCAmelCase ) snake_case: Optional[Any] =''.join(freq_to_letter[freq] ) snake_case: List[Any] =list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCAmelCase , reverse=__lowerCAmelCase ) snake_case: Union[str, Any] =[freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCAmelCase ) def a_ ( __UpperCAmelCase ) -> List[str]: """simple docstring""" snake_case: int =get_frequency_order(__lowerCAmelCase ) snake_case: Tuple =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
350
from math import loga def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
276
0
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self): lowerCamelCase__ = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCamelCase__ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCamelCase__ = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCamelCase__ = tf_top_k_top_p_filtering(_lowerCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) lowerCamelCase__ = output[output != -float("inf")] lowerCamelCase__ = tf.cast( tf.where(tf.not_equal(_lowerCamelCase , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1E-1_2) tf.debugging.assert_equal(_lowerCamelCase , _lowerCamelCase) @require_tf class snake_case_ ( unittest.TestCase , __UpperCAmelCase ): """simple docstring""" if is_tf_available(): __lowerCAmelCase : Optional[int] ={ "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def __UpperCAmelCase ( self): # TF-only test: tf.saved_model export lowerCamelCase__ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__ = 2 lowerCamelCase__ = 2 class snake_case_ ( tf.Module ): """simple docstring""" def __init__( self , UpperCamelCase): super(_lowerCamelCase , self).__init__() lowerCamelCase__ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=_lowerCamelCase , ) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.model.generate( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , max_new_tokens=_lowerCamelCase , return_dict_in_generate=_lowerCamelCase , ) return {"sequences": outputs["sequences"]} lowerCamelCase__ = [[2, 0], [1_02, 1_03]] lowerCamelCase__ = [[1, 0], [1, 1]] lowerCamelCase__ = DummyModel(model=_lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCamelCase , _lowerCamelCase , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__ = tf.saved_model.load(_lowerCamelCase).signatures["serving_default"] for batch_size in range(1 , len(_lowerCamelCase) + 1): lowerCamelCase__ = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } lowerCamelCase__ = serving_func(**_lowerCamelCase)["sequences"] lowerCamelCase__ = test_model.generate(**_lowerCamelCase , max_new_tokens=_lowerCamelCase) tf.debugging.assert_equal(_lowerCamelCase , _lowerCamelCase) @slow def __UpperCAmelCase ( self): # TF-only test: tf.saved_model export lowerCamelCase__ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__ = 1 lowerCamelCase__ = 2 class snake_case_ ( tf.Module ): """simple docstring""" def __init__( self , UpperCamelCase): super(_lowerCamelCase , self).__init__() lowerCamelCase__ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=_lowerCamelCase , ) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.model.generate( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , max_new_tokens=_lowerCamelCase , return_dict_in_generate=_lowerCamelCase , ) return {"sequences": outputs["sequences"]} lowerCamelCase__ = [[2], [1_02, 1_03]] lowerCamelCase__ = [[1], [1, 1]] lowerCamelCase__ = DummyModel(model=_lowerCamelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_lowerCamelCase , _lowerCamelCase , signatures={"serving_default": dummy_model.serving}) lowerCamelCase__ = tf.saved_model.load(_lowerCamelCase).signatures["serving_default"] for input_row in range(len(_lowerCamelCase)): lowerCamelCase__ = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } lowerCamelCase__ = serving_func(**_lowerCamelCase)["sequences"] lowerCamelCase__ = test_model.generate(**_lowerCamelCase , max_new_tokens=_lowerCamelCase) tf.debugging.assert_equal(_lowerCamelCase , _lowerCamelCase) @slow @require_tensorflow_text def __UpperCAmelCase ( self): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=_lowerCamelCase) class snake_case_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self): super().__init__() lowerCamelCase__ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_lowerCamelCase , "spiece.model") , "rb").read()) lowerCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def __UpperCAmelCase ( self , UpperCamelCase , *UpperCamelCase , **UpperCamelCase): lowerCamelCase__ = self.tokenizer.tokenize(_lowerCamelCase) lowerCamelCase__ , lowerCamelCase__ = text.pad_model_inputs( _lowerCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id) lowerCamelCase__ = self.model.generate(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase) return self.tokenizer.detokenize(_lowerCamelCase) lowerCamelCase__ = CompleteSentenceTransformer() lowerCamelCase__ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") lowerCamelCase__ = complete_model(_lowerCamelCase) lowerCamelCase__ = tf.keras.Model(_lowerCamelCase , _lowerCamelCase) keras_model.save(_lowerCamelCase) def __UpperCAmelCase ( self): # Has PT equivalent: this test relies on random sampling lowerCamelCase__ = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } lowerCamelCase__ = 14 lowerCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__ = "Hello, my dog is cute and" lowerCamelCase__ = tokenizer(_lowerCamelCase , return_tensors="tf") lowerCamelCase__ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") lowerCamelCase__ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__ = model.generate(**_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase) self.assertTrue(expectation == len(generated_tokens[0])) lowerCamelCase__ = [6_38, 1_98] with tf.device(":/CPU:0"): tf.random.set_seed(0) lowerCamelCase__ = model.generate(**_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase) self.assertTrue(expectation == len(generated_tokens[0])) def __UpperCAmelCase ( self): # Has PT equivalent: ample use of framework-specific code lowerCamelCase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__ = "Hugging Face is a technology company based in New York and Paris." lowerCamelCase__ = bart_tokenizer(_lowerCamelCase , return_tensors="tf").input_ids lowerCamelCase__ = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__ = bart_model.generate(_lowerCamelCase).numpy() class snake_case_ ( __UpperCAmelCase ): """simple docstring""" def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase): return super().call(_lowerCamelCase , **_lowerCamelCase) lowerCamelCase__ = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") lowerCamelCase__ = bart_model.generate(_lowerCamelCase , foo="bar").numpy() self.assertTrue(np.array_equal(_lowerCamelCase , _lowerCamelCase)) class snake_case_ ( bart_model.model.encoder.__class__ ): """simple docstring""" def __UpperCAmelCase ( self , UpperCamelCase , **UpperCamelCase): return super().call(_lowerCamelCase , **_lowerCamelCase) lowerCamelCase__ = FakeEncoder(bart_model.config , bart_model.model.shared) lowerCamelCase__ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCamelCase__ = bart_model.generate(_lowerCamelCase).numpy() with self.assertRaises(_lowerCamelCase): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_lowerCamelCase , foo="bar")
701
'''simple docstring''' lowerCAmelCase_ = "Alexander Joslin" import operator as op from .stack import Stack def lowerCAmelCase( a__ : str ): '''simple docstring''' lowerCamelCase__ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} lowerCamelCase__ = Stack() lowerCamelCase__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a__ ) ) elif i in operators: # RULE 2 operator_stack.push(a__ ) elif i == ")": # RULE 4 lowerCamelCase__ = operator_stack.peek() operator_stack.pop() lowerCamelCase__ = operand_stack.peek() operand_stack.pop() lowerCamelCase__ = operand_stack.peek() operand_stack.pop() lowerCamelCase__ = operators[opr](a__ , a__ ) operand_stack.push(a__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCAmelCase_ = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
426
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = [] for part_id in partition_order: lowerCamelCase_ = df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(100 ).repartition(1 ) lowerCamelCase_ = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(10 ).repartition(2 ) lowerCamelCase_ = [1, 0] lowerCamelCase_ = _generate_iterable_examples(lowerCAmelCase__ ,lowerCAmelCase__ ) # Reverse the partitions. lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(10 ).repartition(1 ) lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowerCamelCase_ = lambda lowerCAmelCase__ : x.reverse() lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[2, 1, 0] ) lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 ,num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCamelCase_ = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 ,num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCamelCase_ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ ,[1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): lowerCamelCase_ , lowerCamelCase_ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase ( ): lowerCamelCase_ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCamelCase_ = spark.range(100 ).repartition(1 ) lowerCamelCase_ = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
29
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'xlm-prophetnet' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 30522 , SCREAMING_SNAKE_CASE_ = 1024 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 4096 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 0.02 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 128 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = num_encoder_layers lowerCamelCase_ = num_encoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = num_decoder_layers lowerCamelCase_ = num_decoder_attention_heads lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = init_std # Normal(0, this parameter) lowerCamelCase_ = activation_function # parameters for xlmprophetnet lowerCamelCase_ = ngram lowerCamelCase_ = num_buckets lowerCamelCase_ = relative_max_distance lowerCamelCase_ = disable_ngram_loss lowerCamelCase_ = eps # 3 Types of Dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = dropout lowerCamelCase_ = use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
42
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
649
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__a , """depth_multiplier""" ) ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : Tuple , __a : str=13 , __a : Dict=3 , __a : List[Any]=32 , __a : Any=0.25 , __a : Any=8 , __a : Optional[int]=8 , __a : Optional[int]=6 , __a : Dict=32 , __a : Tuple=True , __a : List[Any]=True , __a : Optional[int]=True , __a : Tuple="relu6" , __a : Optional[Any]=1280 , __a : str=0.1 , __a : str=0.02 , __a : Optional[Any]=True , __a : Tuple=True , __a : Dict=10 , __a : Optional[Any]=None , ) -> Any: """simple docstring""" __lowercase : List[str] = parent __lowercase : Tuple = batch_size __lowercase : Dict = num_channels __lowercase : Optional[int] = image_size __lowercase : int = depth_multiplier __lowercase : str = depth_divisible_by __lowercase : int = min_depth __lowercase : Tuple = expand_ratio __lowercase : Optional[int] = tf_padding __lowercase : Dict = output_stride __lowercase : Dict = first_layer_is_expansion __lowercase : Optional[Any] = finegrained_output __lowercase : str = hidden_act __lowercase : Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) __lowercase : Optional[int] = classifier_dropout_prob __lowercase : int = use_labels __lowercase : Optional[int] = is_training __lowercase : Dict = num_labels __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = scope def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : List[Any] = None __lowercase : Optional[Any] = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = MobileNetVaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : List[str] , __a : str , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Dict = MobileNetVaForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : List[str] , __a : Tuple , __a : Any , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.num_labels __lowercase : List[Any] = MobileNetVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase : str = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase : List[str] = config_and_inputs __lowercase : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Tuple = False _A : List[str] = False _A : List[str] = False _A : Optional[int] = False def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = MobileNetVaModelTester(self ) __lowercase : int = MobileNetVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase , __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : int = [*signature.parameters.keys()] __lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__a : List[Any] , __a : Tuple , __a : List[str] ): __lowercase : Optional[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) __lowercase : Tuple = outputs.hidden_states __lowercase : str = 16 self.assertEqual(len(__a ) , __a ) __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Any = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Union[str, Any] = True check_hidden_states_output(__a , __a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = MobileNetVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Tuple = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(__a ) __lowercase : str = self.default_image_processor __lowercase : Tuple = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : str = model(**__a ) # verify the logits __lowercase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : int = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : Dict = model.to(__a ) __lowercase : Tuple = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) __lowercase : List[str] = prepare_img() __lowercase : Optional[int] = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Union[str, Any] = model(**__a ) __lowercase : Any = outputs.logits # verify the logits __lowercase : Dict = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __a ) __lowercase : str = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1E-4 ) )
649
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) lowerCamelCase__ = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: lowerCamelCase__ = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCamelCase__ = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase__ = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase__ = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
612
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : Tuple = """FlavaImageProcessor""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def __A ( self ) -> str: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
247
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowercase : Any = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _lowercase : int = 'sshleifer/student_marian_en_ro_6_1' _lowercase : Dict = 'sshleifer/tiny-mbart' @require_torch class UpperCamelCase__( lowerCAmelCase__ ): def a__( self : str , lowerCAmelCase : Dict=False , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , )-> Tuple: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=_SCREAMING_SNAKE_CASE , extra_args_str=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , do_predict=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase = TrainerState.load_from_json(os.path.join(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history if not do_eval: return UpperCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def a__( self : Dict )-> Optional[int]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def a__( self : List[Any] )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : Optional[int] )-> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : List[str] )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : str )-> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.run_seqaseq_quick( distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def a__( self : str )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def a__( self : List[str] , lowerCAmelCase : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase = experiments[experiment_id] UpperCAmelCase = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_SCREAMING_SNAKE_CASE , extra_args_str=data['''extra_args_str'''] ) UpperCAmelCase = len(re.findall(_SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(_SCREAMING_SNAKE_CASE , data['''n_matches'''] ) @slow def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_SCREAMING_SNAKE_CASE , learning_rate=3E-4 , num_train_epochs=10 , distributed=_SCREAMING_SNAKE_CASE , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(os.path.join(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history UpperCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase = eval_metrics[0] UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics UpperCAmelCase = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = {os.path.basename(_SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCAmelCase : Union[str, Any] ) -> Tuple[int, float]: UpperCAmelCase = '''--skip_memory_metrics 0''' UpperCAmelCase = self.run_trainer( max_len=128 , model_name=_SCREAMING_SNAKE_CASE , learning_rate=3E-4 , num_train_epochs=1 , optim=_SCREAMING_SNAKE_CASE , distributed=_SCREAMING_SNAKE_CASE , extra_args_str=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , do_predict=_SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(Path(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history UpperCAmelCase = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) UpperCAmelCase = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) UpperCAmelCase = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def a__( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int = 3E-3 , lowerCAmelCase : List[Any] = "adafactor" , lowerCAmelCase : Tuple = False , lowerCAmelCase : List[Any] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : List[str] = True , lowerCAmelCase : Dict = True , lowerCAmelCase : int = True , lowerCAmelCase : Any = True , lowerCAmelCase : Union[str, Any] = None , )-> List[str]: """simple docstring""" UpperCAmelCase = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F"""\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_SCREAMING_SNAKE_CASE )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n """.split() UpperCAmelCase = F"""\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_SCREAMING_SNAKE_CASE )}\n """.split() UpperCAmelCase = ''' --do_predict '''.split() UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase = get_gpu_count() UpperCAmelCase = get_torch_dist_unique_port() UpperCAmelCase = F"""\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n """.split() UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() ) else: UpperCAmelCase = ['''run_translation.py'''] + args with patch.object(_SCREAMING_SNAKE_CASE , '''argv''' , _SCREAMING_SNAKE_CASE ): main() return output_dir
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ : str = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = '''cpu''' lowerCAmelCase_ : int = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ : str = '''path-to-your-trained-model''' lowerCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ : Any = pipe.to(device) # to channels last lowerCAmelCase_ : Dict = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ : Tuple = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ : Union[str, Any] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ : Optional[Any] = torch.randn(2, 4, 6_4, 6_4) lowerCAmelCase_ : Optional[int] = torch.rand(1) * 9_9_9 lowerCAmelCase_ : Optional[int] = torch.randn(2, 7_7, 7_6_8) lowerCAmelCase_ : Tuple = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Optional[Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ : Optional[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ : Any = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ : Optional[int] = 6_6_6 lowerCAmelCase_ : Dict = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ : Union[str, Any] = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ : List[str] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
673
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : str = VideoToVideoSDPipeline _A : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} _A : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} _A : int = PipelineTesterMixin.required_optional_params - {'latents'} _A : List[str] = False # No `output_type`. _A : Any = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) UpperCAmelCase = CLIPTextModel(snake_case__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase_ ( self , snake_case__ , snake_case__=0 ) -> List[str]: """simple docstring""" UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith("""mps""" ): UpperCAmelCase = torch.manual_seed(snake_case__ ) else: UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = VideoToVideoSDPipeline(**snake_case__ ) UpperCAmelCase = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase = """np""" UpperCAmelCase = sd_pipe(**snake_case__ ).frames UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=snake_case__ ) UpperCAmelCase = video.to("""cuda""" ) UpperCAmelCase = """Spiderman is surfing""" UpperCAmelCase = pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
673
1
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowercase_ : Union[str, Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowercase_ : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase_ : Any = dict(zip(vocab, range(len(vocab)))) lowercase_ : List[str] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = Path(tmpdirname) lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowercase_ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowercase_ : List[Any] = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowercase_ : List[str] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowercase_ : Tuple = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowercase_ : List[str] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowercase_ : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowercase_ : int = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
709
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case : List[str] = BertForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": lowercase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
652
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ) -> Tuple: lowerCAmelCase__ = HfArgumentParser(A ) lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ = TensorFlowBenchmark(args=A ) try: lowerCAmelCase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' lowerCAmelCase__ = ''' '''.join(str(A ).split(''' ''' )[:-1] ) lowerCAmelCase__ = '''''' lowerCAmelCase__ = eval(str(A ).split(''' ''' )[-1] ) lowerCAmelCase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A ) if len(A ) > 0: lowerCAmelCase__ = full_error_msg + begin_error_msg + str(A ) raise ValueError(A ) benchmark.run() if __name__ == "__main__": main()
90
def a_ ( SCREAMING_SNAKE_CASE__ : bytes ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
464
0
'''simple docstring''' from math import factorial lowerCamelCase_ : List[Any] = {str(d): factorial(d) for d in range(10)} def __magic_name__( _A ): '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(_A ) ) def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _A ) if sum_of_digit_factorial(_A ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
265
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Dict = (DPMSolverSinglestepScheduler,) __a : List[Any] = (("num_inference_steps", 25),) def A ( self : List[Any] , **lowercase : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowercase ) return config def A ( self : List[Any] , lowercase : Tuple=0 , **lowercase : Optional[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , lowercase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCamelCase__ = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ , UpperCamelCase__ = sample, sample for t in range(lowercase , time_step + scheduler.config.solver_order + 1 ): UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCamelCase__ = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : List[str] ) -> Any: '''simple docstring''' pass def A ( self : Any , lowercase : List[Any]=0 , **lowercase : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = dict(self.forward_default_kwargs ) UpperCamelCase__ = kwargs.pop("""num_inference_steps""" , lowercase ) UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCamelCase__ = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCamelCase__ = new_scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def A ( self : Union[str, Any] , lowercase : Any=None , **lowercase : List[Any] ) -> Dict: '''simple docstring''' if scheduler is None: UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(**lowercase ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = 1_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ = 5_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1e-3 def A ( self : int ) -> Union[str, Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCamelCase__ = self.full_loop(scheduler=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 UpperCamelCase__ = DEISMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCamelCase__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCamelCase__ = self.full_loop(scheduler=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=lowercase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase , prediction_type=lowercase , sample_max_value=lowercase , algorithm_type="""dpmsolver++""" , solver_order=lowercase , solver_type=lowercase , ) def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Optional[int] ) -> int: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) UpperCamelCase__ = self.full_loop( solver_order=lowercase , solver_type=lowercase , prediction_type=lowercase , algorithm_type=lowercase , ) assert not torch.isnan(lowercase ).any(), "Samples have nan numbers" def A ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase ) self.check_over_configs(lower_order_final=lowercase ) def A ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def A ( self : List[Any] ) -> int: '''simple docstring''' self.check_over_configs(variance_type=lowercase ) self.check_over_configs(variance_type="""learned_range""" ) def A ( self : Tuple ) -> int: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase , time_step=0 ) def A ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = self.full_loop() UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1e-3 def A ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ = self.full_loop(use_karras_sigmas=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1e-3 def A ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1e-3 def A ( self : int ) -> int: '''simple docstring''' UpperCamelCase__ = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowercase ) UpperCamelCase__ = torch.mean(torch.abs(lowercase ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1e-3 def A ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(thresholding=lowercase , dynamic_thresholding_ratio=0 ) UpperCamelCase__ = scheduler_class(**lowercase ) UpperCamelCase__ = 1_0 UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = model(lowercase , lowercase ) UpperCamelCase__ = scheduler.step(lowercase , lowercase , lowercase ).prev_sample assert sample.dtype == torch.floataa
265
1
import random class _a : @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_ ) -> tuple[list[int], list[int]]: UpperCAmelCase_: List[str] = [ord(SCREAMING_SNAKE_CASE_ ) for i in text] UpperCAmelCase_: List[Any] = [] UpperCAmelCase_: int = [] for i in plain: UpperCAmelCase_: str = random.randint(1, 300 ) UpperCAmelCase_: Union[str, Any] = (i + k) * k cipher.append(SCREAMING_SNAKE_CASE_ ) key.append(SCREAMING_SNAKE_CASE_ ) return cipher, key @staticmethod def __snake_case (SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase_: Dict = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(SCREAMING_SNAKE_CASE_ ) ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a ,a : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
556
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase_ (*lowerCAmelCase__: Dict ): """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as fh: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase__ ) finally: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) a : Tuple = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) a : Union[str, Any] = torch.device('cuda', local_rank) a : Any = socket.gethostname() a : Optional[Any] = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a : Optional[Any] = dist.get_rank() a : List[Any] = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
556
1
from __future__ import annotations import math def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(_lowerCAmelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ : Optional[Any] = [] for num in range(len(_lowerCAmelCase ) ): A_ : List[str] = 0 while 2 * i * i <= odd_composites[num]: A_ : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(_lowerCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_lowerCAmelCase ) == n: return list_nums return [] def _lowerCAmelCase ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
481
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=0.6 , a__=None , ): A_ : int = parent A_ : Optional[int] = batch_size A_ : Any = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : str = is_training A_ : str = use_labels A_ : str = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Any = intermediate_size A_ : List[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = type_sequence_label_size A_ : int = initializer_range A_ : List[Any] = mask_ratio A_ : str = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ : Optional[Any] = (image_size // patch_size) ** 2 A_ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self ): A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[int] = ViTMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : int = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Optional[Any] = model(a__ ) A_ : Dict = (self.image_size // self.patch_size) ** 2 A_ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ : Optional[int] = 1 A_ : Any = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[Any] = model(a__ ) A_ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self ): A_ : Optional[Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Any = config_and_inputs A_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = ViTMAEModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = model_class(a__ ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def _lowerCamelCase ( self , a__ , a__ , a__ ): # make masks reproducible np.random.seed(2 ) A_ : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : Optional[Any] = torch.from_numpy(a__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ : Any = pt_noise super().check_pt_tf_models(a__ , a__ , a__ ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(a__ ) model.to(a__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : int = outputs[0].cpu().numpy() A_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) A_ : Union[str, Any] = model_class.from_pretrained(a__ ) model.to(a__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(a__ , a__ ) ) # Make sure we don't have nans A_ : Optional[int] = after_outputs[0].cpu().numpy() A_ : str = 0 A_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowerCamelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass @slow def _lowerCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = ViTMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCAmelCase ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(a__ ) A_ : Optional[Any] = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : Union[str, Any] = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ : Optional[int] = ViTMAEConfig() A_ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ : Dict = model(**a__ , noise=torch.from_numpy(a__ ).to(device=a__ ) ) # verify the logits A_ : Tuple = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : List[str] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a__ ) , atol=1E-4 ) )
481
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase = logging.get_logger(__name__) class __A( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = 'upernet' def __init__( self : Dict , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=0.02 , __UpperCamelCase : List[str]=[1, 2, 3, 6] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[Any]=0.4 , __UpperCamelCase : Dict=3_8_4 , __UpperCamelCase : Tuple=2_5_6 , __UpperCamelCase : str=1 , __UpperCamelCase : str=False , __UpperCamelCase : Optional[int]=2_5_5 , **__UpperCamelCase : str , ): super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase_ = backbone_config.get("""model_type""" ) lowerCamelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ = config_class.from_dict(UpperCamelCase__ ) lowerCamelCase_ = backbone_config lowerCamelCase_ = hidden_size lowerCamelCase_ = initializer_range lowerCamelCase_ = pool_scales lowerCamelCase_ = use_auxiliary_head lowerCamelCase_ = auxiliary_loss_weight lowerCamelCase_ = auxiliary_in_channels lowerCamelCase_ = auxiliary_channels lowerCamelCase_ = auxiliary_num_convs lowerCamelCase_ = auxiliary_concat_input lowerCamelCase_ = loss_ignore_index def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = copy.deepcopy(self.__dict__ ) lowerCamelCase_ = self.backbone_config.to_dict() lowerCamelCase_ = self.__class__.model_type return output
272
"""simple docstring""" def __a ( a = 6_0_0_8_5_1_4_7_5_1_4_3 ): """simple docstring""" try: _a = int(a ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) _a = 2 _a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 _a = i while n % i == 0: _a = n // i i += 1 return int(a ) if __name__ == "__main__": print(f'{solution() = }')
388
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=1_0_0 , UpperCAmelCase=1_3 , UpperCAmelCase=3_0 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=[0, 1, 2, 3] , ) -> str: __a = parent __a = 1_0_0 __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = scope __a = out_indices __a = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __SCREAMING_SNAKE_CASE ( self ) -> Dict: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: __a = BeitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: __a = BeitForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: __a = self.type_sequence_label_size __a = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: __a = self.num_labels __a = BeitForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __a = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __a = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__ ( __snake_case , __snake_case , unittest.TestCase ): A__ : List[str] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A__ : Any = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Any = False A__ : List[str] = False A__ : List[Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = BeitModelTester(self ) __a = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass def __SCREAMING_SNAKE_CASE ( self ) -> str: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(UpperCAmelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: if not self.model_tester.is_training: return __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling]: continue __a = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() __a = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __a = model(**UpperCAmelCase ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __a = False __a = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __a = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() __a = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) __a = model(**UpperCAmelCase ).loss loss.backward() def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: __a = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = BeitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowerCAmelCase( ): __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(UpperCAmelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=UpperCAmelCase , return_tensors='pt' ).pixel_values.to(UpperCAmelCase ) # prepare bool_masked_pos __a = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(pixel_values=UpperCAmelCase , bool_masked_pos=UpperCAmelCase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , UpperCAmelCase ) __a = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase , atol=1e-2 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(UpperCAmelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(**UpperCAmelCase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , UpperCAmelCase ) __a = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) __a = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( UpperCAmelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(**UpperCAmelCase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , UpperCAmelCase ) __a = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) __a = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __a = model.to(UpperCAmelCase ) __a = BeitImageProcessor(do_resize=UpperCAmelCase , size=6_4_0 , do_center_crop=UpperCAmelCase ) __a = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __a = Image.open(ds[0]['file'] ) __a = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(**UpperCAmelCase ) __a = outputs.logits # verify the logits __a = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , UpperCAmelCase ) __a = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __a = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=UpperCAmelCase , ) else: __a = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __a = model.to(UpperCAmelCase ) __a = BeitImageProcessor(do_resize=UpperCAmelCase , size=6_4_0 , do_center_crop=UpperCAmelCase ) __a = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __a = Image.open(ds[0]['file'] ) __a = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(**UpperCAmelCase ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(5_0_0, 3_0_0)] ) __a = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) __a = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) __a = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
712
def lowerCAmelCase( __lowerCamelCase ): __a = len(__lowerCamelCase ) while cur > 1: # Find the maximum number in arr __a = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __a = arr[mi::-1] + arr[mi + 1 : len(__lowerCamelCase )] # Reverse whole list __a = arr[cur - 1 :: -1] + arr[cur : len(__lowerCamelCase )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase_ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
246
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self : Any , _lowercase : List[str] , _lowercase : str=13 , _lowercase : Tuple=32 , _lowercase : List[Any]=3 , _lowercase : Dict=4 , _lowercase : Optional[int]=[10, 20, 30, 40] , _lowercase : int=[2, 2, 3, 2] , _lowercase : List[Any]=True , _lowercase : Dict=True , _lowercase : Optional[int]=37 , _lowercase : Optional[int]="gelu" , _lowercase : Tuple=10 , _lowercase : Tuple=0.02 , _lowercase : Dict=["stage2", "stage3", "stage4"] , _lowercase : Optional[int]=3 , _lowercase : Any=None , ): SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : List[str] = batch_size SCREAMING_SNAKE_CASE__ : Any = image_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_stages SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : Dict = is_training SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : int = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = out_features SCREAMING_SNAKE_CASE__ : Optional[int] = num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : Any = num_stages def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : str = self.get_config() return config, pixel_values, labels def lowercase__ ( self : int ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase__ ( self : Optional[int] ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCamelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCamelCase_ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = UperNetForSemanticSegmentation(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE__ ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( a_ , a_ , unittest.TestCase ): lowerCamelCase : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase : Optional[Any] = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase : Union[str, Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : Dict = False lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Dict = False def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = UperNetModelTester(self ) SCREAMING_SNAKE_CASE__ : int = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowercase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] ): return def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase_ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def lowercase__ ( self : Any ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase__ ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : str ): def check_hidden_states_output(_lowercase : str , _lowercase : Any , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : List[Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : str = _config_zero_init(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def lowercase__ ( self : Dict ): pass @slow def lowercase__ ( self : Union[str, Any] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : int = UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def a ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open(__lowerCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE__ : int = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : Dict = processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : List[str] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE__ : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE__ : int = processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : int = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
35
def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__lowerCAmelCase ) ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Base Case if index == len(__lowerCAmelCase ): return True # Recursive Step for i in range(__lowerCAmelCase ): if valid_coloring(graph[index] , __lowerCAmelCase , __lowerCAmelCase ): # Color current vertex _snake_case : int = i # Validate coloring if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index + 1 ): return True # Backtrack _snake_case : Optional[Any] = -1 return False def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : str = [-1] * len(__lowerCAmelCase ) if util_color(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , 0 ): return colored_vertices return []
304
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Optional[int] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__ : Tuple = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
178
0
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowerCAmelCase ( __snake_case : str = "AAPL" ) -> str: __A : Optional[Any] = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' __A : Optional[int] = BeautifulSoup(requests.get(__snake_case ).text , 'html.parser' ) __A : Tuple = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
8
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ : Any = logging.get_logger(__name__) class __lowercase ( __snake_case ): _A = ["pixel_values"] def __init__(self : Dict , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **snake_case : Optional[int] , ) -> None: super().__init__(**snake_case ) _lowercase : str = size if size is not None else {"shortest_edge": 224} _lowercase : List[str] = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowercase : List[Any] = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : Optional[int] = do_resize _lowercase : List[str] = size _lowercase : Tuple = resample _lowercase : Union[str, Any] = do_center_crop _lowercase : List[str] = crop_size _lowercase : Tuple = do_rescale _lowercase : Union[str, Any] = rescale_factor _lowercase : str = do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowercase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a(self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ) -> np.ndarray: _lowercase : Tuple = get_size_dict(snake_case , default_to_square=snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowercase : List[str] = int((256 / 224) * size["shortest_edge"] ) _lowercase : Dict = get_resize_output_image_size(snake_case , size=snake_case , default_to_square=snake_case ) _lowercase : int = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( snake_case , size=(size_dict["height"], size_dict["width"]) , resample=snake_case , data_format=snake_case , **snake_case ) def _a(self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ) -> np.ndarray: _lowercase : Tuple = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(snake_case , size=(size["height"], size["width"]) , data_format=snake_case , **snake_case ) def _a(self : Dict , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[str] , ) -> np.ndarray: return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def _a(self : str , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[int] , ) -> np.ndarray: return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def _a(self : Any , snake_case : ImageInput , snake_case : Optional[bool] = None , snake_case : Optional[Dict[str, int]] = None , snake_case : PILImageResampling = None , snake_case : Optional[bool] = None , snake_case : Optional[Dict[str, int]] = None , snake_case : Optional[bool] = None , snake_case : Optional[float] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[float, Iterable[float]]] = None , snake_case : Optional[Union[float, Iterable[float]]] = None , snake_case : Optional[TensorType] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : Tuple , ) -> BatchFeature: _lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : Any = resample if resample is not None else self.resample _lowercase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Dict = image_mean if image_mean is not None else self.image_mean _lowercase : Dict = image_std if image_std is not None else self.image_std _lowercase : Optional[int] = size if size is not None else self.size _lowercase : Dict = get_size_dict(snake_case , default_to_square=snake_case ) _lowercase : Dict = crop_size if crop_size is not None else self.crop_size _lowercase : Optional[int] = get_size_dict(snake_case , param_name="crop_size" ) _lowercase : Dict = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowercase : Dict = [to_numpy_array(snake_case ) for image in images] if do_resize: _lowercase : List[Any] = [self.resize(snake_case , snake_case , snake_case ) for image in images] if do_center_crop: _lowercase : Union[str, Any] = [self.center_crop(snake_case , snake_case ) for image in images] if do_rescale: _lowercase : List[str] = [self.rescale(snake_case , snake_case ) for image in images] if do_normalize: _lowercase : str = [self.normalize(snake_case , snake_case , snake_case ) for image in images] _lowercase : Any = [to_channel_dimension_format(snake_case , snake_case ) for image in images] _lowercase : str = {"pixel_values": images} return BatchFeature(data=snake_case , tensor_type=snake_case )
461
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Optional[int] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowercase : Union[str, Any] = 16 __lowercase : int = 32 def lowercase ( __A : Optional[Any] ) -> Dict: '''simple docstring''' return int(x / 2**20 ) class _A : '''simple docstring''' def __enter__( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero snake_case : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self ,*SCREAMING_SNAKE_CASE_ ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() snake_case : int = torch.cuda.memory_allocated() snake_case : str = torch.cuda.max_memory_allocated() snake_case : List[Any] = bamb(self.end - self.begin ) snake_case : str = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowercase ( __A : Accelerator , __A : int = 16 , __A : str = "bert-base-cased" , __A : int = 320 , __A : int = 160 , ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = AutoTokenizer.from_pretrained(__A ) snake_case : Optional[Any] = load_dataset( """glue""" , """mrpc""" , split={"""train""": f"""train[:{n_train}]""", """validation""": f"""validation[:{n_val}]"""} ) def tokenize_function(__A : List[str] ): # max_length=None => use the model max length (it's actually the default) snake_case : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case : Dict = datasets.map( __A , batched=__A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__A , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) snake_case : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader def lowercase ( __A : Optional[Any] , __A : Optional[Any] ) -> Any: '''simple docstring''' snake_case : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : Any = config["""lr"""] snake_case : Tuple = int(config["""num_epochs"""] ) snake_case : Union[str, Any] = int(config["""seed"""] ) snake_case : List[Any] = int(config["""batch_size"""] ) snake_case : Optional[int] = args.model_name_or_path set_seed(__A ) snake_case , snake_case : Any = get_dataloaders(__A , __A , __A , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : List[str] = AutoModelForSequenceClassification.from_pretrained(__A , return_dict=__A ) # Instantiate optimizer snake_case : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=__A ) if accelerator.state.deepspeed_plugin is not None: snake_case : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case : List[Any] = 1 snake_case : Tuple = (len(__A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case : Optional[int] = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=0 , num_training_steps=__A , ) else: snake_case : int = DummyScheduler(__A , total_num_steps=__A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case : int = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over snake_case : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case : Optional[int] = 0 # Now we train the model snake_case : Optional[int] = {} for epoch in range(__A , __A ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__A ): snake_case : Dict = model(**__A ) snake_case : str = outputs.loss snake_case : Any = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) snake_case : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(__A , __A ) def lowercase ( ) -> Tuple: '''simple docstring''' snake_case : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__A , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__A , ) parser.add_argument( """--output_dir""" , type=__A , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=__A , default=__A , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=__A , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=__A , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=__A , default=1 , help="""Number of train epochs.""" , ) snake_case : Optional[Any] = parser.parse_args() snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__A , __A ) if __name__ == "__main__": main()
315
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCamelCase : List[str] = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'rag' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=" / " ,_lowerCAmelCase=" // " ,_lowerCAmelCase=5 ,_lowerCAmelCase=3_00 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=8 ,_lowerCAmelCase="wiki_dpr" ,_lowerCAmelCase="train" ,_lowerCAmelCase="compressed" ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( bos_token_id=_lowerCAmelCase ,pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,prefix=_lowerCAmelCase ,vocab_size=_lowerCAmelCase ,**_lowerCAmelCase ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase__ = kwargs.pop("""question_encoder""" ) lowerCamelCase__ = question_encoder_config.pop("""model_type""" ) lowerCamelCase__ = kwargs.pop("""generator""" ) lowerCamelCase__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCamelCase__ = AutoConfig.for_model(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = AutoConfig.for_model(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = reduce_loss lowerCamelCase__ = label_smoothing lowerCamelCase__ = exclude_bos_score lowerCamelCase__ = do_marginalize lowerCamelCase__ = title_sep lowerCamelCase__ = doc_sep lowerCamelCase__ = n_docs lowerCamelCase__ = max_combined_length lowerCamelCase__ = dataset lowerCamelCase__ = dataset_split lowerCamelCase__ = index_name lowerCamelCase__ = retrieval_vector_size lowerCamelCase__ = retrieval_batch_size lowerCamelCase__ = passages_path lowerCamelCase__ = index_path lowerCamelCase__ = use_dummy_dataset lowerCamelCase__ = output_retrieved lowerCamelCase__ = do_deduplication lowerCamelCase__ = use_cache if self.forced_eos_token_id is None: lowerCamelCase__ = getattr(self.generator ,"""forced_eos_token_id""" ,_lowerCAmelCase ) @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.question_encoder.to_dict() lowerCamelCase__ = self.generator.to_dict() lowerCamelCase__ = self.__class__.model_type return output
50
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = IFPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase_ ( self : List[Any] ): return self._get_dummy_components() def lowercase_ ( self : int , __snake_case : List[str] , __snake_case : List[Any]=0 ): if str(__snake_case ).startswith('mps' ): a : List[Any] = torch.manual_seed(__snake_case ) else: a : str = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowercase_ ( self : Optional[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase_ ( self : Union[str, Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase_ ( self : Tuple ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase_ ( self : str ): self._test_save_load_local() def lowercase_ ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Tuple ): # if a : List[Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) a : Optional[int] = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=__snake_case , tokenizer=__snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) a , a : Optional[Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() a : List[Any] = None a : Dict = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__snake_case , __snake_case , __snake_case , __snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img a : List[str] = IFImgaImgPipeline(**pipe_a.components ) a : int = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__snake_case , __snake_case , __snake_case , __snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting a : Tuple = IFInpaintingPipeline(**pipe_a.components ) a : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : List[str] ): # pipeline 1 _start_torch_memory_measurement() a : int = torch.Generator(device='cpu' ).manual_seed(0 ) a : int = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type='np' , ) a : Dict = output.images[0] assert image.shape == (64, 64, 3) a : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() a : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) a : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) a : Any = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type='np' , ) a : Tuple = output.images[0] assert image.shape == (2_56, 2_56, 3) a : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : List[str] , __snake_case : str , __snake_case : int , __snake_case : Any , __snake_case : Any ): # pipeline 1 _start_torch_memory_measurement() a : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Any = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type='np' , ) a : List[Any] = output.images[0] assert image.shape == (64, 64, 3) a : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__snake_case ) a : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) a : Dict = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , original_image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type='np' , ) a : Optional[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) a : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : List[Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : str , __snake_case : int ): # pipeline 1 _start_torch_memory_measurement() a : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) a : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__snake_case ) a : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , mask_image=__snake_case , num_inference_steps=2 , generator=__snake_case , output_type='np' , ) a : List[Any] = output.images[0] assert image.shape == (64, 64, 3) a : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) # pipeline 2 _start_torch_memory_measurement() a : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__snake_case ) a : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__snake_case ) a : Optional[int] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__snake_case ) a : int = pipe_a( prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , image=__snake_case , mask_image=__snake_case , original_image=__snake_case , generator=__snake_case , num_inference_steps=2 , output_type='np' , ) a : List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) a : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowerCamelCase__ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
526
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[int] = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
244
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig A__ : Optional[Any] = logging.get_logger(__name__) A__ : Tuple = 'T5Config' def _snake_case ( lowerCamelCase__ : jnp.array , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> jnp.ndarray: lowerCamelCase_ : Optional[Any] =jnp.zeros_like(lowerCamelCase__ ) lowerCamelCase_ : Dict =shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : Union[str, Any] =shifted_input_ids.at[:, 0].set(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =jnp.where(shifted_input_ids == -100 , lowerCamelCase__ , lowerCamelCase__ ) return shifted_input_ids class lowercase__ ( snake_case__ ): _UpperCAmelCase :Dict = "mt5" _UpperCAmelCase :Tuple = MTaConfig class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = "mt5" _UpperCAmelCase :Optional[int] = MTaConfig class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = "mt5" _UpperCAmelCase :Tuple = MTaConfig
244
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Any = sys.version_info >= (3, 10) def snake_case_ ( SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class lowercase__ : '''simple docstring''' A_ : List[Any] = 42 A_ : Optional[int] = 42 A_ : Optional[int] = 42 A_ : int = 42 @dataclass class lowercase__ : '''simple docstring''' A_ : List[str] = 42 A_ : Dict = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class lowercase__ : '''simple docstring''' A_ : Optional[Any] = False A_ : Any = True A_ : int = None class lowercase__ ( _snake_case ): '''simple docstring''' A_ : str = """titi""" A_ : Optional[Any] = """toto""" class lowercase__ ( _snake_case ): '''simple docstring''' A_ : str = """titi""" A_ : Dict = """toto""" A_ : List[str] = 42 @dataclass class lowercase__ : '''simple docstring''' A_ : List[Any] = """toto""" def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = BasicEnum(self.foo ) @dataclass class lowercase__ : '''simple docstring''' A_ : List[Any] = """toto""" def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = MixedTypeEnum(self.foo ) @dataclass class lowercase__ : '''simple docstring''' A_ : Optional[int] = None A_ : Union[str, Any] = field(default=_snake_case , metadata={"""help""": """help message"""} ) A_ : str = None A_ : int = list_field(default=[] ) A_ : List[Any] = list_field(default=[] ) @dataclass class lowercase__ : '''simple docstring''' A_ : str = list_field(default=[] ) A_ : Union[str, Any] = list_field(default=[1, 2, 3] ) A_ : Tuple = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) A_ : Dict = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase__ : '''simple docstring''' A_ : Optional[int] = field() A_ : List[str] = field() A_ : Any = field() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = BasicEnum(self.required_enum ) @dataclass class lowercase__ : '''simple docstring''' A_ : Union[str, Any] = 42 A_ : Optional[Any] = field() A_ : Optional[Any] = None A_ : Any = field(default="""toto""" , metadata={"""help""": """help message"""} ) A_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class lowercase__ : '''simple docstring''' A_ : Optional[Any] = False A_ : Dict = True A_ : Union[str, Any] = None @dataclass class lowercase__ : '''simple docstring''' A_ : List[str] = None A_ : Dict = field(default=_snake_case , metadata={"""help""": """help message"""} ) A_ : Any = None A_ : int = list_field(default=[] ) A_ : int = list_field(default=[] ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case , __snake_case ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k != '''container'''} _SCREAMING_SNAKE_CASE : str = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , _SCREAMING_SNAKE_CASE ) and yy.get("""choices""" , _SCREAMING_SNAKE_CASE ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](_SCREAMING_SNAKE_CASE ) , yy["""type"""](_SCREAMING_SNAKE_CASE ) ) del xx["type"], yy["type"] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--bar""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--baz""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--flag""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , const=_SCREAMING_SNAKE_CASE , nargs="""?""" ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] (_SCREAMING_SNAKE_CASE ) : List[Any] = parser.parse_args_into_dataclasses(_SCREAMING_SNAKE_CASE , look_for_args_file=_SCREAMING_SNAKE_CASE ) self.assertFalse(example.flag ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--baz""" , default="""toto""" , type=_SCREAMING_SNAKE_CASE , help="""help message""" ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , const=_SCREAMING_SNAKE_CASE , nargs="""?""" ) expected.add_argument("""--baz""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , const=_SCREAMING_SNAKE_CASE , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=_SCREAMING_SNAKE_CASE , dest="""baz""" ) expected.add_argument("""--opt""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: _SCREAMING_SNAKE_CASE : str = HfArgumentParser(_SCREAMING_SNAKE_CASE ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args([] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , opt=_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , opt=_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , opt=_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , opt=_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , opt=_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _SCREAMING_SNAKE_CASE : int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _SCREAMING_SNAKE_CASE : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase_ ( self ): @dataclass class lowercase__ : '''simple docstring''' A_ : Dict = """toto""" _SCREAMING_SNAKE_CASE : Any = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=_SCREAMING_SNAKE_CASE ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : int = parser.parse_args([] ) self.assertEqual( _SCREAMING_SNAKE_CASE , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--bar""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="""help message""" ) expected.add_argument("""--baz""" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : int = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: _SCREAMING_SNAKE_CASE : Any = HfArgumentParser(_SCREAMING_SNAKE_CASE ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args([] ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=_SCREAMING_SNAKE_CASE , bar=_SCREAMING_SNAKE_CASE , baz=_SCREAMING_SNAKE_CASE , ces=[] , des=[] ) ) _SCREAMING_SNAKE_CASE : str = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(_SCREAMING_SNAKE_CASE , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--required_str""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_SCREAMING_SNAKE_CASE , ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=_SCREAMING_SNAKE_CASE , ) expected.add_argument("""--opt""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) expected.add_argument("""--baz""" , default="""toto""" , type=_SCREAMING_SNAKE_CASE , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=_SCREAMING_SNAKE_CASE ) self.argparsersEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[str] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _SCREAMING_SNAKE_CASE : str = parser.parse_dict(_SCREAMING_SNAKE_CASE )[0] _SCREAMING_SNAKE_CASE : int = BasicExample(**_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_SCREAMING_SNAKE_CASE , parser.parse_dict , _SCREAMING_SNAKE_CASE , allow_extra_keys=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Tuple = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , """temp_json""" ) os.mkdir(_SCREAMING_SNAKE_CASE ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] _SCREAMING_SNAKE_CASE : Optional[Any] = BasicExample(**_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _SCREAMING_SNAKE_CASE : str = os.path.join(_SCREAMING_SNAKE_CASE , """temp_yaml""" ) os.mkdir(_SCREAMING_SNAKE_CASE ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] _SCREAMING_SNAKE_CASE : Any = BasicExample(**_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = HfArgumentParser(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
533
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], '''do_convert_rgb''': True, } A_ : int = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : List[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[int] = self.get_tokenizer() A_ : Any = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : str = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) A_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) A_ : Optional[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : List[str] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) A_ : Dict = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : List[Any] = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Tuple = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = self.prepare_image_inputs() A_ : str = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) A_ : List[str] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Tuple = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' A_ : Any = processor(text=_SCREAMING_SNAKE_CASE ) A_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Dict = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = '''Alexandra,T-shirt的价格是15便士。''' A_ : str = self.prepare_image_inputs() A_ : Optional[Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self )->List[str]: '''simple docstring''' A_ : int = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Tuple = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : List[Any] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : List[Any] = ChineseCLIPProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) A_ : Tuple = '''Alexandra,T-shirt的价格是15便士。''' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Union[str, Any] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
590
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = False ): """simple docstring""" lowerCAmelCase__ = scheduler lowerCAmelCase__ = optimizers if isinstance(_UpperCamelCase , (list, tuple) ) else [optimizers] lowerCAmelCase__ = split_batches lowerCAmelCase__ = step_with_optimizer lowerCAmelCase__ = GradientState() def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCamelCase , **_UpperCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCamelCase , **_UpperCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowerCAmelCase__ = AcceleratorState().num_processes for _ in range(_UpperCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCamelCase , **_UpperCamelCase ) else: self.scheduler.step(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" return self.scheduler.get_last_lr() def UpperCamelCase__ ( self ): """simple docstring""" return self.scheduler.state_dict() def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" self.scheduler.load_state_dict(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" return self.scheduler.get_lr() def UpperCamelCase__ ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.scheduler.print_lr(*_UpperCamelCase , **_UpperCamelCase )
365
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __snake_case : int = logging.get_logger("""transformers.models.encodec""") __snake_case : Tuple = { """quantizer.vq.layers.*._codebook.inited""": """quantizer.layers.*.codebook.inited""", """quantizer.vq.layers.*._codebook.cluster_size""": """quantizer.layers.*.codebook.cluster_size""", """quantizer.vq.layers.*._codebook.embed""": """quantizer.layers.*.codebook.embed""", """quantizer.vq.layers.*._codebook.embed_avg""": """quantizer.layers.*.codebook.embed_avg""", } __snake_case : List[Any] = { """encoder.model.0.conv.conv""": """encoder.layers.0.conv""", """encoder.model.1.block.1.conv.conv""": """encoder.layers.1.block.1.conv""", """encoder.model.1.block.3.conv.conv""": """encoder.layers.1.block.3.conv""", """encoder.model.1.shortcut.conv.conv""": """encoder.layers.1.shortcut.conv""", """encoder.model.3.conv.conv""": """encoder.layers.3.conv""", """encoder.model.4.block.1.conv.conv""": """encoder.layers.4.block.1.conv""", """encoder.model.4.block.3.conv.conv""": """encoder.layers.4.block.3.conv""", """encoder.model.4.shortcut.conv.conv""": """encoder.layers.4.shortcut.conv""", """encoder.model.6.conv.conv""": """encoder.layers.6.conv""", """encoder.model.7.block.1.conv.conv""": """encoder.layers.7.block.1.conv""", """encoder.model.7.block.3.conv.conv""": """encoder.layers.7.block.3.conv""", """encoder.model.7.shortcut.conv.conv""": """encoder.layers.7.shortcut.conv""", """encoder.model.9.conv.conv""": """encoder.layers.9.conv""", """encoder.model.10.block.1.conv.conv""": """encoder.layers.10.block.1.conv""", """encoder.model.10.block.3.conv.conv""": """encoder.layers.10.block.3.conv""", """encoder.model.10.shortcut.conv.conv""": """encoder.layers.10.shortcut.conv""", """encoder.model.12.conv.conv""": """encoder.layers.12.conv""", """encoder.model.13.lstm""": """encoder.layers.13.lstm""", """encoder.model.15.conv.conv""": """encoder.layers.15.conv""", } __snake_case : str = { """encoder.model.0.conv.norm""": """encoder.layers.0.norm""", """encoder.model.1.block.1.conv.norm""": """encoder.layers.1.block.1.norm""", """encoder.model.1.block.3.conv.norm""": """encoder.layers.1.block.3.norm""", """encoder.model.1.shortcut.conv.norm""": """encoder.layers.1.shortcut.norm""", """encoder.model.3.conv.norm""": """encoder.layers.3.norm""", """encoder.model.4.block.1.conv.norm""": """encoder.layers.4.block.1.norm""", """encoder.model.4.block.3.conv.norm""": """encoder.layers.4.block.3.norm""", """encoder.model.4.shortcut.conv.norm""": """encoder.layers.4.shortcut.norm""", """encoder.model.6.conv.norm""": """encoder.layers.6.norm""", """encoder.model.7.block.1.conv.norm""": """encoder.layers.7.block.1.norm""", """encoder.model.7.block.3.conv.norm""": """encoder.layers.7.block.3.norm""", """encoder.model.7.shortcut.conv.norm""": """encoder.layers.7.shortcut.norm""", """encoder.model.9.conv.norm""": """encoder.layers.9.norm""", """encoder.model.10.block.1.conv.norm""": """encoder.layers.10.block.1.norm""", """encoder.model.10.block.3.conv.norm""": """encoder.layers.10.block.3.norm""", """encoder.model.10.shortcut.conv.norm""": """encoder.layers.10.shortcut.norm""", """encoder.model.12.conv.norm""": """encoder.layers.12.norm""", """encoder.model.15.conv.norm""": """encoder.layers.15.norm""", } __snake_case : str = { """decoder.model.0.conv.conv""": """decoder.layers.0.conv""", """decoder.model.1.lstm""": """decoder.layers.1.lstm""", """decoder.model.3.convtr.convtr""": """decoder.layers.3.conv""", """decoder.model.4.block.1.conv.conv""": """decoder.layers.4.block.1.conv""", """decoder.model.4.block.3.conv.conv""": """decoder.layers.4.block.3.conv""", """decoder.model.4.shortcut.conv.conv""": """decoder.layers.4.shortcut.conv""", """decoder.model.6.convtr.convtr""": """decoder.layers.6.conv""", """decoder.model.7.block.1.conv.conv""": """decoder.layers.7.block.1.conv""", """decoder.model.7.block.3.conv.conv""": """decoder.layers.7.block.3.conv""", """decoder.model.7.shortcut.conv.conv""": """decoder.layers.7.shortcut.conv""", """decoder.model.9.convtr.convtr""": """decoder.layers.9.conv""", """decoder.model.10.block.1.conv.conv""": """decoder.layers.10.block.1.conv""", """decoder.model.10.block.3.conv.conv""": """decoder.layers.10.block.3.conv""", """decoder.model.10.shortcut.conv.conv""": """decoder.layers.10.shortcut.conv""", """decoder.model.12.convtr.convtr""": """decoder.layers.12.conv""", """decoder.model.13.block.1.conv.conv""": """decoder.layers.13.block.1.conv""", """decoder.model.13.block.3.conv.conv""": """decoder.layers.13.block.3.conv""", """decoder.model.13.shortcut.conv.conv""": """decoder.layers.13.shortcut.conv""", """decoder.model.15.conv.conv""": """decoder.layers.15.conv""", } __snake_case : Any = { """decoder.model.0.conv.norm""": """decoder.layers.0.norm""", """decoder.model.3.convtr.norm""": """decoder.layers.3.norm""", """decoder.model.4.block.1.conv.norm""": """decoder.layers.4.block.1.norm""", """decoder.model.4.block.3.conv.norm""": """decoder.layers.4.block.3.norm""", """decoder.model.4.shortcut.conv.norm""": """decoder.layers.4.shortcut.norm""", """decoder.model.6.convtr.norm""": """decoder.layers.6.norm""", """decoder.model.7.block.1.conv.norm""": """decoder.layers.7.block.1.norm""", """decoder.model.7.block.3.conv.norm""": """decoder.layers.7.block.3.norm""", """decoder.model.7.shortcut.conv.norm""": """decoder.layers.7.shortcut.norm""", """decoder.model.9.convtr.norm""": """decoder.layers.9.norm""", """decoder.model.10.block.1.conv.norm""": """decoder.layers.10.block.1.norm""", """decoder.model.10.block.3.conv.norm""": """decoder.layers.10.block.3.norm""", """decoder.model.10.shortcut.conv.norm""": """decoder.layers.10.shortcut.norm""", """decoder.model.12.convtr.norm""": """decoder.layers.12.norm""", """decoder.model.13.block.1.conv.norm""": """decoder.layers.13.block.1.norm""", """decoder.model.13.block.3.conv.norm""": """decoder.layers.13.block.3.norm""", """decoder.model.13.shortcut.conv.norm""": """decoder.layers.13.shortcut.norm""", """decoder.model.15.conv.norm""": """decoder.layers.15.norm""", } __snake_case : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __snake_case : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __snake_case : Union[str, Any] = [] __snake_case : Tuple = [] def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value elif weight_type == "running_mean": lowerCAmelCase__ = value elif weight_type == "running_var": lowerCAmelCase__ = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ = value elif weight_type == "weight_ih_l0": lowerCAmelCase__ = value elif weight_type == "weight_hh_l0": lowerCAmelCase__ = value elif weight_type == "bias_ih_l0": lowerCAmelCase__ = value elif weight_type == "bias_hh_l0": lowerCAmelCase__ = value elif weight_type == "weight_ih_l1": lowerCAmelCase__ = value elif weight_type == "weight_hh_l1": lowerCAmelCase__ = value elif weight_type == "bias_ih_l1": lowerCAmelCase__ = value elif weight_type == "bias_hh_l1": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def _UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase__ = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase__ = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(UpperCamelCase_ , UpperCamelCase_ ): logger.info(F"{name} was ignored" ) continue lowerCAmelCase__ = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase__ , lowerCAmelCase__ = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase__ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split('.' )[-2] lowerCAmelCase__ = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: lowerCAmelCase__ = 'weight_g' elif "weight_v" in name: lowerCAmelCase__ = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase__ = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase__ = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase__ = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase__ = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase__ = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase__ = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase__ = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase__ = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase__ = 'bias' elif "weight" in name: lowerCAmelCase__ = 'weight' elif "running_mean" in name: lowerCAmelCase__ = 'running_mean' elif "running_var" in name: lowerCAmelCase__ = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase__ = 'num_batches_tracked' else: lowerCAmelCase__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase__ = EncodecConfig.from_pretrained(UpperCamelCase_ ) else: lowerCAmelCase__ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase__ = [8, 5, 4, 4] lowerCAmelCase__ = [2.2] lowerCAmelCase__ = 64 lowerCAmelCase__ = 3_2000 lowerCAmelCase__ = 2048 lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False elif model_name == "encodec_48khz": lowerCAmelCase__ = [8, 5, 4, 2] lowerCAmelCase__ = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase__ = 4_8000 lowerCAmelCase__ = 2 lowerCAmelCase__ = False lowerCAmelCase__ = 'time_group_norm' lowerCAmelCase__ = True lowerCAmelCase__ = 1.0 lowerCAmelCase__ = 0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) lowerCAmelCase__ = EncodecModel(UpperCamelCase_ ) lowerCAmelCase__ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = torch.load(UpperCamelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase__ = original_checkpoint['best_state'] recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model""", default="""encodec_24khz""", type=str, help="""The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __snake_case : Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
365
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase__( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : List[Any]=3_0 , SCREAMING_SNAKE_CASE_ : Dict=4_0_0 , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_ : int=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , ) -> Union[str, Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase_ = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad def _lowercase ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict=False ) -> List[str]: if not batched: lowercase_ = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ): lowercase_ , lowercase_ = image.size else: lowercase_ , lowercase_ = image.shape[1], image.shape[2] if w < h: lowercase_ = int(self.size['''shortest_edge'''] * h / w ) lowercase_ = self.size['''shortest_edge'''] elif w > h: lowercase_ = self.size['''shortest_edge'''] lowercase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowercase_ = self.size['''shortest_edge'''] lowercase_ = self.size['''shortest_edge'''] else: lowercase_ = [] for image in image_inputs: lowercase_ , lowercase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] lowercase_ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = YolosImageProcessor if is_vision_available() else None def _lowercase ( self : List[Any] ) -> Dict: lowercase_ = YolosImageProcessingTester(self ) @property def _lowercase ( self : List[str] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ) -> List[Any]: lowercase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) def _lowercase ( self : str ) -> Any: lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ ) lowercase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> Tuple: pass def _lowercase ( self : Optional[Any] ) -> Any: # Initialize image_processing lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) lowercase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : List[Any] ) -> Tuple: # Initialize image_processing lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : List[Any] ) -> str: # Initialize image_processing lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Optional[Any] ) -> Tuple: # Initialize image_processings lowercase_ = self.image_processing_class(**self.image_processor_dict ) lowercase_ = self.image_processing_class(do_resize=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_rescale=SCREAMING_SNAKE_CASE_ ) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ = image_processing_a.pad(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) lowercase_ = image_processing_a(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def _lowercase ( self : List[Any] ) -> Dict: # prepare image and target lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase_ = json.loads(f.read() ) lowercase_ = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowercase_ = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase_ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area lowercase_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes lowercase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels lowercase_ = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) ) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) ) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) ) @slow def _lowercase ( self : List[Any] ) -> Union[str, Any]: # prepare image, target and masks_path lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase_ = json.loads(f.read() ) lowercase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowercase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase_ = YolosImageProcessor(format='''coco_panoptic''' ) lowercase_ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # verify pixel values lowercase_ = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) # verify area lowercase_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) ) # verify boxes lowercase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # verify image_id lowercase_ = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) ) # verify class_labels lowercase_ = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) ) # verify masks lowercase_ = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , SCREAMING_SNAKE_CASE_ ) # verify orig_size lowercase_ = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) ) # verify size lowercase_ = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) )
97
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class lowercase_ ( __snake_case ): def __init__( self , *lowercase_ , **lowercase_ ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
670
0
from __future__ import annotations from math import pow, sqrt def UpperCamelCase (lowercase_: float , lowercase_: float , lowercase_: float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
64
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A_ : Union[str, Any] = logging.get_logger(__name__) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , A__ , ) super().__init__(*A__ , **A__ )
64
1
from __future__ import annotations import numpy as np def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: return np.maximum(0 , lowerCamelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
89
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Any = """deta""" lowercase_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=None, lowerCamelCase=9_00, lowerCamelCase=20_48, lowerCamelCase=6, lowerCamelCase=20_48, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=True, lowerCamelCase=3_00, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, **lowerCamelCase, ) -> Any: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4']) else: if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = backbone_config.pop('model_type') _lowercase : int = CONFIG_MAPPING[backbone_model_type] _lowercase : Union[str, Any] = config_class.from_dict(lowerCamelCase) _lowercase : Union[str, Any] = backbone_config _lowercase : Any = num_queries _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Union[str, Any] = d_model _lowercase : Optional[int] = encoder_ffn_dim _lowercase : Optional[int] = encoder_layers _lowercase : Optional[Any] = encoder_attention_heads _lowercase : Optional[Any] = decoder_ffn_dim _lowercase : Dict = decoder_layers _lowercase : Tuple = decoder_attention_heads _lowercase : Union[str, Any] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Tuple = activation_function _lowercase : List[Any] = init_std _lowercase : Union[str, Any] = init_xavier_std _lowercase : int = encoder_layerdrop _lowercase : Optional[int] = auxiliary_loss _lowercase : Dict = position_embedding_type # deformable attributes _lowercase : Any = num_feature_levels _lowercase : str = encoder_n_points _lowercase : Any = decoder_n_points _lowercase : List[str] = two_stage _lowercase : Dict = two_stage_num_proposals _lowercase : Any = with_box_refine _lowercase : List[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : List[Any] = class_cost _lowercase : Optional[int] = bbox_cost _lowercase : str = giou_cost # Loss coefficients _lowercase : Optional[int] = mask_loss_coefficient _lowercase : int = dice_loss_coefficient _lowercase : List[Any] = bbox_loss_coefficient _lowercase : Optional[Any] = giou_loss_coefficient _lowercase : str = eos_coefficient _lowercase : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = copy.deepcopy(self.__dict__) _lowercase : Optional[int] = self.backbone_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output
89
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=[1, 1, 2] , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Any = seq_length SCREAMING_SNAKE_CASE_ : Optional[int] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = block_sizes SCREAMING_SNAKE_CASE_ : Tuple = num_decoder_layers SCREAMING_SNAKE_CASE_ : Any = d_model SCREAMING_SNAKE_CASE_ : List[Any] = n_head SCREAMING_SNAKE_CASE_ : int = d_head SCREAMING_SNAKE_CASE_ : List[Any] = d_inner SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : List[str] = num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE_ : List[str] = scope SCREAMING_SNAKE_CASE_ : Any = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE_ : Any = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE_ : Optional[Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE_ : Any = self.num_hidden_layers + 2 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Dict = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Any = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[int] = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Dict = model(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Tuple = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TFFunnelForPreTraining(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = TFFunnelForMaskedLM(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_choices SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFFunnelForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : int = TFFunnelForTokenClassification(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = TFFunnelForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : str = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _A ( __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : str = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : str = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Any = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE_ : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @require_tf class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Union[str, Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : Dict = False def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = TFFunnelModelTester(self , base=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
709
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCAmelCase : Optional[int] = logging.get_logger(__name__) @dataclass class _A : def __init__( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=6.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="fp4" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = load_in_abit SCREAMING_SNAKE_CASE_ : Tuple = load_in_abit SCREAMING_SNAKE_CASE_ : Dict = llm_inta_threshold SCREAMING_SNAKE_CASE_ : Tuple = llm_inta_skip_modules SCREAMING_SNAKE_CASE_ : Optional[int] = llm_inta_enable_fpaa_cpu_offload SCREAMING_SNAKE_CASE_ : Optional[Any] = llm_inta_has_fpaa_weight SCREAMING_SNAKE_CASE_ : List[str] = bnb_abit_quant_type SCREAMING_SNAKE_CASE_ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: SCREAMING_SNAKE_CASE_ : List[Any] = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): SCREAMING_SNAKE_CASE_ : Optional[int] = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def UpperCAmelCase ( self ): """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def UpperCAmelCase ( self ): """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCAmelCase ( self ): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCAmelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = cls(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: SCREAMING_SNAKE_CASE_ : Optional[int] = self.to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' writer.write(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : str = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ): """simple docstring""" return f"{self.__class__.__name__} {self.to_json_string()}" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = True ): """simple docstring""" if use_diff is True: SCREAMING_SNAKE_CASE_ : int = self.to_diff_dict() else: SCREAMING_SNAKE_CASE_ : List[str] = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.to_dict() # get the default config dict SCREAMING_SNAKE_CASE_ : Optional[Any] = BitsAndBytesConfig().to_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: SCREAMING_SNAKE_CASE_ : int = value return serializable_config_dict
353
0
'''simple docstring''' def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE = 200_0000 ) -> List[str]: snake_case__ : Optional[Any] = [0 for i in range(n + 1 )] snake_case__ : List[Any] = 1 snake_case__ : Optional[Any] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , A__ ): snake_case__ : Any = 1 snake_case__ : Dict = 0 for i in range(A__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
270
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'roberta-prelayernorm' def __init__( self : Tuple , lowerCamelCase : Tuple=5_02_65 , lowerCamelCase : Optional[int]=7_68 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : int=30_72 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=5_12 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Any=1E-12 , lowerCamelCase : int=1 , lowerCamelCase : List[Any]=0 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]="absolute" , lowerCamelCase : List[Any]=True , lowerCamelCase : Tuple=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : Union[str, Any] = classifier_dropout class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @property def __lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
275
0
import cva import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict , UpperCamelCase: float , UpperCamelCase: int ) -> List[Any]: if k in (0.04, 0.06): snake_case__ = k snake_case__ = window_size else: raise ValueError('invalid k value' ) def __str__( self: Optional[Any] ) -> str: return str(self.k ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: str ) -> tuple[cva.Mat, list[list[int]]]: snake_case__ = cva.imread(UpperCamelCase , 0 ) snake_case__ , snake_case__ = img.shape snake_case__ = [] snake_case__ = img.copy() snake_case__ = cva.cvtColor(UpperCamelCase , cva.COLOR_GRAY2RGB ) snake_case__ , snake_case__ = np.gradient(UpperCamelCase ) snake_case__ = dx**2 snake_case__ = dy**2 snake_case__ = dx * dy snake_case__ = 0.04 snake_case__ = self.window_size // 2 for y in range(UpperCamelCase , h - offset ): for x in range(UpperCamelCase , w - offset ): snake_case__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = (wxx * wyy) - (wxy**2) snake_case__ = wxx + wyy snake_case__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase : str = HarrisCorner(0.0_4, 3) __UpperCamelCase : List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
718
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __UpperCamelCase : Optional[int] = 8 def a_ ( _A , _A=BITS ) -> List[Any]: """simple docstring""" snake_case__ = x.device snake_case__ = (x * 255).int().clamp(0 , 255 ) snake_case__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_A ) snake_case__ = rearrange(_A , 'd -> d 1 1' ) snake_case__ = rearrange(_A , 'b c h w -> b c 1 h w' ) snake_case__ = ((x & mask) != 0).float() snake_case__ = rearrange(_A , 'b c d h w -> b (c d) h w' ) snake_case__ = bits * 2 - 1 return bits def a_ ( _A , _A=BITS ) -> List[str]: """simple docstring""" snake_case__ = x.device snake_case__ = (x > 0).int() snake_case__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_A , dtype=torch.intaa ) snake_case__ = rearrange(_A , 'd -> d 1 1' ) snake_case__ = rearrange(_A , 'b (c d) h w -> b c d h w' , d=8 ) snake_case__ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a_ ( self , _A , _A , _A , _A = 0.0 , _A = True , _A=None , _A = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) snake_case__ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas snake_case__ = self.alphas_cumprod[timestep] snake_case__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod snake_case__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" snake_case__ = self.bit_scale if self.config.clip_sample: snake_case__ = torch.clamp(_A , -scale , _A ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) snake_case__ = self._get_variance(_A , _A ) snake_case__ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide snake_case__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 snake_case__ = model_output.device if torch.is_tensor(_A ) else 'cpu' snake_case__ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_A ).to(_A ) snake_case__ = self._get_variance(_A , _A ) ** 0.5 * eta * noise snake_case__ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) def a_ ( self , _A , _A , _A , _A="epsilon" , _A=None , _A = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" snake_case__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: snake_case__ , snake_case__ = torch.split(_A , sample.shape[1] , dim=1 ) else: snake_case__ = None # 1. compute alphas, betas snake_case__ = self.alphas_cumprod[t] snake_case__ = self.alphas_cumprod[t - 1] if t > 0 else self.one snake_case__ = 1 - alpha_prod_t snake_case__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": snake_case__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": snake_case__ = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" snake_case__ = self.bit_scale if self.config.clip_sample: snake_case__ = torch.clamp(_A , -scale , _A ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t snake_case__ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case__ = 0 if t > 0: snake_case__ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_A ).to(model_output.device ) snake_case__ = (self._get_variance(_A , predicted_variance=_A ) ** 0.5) * noise snake_case__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_A , pred_original_sample=_A ) class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Dict , UpperCamelCase: UNetaDConditionModel , UpperCamelCase: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase: Optional[float] = 1.0 , ) -> Union[str, Any]: super().__init__() snake_case__ = bit_scale snake_case__ = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase , UpperCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self: Dict , UpperCamelCase: Optional[int] = 2_56 , UpperCamelCase: Optional[int] = 2_56 , UpperCamelCase: Optional[int] = 50 , UpperCamelCase: Optional[torch.Generator] = None , UpperCamelCase: Optional[int] = 1 , UpperCamelCase: Optional[str] = "pil" , UpperCamelCase: bool = True , **UpperCamelCase: int , ) -> Union[Tuple, ImagePipelineOutput]: snake_case__ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase , ) snake_case__ = decimal_to_bits(UpperCamelCase ) * self.bit_scale snake_case__ = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual snake_case__ = self.unet(UpperCamelCase , UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 snake_case__ = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample snake_case__ = bits_to_decimal(UpperCamelCase ) if output_type == "pil": snake_case__ = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
372
0
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: int ,lowerCAmelCase__: bool ,lowerCAmelCase__: list[int] ,lowerCAmelCase__: float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowerCAmelCase__ ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,) return min( minimax(depth + 1 ,node_index * 2 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,) def _UpperCamelCase ( ) -> None: SCREAMING_SNAKE_CASE_ = [90, 23, 6, 33, 21, 65, 123, 3_4423] SCREAMING_SNAKE_CASE_ = math.log(len(lowerCAmelCase__ ) ,2 ) print('Optimal value : ' ,end='' ) print(minimax(0 ,0 ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
294
'''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 # The first color of the flag. SCREAMING_SNAKE_CASE : List[str] = 1 # The second color of the flag. SCREAMING_SNAKE_CASE : Optional[Any] = 2 # The third color of the flag. SCREAMING_SNAKE_CASE : Tuple = (red, white, blue) def _UpperCamelCase ( lowerCAmelCase__: list ) -> list: if not sequence: return [] if len(lowerCAmelCase__ ) == 1: return list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(lowerCAmelCase__ ) - 1 SCREAMING_SNAKE_CASE_ = 0 while mid <= high: if sequence[mid] == colors[0]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sequence[high], sequence[mid] high -= 1 else: SCREAMING_SNAKE_CASE_ = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(lowerCAmelCase__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : str = input("Enter numbers separated by commas:\n").strip() SCREAMING_SNAKE_CASE : List[Any] = [int(item.strip()) for item in user_input.split(",")] print(f"{dutch_national_flag_sort(unsorted)}")
294
1
def UpperCAmelCase ( _lowerCamelCase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
17
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ) -> Dict: A : Optional[Any] = 4 A : List[str] = 32 A : Any = (32, 32) A : str = torch.manual_seed(0 ) A : int = torch.device(__lowerCamelCase ) A : List[str] = (batch_size, num_channels) + sizes A : Dict = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ) A : int = {"hidden_states": hidden_states} if include_temb: A : Any = 1_28 A : List[str] = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase ) if include_res_hidden_states_tuple: A : str = torch.manual_seed(1 ) A : Tuple = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ),) if include_encoder_hidden_states: A : Dict = floats_tensor((batch_size, 32, 32) ).to(__lowerCamelCase ) if include_skip_sample: A : Optional[int] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase ) return dummy_input def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: A : Dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 1_28, } if self.block_type == "up": A : Dict = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A : str = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Optional[int] ) -> Union[str, Any]: A , A : str = self.prepare_init_args_and_inputs_for_common() A : List[Any] = self.block_class(**__lowerCamelCase ) unet_block.to(__lowerCamelCase ) unet_block.eval() with torch.no_grad(): A : int = unet_block(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) A : Any = output[0, -1, -3:, -3:] A : Union[str, Any] = torch.tensor(__lowerCamelCase ).to(__lowerCamelCase ) assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: A , A : Tuple = self.prepare_init_args_and_inputs_for_common() A : str = self.block_class(**__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() A : Optional[int] = model(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Optional[Any] = output[0] A : List[str] = torch.device(__lowerCamelCase ) A : List[str] = randn_tensor(output.shape , device=__lowerCamelCase ) A : Dict = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) loss.backward()
17
1
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __snake_case ( __A : List[Any] , __A : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = XCLIPTextConfig() # derive patch size from model name SCREAMING_SNAKE_CASE : Dict = model_name.find('patch' ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPVisionConfig(patch_size=__A , num_frames=__A ) if "large" in model_name: SCREAMING_SNAKE_CASE : List[str] = 768 SCREAMING_SNAKE_CASE : Union[str, Any] = 3072 SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Any = 1024 SCREAMING_SNAKE_CASE : Tuple = 4096 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Dict = 24 SCREAMING_SNAKE_CASE : str = 768 SCREAMING_SNAKE_CASE : Tuple = 3072 if model_name == "xclip-large-patch14-16-frames": SCREAMING_SNAKE_CASE : Optional[Any] = 336 SCREAMING_SNAKE_CASE : List[str] = XCLIPConfig.from_text_vision_configs(__A , __A ) if "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 768 return config def __snake_case ( __A : Tuple ) -> Dict: '''simple docstring''' # text encoder if name == "token_embedding.weight": SCREAMING_SNAKE_CASE : str = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": SCREAMING_SNAKE_CASE : int = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: SCREAMING_SNAKE_CASE : Any = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: SCREAMING_SNAKE_CASE : Any = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): SCREAMING_SNAKE_CASE : int = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: SCREAMING_SNAKE_CASE : int = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: SCREAMING_SNAKE_CASE : str = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": SCREAMING_SNAKE_CASE : int = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): SCREAMING_SNAKE_CASE : int = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: SCREAMING_SNAKE_CASE : str = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: SCREAMING_SNAKE_CASE : str = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: SCREAMING_SNAKE_CASE : Any = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": SCREAMING_SNAKE_CASE : Tuple = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): SCREAMING_SNAKE_CASE : Optional[int] = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): SCREAMING_SNAKE_CASE : Optional[int] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def __snake_case ( __A : int , __A : List[str] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Dict = orig_state_dict.pop(__A ) if "attn.in_proj" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.split('.' ) if key.startswith('visual' ): SCREAMING_SNAKE_CASE : Any = key_split[3] SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: SCREAMING_SNAKE_CASE : str = val[ :dim, : ] SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim ] SCREAMING_SNAKE_CASE : Union[str, Any] = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = val[ -dim: ] else: if "weight" in key: SCREAMING_SNAKE_CASE : Any = val[ :dim, : ] SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: SCREAMING_SNAKE_CASE : str = val[:dim] SCREAMING_SNAKE_CASE : Dict = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : Any = val[-dim:] elif key.startswith('mit' ): SCREAMING_SNAKE_CASE : int = key_split[2] SCREAMING_SNAKE_CASE : str = config.vision_config.mit_hidden_size if "weight" in key: SCREAMING_SNAKE_CASE : str = val[:dim, :] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Dict = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Any = val[-dim:] else: SCREAMING_SNAKE_CASE : Optional[int] = key_split[2] SCREAMING_SNAKE_CASE : Optional[int] = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:] else: SCREAMING_SNAKE_CASE : Optional[Any] = rename_key(__A ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: SCREAMING_SNAKE_CASE : List[Any] = val.T SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def __snake_case ( __A : Optional[Any] ) -> Dict: '''simple docstring''' if num_frames == 8: SCREAMING_SNAKE_CASE : Optional[Any] = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: SCREAMING_SNAKE_CASE : List[Any] = 'eating_spaghetti.npy' elif num_frames == 32: SCREAMING_SNAKE_CASE : Dict = 'eating_spaghetti_32_frames.npy' SCREAMING_SNAKE_CASE : Optional[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=__A , repo_type='dataset' , ) SCREAMING_SNAKE_CASE : Optional[Any] = np.load(__A ) return list(__A ) def __snake_case ( __A : List[str] , __A : str=None , __A : Any=False ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[Any] = 8 if "16-frames" in model_name: SCREAMING_SNAKE_CASE : List[str] = 16 elif "shot" in model_name: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = get_xclip_config(__A , __A ) SCREAMING_SNAKE_CASE : Optional[Any] = XCLIPModel(__A ) model.eval() if "drive" in checkpoint_url: SCREAMING_SNAKE_CASE : str = 'pytorch_model.bin' gdown.cached_download(__A , __A , quiet=__A ) SCREAMING_SNAKE_CASE : Optional[int] = torch.load(__A , map_location='cpu' )['model'] else: SCREAMING_SNAKE_CASE : Any = torch.hub.load_state_dict_from_url(__A )['model'] SCREAMING_SNAKE_CASE : Tuple = convert_state_dict(__A , __A ) SCREAMING_SNAKE_CASE : List[str] = XCLIPModel(__A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = model.load_state_dict(__A , strict=__A ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() SCREAMING_SNAKE_CASE : int = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 SCREAMING_SNAKE_CASE : Optional[int] = VideoMAEImageProcessor(size=__A ) SCREAMING_SNAKE_CASE : Any = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE : str = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) SCREAMING_SNAKE_CASE : List[str] = XCLIPProcessor(image_processor=__A , tokenizer=__A ) SCREAMING_SNAKE_CASE : List[Any] = prepare_video(__A ) SCREAMING_SNAKE_CASE : int = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=__A , return_tensors='pt' , padding=__A ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**__A ) # Verify outputs SCREAMING_SNAKE_CASE : Tuple = outputs.logits_per_video SCREAMING_SNAKE_CASE : str = logits_per_video.softmax(dim=1 ) print('Probs:' , __A ) # kinetics-400 if model_name == "xclip-base-patch32": SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": SCREAMING_SNAKE_CASE : int = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": SCREAMING_SNAKE_CASE : Dict = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": SCREAMING_SNAKE_CASE : int = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": SCREAMING_SNAKE_CASE : Any = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": SCREAMING_SNAKE_CASE : Any = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": SCREAMING_SNAKE_CASE : str = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": SCREAMING_SNAKE_CASE : Dict = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": SCREAMING_SNAKE_CASE : Any = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(__A , __A , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(__A , organization='nielsr' ) processor.push_to_hub(__A , organization='nielsr' ) slow_tokenizer.push_to_hub(__A , organization='nielsr' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : List[str] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
265
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ : int = get_tests_dir('fixtures') A_ : int = get_tests_dir('fixtures/dummy_feature_extractor_config.json') A_ : Dict = get_tests_dir('fixtures/dummy-config.json') class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE : Optional[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('feature_extractor_type' ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = True try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
265
1
__a : int = {str(digit): digit**5 for digit in range(1_0)} def UpperCAmelCase ( lowercase ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase ) ) def UpperCAmelCase ( ): """simple docstring""" return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowercase ) ) if __name__ == "__main__": print(solution())
522
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __a : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : str = ['''pixel_values'''] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = 8 , **lowerCAmelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_pad __lowercase = pad_size def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase = get_image_size(lowerCAmelCase__ ) __lowercase = (old_height // size + 1) * size - old_height __lowercase = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_pad if do_pad is not None else self.do_pad __lowercase = pad_size if pad_size is not None else self.pad_size __lowercase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_pad: __lowercase = [self.pad(lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
522
1
'''simple docstring''' lowercase : List[Any] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __a ( A__ , A__ , A__ , A__ ) -> Dict: # Return True if there is node that has not iterated. lowerCAmelCase = [False] * len(A__ ) lowerCAmelCase = [s] lowerCAmelCase = True while queue: lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A__ ) lowerCAmelCase = True lowerCAmelCase = u return visited[t] def __a ( A__ , A__ , A__ ) -> Union[str, Any]: lowerCAmelCase = [-1] * (len(A__ )) lowerCAmelCase = 0 lowerCAmelCase = [] lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(A__ , A__ , A__ , A__ ): lowerCAmelCase = float("Inf" ) lowerCAmelCase = sink while s != source: # Find the minimum value in select path lowerCAmelCase = min(A__ , graph[parent[s]][s] ) lowerCAmelCase = parent[s] max_flow += path_flow lowerCAmelCase = sink while v != source: lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase = parent[v] for i in range(len(A__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
649
'''simple docstring''' from __future__ import annotations def __a ( A__ , A__ = None , A__ = None , A__ = False , ) -> tuple[int, float, str]: lowerCAmelCase = cipher_alphabet or [chr(A__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCAmelCase = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCAmelCase = frequencies_dict if not case_sensitive: lowerCAmelCase = ciphertext.lower() # Chi squared statistic values lowerCAmelCase = {} # cycle through all of the shifts for shift in range(len(A__ ) ): lowerCAmelCase = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( A__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCAmelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCAmelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase = decrypted_with_shift.lower().count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase = decrypted_with_shift.count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCAmelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(A__ ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCAmelCase = min( A__ , key=A__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
649
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["MobileNetV2FeatureExtractor"] lowerCAmelCase__ = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
594
from __future__ import annotations from collections import Counter from random import random class _a : """simple docstring""" def __init__( self ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase ={} def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) if nodea not in self.connections: self.add_node(lowerCAmelCase_ ) _lowercase =probability def __lowerCAmelCase ( self ): return list(self.connections ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =0 _lowercase =random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __lowerCamelCase ( __a : str , __a : list[tuple[str, str, float]] , __a : int ) -> dict[str, int]: _lowercase =MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) _lowercase =Counter(graph.get_nodes() ) _lowercase =start for _ in range(__a ): _lowercase =graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
594
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class A ( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _a = tempfile.mkdtemp() _a = BlipImageProcessor() _a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) _a = BlipaProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int , **lowerCAmelCase_ : Any ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : Any ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : str ) -> int: """simple docstring""" _a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _a = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _a = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _a = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> str: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = self.prepare_image_inputs() _a = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _a = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = processor(text=lowerCAmelCase_ ) _a = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(lowerCAmelCase_ ) _a = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _a = self.get_image_processor() _a = self.get_tokenizer() _a = BlipaProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _a = '''lower newer''' _a = self.prepare_image_inputs() _a = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
22
"""simple docstring""" def snake_case ( _a: int )-> int: '''simple docstring''' if not isinstance(_a , _a ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
510
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): # vision encoder if "img_encoder.pos_embed" in name: lowerCAmelCase_ : Dict =name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase_ : Optional[int] =name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase_ : Union[str, Any] =name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowerCAmelCase_ : List[str] =name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowerCAmelCase_ : Dict =name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase_ : Optional[Any] =name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase_ : Tuple =name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase_ : Optional[int] =name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowerCAmelCase_ : Tuple =name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase_ : Optional[int] =name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: lowerCAmelCase_ : Dict =name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase_ : int =name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowerCAmelCase_ : Any =name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase_ : List[Any] =name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: lowerCAmelCase_ : Any =name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: lowerCAmelCase_ : Tuple =name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: lowerCAmelCase_ : Union[str, Any] =name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: lowerCAmelCase_ : Optional[int] =name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: lowerCAmelCase_ : Tuple =name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: lowerCAmelCase_ : Union[str, Any] =name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase_ : Union[str, Any] =name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: lowerCAmelCase_ : List[Any] =name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowerCAmelCase_ : Tuple =name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: lowerCAmelCase_ : List[Any] =name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : str =orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase_ : Dict =key.split('''.''' ) lowerCAmelCase_ : Any =int(key_split[2] ), int(key_split[4] ) lowerCAmelCase_ : Optional[Any] =config.vision_config.hidden_size if "weight" in key: lowerCAmelCase_ : Tuple =val[:dim, :] lowerCAmelCase_ : Optional[int] =val[dim : dim * 2, :] lowerCAmelCase_ : Union[str, Any] =val[-dim:, :] else: lowerCAmelCase_ : str =val[:dim] lowerCAmelCase_ : Any =val[dim : dim * 2] lowerCAmelCase_ : Optional[int] =val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase_ : Dict =key.split('''.''' ) lowerCAmelCase_ : Optional[Any] =int(key_split[3] ) lowerCAmelCase_ : int =config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ : int =val[:dim, :] lowerCAmelCase_ : Union[str, Any] =val[ dim : dim * 2, : ] lowerCAmelCase_ : int =val[-dim:, :] else: lowerCAmelCase_ : Any =val[:dim] lowerCAmelCase_ : Dict =val[dim : dim * 2] lowerCAmelCase_ : Any =val[-dim:] else: lowerCAmelCase_ : Union[str, Any] =rename_key(_SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase_ : Optional[int] =val.squeeze_() else: lowerCAmelCase_ : Optional[int] =val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( ): lowerCAmelCase_ : Any ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ : List[Any] =Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="groupvit-gcc-yfcc" , _SCREAMING_SNAKE_CASE=False ): lowerCAmelCase_ : Union[str, Any] =GroupViTConfig() lowerCAmelCase_ : str =GroupViTModel(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase_ : Any =torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] lowerCAmelCase_ : int =convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[int] =model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_SCREAMING_SNAKE_CASE ) == 0) # verify result lowerCAmelCase_ : str =CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCAmelCase_ : Optional[Any] =prepare_img() lowerCAmelCase_ : Tuple =processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase_ : int =model(**_SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase_ : Dict =torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase_ : Optional[int] =torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3 ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print('''Successfully saved processor and model to''' , _SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization='''nielsr''' ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization='''nielsr''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __lowercase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
708
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : UNetaDModel _UpperCamelCase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size) lowerCAmelCase_ : Dict =self.unet lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Any =sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 ) lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
305
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def lowercase_ ( self : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings UpperCAmelCase__ : int = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_A , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='''py36''' , ) def lowercase_ ( self : Optional[int] , _A : Any ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def lowercase_ ( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.create_estimator(_A ) # run training estimator.fit() # result dataframe UpperCAmelCase__ : Union[str, Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
75
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = StableUnCLIPPipeline a__ : Dict = TEXT_TO_IMAGE_PARAMS a__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS a__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false a__ : Optional[int] = False def a ( self : List[str] ): __UpperCAmelCase = 32 __UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) __UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) __UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) __UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) __UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) __UpperCAmelCase = AutoencoderKL() __UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def a ( self : str , _lowercase : Dict , _lowercase : List[str]=0 ): if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a ( self : Any ): __UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def a ( self : int ): __UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Any ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCAmelCase = pipe('''anime turle''' , generator=_lowercase , output_type='''np''' ) __UpperCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def a ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
49
0
'''simple docstring''' _UpperCAmelCase : Any = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _UpperCAmelCase : int = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _UpperCAmelCase : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
717
'''simple docstring''' _UpperCAmelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase =input('''Enter message: ''' ) lowercase =input('''Enter key [alphanumeric]: ''' ) lowercase =input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase ='''encrypt''' lowercase =encrypt_message(lowercase_ , lowercase_ ) elif mode.lower().startswith('''d''' ): lowercase ='''decrypt''' lowercase =decrypt_message(lowercase_ , lowercase_ ) print(f'\n{mode.title()}ed message:' ) print(lowercase_ ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''encrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' return translate_message(lowercase_ , lowercase_ , '''decrypt''' ) def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : str ) -> str: '''simple docstring''' lowercase =[] lowercase =0 lowercase =key.upper() for symbol in message: lowercase =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowercase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowercase_ ): lowercase =0 else: translated.append(lowercase_ ) return "".join(lowercase_ ) if __name__ == "__main__": main()
145
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class a__ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): def __init__( self :str , _lowerCamelCase :Optional[Any]=None , **_lowerCamelCase :Tuple ): '''simple docstring''' super().__init__(features=_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :Optional[Any] ): '''simple docstring''' import torch if isinstance(_lowerCamelCase , _lowerCamelCase ) and column: if all( isinstance(_lowerCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_lowerCamelCase ) return column def lowerCamelCase_ ( self :Any , _lowerCamelCase :List[Any] ): '''simple docstring''' import torch if isinstance(_lowerCamelCase , (str, bytes, type(_lowerCamelCase )) ): return value elif isinstance(_lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase_ : str ={} if isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCamelCase_ : Any ={'dtype': torch.intaa} elif isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase_ : int ={'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCamelCase , PIL.Image.Image ): UpperCamelCase_ : str =np.asarray(_lowerCamelCase ) return torch.tensor(_lowerCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Union[str, Any] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(_lowerCamelCase , '__array__' ) and not isinstance(_lowerCamelCase , torch.Tensor ): UpperCamelCase_ : Optional[int] =data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) elif isinstance(_lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCamelCase ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , _lowerCamelCase , map_list=_lowerCamelCase ) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :pa.Table ): '''simple docstring''' UpperCamelCase_ : List[Any] =self.numpy_arrow_extractor().extract_row(_lowerCamelCase ) UpperCamelCase_ : Dict =self.python_features_decoder.decode_row(_lowerCamelCase ) return self.recursive_tensorize(_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :pa.Table ): '''simple docstring''' UpperCamelCase_ : List[str] =self.numpy_arrow_extractor().extract_column(_lowerCamelCase ) UpperCamelCase_ : Any =self.python_features_decoder.decode_column(_lowerCamelCase , pa_table.column_names[0] ) UpperCamelCase_ : Union[str, Any] =self.recursive_tensorize(_lowerCamelCase ) UpperCamelCase_ : Tuple =self._consolidate(_lowerCamelCase ) return column def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :pa.Table ): '''simple docstring''' UpperCamelCase_ : List[str] =self.numpy_arrow_extractor().extract_batch(_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =self.python_features_decoder.decode_batch(_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =self.recursive_tensorize(_lowerCamelCase ) for column_name in batch: UpperCamelCase_ : int =self._consolidate(batch[column_name] ) return batch
357
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } __SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': 1_536, 'junnyu/roformer_chinese_base': 1_536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } __SCREAMING_SNAKE_CASE = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = RoFormerTokenizer def __init__( self :Tuple , _lowerCamelCase :Dict=None , _lowerCamelCase :Dict=None , _lowerCamelCase :List[Any]=True , _lowerCamelCase :Dict="[UNK]" , _lowerCamelCase :List[str]="[SEP]" , _lowerCamelCase :str="[PAD]" , _lowerCamelCase :Optional[Any]="[CLS]" , _lowerCamelCase :Optional[int]="[MASK]" , _lowerCamelCase :str=True , _lowerCamelCase :Tuple=None , **_lowerCamelCase :Any , ): '''simple docstring''' super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_ : Any =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _lowerCamelCase ) != do_lower_case or pre_tok_state.get('strip_accents' , _lowerCamelCase ) != strip_accents ): UpperCamelCase_ : Optional[Any] =getattr(_lowerCamelCase , pre_tok_state.pop('type' ) ) UpperCamelCase_ : Tuple =do_lower_case UpperCamelCase_ : Union[str, Any] =strip_accents UpperCamelCase_ : Union[str, Any] =pre_tok_class(**_lowerCamelCase ) UpperCamelCase_ : List[str] =do_lower_case def __getstate__( self :Any ): '''simple docstring''' UpperCamelCase_ : str =self.__dict__.copy() UpperCamelCase_ : Union[str, Any] =BertPreTokenizer() return state def __setstate__( self :str , _lowerCamelCase :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : int =d UpperCamelCase_ : Optional[int] =self.__dict__['_tokenizer'].get_vocab() UpperCamelCase_ : Any =PreTokenizer.custom(JiebaPreTokenizer(_lowerCamelCase ) ) def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Any=None ): '''simple docstring''' UpperCamelCase_ : int =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : List[Any] =[self.sep_token_id] UpperCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' UpperCamelCase_ : List[Any] =self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def lowerCamelCase_ ( self :str , _lowerCamelCase :List[str] , _lowerCamelCase :List[Any]=None , _lowerCamelCase :Optional[Any]=None , _lowerCamelCase :int=False , **_lowerCamelCase :Optional[int] , ): '''simple docstring''' UpperCamelCase_ : str =BertPreTokenizer() return super().save_pretrained(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
357
1
import mpmath # for roots of unity import numpy as np class snake_case__ : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None ) -> List[str]: # Input as list UpperCAmelCase_ = list(poly_a or [0] )[:] UpperCAmelCase_ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase_ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase_ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase_ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase_ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase_ = self.__multiply() def UpperCamelCase ( self : Dict , lowerCAmelCase_ : List[str] ) -> Any: UpperCAmelCase_ = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(lowerCAmelCase_ ) <= 1: return dft[0] # UpperCAmelCase_ = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase_ = [[] for i in range(lowerCAmelCase_ )] UpperCAmelCase_ = self.root**next_ncol # First half of next step UpperCAmelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase_ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCAmelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase_ = new_dft UpperCAmelCase_ = next_ncol // 2 return dft[0] def UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase_ = self.__dft('''A''' ) UpperCAmelCase_ = self.__dft('''B''' ) UpperCAmelCase_ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase_ = 2 while next_ncol <= self.c_max_length: UpperCAmelCase_ = [[] for i in range(lowerCAmelCase_ )] UpperCAmelCase_ = self.root ** (next_ncol // 2) UpperCAmelCase_ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase_ = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase_ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : int ) -> List[Any]: UpperCAmelCase_ = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase_ = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase_ = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
719
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) UpperCAmelCase_ = np.array(__magic_name__ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) UpperCAmelCase_ = model.fit(disp=__magic_name__ , maxiter=6_0_0 , method='''nm''' ) UpperCAmelCase_ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) UpperCAmelCase_ = regressor.predict(__magic_name__ ) return y_pred[0] def _lowerCAmelCase ( __magic_name__ :list ): train_user.sort() UpperCAmelCase_ = np.percentile(__magic_name__ , 2_5 ) UpperCAmelCase_ = np.percentile(__magic_name__ , 7_5 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :float ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowerCamelCase : List[str] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] _lowerCamelCase : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) _lowerCamelCase : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data _lowerCamelCase : List[str] = normalize_df[:, 2].tolist() _lowerCamelCase : Dict = normalize_df[:, 0].tolist() _lowerCamelCase : Optional[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowerCamelCase : Union[str, Any] = normalize_df[:, [1, 2]].tolist() _lowerCamelCase : Any = x[: len(x) - 1] _lowerCamelCase : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax _lowerCamelCase : List[str] = total_date[: len(total_date) - 1] _lowerCamelCase : Any = total_user[: len(total_user) - 1] _lowerCamelCase : Dict = total_match[: len(total_match) - 1] _lowerCamelCase : Any = total_date[len(total_date) - 1 :] _lowerCamelCase : List[str] = total_user[len(total_user) - 1 :] _lowerCamelCase : Any = total_match[len(total_match) - 1 :] # voting system with forecasting _lowerCamelCase : List[str] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowerCamelCase : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
407
0
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ) -> None: '''simple docstring''' _UpperCamelCase : Optional[int] = len(UpperCAmelCase ) print("The following activities are selected:" ) # The first activity is always selected _UpperCamelCase : List[str] = 0 print(UpperCAmelCase ,end="," ) # Consider rest of the activities for j in range(UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase ,end="," ) _UpperCamelCase : Optional[Any] = j if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : List[Any] = [1, 3, 0, 5, 8, 5] lowerCAmelCase_ : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
435
'''simple docstring''' from __future__ import annotations import time lowerCAmelCase_ : Any = list[tuple[int, int]] lowerCAmelCase_ : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ : Optional[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : Node | None ) ->List[Any]: '''simple docstring''' _UpperCamelCase : int = pos_x _UpperCamelCase : List[Any] = pos_y _UpperCamelCase : List[Any] = (pos_y, pos_x) _UpperCamelCase : Any = goal_x _UpperCamelCase : Optional[int] = goal_y _UpperCamelCase : int = parent class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , lowercase__ : tuple[int, int] , lowercase__ : tuple[int, int] ) ->int: '''simple docstring''' _UpperCamelCase : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , lowercase__ ) _UpperCamelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowercase__ ) _UpperCamelCase : Tuple = [self.start] _UpperCamelCase : Union[str, Any] = False def snake_case__ ( self : Tuple ) ->Path | None: '''simple docstring''' while self.node_queue: _UpperCamelCase : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase : Tuple = True return self.retrace_path(lowercase__ ) _UpperCamelCase : List[str] = self.get_successors(lowercase__ ) for node in successors: self.node_queue.append(lowercase__ ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : int , lowercase__ : Node ) ->list[Node]: '''simple docstring''' _UpperCamelCase : Optional[Any] = [] for action in delta: _UpperCamelCase : Any = parent.pos_x + action[1] _UpperCamelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowercase__ , lowercase__ , self.target.pos_y , self.target.pos_x , lowercase__ ) ) return successors def snake_case__ ( self : str , lowercase__ : Node | None ) ->Path: '''simple docstring''' _UpperCamelCase : Union[str, Any] = node _UpperCamelCase : Tuple = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase : List[Any] = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , lowercase__ : Optional[int] , lowercase__ : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[int] = BreadthFirstSearch(lowercase__ , lowercase__ ) _UpperCamelCase : List[str] = BreadthFirstSearch(lowercase__ , lowercase__ ) _UpperCamelCase : int = False def snake_case__ ( self : List[Any] ) ->Path | None: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCamelCase : Dict = self.fwd_bfs.node_queue.pop(0 ) _UpperCamelCase : Any = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCamelCase : List[str] = True return self.retrace_bidirectional_path( lowercase__ , lowercase__ ) _UpperCamelCase : Dict = current_bwd_node _UpperCamelCase : Optional[int] = current_fwd_node _UpperCamelCase : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(lowercase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowercase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowercase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case__ ( self : Dict , lowercase__ : Node , lowercase__ : Node ) ->Path: '''simple docstring''' _UpperCamelCase : Tuple = self.fwd_bfs.retrace_path(lowercase__ ) _UpperCamelCase : int = self.bwd_bfs.retrace_path(lowercase__ ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCAmelCase_ : List[Any] = (0, 0) lowerCAmelCase_ : List[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCAmelCase_ : Any = time.time() lowerCAmelCase_ : Dict = BreadthFirstSearch(init, goal) lowerCAmelCase_ : List[str] = bfs.search() lowerCAmelCase_ : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowerCAmelCase_ : List[str] = time.time() lowerCAmelCase_ : Tuple = BidirectionalBreadthFirstSearch(init, goal) lowerCAmelCase_ : Optional[int] = bd_bfs.search() lowerCAmelCase_ : Dict = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
435
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int , __lowercase : int ) -> int: '''simple docstring''' return 1 if input_a == input_a else 0 def UpperCAmelCase_ ( ) -> None: '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
119
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger() @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : list = field(default_factory=lowerCAmelCase_ ) def lowercase ( self : Dict , snake_case_ : Dict , snake_case_ : Tensor , snake_case_ : Tensor ): _UpperCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(snake_case_ , nn.Convad ) or isinstance(snake_case_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case_ ) def __call__( self : str , snake_case_ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case_ ) [x.remove() for x in self.handles] return self @property def lowercase ( self : int ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 1 _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : bool = True def __call__( self : str , snake_case_ : Tensor ): _UpperCAmelCase = Tracker(self.dest )(snake_case_ ).parametrized _UpperCAmelCase = Tracker(self.src )(snake_case_ ).parametrized _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.src_skip , snake_case_ ) ) _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.dest_skip , snake_case_ ) ) if len(snake_case_ ) != len(snake_case_ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case_ )} operations while' f' destination module has {len(snake_case_ )}.' ) for dest_m, src_m in zip(snake_case_ , snake_case_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class A_ ( nn.Module ): def __init__( self : str , snake_case_ : nn.Module ): super().__init__() _UpperCAmelCase = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'Unexpected layer name {k}' _UpperCAmelCase = len(snake_case_ ) + 1 feature_blocks.append((f'res{block_index}', v) ) _UpperCAmelCase = nn.ModuleDict(snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : Tensor ): return get_trunk_forward_outputs( snake_case_ , out_feat_keys=snake_case_ , feature_blocks=self._feature_blocks , ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Any , snake_case_ : str ): _UpperCAmelCase = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any , snake_case_ : str ): # default to timm! if x not in self: _UpperCAmelCase = self.convert_name_to_timm(snake_case_ ) _UpperCAmelCase = partial(lambda: (timm.create_model(snake_case_ , pretrained=snake_case_ ).eval(), None) ) else: _UpperCAmelCase = super().__getitem__(snake_case_ ) return val class A_ ( lowerCAmelCase_ ): def __getitem__( self : Tuple , snake_case_ : str ): if "seer" in x and "in1k" not in x: _UpperCAmelCase = RegNetModel else: _UpperCAmelCase = RegNetForImageClassification return val def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[Tuple[str, str]] ) -> List[Any]: '''simple docstring''' for from_key, to_key in keys: _UpperCAmelCase = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def UpperCAmelCase_ ( __lowercase : str , __lowercase : Callable[[], nn.Module] , __lowercase : Callable[[], nn.Module] , __lowercase : RegNetConfig , __lowercase : Path , __lowercase : bool = True , ) -> str: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase = from_model_func() _UpperCAmelCase = our_model_func(__lowercase ).eval() _UpperCAmelCase = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) _UpperCAmelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__lowercase ) if from_state_dict is not None: _UpperCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) _UpperCAmelCase = our_model(__lowercase , output_hidden_states=__lowercase ) _UpperCAmelCase = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) _UpperCAmelCase = from_model(__lowercase ) _UpperCAmelCase = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowercase , ) _UpperCAmelCase = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowercase , ) print(f'Pushed {name}' ) def UpperCAmelCase_ ( __lowercase : Path , __lowercase : str = None , __lowercase : bool = True ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = 1000 _UpperCAmelCase = (1, num_labels) _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) _UpperCAmelCase = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } _UpperCAmelCase = NameToOurModelFuncMap() _UpperCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase : str , __lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location="cpu" ) _UpperCAmelCase = model_func() # check if we have a head, if yes add it _UpperCAmelCase = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase = model_state_dict["trunk"] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() __SCREAMING_SNAKE_CASE :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
119
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def update_area_of_max_square(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 A_ : Tuple = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) A_ : Tuple = update_area_of_max_square(row + 1 , col + 1 ) A_ : List[Any] = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: A_ : Optional[Any] = 1 + min([right, diagonal, down] ) A_ : Optional[int] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 A_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] A_ : List[str] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) A_ : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) A_ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: A_ : Any = 1 + min([right, diagonal, down] ) A_ : Any = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) A_ : Tuple = sub_problem_sol return sub_problem_sol else: return 0 A_ : str = [0] A_ : Union[str, Any] = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] A_ : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A_ : Tuple = dp_array[row][col + 1] A_ : str = dp_array[row + 1][col + 1] A_ : int = dp_array[row + 1][col] if mat[row][col] == 1: A_ : Union[str, Any] = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A_ : Any = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: A_ : List[Any] = 0 return largest_square_area def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = [0] * (cols + 1) A_ : Union[str, Any] = [0] * (cols + 1) A_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): A_ : Union[str, Any] = current_row[col + 1] A_ : Union[str, Any] = next_row[col + 1] A_ : List[Any] = next_row[col] if mat[row][col] == 1: A_ : Tuple = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A_ : List[str] = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: A_ : Any = 0 A_ : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
590
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : """simple docstring""" def __init__( self : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Union[str, Any]=1_3, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : Optional[Any]=2, _UpperCAmelCase : Tuple=3, _UpperCAmelCase : str=1_6, _UpperCAmelCase : Tuple=[1, 2, 1], _UpperCAmelCase : List[str]=[2, 2, 4], _UpperCAmelCase : Tuple=2, _UpperCAmelCase : str=2.0, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : int=0.0, _UpperCAmelCase : Any=0.0, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : int="gelu", _UpperCAmelCase : Any=False, _UpperCAmelCase : Any=True, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Any=1E-5, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : str=True, _UpperCAmelCase : Union[str, Any]=1_0, _UpperCAmelCase : List[str]=8, _UpperCAmelCase : Union[str, Any]=["stage1", "stage2", "stage3"], _UpperCAmelCase : Any=[1, 2, 3], ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : List[str] = num_heads SCREAMING_SNAKE_CASE__ : str = window_size SCREAMING_SNAKE_CASE__ : Any = mlp_ratio SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = drop_path_rate SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Tuple = patch_norm SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_stride SCREAMING_SNAKE_CASE__ : List[Any] = out_features SCREAMING_SNAKE_CASE__ : Dict = out_indices def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def A_ ( self : Optional[int], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskFormerSwinBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = ["stem"] SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinBackbone(config=_UpperCAmelCase ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCAmelCase_ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE__ : Any = ConfigTester(self, config_class=_UpperCAmelCase, embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def A_ ( self : Any ) -> List[Any]: """simple docstring""" pass def A_ ( self : Tuple ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : int ) -> Optional[Any]: """simple docstring""" return def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def A_ ( self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def A_ ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def A_ ( self : Dict ) -> List[str]: """simple docstring""" pass def A_ ( self : List[str], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = 3 SCREAMING_SNAKE_CASE__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Any = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def A_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = 0 return t def check_equivalence(_UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Optional[Any]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ).to_tuple() def recursive_check(_UpperCAmelCase : int, _UpperCAmelCase : Dict ): if isinstance(_UpperCAmelCase, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase, _UpperCAmelCase ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase ), set_nan_tensor_to_zero(_UpperCAmelCase ), atol=1E-5 ), msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}.''' ), ) recursive_check(_UpperCAmelCase, _UpperCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) @require_torch class lowerCamelCase (unittest.TestCase , __lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCAmelCase_ = MaskFormerSwinConfig def A_ ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModelTester(self ) def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = backbone_class(_UpperCAmelCase ) backbone.to(_UpperCAmelCase ) backbone.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, _UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase, output_hidden_states=_UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE__ : int = backbone(**_UpperCAmelCase, output_attentions=_UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
663
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> List[Any]: # Load checkpoint UpperCAmelCase : Optional[Any] = torch.load(_lowerCAmelCase , map_location='''cpu''' ) UpperCAmelCase : str = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase : Optional[Any] = v else: UpperCAmelCase : List[Any] = v UpperCAmelCase : Optional[Any] = chkpt['''params'''] UpperCAmelCase : Any = {n: v for n, v in config.items() if not isinstance(_lowerCAmelCase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase : int = chkpt['''dico_word2id'''] UpperCAmelCase : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowerCAmelCase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowerCAmelCase , indent=2 ) + '''\n''' ) if __name__ == "__main__": UpperCamelCase__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase__: str = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
528
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: Tuple = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """time_series_transformer""" lowerCamelCase__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : str , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "student_t" , __snake_case : str = "nll" , __snake_case : int = 1 , __snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case : Optional[Union[str, bool]] = "mean" , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : Optional[List[int]] = None , __snake_case : Optional[List[int]] = None , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : bool = True , __snake_case : str = "gelu" , __snake_case : int = 64 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 100 , __snake_case : float = 0.02 , __snake_case : Optional[Any]=True , **__snake_case : List[Any] , ) -> List[str]: # time series specific configuration UpperCAmelCase : List[Any] = prediction_length UpperCAmelCase : List[Any] = context_length or prediction_length UpperCAmelCase : Tuple = distribution_output UpperCAmelCase : Optional[Any] = loss UpperCAmelCase : Tuple = input_size UpperCAmelCase : Optional[int] = num_time_features UpperCAmelCase : Dict = lags_sequence UpperCAmelCase : Any = scaling UpperCAmelCase : Tuple = num_dynamic_real_features UpperCAmelCase : Any = num_static_real_features UpperCAmelCase : Optional[int] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Any = cardinality else: UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Optional[int] = embedding_dimension else: UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : int = input_size * len(__snake_case ) + self._number_of_features UpperCAmelCase : int = d_model UpperCAmelCase : str = encoder_attention_heads UpperCAmelCase : str = decoder_attention_heads UpperCAmelCase : List[str] = encoder_ffn_dim UpperCAmelCase : Any = decoder_ffn_dim UpperCAmelCase : Any = encoder_layers UpperCAmelCase : str = decoder_layers UpperCAmelCase : Optional[int] = dropout UpperCAmelCase : Union[str, Any] = attention_dropout UpperCAmelCase : List[Any] = activation_dropout UpperCAmelCase : Optional[int] = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Tuple = activation_function UpperCAmelCase : Dict = init_std UpperCAmelCase : Optional[int] = use_cache super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def A ( self : Union[str, Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
528
1
"""simple docstring""" def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int ) -> int: return int(input_a == input_a == 0 ) def lowercase__ ( ) -> None: print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
308
import re from filelock import FileLock try: import nltk UpperCamelCase = True except (ImportError, ModuleNotFoundError): UpperCamelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: re.sub("""<n>""" , """""" , __lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowerCAmelCase ) )
269
0
'''simple docstring''' from collections import deque class snake_case : """simple docstring""" def __init__( self : Dict , __A : str , __A : int , __A : int ): __UpperCamelCase = process_name # process name __UpperCamelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __UpperCamelCase = arrival_time __UpperCamelCase = burst_time # remaining burst time __UpperCamelCase = 0 # total time of the process wait in ready queue __UpperCamelCase = 0 # time from arrival time to completion time class snake_case : """simple docstring""" def __init__( self : Dict , __A : int , __A : list[int] , __A : deque[Process] , __A : int , ): # total number of mlfq's queues __UpperCamelCase = number_of_queues # time slice of queues that round robin algorithm applied __UpperCamelCase = time_slices # unfinished process is in this ready_queue __UpperCamelCase = queue # current time __UpperCamelCase = current_time # finished process is in this sequence queue __UpperCamelCase = deque() def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _lowerCamelCase ( self : int , __A : list[Process] ): __UpperCamelCase = [] for i in range(len(__A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _lowerCamelCase ( self : Dict , __A : list[Process] ): __UpperCamelCase = [] for i in range(len(__A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _lowerCamelCase ( self : Union[str, Any] , __A : list[Process] ): __UpperCamelCase = [] for i in range(len(__A ) ): completion_times.append(queue[i].stop_time ) return completion_times def _lowerCamelCase ( self : Optional[Any] , __A : deque[Process] ): return [q.burst_time for q in queue] def _lowerCamelCase ( self : Optional[Any] , __A : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _lowerCamelCase ( self : Union[str, Any] , __A : deque[Process] ): __UpperCamelCase = deque() # sequence deque of finished process while len(__A ) != 0: __UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __UpperCamelCase = 0 # set the process's turnaround time because it is finished __UpperCamelCase = self.current_time - cp.arrival_time # set the completion time __UpperCamelCase = self.current_time # add the process to queue that has finished queue finished.append(__A ) self.finish_queue.extend(__A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _lowerCamelCase ( self : Tuple , __A : deque[Process] , __A : int ): __UpperCamelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__A ) ): __UpperCamelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __UpperCamelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __UpperCamelCase = 0 # set the finish time __UpperCamelCase = self.current_time # update the process' turnaround time because it is finished __UpperCamelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__A ) self.finish_queue.extend(__A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _lowerCamelCase ( self : int ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): __UpperCamelCase , __UpperCamelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a__ : Optional[Any] =Process('''P1''', 0, 53) a__ : str =Process('''P2''', 0, 17) a__ : int =Process('''P3''', 0, 68) a__ : Dict =Process('''P4''', 0, 24) a__ : str =3 a__ : List[str] =[17, 25] a__ : Any =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) a__ : Dict =Process('''P1''', 0, 53) a__ : Dict =Process('''P2''', 0, 17) a__ : Dict =Process('''P3''', 0, 68) a__ : List[str] =Process('''P4''', 0, 24) a__ : str =3 a__ : Any =[17, 25] a__ : Tuple =deque([Pa, Pa, Pa, Pa]) a__ : Dict =MLFQ(number_of_queues, time_slices, queue, 0) a__ : Tuple =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
434
'''simple docstring''' def lowercase__ ( __lowercase : list[int] , __lowercase : list[int] ) -> None: """simple docstring""" __UpperCamelCase = len(__lowercase ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(__lowercase , end=',' ) # Consider rest of the activities for j in range(__lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__lowercase , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() a__ : Any =[1, 3, 0, 5, 8, 5] a__ : Dict =[2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
434
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowerCAmelCase__ ( _UpperCAmelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = '''encodec''' def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : List[str]=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , _SCREAMING_SNAKE_CASE : Tuple=24_000 , _SCREAMING_SNAKE_CASE : List[str]=1 , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : str=128 , _SCREAMING_SNAKE_CASE : Union[str, Any]=32 , _SCREAMING_SNAKE_CASE : int=1 , _SCREAMING_SNAKE_CASE : List[str]=[8, 5, 4, 2] , _SCREAMING_SNAKE_CASE : Any="weight_norm" , _SCREAMING_SNAKE_CASE : Optional[Any]=7 , _SCREAMING_SNAKE_CASE : List[str]=7 , _SCREAMING_SNAKE_CASE : Dict=3 , _SCREAMING_SNAKE_CASE : Any=2 , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Tuple="reflect" , _SCREAMING_SNAKE_CASE : Any=2 , _SCREAMING_SNAKE_CASE : Any=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=1.0 , _SCREAMING_SNAKE_CASE : int=1_024 , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : int=True , **_SCREAMING_SNAKE_CASE : Optional[int] , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = target_bandwidths SCREAMING_SNAKE_CASE : Optional[int] = sampling_rate SCREAMING_SNAKE_CASE : str = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Any = overlap SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Dict = num_filters SCREAMING_SNAKE_CASE : Optional[int] = num_residual_layers SCREAMING_SNAKE_CASE : Tuple = upsampling_ratios SCREAMING_SNAKE_CASE : int = norm_type SCREAMING_SNAKE_CASE : Optional[Any] = kernel_size SCREAMING_SNAKE_CASE : Optional[int] = last_kernel_size SCREAMING_SNAKE_CASE : Optional[int] = residual_kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = dilation_growth_rate SCREAMING_SNAKE_CASE : List[str] = use_causal_conv SCREAMING_SNAKE_CASE : Tuple = pad_mode SCREAMING_SNAKE_CASE : Union[str, Any] = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : Tuple = trim_right_ratio SCREAMING_SNAKE_CASE : List[Any] = codebook_size SCREAMING_SNAKE_CASE : Dict = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
265
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class lowercase : _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 @dataclass class lowercase : _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'train' _SCREAMING_SNAKE_CASE = 'dev' _SCREAMING_SNAKE_CASE = 'test' class lowercase : @staticmethod def _snake_case ( lowercase , lowercase ) -> List[InputExample]: raise NotImplementedError @staticmethod def _snake_case ( lowercase ) -> List[str]: raise NotImplementedError @staticmethod def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase=False , lowercase="[CLS]" , lowercase=1 , lowercase="[SEP]" , lowercase=False , lowercase=False , lowercase=0 , lowercase=0 , lowercase=-100 , lowercase=0 , lowercase=True , ) -> List[InputFeatures]: lowerCAmelCase = {label: i for i, label in enumerate(lowercase )} lowerCAmelCase = [] for ex_index, example in enumerate(lowercase ): if ex_index % 10_000 == 0: logger.info("""Writing example %d of %d""" , lowercase , len(lowercase ) ) lowerCAmelCase = [] lowerCAmelCase = [] for word, label in zip(example.words , example.labels ): lowerCAmelCase = tokenizer.tokenize(lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(lowercase ) > 0: tokens.extend(lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCAmelCase = tokenizer.num_special_tokens_to_add() if len(lowercase ) > max_seq_length - special_tokens_count: lowerCAmelCase = tokens[: (max_seq_length - special_tokens_count)] lowerCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCAmelCase = [sequence_a_segment_id] * len(lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCAmelCase = [cls_token] + tokens lowerCAmelCase = [pad_token_label_id] + label_ids lowerCAmelCase = [cls_token_segment_id] + segment_ids lowerCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCAmelCase = [1 if mask_padding_with_zero else 0] * len(lowercase ) # Zero-pad up to the sequence length. lowerCAmelCase = max_seq_length - len(lowercase ) if pad_on_left: lowerCAmelCase = ([pad_token] * padding_length) + input_ids lowerCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids lowerCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length assert len(lowercase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(lowercase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(lowercase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(lowercase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(lowercase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase = None features.append( InputFeatures( input_ids=lowercase , attention_mask=lowercase , token_type_ids=lowercase , label_ids=lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = nn.CrossEntropyLoss().ignore_index def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase=False , lowercase = Split.train , ) -> List[str]: # Load data features from cache or dataset file lowerCAmelCase = os.path.join( lowercase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + """.lock""" with FileLock(lowercase ): if os.path.exists(lowercase ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) lowerCAmelCase = torch.load(lowercase ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) lowerCAmelCase = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , lowercase ) def __len__( self ) -> int: return len(self.features ) def __getitem__( self , lowercase ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = -100 def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase=False , lowercase = Split.train , ) -> Any: lowerCAmelCase = token_classification_task.read_examples_from_file(lowercase , lowercase ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase = token_classification_task.convert_examples_to_features( lowercase , lowercase , lowercase , lowercase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase = tf.data.Dataset.from_generator( lowercase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCAmelCase = tf.data.Dataset.from_generator( lowercase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , lowercase ) -> InputFeatures: return self.features[i]
532
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowercase : Tuple = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case): if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}.") if not ops[op](version.parse(snake_case), version.parse(snake_case)): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}") def SCREAMING_SNAKE_CASE ( snake_case, snake_case = None): __snake_case = f"\n{hint}" if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''', snake_case): __snake_case , __snake_case , __snake_case = requirement, None, None else: __snake_case = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''', snake_case) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f" got {requirement}") __snake_case , __snake_case = match[0] __snake_case = want_full.split(''',''') # there could be multiple requirements __snake_case = {} for w in want_range: __snake_case = re.findall(R'''^([\s!=<>]{1,2})(.+)''', snake_case) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f" but got {requirement}") __snake_case , __snake_case = match[0] __snake_case = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys())}, but got {op}") # special case if pkg == "python": __snake_case = '''.'''.join([str(snake_case) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(snake_case, snake_case, snake_case, snake_case, snake_case, snake_case) return # check if any version is installed try: __snake_case = importlib.metadata.version(snake_case) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}") # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case, snake_case, snake_case, snake_case, snake_case, snake_case) def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(snake_case, snake_case)
93
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : List[str] , A_ : List[Any]=100 , A_ : Any=13 , A_ : Dict=30 , A_ : Optional[int]=2 , A_ : str=3 , A_ : Tuple=True , A_ : str=True , A_ : Union[str, Any]=32 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=37 , A_ : Any="gelu" , A_ : List[str]=0.1 , A_ : int=0.1 , A_ : Tuple=10 , A_ : int=0.02 , A_ : Tuple=3 , ) -> Optional[int]: __snake_case = parent __snake_case = vocab_size __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = type_sequence_label_size __snake_case = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowercase ( self : Optional[int] , A_ : str , A_ : str , A_ : List[str] ) -> List[Any]: __snake_case = FlaxBeitModel(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : List[str] , A_ : Any , A_ : Any , A_ : str ) -> str: __snake_case = FlaxBeitForMaskedImageModeling(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowercase ( self : str , A_ : List[Any] , A_ : Optional[int] , A_ : List[str] ) -> str: __snake_case = self.type_sequence_label_size __snake_case = FlaxBeitForImageClassification(config=A_ ) __snake_case = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case = 1 __snake_case = FlaxBeitForImageClassification(A_ ) __snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case = model(A_ ) def lowercase ( self : Dict ) -> List[str]: __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowercase ( self : List[Any] ) -> None: __snake_case = FlaxBeitModelTester(self ) __snake_case = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def lowercase ( self : Tuple ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase ( self : int ) -> Optional[Any]: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(A_ ) __snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def lowercase ( self : Union[str, Any] ) -> int: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case = self._prepare_for_class(A_ , A_ ) __snake_case = model_class(A_ ) @jax.jit def model_jitted(A_ : Union[str, Any] , **A_ : Union[str, Any] ): return model(pixel_values=A_ , **A_ ) with self.subTest('''JIT Enabled''' ): __snake_case = model_jitted(**A_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __snake_case = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase ( self : str ) -> List[Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def lowercase ( self : str ) -> int: __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def lowercase ( self : int ) -> Optional[Any]: for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) __snake_case = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(A_ ) def SCREAMING_SNAKE_CASE ( ): __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_vision @require_flax class _A ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> str: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def lowercase ( self : Union[str, Any] ) -> List[str]: __snake_case = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos __snake_case = np.ones((1, 196) , dtype=A_ ) # forward pass __snake_case = model(pixel_values=A_ , bool_masked_pos=A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 196, 8_192) self.assertEqual(logits.shape , A_ ) __snake_case = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A_ , atol=1E-2 ) ) @slow def lowercase ( self : List[Any] ) -> List[str]: __snake_case = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ) # forward pass __snake_case = model(**A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 1_000) self.assertEqual(logits.shape , A_ ) __snake_case = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __snake_case = 281 self.assertEqual(logits.argmax(-1 ).item() , A_ ) @slow def lowercase ( self : int ) -> str: __snake_case = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=A_ , return_tensors='''np''' ) # forward pass __snake_case = model(**A_ ) __snake_case = outputs.logits # verify the logits __snake_case = (1, 21_841) self.assertEqual(logits.shape , A_ ) __snake_case = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A_ , atol=1E-4 ) ) __snake_case = 2_396 self.assertEqual(logits.argmax(-1 ).item() , A_ )
93
1
from math import sqrt def A ( __UpperCamelCase = 1_000_000 ) -> List[str]: A__ = 0 A__ = 0 A__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__UpperCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'{solution() = }')
9
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : List[str] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : Any=8 ): '''simple docstring''' lowerCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : UNetaDConditionModel , A_ : DDPMScheduler , A_ : VQModel , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) lowerCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__ ( self : List[Any] , A_ : Tuple , A_ : Dict , A_ : List[Any] , A_ : int , A_ : Any , A_ : Tuple ) -> Any: """simple docstring""" if latents is None: lowerCamelCase_ = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCamelCase_ = latents.to(A_ ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def a__ ( self : int , A_ : str=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase_ = torch.device(f"""cuda:{gpu_id}""" ) lowerCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def a__ ( self : Tuple , A_ : Union[str, Any]=0 ) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCamelCase_ = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase_ , lowerCamelCase_ = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. lowerCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self : List[Any] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A_ : int = 512 , A_ : int = 512 , A_ : int = 100 , A_ : float = 4.0 , A_ : int = 1 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self._execution_device lowerCamelCase_ = guidance_scale > 1.0 if isinstance(A_ , A_ ): lowerCamelCase_ = torch.cat(A_ , dim=0 ) lowerCamelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(A_ , A_ ): lowerCamelCase_ = torch.cat(A_ , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_ = negative_image_embeds.repeat_interleave(A_ , dim=0 ) lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.unet.config.in_channels lowerCamelCase_ , lowerCamelCase_ = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent lowerCamelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = {'image_embeds': image_embeds} lowerCamelCase_ = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ , lowerCamelCase_ = variance_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase_ , lowerCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing lowerCamelCase_ = self.movq.decode(A_ , force_not_quantize=A_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCamelCase_ = image * 0.5 + 0.5 lowerCamelCase_ = image.clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
70
0
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.txt'} __lowerCAmelCase = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowerCAmelCase = { 'openbmb/cpm-ant-10b': 1_024, } def _UpperCAmelCase ( __A : Any ): a_ : Union[str, Any] = collections.OrderedDict() with open(__A , '''r''' , encoding='''utf-8''' ) as reader: a_ : Optional[Any] = reader.readlines() for index, token in enumerate(__A ): a_ : Optional[Any] = token.rstrip('''\n''' ) a_ : str = index return vocab class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]=200 ) -> Dict: a_ : int = vocab a_ : str = unk_token a_ : int = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : Dict ) -> int: a_ : List[str] = list(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] a_ : Any = 0 a_ : Any = [] while start < len(__SCREAMING_SNAKE_CASE ): a_ : Tuple = len(__SCREAMING_SNAKE_CASE ) a_ : List[Any] = None while start < end: a_ : Dict = ''''''.join(chars[start:end] ) if substr in self.vocab: a_ : List[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = end return sub_tokens class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = False def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict="<d>" , __SCREAMING_SNAKE_CASE : int="</d>" , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Tuple="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<pad>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="</n>" , __SCREAMING_SNAKE_CASE : str="</_>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="left" , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Union[str, Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=__SCREAMING_SNAKE_CASE , eod_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , line_token=__SCREAMING_SNAKE_CASE , space_token=__SCREAMING_SNAKE_CASE , padding_side=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) a_ : Union[str, Any] = bod_token a_ : str = eod_token a_ : int = load_vocab(__SCREAMING_SNAKE_CASE ) a_ : Any = self.encoder[space_token] a_ : List[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] a_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) a_ : List[Any] = {v: k for k, v in self.encoder.items()} a_ : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: a_ : Tuple = [] for x in jieba.cut(__SCREAMING_SNAKE_CASE , cut_all=__SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) ) return output_tokens def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: a_ : Any = [i for i in token_ids if i >= 0] a_ : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] ) -> str: return "".join(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int ) -> Dict: return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: if os.path.isdir(__SCREAMING_SNAKE_CASE ): a_ : List[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: a_ : Dict = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory a_ : Optional[int] = 0 if " " in self.encoder: a_ : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: a_ : str = self.encoder['''\n'''] del self.encoder["\n"] a_ : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __SCREAMING_SNAKE_CASE : x[1] ) ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) a_ : int = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE ))
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : a__ : Optional[Any] = PegasusConfig a__ : Optional[int] = {} a__ : Dict = "gelu" def __init__( self : List[Any] , _lowercase : int , _lowercase : List[Any]=13 , _lowercase : Dict=7 , _lowercase : str=True , _lowercase : str=False , _lowercase : List[Any]=99 , _lowercase : str=32 , _lowercase : Dict=2 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=37 , _lowercase : List[Any]=0.1 , _lowercase : Any=0.1 , _lowercase : Optional[Any]=40 , _lowercase : Dict=2 , _lowercase : List[str]=1 , _lowercase : List[str]=0 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def a ( self : Tuple ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase = prepare_pegasus_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def a ( self : Optional[int] , _lowercase : Tuple , _lowercase : str ): __UpperCAmelCase = TFPegasusModel(config=_lowercase ).get_decoder() __UpperCAmelCase = inputs_dict['''input_ids'''] __UpperCAmelCase = input_ids[:1, :] __UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] __UpperCAmelCase = inputs_dict['''head_mask'''] __UpperCAmelCase = 1 # first forward pass __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase )[0] __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowercase , _lowercase , rtol=1E-3 ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Optional[Any] , snake_case_ :str , snake_case_ :List[str]=None , snake_case_ :Dict=None , snake_case_ :List[Any]=None , snake_case_ :Dict=None , snake_case_ :int=None , ): if attention_mask is None: __UpperCAmelCase = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a__ : List[Any] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a__ : Optional[Any] = True a__ : Union[str, Any] = False a__ : str = False def a ( self : Dict ): __UpperCAmelCase = TFPegasusModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase ) def a ( self : Union[str, Any] ): self.config_tester.run_common_tests() def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): a__ : Tuple = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] a__ : Dict = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a__ : List[Any] = "google/pegasus-xsum" @cached_property def a ( self : Optional[int] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a ( self : List[str] ): __UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a ( self : Tuple , **_lowercase : List[str] ): __UpperCAmelCase = self.translate_src_text(**_lowercase ) assert self.expected_text == generated_words def a ( self : Optional[Any] , **_lowercase : Any ): __UpperCAmelCase = self.tokenizer(self.src_text , **_lowercase , padding=_lowercase , return_tensors='''tf''' ) __UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowercase , ) __UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowercase ) return generated_words @slow def a ( self : Union[str, Any] ): self._assert_generated_batch_equal_expected()
49
"""simple docstring""" _snake_case = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 1_0: '''a''', 1_1: '''b''', 1_2: '''c''', 1_3: '''d''', 1_4: '''e''', 1_5: '''f''', } def __snake_case ( SCREAMING_SNAKE_CASE: float ): """simple docstring""" assert type(SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = '' _lowerCAmelCase = False if decimal < 0: _lowerCAmelCase = True decimal *= -1 while decimal > 0: _lowerCAmelCase , _lowerCAmelCase = divmod(SCREAMING_SNAKE_CASE , 16 ) _lowerCAmelCase = values[remainder] + hexadecimal _lowerCAmelCase = '0x' + hexadecimal if negative: _lowerCAmelCase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
580
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->Union[str, Any]: '''simple docstring''' a : List[Any] = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : Dict ) ->Tuple: '''simple docstring''' a : List[Any] = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) a : Dict = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] = None , _lowercase : Optional[Any] = None , ) ->List[Any]: '''simple docstring''' def reduce_edge_list(_lowercase : Union[str, Any] ) -> None: a : List[Any] = True for i in range(len(__lowerCAmelCase ) ): a : Tuple = -1 * (i + 1) l[reversed_idx] &= tally a : str = l[reversed_idx] if start_edges is None: a : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: a : List[str] = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] a : List[Tuple[slice, ...]] = [] a : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break a : Tuple[slice, ...] = tuple(__lowerCAmelCase ) a : Tuple = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a : List[str] = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None a : int = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) a : str = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Dict , _lowercase : str , _lowercase : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' a : Any = t.shape[:no_batch_dims] a : Dict = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive a : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform a : Union[str, Any] = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) a : Optional[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : int , _lowercase : str , _lowercase : List[str] , _lowercase : Tuple = False , _lowercase : int = None , _lowercase : Tuple = False , ) ->str: '''simple docstring''' if not (len(__lowerCAmelCase ) > 0): raise ValueError("Must provide at least one input" ) a : int = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] a : Optional[int] = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(_lowercase : str ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: a : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) a : str = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: a : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t a : Dict[str, Any] = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) a : List[Any] = None if _out is not None: a : Optional[int] = tensor_tree_map(lambda _lowercase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) a : List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d a : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowercase : Optional[Any] ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t a : Tuple = 0 a : Any = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: a : Optional[int] = _select_chunk else: a : Tuple = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) a : Dict[str, Any] = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk a : Optional[int] = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: a : Optional[Any] = tensor_tree_map(lambda _lowercase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(_lowercase : Union[str, Any] , _lowercase : List[Any] ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: a : str = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: a : Any = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: a : int = output_chunk else: raise ValueError("Not supported" ) i += chunk_size a : Union[str, Any] = tensor_tree_map(lambda _lowercase : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class __UpperCamelCase : def __init__( self , lowerCAmelCase__ = 512 , ) -> str: a : str = max_chunk_size a : Optional[int] = None a : Optional[tuple] = None def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size a : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] a : List[str] = [c for c in candidates if c > min_chunk_size] a : int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCAmelCase__ ) -> bool: try: with torch.no_grad(): fn(*lowerCamelCase__ , chunk_size=lowerCamelCase__ ) return True except RuntimeError: return False a : List[Any] = 0 a : Tuple = len(lowerCamelCase__ ) - 1 while i > min_viable_chunk_size_index: a : List[Any] = test_chunk_size(candidates[i] ) if not viable: a : Union[str, Any] = (min_viable_chunk_size_index + i) // 2 else: a : Optional[Any] = i a : int = (i + len(lowerCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: a : List[str] = True for aa, aa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert type(lowerCamelCase__ ) == type(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): a : str = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )] a : List[Any] = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) else: consistent &= aa == aa return consistent def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> int: a : Optional[Any] = True a : tuple = tree_map(lambda lowerCAmelCase__ : a.shape if isinstance(lowerCamelCase__ , torch.Tensor ) else a , lowerCamelCase__ , lowerCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCamelCase__ ) a : Dict = self._compare_arg_caches(self.cached_arg_data , lowerCamelCase__ ) else: # Otherwise, we can reuse the precomputed value a : int = False if not consistent: a : Any = self._determine_favorable_chunk_size( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) a : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
717
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->bytes: '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( _lowercase : bytes ) ->str: '''simple docstring''' return baseaa.aaadecode(_lowercase ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 5000_0000 ): A__ = set() A__ = int((limit - 24) ** (1 / 2) ) A__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , UpperCamelCase ) ) ) for primea in primes: A__ = primea * primea for primea in primes: A__ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: A__ = primea * primea * primea * primea A__ = square + cube + tetr if total >= limit: break ret.add(UpperCamelCase ) return len(UpperCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
574
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _UpperCamelCase ( __snake_case): __lowerCamelCase = "M-CLIP" def __init__(self , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=7_6_8 , **lowerCamelCase__ ): """simple docstring""" A__ = transformerDimSize A__ = imageDimSize super().__init__(**lowerCamelCase__ ) class _UpperCamelCase ( __snake_case): __lowerCamelCase = MCLIPConfig def __init__(self , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" super().__init__(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) A__ = XLMRobertaModel(lowerCamelCase__ ) A__ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A (self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = self.transformer(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] A__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCamelCase__ ), embs
574
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) a__: List[str] = None a__: List[Any] = { '7B': 11_008, '13B': 13_824, '30B': 17_920, '65B': 22_016, '70B': 28_672, } a__: List[str] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Optional[int]=2_56 )->List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->List[Any]: with open(UpperCamelCase__ , '''r''' ) as f: return json.load(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] )->Dict: with open(UpperCamelCase__ , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=True )->Optional[int]: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = os.path.join(UpperCamelCase__ , '''tmp''' ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = read_json(os.path.join(UpperCamelCase__ , '''params.json''' ) ) A__ = NUM_SHARDS[model_size] A__ = params['''n_layers'''] A__ = params['''n_heads'''] A__ = n_heads // num_shards A__ = params['''dim'''] A__ = dim // n_heads A__ = 10000.0 A__ = 1.0 / (base ** (torch.arange(0 , UpperCamelCase__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params['''n_kv_heads'''] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=n_heads , UpperCamelCase__ : str=dim , UpperCamelCase__ : Any=dim ): return w.view(UpperCamelCase__ , dima // n_heads // 2 , 2 , UpperCamelCase__ ).transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(UpperCamelCase__ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded A__ = [ torch.load(os.path.join(UpperCamelCase__ , f"consolidated.{i:02d}.pth" ) , map_location='''cpu''' ) for i in range(UpperCamelCase__ ) ] A__ = 0 A__ = {'''weight_map''': {}} for layer_i in range(UpperCamelCase__ ): A__ = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } A__ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) ) A__ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) A__ = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(UpperCamelCase__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(UpperCamelCase__ )] , dim=0 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(UpperCamelCase__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(UpperCamelCase__ )] , dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) A__ = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: A__ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(UpperCamelCase__ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(UpperCamelCase__ )] , dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) # Write configs A__ = {'''total_size''': param_count * 2} write_json(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''pytorch_model.bin.index.json''' ) ) A__ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 A__ = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 A__ = LlamaConfig( hidden_size=UpperCamelCase__ , intermediate_size=compute_intermediate_size(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=UpperCamelCase__ , ) config.save_pretrained(UpperCamelCase__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) A__ = LlamaForCausalLM.from_pretrained(UpperCamelCase__ , torch_dtype=torch.floataa , low_cpu_mem_usage=UpperCamelCase__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(UpperCamelCase__ , safe_serialization=UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] )->List[str]: # Initialize the tokenizer based on the `spm` model A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) A__ = tokenizer_class(UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) def UpperCamelCase__( )->Tuple: A__ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=UpperCamelCase__ , help='''Whether or not to save using `safetensors`.''' ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) A__ = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , UpperCamelCase__ ) if __name__ == "__main__": main()
716
def UpperCamelCase__( UpperCamelCase__ : int = 50 )->int: A__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
212
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ,A_ : Union[str, Any] ,A_ : List[Any]=13 ,A_ : Optional[Any]=7 ,A_ : str=True ,A_ : List[Any]=True ,A_ : List[str]=True ,A_ : List[Any]=True ,A_ : Optional[int]=99 ,A_ : int=32 ,A_ : int=2 ,A_ : Any=4 ,A_ : Any=37 ,A_ : str="gelu" ,A_ : Tuple=0.1 ,A_ : List[str]=0.1 ,A_ : Union[str, Any]=512 ,A_ : Optional[int]=16 ,A_ : Tuple=2 ,A_ : Optional[Any]=0.02 ,A_ : int=3 ,A_ : Tuple=4 ,A_ : int=None ,A_ : Optional[int]=0 ,) -> Optional[Any]: A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = scope A = projection_dim def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A = random_attention_mask([self.batch_size, self.seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A = ids_tensor([self.batch_size] ,self.num_choices ) A = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A_ ,initializer_range=self.initializer_range ,) A = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : str ,A_ : Tuple ,A_ : Optional[int] ,A_ : List[str] ,A_ : Optional[int] ,A_ : Tuple ,A_ : List[str] ) -> List[Any]: A = TFDPRContextEncoder(config=A_ ) A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ ) A = model(A_ ,token_type_ids=A_ ) A = model(A_ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ,A_ : Optional[Any] ,A_ : Tuple ,A_ : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Optional[Any] ,A_ : Tuple ) -> List[str]: A = TFDPRQuestionEncoder(config=A_ ) A = model(A_ ,attention_mask=A_ ,token_type_ids=A_ ) A = model(A_ ,token_type_ids=A_ ) A = model(A_ ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : str ,A_ : Optional[int] ,A_ : str ,A_ : str ,A_ : List[Any] ) -> List[str]: A = TFDPRReader(config=A_ ) A = model(A_ ,attention_mask=A_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids} return config, inputs_dict @require_tf class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _lowerCamelCase: Any = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _lowerCamelCase: Tuple = False _lowerCamelCase: str = False _lowerCamelCase: int = False _lowerCamelCase: List[Any] = False _lowerCamelCase: Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = TFDPRModelTester(self ) A = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*A_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRContextEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRContextEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRQuestionEncoder.from_pretrained(A_ ) self.assertIsNotNone(A_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFDPRReader.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) A = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] A = model(A_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
91
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE = False class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :int ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) _a = 12 _a = 12 _a = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } _a = TransformeraDModel(**UpperCamelCase__ ) return model def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase__ ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) _a = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) _a = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=UpperCamelCase__ , output_type="np" , ) _a = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
388
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __UpperCAmelCase : Union[str, Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase : List[str] ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , **UpperCamelCase : str ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCAmelCase : int = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : Union[str, Any] = self.get_image_processor() __UpperCAmelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCAmelCase : int = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) __UpperCAmelCase : Any = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCAmelCase : List[str] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Optional[Any] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) __UpperCAmelCase : Tuple = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.get_image_processor() __UpperCAmelCase : Optional[int] = self.get_tokenizer() __UpperCAmelCase : Any = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __UpperCAmelCase : Any = self.prepare_image_inputs() __UpperCAmelCase : List[Any] = image_processor(UpperCamelCase , return_tensors="""np""" ) __UpperCAmelCase : Any = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = self.get_tokenizer() __UpperCAmelCase : List[Any] = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __UpperCAmelCase : List[Any] = """lower newer""" __UpperCAmelCase : int = processor(text=UpperCamelCase ) __UpperCAmelCase : Any = tokenizer(UpperCamelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __UpperCAmelCase : List[str] = """lower newer""" __UpperCAmelCase : Tuple = self.prepare_image_inputs() __UpperCAmelCase : Optional[Any] = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Tuple = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __UpperCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Tuple = processor.batch_decode(UpperCamelCase ) __UpperCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = self.get_image_processor() __UpperCAmelCase : Any = self.get_tokenizer() __UpperCAmelCase : Any = AlignProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) __UpperCAmelCase : List[Any] = """lower newer""" __UpperCAmelCase : List[Any] = self.prepare_image_inputs() __UpperCAmelCase : List[str] = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
299
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : int ): '''simple docstring''' super().__init__(*UpperCamelCase , **UpperCamelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : int=None , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any]=None ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = {} __UpperCAmelCase : int = {} if prompt is not None: __UpperCAmelCase : int = prompt if generate_kwargs is not None: __UpperCAmelCase : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __UpperCAmelCase : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __UpperCAmelCase : Dict = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase : str ): '''simple docstring''' return super().__call__(UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=None ): '''simple docstring''' __UpperCAmelCase : List[Any] = load_image(UpperCamelCase ) if prompt is not None: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError( f'''Received an invalid text input, got - {type(UpperCamelCase )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) __UpperCAmelCase : Dict = self.model.config.model_type if model_type == "git": __UpperCAmelCase : str = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) __UpperCAmelCase : Optional[Any] = self.tokenizer(text=UpperCamelCase , add_special_tokens=UpperCamelCase ).input_ids __UpperCAmelCase : List[str] = [self.tokenizer.cls_token_id] + input_ids __UpperCAmelCase : List[str] = torch.tensor(UpperCamelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __UpperCAmelCase : Optional[Any] = self.image_processor(images=UpperCamelCase , header_text=UpperCamelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __UpperCAmelCase : Any = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) __UpperCAmelCase : Dict = self.tokenizer(UpperCamelCase , return_tensors=self.framework ) model_inputs.update(UpperCamelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __UpperCAmelCase : Any = self.image_processor(images=UpperCamelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __UpperCAmelCase : Optional[int] = None return model_inputs def lowerCamelCase__ ( self : Any , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , UpperCamelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __UpperCAmelCase : str = None if generate_kwargs is None: __UpperCAmelCase : Any = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __UpperCAmelCase : Tuple = model_inputs.pop(self.model.main_input_name ) __UpperCAmelCase : int = self.model.generate(UpperCamelCase , **UpperCamelCase , **UpperCamelCase ) return model_outputs def lowerCamelCase__ ( self : Tuple , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] for output_ids in model_outputs: __UpperCAmelCase : int = { """generated_text""": self.tokenizer.decode( UpperCamelCase , skip_special_tokens=UpperCamelCase , ) } records.append(UpperCamelCase ) return records
299
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self : Tuple , snake_case_ : Any , snake_case_ : Dict=1_3 , snake_case_ : int=3_0 , snake_case_ : str=2 , snake_case_ : Optional[int]=3 , snake_case_ : Dict=True , snake_case_ : str=True , snake_case_ : Optional[Any]=3_2 , snake_case_ : Union[str, Any]=2 , snake_case_ : str=4 , snake_case_ : Any=3_7 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Dict=1_0 , snake_case_ : Tuple=0.0_2 , snake_case_ : int=3 , snake_case_ : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowercase ( self : Dict ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Optional[int] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Dict ): _UpperCAmelCase = TFViTModel(config=snake_case_ ) _UpperCAmelCase = model(snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _UpperCAmelCase = self.image_size // 2 _UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] _UpperCAmelCase = model(snake_case_ , interpolate_pos_encoding=snake_case_ , training=snake_case_ ) _UpperCAmelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Tuple ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = TFViTForImageClassification(snake_case_ ) _UpperCAmelCase = model(snake_case_ , labels=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _UpperCAmelCase = self.image_size // 2 _UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] _UpperCAmelCase = model(snake_case_ , interpolate_pos_encoding=snake_case_ , training=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = TFViTForImageClassification(snake_case_ ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Dict = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _lowerCamelCase : Tuple = ( {"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification} if is_tf_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = False def lowercase ( self : Dict ): _UpperCAmelCase = TFViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowercase ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase ( self : Optional[Any] ): pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowercase ( self : int ): pass def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) ) def lowercase ( self : int ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowercase ( self : Optional[int] ): _UpperCAmelCase = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(snake_case_ ) def UpperCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : List[Any] ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowercase ( self : int ): _UpperCAmelCase = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case_ , return_tensors="tf" ) # forward pass _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , snake_case_ , atol=1e-4 )
236
'''simple docstring''' import math import tensorflow as tf from packaging import version def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor(__lowercase ) _UpperCAmelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor(__lowercase ) _UpperCAmelCase = tf.cast(math.pi , x.dtype ) _UpperCAmelCase = tf.cast(0.04_4715 , x.dtype ) _UpperCAmelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowercase , 3 )) )) return x * cdf def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor(__lowercase ) return x * tf.tanh(tf.math.softplus(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor(__lowercase ) _UpperCAmelCase = tf.cast(0.04_4715 , x.dtype ) _UpperCAmelCase = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = tf.convert_to_tensor(__lowercase ) _UpperCAmelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase_ ( __lowercase : List[str] ) -> Optional[int]: '''simple docstring''' return tf.clip_by_value(_gelu(__lowercase ) , -10 , 10 ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : str=-1 ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = tf.split(__lowercase , 2 , axis=__lowercase ) return a * tf.math.sigmoid(__lowercase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def UpperCAmelCase_ ( __lowercase : Dict ) -> int: '''simple docstring''' return tf.keras.activations.gelu(__lowercase , approximate=__lowercase ) __SCREAMING_SNAKE_CASE :Dict = tf.keras.activations.gelu __SCREAMING_SNAKE_CASE :str = approximate_gelu_wrap else: __SCREAMING_SNAKE_CASE :Optional[int] = _gelu __SCREAMING_SNAKE_CASE :str = _gelu_new __SCREAMING_SNAKE_CASE :Tuple = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Any: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
236
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = 16, SCREAMING_SNAKE_CASE__ = "bert-base-cased" ) -> str: a_ : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Dict = load_dataset("glue", "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE__ ): # max_length=None => use the model max length (it's actually the default) a_ : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a_ : str = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a_ : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(SCREAMING_SNAKE_CASE__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. a_ : List[Any] = DataLoader( tokenized_datasets["train"], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = DataLoader( tokenized_datasets["validation"], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: # Initialize accelerator a_ : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ : Dict = config["lr"] a_ : Optional[Any] = int(config["num_epochs"] ) a_ : int = int(config["seed"] ) a_ : Optional[int] = int(config["batch_size"] ) a_ : Any = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ : int = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer a_ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a_ : Dict = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: a_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: a_ : Tuple = 1 a_ : List[Any] = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a_ : int = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, ) else: a_ : int = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ : Any = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over a_ : List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly a_ : List[Any] = 0 # Now we train the model a_ : Dict = evaluate.load("glue", "mrpc" ) a_ : Any = 0 a_ : Optional[Any] = {} for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): a_ : str = model(**SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = outputs.loss a_ : str = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a_ : str = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a_ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) a_ : Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times a_ : List[Any] = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE__ ) - 1: a_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] a_ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) a_ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) a_ : Any = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: a_ : Tuple = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ) -> Any: a_ : Tuple = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=SCREAMING_SNAKE_CASE__, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=SCREAMING_SNAKE_CASE__, ) parser.add_argument( "--output_dir", type=SCREAMING_SNAKE_CASE__, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=SCREAMING_SNAKE_CASE__, default=3, help="Number of train epochs.", ) a_ : Optional[Any] = parser.parse_args() a_ : List[str] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
702
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ = 10, SCREAMING_SNAKE_CASE__ = 1_000, SCREAMING_SNAKE_CASE__ = True ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: return int((number_a + number_a) / 2 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> None: assert ( isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(SCREAMING_SNAKE_CASE__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) a_ : List[str] = lower a_ : Dict = higher a_ : str = [] while True: a_ : List[str] = get_avg(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) last_numbers.append(SCREAMING_SNAKE_CASE__ ) if answer(SCREAMING_SNAKE_CASE__ ) == "low": a_ : Optional[Any] = number elif answer(SCREAMING_SNAKE_CASE__ ) == "high": a_ : Union[str, Any] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def lowerCAmelCase_ ( ) -> None: a_ : str = int(input("Enter lower value : " ).strip() ) a_ : Dict = int(input("Enter high value : " ).strip() ) a_ : Optional[Any] = int(input("Enter value to guess : " ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
370
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowercase( unittest.TestCase ): '''simple docstring''' def __init__( self: int, a_: List[Any], a_: str=13, a_: Tuple=7, a_: List[Any]=True, a_: Tuple=True, a_: int=True, a_: Optional[Any]=True, a_: Any=99, a_: Dict=32, a_: List[Any]=5, a_: Optional[int]=4, a_: Dict=37, a_: List[str]="gelu", a_: List[str]=0.1, a_: Dict=0.1, a_: List[Any]=512, a_: Tuple=16, a_: List[str]=2, a_: Any=0.02, a_: int=4, ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Any = batch_size _snake_case : Any = seq_length _snake_case : Optional[Any] = is_training _snake_case : List[Any] = use_attention_mask _snake_case : int = use_token_type_ids _snake_case : Tuple = use_labels _snake_case : str = vocab_size _snake_case : int = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Dict = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : Dict = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Any = type_vocab_size _snake_case : int = type_sequence_label_size _snake_case : List[Any] = initializer_range _snake_case : Optional[Any] = num_choices def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Any = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : Optional[Any] = None if self.use_attention_mask: _snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Tuple = None if self.use_token_type_ids: _snake_case : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _snake_case : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=a_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : str = config_and_inputs _snake_case : Dict = True _snake_case : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowercase( __a , unittest.TestCase ): '''simple docstring''' lowercase__ = True lowercase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : Optional[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""", from_pt=a_ ) _snake_case : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class lowercase( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""", from_pt=a_ ) _snake_case : Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) _snake_case : int = model(a_ )[0] _snake_case : Dict = [1, 11, 50_265] self.assertEqual(list(output.shape ), a_ ) # compare the actual values for a slice. _snake_case : List[Any] = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : int = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""", from_pt=a_ ) _snake_case : str = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]], dtype=jnp.intaa ) _snake_case : Union[str, Any] = model(a_ )[0] # compare the actual values for a slice. _snake_case : str = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], a_, atol=1E-4 ) )
609
"""simple docstring""" import string import numpy def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , snake_case__ ) class lowercase: '''simple docstring''' lowercase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase__ = numpy.vectorize(lambda __a : x % 36 ) lowercase__ = numpy.vectorize(__a ) def __init__( self: str, a_: numpy.ndarray ): '''simple docstring''' _snake_case : Optional[Any] = self.modulus(a_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _snake_case : Tuple = encrypt_key.shape[0] def UpperCamelCase_ ( self: Dict, a_: str ): '''simple docstring''' return self.key_string.index(a_ ) def UpperCamelCase_ ( self: List[Any], a_: int ): '''simple docstring''' return self.key_string[round(a_ )] def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _snake_case : str = det % len(self.key_string ) _snake_case : List[Any] = len(self.key_string ) if greatest_common_divisor(a_, len(self.key_string ) ) != 1: _snake_case : Optional[Any] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(a_ ) def UpperCamelCase_ ( self: Union[str, Any], a_: str ): '''simple docstring''' _snake_case : Dict = [char for char in text.upper() if char in self.key_string] _snake_case : str = chars[-1] while len(a_ ) % self.break_key != 0: chars.append(a_ ) return "".join(a_ ) def UpperCamelCase_ ( self: List[Any], a_: str ): '''simple docstring''' _snake_case : List[Any] = self.process_text(text.upper() ) _snake_case : Any = """""" for i in range(0, len(a_ ) - self.break_key + 1, self.break_key ): _snake_case : List[Any] = text[i : i + self.break_key] _snake_case : Dict = [self.replace_letters(a_ ) for char in batch] _snake_case : List[Any] = numpy.array([vec] ).T _snake_case : List[Any] = self.modulus(self.encrypt_key.dot(a_ ) ).T.tolist()[ 0 ] _snake_case : str = """""".join( self.replace_digits(a_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : str = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _snake_case : Any = det % len(self.key_string ) _snake_case : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _snake_case : List[str] = i break _snake_case : List[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(a_ ) ) def UpperCamelCase_ ( self: int, a_: str ): '''simple docstring''' _snake_case : List[str] = self.make_decrypt_key() _snake_case : List[str] = self.process_text(text.upper() ) _snake_case : Any = """""" for i in range(0, len(a_ ) - self.break_key + 1, self.break_key ): _snake_case : Union[str, Any] = text[i : i + self.break_key] _snake_case : int = [self.replace_letters(a_ ) for char in batch] _snake_case : Optional[Any] = numpy.array([vec] ).T _snake_case : List[Any] = self.modulus(decrypt_key.dot(a_ ) ).T.tolist()[0] _snake_case : Dict = """""".join( self.replace_digits(a_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = int(input("""Enter the order of the encryption key: """ ) ) _snake_case : int = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(snake_case__ ): _snake_case : List[Any] = [int(snake_case__ ) for x in input().split()] hill_matrix.append(snake_case__ ) _snake_case : Any = HillCipher(numpy.array(snake_case__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) _snake_case : Any = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": _snake_case : Optional[Any] = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(snake_case__ ) ) elif option == "2": _snake_case : List[Any] = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
609
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class UpperCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = BartphoTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() UpperCamelCase : Union[str, Any] = ["▁This", "▁is", "▁a", "▁t", "est"] UpperCamelCase : Dict = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) UpperCamelCase : Any = {"unk_token": "<unk>"} UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) UpperCamelCase : int = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCamelCase ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase ) -> str: '''simple docstring''' UpperCamelCase : str = "This is a là test" UpperCamelCase : Dict = "This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' UpperCamelCase : Any = BartphoTokenizer(lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) UpperCamelCase : Dict = "This is a là test" UpperCamelCase : Optional[Any] = "▁This ▁is ▁a ▁l à ▁t est".split() UpperCamelCase : str = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : List[Any] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase )
715
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def A__ ( A : Optional[int] , A : List[str] , A : int , A : Any): '''simple docstring''' UpperCamelCase : Union[str, Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : Union[str, Any] = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } UpperCamelCase : Optional[int] = F'''{src_lang}-{tgt_lang}''' UpperCamelCase : Optional[int] = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=A , exist_ok=A) UpperCamelCase : Union[str, Any] = os.path.join(A , "README.md") print(F'''Generating {path}''') with open(A , "w" , encoding="utf-8") as f: f.write(A) # make sure we are under the root of the project lowerCAmelCase_ = Path(__file__).resolve().parent.parent.parent lowerCAmelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowerCAmelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
435
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCAmelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) self.check_model_type(__snake_case ) def __magic_name__ ( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> Optional[int]: '''simple docstring''' __a , __a ={}, {} if padding is not None: __a =padding if truncation is not None: __a =truncation if top_k is not None: __a =top_k return preprocess_params, {}, postprocess_params def __call__( self , __snake_case , __snake_case = None , **__snake_case ) -> int: '''simple docstring''' if isinstance(__snake_case , (Image.Image, str) ) and isinstance(__snake_case , __snake_case ): __a ={'image': image, 'question': question} else: __a =image __a =super().__call__(__snake_case , **__snake_case ) return results def __magic_name__ ( self , __snake_case , __snake_case=False , __snake_case=False ) -> List[str]: '''simple docstring''' __a =load_image(inputs['image'] ) __a =self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=__snake_case , truncation=__snake_case ) __a =self.image_processor(images=__snake_case , return_tensors=self.framework ) model_inputs.update(__snake_case ) return model_inputs def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =self.model(**__snake_case ) return model_outputs def __magic_name__ ( self , __snake_case , __snake_case=5 ) -> int: '''simple docstring''' if top_k > self.model.config.num_labels: __a =self.model.config.num_labels if self.framework == "pt": __a =model_outputs.logits.sigmoid()[0] __a , __a =probs.topk(__snake_case ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __a =scores.tolist() __a =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
242
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = DistilBertTokenizer SCREAMING_SNAKE_CASE = DistilBertTokenizerFast SCREAMING_SNAKE_CASE = True @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) __a =tokenizer.encode('sequence builders' , add_special_tokens=__snake_case ) __a =tokenizer.encode('multi-sequence build' , add_special_tokens=__snake_case ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
242
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase: def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=1_3 , SCREAMING_SNAKE_CASE__ : str=3_0 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : str=3_7 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.6 , SCREAMING_SNAKE_CASE__ : Tuple=None , ): '''simple docstring''' __a : List[Any] = parent __a : int = batch_size __a : str = image_size __a : Union[str, Any] = patch_size __a : Any = num_channels __a : Optional[int] = is_training __a : List[Any] = use_labels __a : Union[str, Any] = hidden_size __a : Any = num_hidden_layers __a : Dict = num_attention_heads __a : Union[str, Any] = intermediate_size __a : Dict = hidden_act __a : Tuple = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : str = type_sequence_label_size __a : str = initializer_range __a : Union[str, Any] = mask_ratio __a : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a : List[str] = (image_size // patch_size) ** 2 __a : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = None if self.use_labels: __a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : Dict = ViTMAEModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a : List[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a : List[str] = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a : Dict = model(SCREAMING_SNAKE_CASE__ ) __a : List[str] = (self.image_size // self.patch_size) ** 2 __a : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a : List[str] = 1 __a : str = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __a : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ) __a : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : List[str] = self.prepare_config_and_inputs() __a : Union[str, Any] = config_and_inputs __a : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Union[str, Any] = ViTMAEModelTester(self ) __a : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : int = [*signature.parameters.keys()] __a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' np.random.seed(2 ) __a : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a : Any = pt_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __a : Dict = outputs[0].cpu().numpy() __a : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __a : Any = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Dict = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Make sure we don't have nans __a : List[str] = after_outputs[0].cpu().numpy() __a : Optional[Any] = 0 __a : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @slow def __lowerCAmelCase ( self : str ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[Any] = ViTMAEModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCAmelCase__ ( ): __a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCamelCase( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' np.random.seed(2 ) __a : Optional[int] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(SCREAMING_SNAKE_CASE__ ) __a : Any = self.default_image_processor __a : Optional[Any] = prepare_img() __a : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a : Tuple = ViTMAEConfig() __a : Optional[int] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a : str = model(**SCREAMING_SNAKE_CASE__ , noise=torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(device=SCREAMING_SNAKE_CASE__ ) ) # verify the logits __a : List[Any] = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(SCREAMING_SNAKE_CASE__ ) , atol=1e-4 ) )
719
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE : str = '''OwlViTImageProcessor''' __SCREAMING_SNAKE_CASE : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' __a : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) __a : List[Any] = kwargs.pop('feature_extractor' ) __a : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]="max_length" , SCREAMING_SNAKE_CASE__ : Optional[int]="np" , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not isinstance(text[0] , SCREAMING_SNAKE_CASE__ )): __a : Any = [self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(text[0] , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = [] # Maximum number of queries across batch __a : List[str] = max([len(SCREAMING_SNAKE_CASE__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(SCREAMING_SNAKE_CASE__ ) != max_num_queries: __a : Optional[int] = t + [' '] * (max_num_queries - len(SCREAMING_SNAKE_CASE__ )) __a : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) encodings.append(SCREAMING_SNAKE_CASE__ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __a : Optional[Any] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __a : str = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __a : Optional[Any] = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __a : Tuple = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __a : Dict = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __a : Union[str, Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __a : Tuple = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __a : Tuple = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __a : Optional[Any] = BatchEncoding() __a : Optional[Any] = input_ids __a : List[Any] = attention_mask if query_images is not None: __a : str = BatchEncoding() __a : Union[str, Any] = self.image_processor( SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).pixel_values __a : Tuple = query_pixel_values if images is not None: __a : int = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: __a : Union[str, Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __a : Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return self.image_processor.post_process(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def __lowerCAmelCase ( self : int ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
577
0
"""simple docstring""" from __future__ import annotations _lowercase = [] def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : int , snake_case__ : int ): for i in range(len(snake_case__ ) ): if board[row][i] == 1: return False for i in range(len(snake_case__ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case__ , -1 , -1 ) , range(snake_case__ , len(snake_case__ ) ) ): if board[i][j] == 1: return False return True def _snake_case ( snake_case__ : list[list[int]] , snake_case__ : int ): if row >= len(snake_case__ ): solution.append(snake_case__ ) printboard(snake_case__ ) print() return True for i in range(len(snake_case__ ) ): if is_safe(snake_case__ , snake_case__ , snake_case__ ): A = 1 solve(snake_case__ , row + 1 ) A = 0 return False def _snake_case ( snake_case__ : list[list[int]] ): for i in range(len(snake_case__ ) ): for j in range(len(snake_case__ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _lowercase = 8 _lowercase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
91
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : int = OpenAIGPTTokenizer _snake_case : Tuple = OpenAIGPTTokenizerFast _snake_case : Union[str, Any] = True _snake_case : Optional[int] = False def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _UpperCamelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCamelCase = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' return "lower newer", "lower newer" def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _UpperCamelCase = '''lower''' _UpperCamelCase = ['''low''', '''er</w>'''] _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokens + ['''<unk>'''] _UpperCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tuple=15 ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # Simple input _UpperCamelCase = '''This is a simple input''' _UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCamelCase = ('''This is a simple input''', '''This is a pair''') _UpperCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , ) def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" pass
98
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __A ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = """pegasus""" UpperCAmelCase__ = ["""past_key_values"""] UpperCAmelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , a__=5_0265 , a__=1024 , a__=12 , a__=4096 , a__=16 , a__=12 , a__=4096 , a__=16 , a__=0.0 , a__=0.0 , a__=True , a__=True , a__="gelu" , a__=1024 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.02 , a__=0 , a__=False , a__=0 , a__=1 , a__=1 , **a__ , ): """simple docstring""" _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : Union[str, Any] = d_model _lowerCamelCase : List[Any] = encoder_ffn_dim _lowerCamelCase : int = encoder_layers _lowerCamelCase : str = encoder_attention_heads _lowerCamelCase : List[Any] = decoder_ffn_dim _lowerCamelCase : Optional[int] = decoder_layers _lowerCamelCase : int = decoder_attention_heads _lowerCamelCase : Tuple = dropout _lowerCamelCase : Optional[Any] = attention_dropout _lowerCamelCase : int = activation_dropout _lowerCamelCase : Dict = activation_function _lowerCamelCase : Union[str, Any] = init_std _lowerCamelCase : List[str] = encoder_layerdrop _lowerCamelCase : Optional[int] = decoder_layerdrop _lowerCamelCase : Union[str, Any] = use_cache _lowerCamelCase : Tuple = encoder_layers _lowerCamelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) @property def __snake_case ( self): """simple docstring""" return self.encoder_attention_heads @property def __snake_case ( self): """simple docstring""" return self.d_model
613
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self): """simple docstring""" super().tearDown() gc.collect() def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Tuple = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase, _lowerCamelCase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase : Union[str, Any] = controlnet_params _lowerCamelCase : str = '''bird''' _lowerCamelCase : Union[str, Any] = jax.device_count() _lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples) _lowerCamelCase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''') _lowerCamelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples) _lowerCamelCase : Union[str, Any] = jax.random.PRNGKey(0) _lowerCamelCase : Tuple = jax.random.split(a__ , jax.device_count()) _lowerCamelCase : Dict = replicate(a__) _lowerCamelCase : Tuple = shard(a__) _lowerCamelCase : Union[str, Any] = shard(a__) _lowerCamelCase : Optional[Any] = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _lowerCamelCase : List[Any] = images[0, 253:256, 253:256, -1] _lowerCamelCase : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCamelCase : Optional[int] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def __snake_case ( self): """simple docstring""" _lowerCamelCase, _lowerCamelCase : Any = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase, _lowerCamelCase : Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa) _lowerCamelCase : Optional[Any] = controlnet_params _lowerCamelCase : Optional[Any] = '''Chef in the kitchen''' _lowerCamelCase : int = jax.device_count() _lowerCamelCase : Dict = pipe.prepare_text_inputs([prompts] * num_samples) _lowerCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''') _lowerCamelCase : str = pipe.prepare_image_inputs([pose_image] * num_samples) _lowerCamelCase : Optional[Any] = jax.random.PRNGKey(0) _lowerCamelCase : List[str] = jax.random.split(a__ , jax.device_count()) _lowerCamelCase : str = replicate(a__) _lowerCamelCase : Union[str, Any] = shard(a__) _lowerCamelCase : List[Any] = shard(a__) _lowerCamelCase : Any = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _lowerCamelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _lowerCamelCase : Dict = images[0, 253:256, 253:256, -1] _lowerCamelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten())) _lowerCamelCase : Optional[int] = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(F"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
613
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def _lowercase( ): a__ =10 a__ =datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) a__ =datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(__a ) ), } , features=__a , ) return dataset @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__a ) return filename # FILE_CONTENT + files _lowerCAmelCase: Tuple = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'file.txt' a__ =FILE_CONTENT with open(__a , 'w' ) as f: f.write(__a ) return filename @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] ): import bza a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' a__ =bytes(__a , 'utf-8' ) with bza.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) a__ =bytes(__a , 'utf-8' ) with gzip.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): if datasets.config.LZ4_AVAILABLE: import lza.frame a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' a__ =bytes(__a , 'utf-8' ) with lza.frame.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] , __a : Tuple ): if datasets.config.PY7ZR_AVAILABLE: import pyazr a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(__a , 'w' ) as archive: archive.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str , __a : Optional[int] ): import tarfile a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Union[str, Any] ): import lzma a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.xz' a__ =bytes(__a , 'utf-8' ) with lzma.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str , __a : Any ): import zipfile a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd a__ =tmp_path_factory.mktemp('data' ) / 'file.txt.zst' a__ =bytes(__a , 'utf-8' ) with zstd.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str ): a__ =tmp_path_factory.mktemp('data' ) / 'file.xml' a__ =textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__a , 'w' ) as f: f.write(__a ) return filename _lowerCAmelCase: str = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _lowerCAmelCase: Any = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _lowerCAmelCase: Optional[Any] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _lowerCAmelCase: List[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _lowerCAmelCase: Optional[int] = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def _lowercase( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] ): a__ =datasets.Dataset.from_dict(__a ) a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__a ) ) as con: a__ =con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__a , 'w' , newline='' ) as f: a__ =csv.DictWriter(__a , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__a , 'w' , newline='' ) as f: a__ =csv.DictWriter(__a , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Tuple ): import bza a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(__a , 'rb' ) as f: a__ =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__a , 'wb' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[Any] , __a : int ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict , __a : str , __a : Tuple ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__a , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any , __a : str , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) a__ =pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__a , 'wb' ) as f: a__ =pq.ParquetWriter(__a , schema=__a ) a__ =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__a ) )] for k in DATA[0]} , schema=__a ) writer.write_table(__a ) writer.close() return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) a__ ={'data': DATA} with open(__a , 'w' ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : str ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) a__ ={'data': DATA_DICT_OF_LISTS} with open(__a , 'w' ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__a , 'w' ) as f: for item in DATA: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__a , 'w' ) as f: for item in DATA: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Tuple ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__a , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__a , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__a ) + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] , __a : Union[str, Any] ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__a , 'rb' ) as orig_file: with gzip.open(__a , 'wb' ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Tuple ): import gzip a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__a , 'rb' ) as orig_file: with gzip.open(__a , 'wb' ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[int] , __a : List[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any , __a : Optional[Any] , __a : Tuple , __a : Dict ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('nested' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[int] , __a : Optional[int] , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Union[str, Any] , __a : Any ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.basename(__a ) ) f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : int , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(__a , 'w' ) as f: f.add(__a , arcname=os.path.join('nested' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Any ): a__ =['0', '1', '2', '3'] a__ =tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(__a , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[str] , __a : Optional[Any] , __a : Dict ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : int , __a : Union[str, Any] , __a : Optional[int] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join('main_dir' , os.path.basename(__a ) ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename('unsupported.ext' ) ) f.write(__a , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : Dict ): a__ ='\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) a__ =str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(__a ) return path @pytest.fixture(scope='session' ) def _lowercase( ): return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def _lowercase( ): return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def _lowercase( __a : Optional[Any] , __a : Optional[Any] ): a__ =tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(__a , 'w' ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def _lowercase( __a : List[Any] ): a__ =tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
20
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = SamImageProcessor() UpperCAmelCase__ = SamProcessor(_lowercase ) processor.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : Optional[int] , **_lowercase : str ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) UpperCAmelCase__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_lowercase , return_tensors="np" ) UpperCAmelCase__ = processor(images=_lowercase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = [torch.ones((1, 3, 5, 5) )] UpperCAmelCase__ = [[17_64, 26_46]] UpperCAmelCase__ = [[6_83, 10_24]] UpperCAmelCase__ = processor.post_process_masks(_lowercase , _lowercase , _lowercase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) UpperCAmelCase__ = processor.post_process_masks( _lowercase , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np UpperCAmelCase__ = [np.ones((1, 3, 5, 5) )] UpperCAmelCase__ = processor.post_process_masks(_lowercase , np.array(_lowercase ) , np.array(_lowercase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) UpperCAmelCase__ = [[1, 0], [0, 1]] with self.assertRaises(_lowercase ): UpperCAmelCase__ = processor.post_process_masks(_lowercase , np.array(_lowercase ) , np.array(_lowercase ) ) @require_vision @require_tf class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = SamImageProcessor() UpperCAmelCase__ = SamProcessor(_lowercase ) processor.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : Union[str, Any] , **_lowercase : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _UpperCAmelCase ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) UpperCAmelCase__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_lowercase , return_tensors="np" ) UpperCAmelCase__ = processor(images=_lowercase , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = [tf.ones((1, 3, 5, 5) )] UpperCAmelCase__ = [[17_64, 26_46]] UpperCAmelCase__ = [[6_83, 10_24]] UpperCAmelCase__ = processor.post_process_masks(_lowercase , _lowercase , _lowercase , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) UpperCAmelCase__ = processor.post_process_masks( _lowercase , tf.convert_to_tensor(_lowercase ) , tf.convert_to_tensor(_lowercase ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np UpperCAmelCase__ = [np.ones((1, 3, 5, 5) )] UpperCAmelCase__ = processor.post_process_masks( _lowercase , np.array(_lowercase ) , np.array(_lowercase ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) UpperCAmelCase__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): UpperCAmelCase__ = processor.post_process_masks( _lowercase , np.array(_lowercase ) , np.array(_lowercase ) , return_tensors="tf" ) @require_vision @require_torchvision class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = SamImageProcessor() UpperCAmelCase__ = SamProcessor(_lowercase ) processor.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : str , **_lowercase : Optional[int] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _UpperCAmelCase ( self : str ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) UpperCAmelCase__ = [tf.convert_to_tensor(_lowercase )] UpperCAmelCase__ = [torch.tensor(_lowercase )] UpperCAmelCase__ = [[17_64, 26_46]] UpperCAmelCase__ = [[6_83, 10_24]] UpperCAmelCase__ = processor.post_process_masks( _lowercase , _lowercase , _lowercase , return_tensors="tf" ) UpperCAmelCase__ = processor.post_process_masks( _lowercase , _lowercase , _lowercase , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.get_image_processor() UpperCAmelCase__ = SamProcessor(image_processor=_lowercase ) UpperCAmelCase__ = self.prepare_image_inputs() UpperCAmelCase__ = image_processor(_lowercase , return_tensors="pt" )["pixel_values"].numpy() UpperCAmelCase__ = processor(images=_lowercase , return_tensors="pt" )["pixel_values"].numpy() UpperCAmelCase__ = image_processor(_lowercase , return_tensors="tf" )["pixel_values"].numpy() UpperCAmelCase__ = processor(images=_lowercase , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertTrue(np.allclose(_lowercase , _lowercase ) )
475
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Union[str, Any] ={ '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def A__ ( lowercase: Optional[int] ) -> Optional[int]: A : str =test_results.split(' ' ) A : List[str] =0 A : Tuple =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( lowercase: List[Any] ) -> str: A : Union[str, Any] ={} A : Optional[Any] =None A : Union[str, Any] =False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]', lowercase ): A : List[Any] =True A : Any =line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A : Dict =line A : List[str] =False return failures class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: A : Tuple =title A : Dict =doc_test_results['time_spent'].split(',' )[0] A : Union[str, Any] =doc_test_results['success'] A : Any =doc_test_results['failures'] A : Optional[Any] =self.n_success + self.n_failures # Failures and success of the modeling tests A : Union[str, Any] =doc_test_results @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: A : Any =[self._time_spent] A : List[str] =0 for time in time_spent: A : List[Any] =time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: A : List[str] =[0, 0, time_parts[0]] A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Tuple =40 A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} A : Any ='' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Optional[int] =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: A : Tuple =[ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' A : Dict =client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : List[str] ='' for key, value in failures.items(): A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' A : Union[str, Any] =job_name A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A : int ={ 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A : Union[str, Any] =self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A : Any =f'*Num failures* :{len(job_result["failed"] )} \n' A : List[Any] =job_result['failures'] A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def A__ ( ) -> Union[str, Any]: A : Any =os.environ['GITHUB_RUN_ID'] A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' A : Union[str, Any] =requests.get(lowercase ).json() A : List[Any] ={} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A : List[str] =math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowercase ): A : List[str] =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.', lowercase ) return {} def A__ ( lowercase: str ) -> Optional[Any]: A : Any ={} if os.path.exists(lowercase ): A : List[Any] =os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f: A : Optional[int] =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e return _artifact def A__ ( ) -> int: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: A : Dict =name A : Dict =[] def __str__( self : Optional[Any] ) -> List[str]: return self.name def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) A : Dict[str, Artifact] ={} A : str =filter(os.path.isdir, os.listdir() ) for directory in directories: A : Tuple =directory if artifact_name not in _available_artifacts: A : int =Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": _lowercase : Optional[int] =get_job_links() _lowercase : str =retrieve_available_artifacts() _lowercase : List[Any] =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _lowercase : Optional[Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _lowercase : List[Any] =github_actions_job_links.get('''run_doctests''') _lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _lowercase : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats''']) _lowercase : Any =failed _lowercase : Union[str, Any] =success _lowercase : str =time_spent[1:-1] + ''', ''' _lowercase : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _lowercase : Tuple =line.replace('''FAILED ''', '''''') _lowercase : int =line.split()[0].replace('''\n''', '''''') if "::" in line: _lowercase , _lowercase : str =line.split('''::''') else: _lowercase , _lowercase : Union[str, Any] =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _lowercase : Any =docs[file_regex] doc_test_results[category]["failed"].append(test) _lowercase : Any =all_failures[test] if test in all_failures else '''N/A''' _lowercase : Tuple =failure break _lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
661
1
'''simple docstring''' from math import loga def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
446
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =set() # Replace all the whitespace in our sentence _UpperCAmelCase : Dict =input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowerCamelCase ) == 2_6 def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase : Tuple =[False] * 2_6 for char in input_str: if char.islower(): _UpperCAmelCase : Dict =True elif char.isupper(): _UpperCAmelCase : List[str] =True return all(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit _UpperCAmelCase : List[Any] ='from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_faster()' , setup=__lowerCamelCase ) ) print(timeit('is_pangram_fastest()' , setup=__lowerCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
446
1
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=64 , a__=5 , a__=4 , a__=64 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def __A ( self ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def __A ( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _UpperCAmelCase = MPNetModel(config=a__ ) model.to(a__ ) model.eval() _UpperCAmelCase = model(a__ , a__ ) _UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _UpperCAmelCase = MPNetForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _UpperCAmelCase = model( a__ , attention_mask=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MPNetForSequenceClassification(a__ ) model.to(a__ ) model.eval() _UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MPNetForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( a__ , attention_mask=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MPNetForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( snake_case , snake_case , unittest.TestCase ): lowerCAmelCase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = True def __A ( self ): _UpperCAmelCase = MPNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a__ ) def __A ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a__ ) def __A ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a__ ) def __A ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a__ ) def __A ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a__ ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def __A ( self ): _UpperCAmelCase = MPNetModel.from_pretrained('microsoft/mpnet-base' ) _UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase = model(a__ )[0] _UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a__ ) _UpperCAmelCase = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
494
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE ),len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ),b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
494
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __A : Tuple = StableDiffusionDiffEditPipeline __A : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} __A : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} __A : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __A : Tuple = frozenset([] ) def __lowercase ( self) -> str: '''simple docstring''' torch.manual_seed(0) a__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) a__ : Optional[Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=a__ , set_alpha_to_one=a__ , ) a__ : int = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=a__ , set_alpha_to_zero=a__ , ) torch.manual_seed(0) a__ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) a__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) a__ : Optional[int] = CLIPTextModel(a__) a__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') a__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowercase ( self , lowercase , lowercase=0) -> str: '''simple docstring''' a__ : Optional[int] = floats_tensor((1, 16, 16) , rng=random.Random(a__)).to(a__) a__ : int = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a__)).to(a__) if str(a__).startswith('mps'): a__ : Union[str, Any] = torch.manual_seed(a__) else: a__ : Dict = torch.Generator(device=a__).manual_seed(a__) a__ : int = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowercase ( self , lowercase , lowercase=0) -> Tuple: '''simple docstring''' a__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__)).to(a__) a__ : str = image.cpu().permute(0 , 2 , 3 , 1)[0] a__ : Optional[int] = Image.fromarray(np.uinta(a__)).convert('RGB') if str(a__).startswith('mps'): a__ : List[Any] = torch.manual_seed(a__) else: a__ : str = torch.Generator(device=a__).manual_seed(a__) a__ : Any = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowercase ( self , lowercase , lowercase=0) -> Optional[int]: '''simple docstring''' a__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__)).to(a__) a__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1)[0] a__ : List[Any] = Image.fromarray(np.uinta(a__)).convert('RGB') if str(a__).startswith('mps'): a__ : List[Any] = torch.manual_seed(a__) else: a__ : List[str] = torch.Generator(device=a__).manual_seed(a__) a__ : List[Any] = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def __lowercase ( self) -> Dict: '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components'): return a__ : List[str] = self.get_dummy_components() a__ : List[str] = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a__ , a__ , a__) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) a__ : Dict = self.get_dummy_inputs(a__) a__ : Union[str, Any] = pipe(**a__)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__) a__ : str = self.pipeline_class.from_pretrained(a__) pipe_loaded.to(a__) pipe_loaded.set_progress_bar_config(disable=a__) for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__) is None , F'`{optional_component}` did not stay set to None after loading.' , ) a__ : str = self.get_dummy_inputs(a__) a__ : List[Any] = pipe_loaded(**a__)[0] a__ : Any = np.abs(output - output_loaded).max() self.assertLess(a__ , 1e-4) def __lowercase ( self) -> int: '''simple docstring''' a__ : List[str] = """cpu""" a__ : Tuple = self.get_dummy_components() a__ : str = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) a__ : Tuple = self.get_dummy_mask_inputs(a__) a__ : Optional[Any] = pipe.generate_mask(**a__) a__ : List[str] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16)) a__ : Dict = np.array([0] * 9) a__ : Optional[Any] = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ , 1e-3) self.assertEqual(mask[0, -3, -4] , 0) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[int] = """cpu""" a__ : Optional[Any] = self.get_dummy_components() a__ : Optional[int] = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) a__ : Optional[int] = self.get_dummy_inversion_inputs(a__) a__ : Optional[Any] = pipe.invert(**a__).images a__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) a__ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) a__ : str = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ , 1e-3) def __lowercase ( self) -> List[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3) def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[Any] = """cpu""" a__ : Union[str, Any] = self.get_dummy_components() a__ : Union[str, Any] = {"""beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """beta_schedule""": """scaled_linear"""} a__ : List[Any] = DPMSolverMultistepScheduler(**a__) a__ : List[str] = DPMSolverMultistepInverseScheduler(**a__) a__ : List[Any] = self.pipeline_class(**a__) pipe.to(a__) pipe.set_progress_bar_config(disable=a__) a__ : Optional[Any] = self.get_dummy_inversion_inputs(a__) a__ : Tuple = pipe.invert(**a__).images a__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) a__ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) a__ : int = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a__ , 1e-3) @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowercase ( cls) -> Optional[int]: '''simple docstring''' a__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png') a__ : str = raw_image.convert('RGB').resize((768, 768)) a__ : List[str] = raw_image def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Dict = torch.manual_seed(0) a__ : Optional[int] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=a__ , torch_dtype=torch.floataa) a__ : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config) a__ : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__) a__ : Tuple = """a bowl of fruit""" a__ : List[str] = """a bowl of pears""" a__ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=a__ , target_prompt=a__ , generator=a__ , ) a__ : int = pipe.invert( prompt=a__ , image=self.raw_image , inpaint_strength=0.7 , generator=a__).latents a__ : Union[str, Any] = pipe( prompt=a__ , mask_image=a__ , image_latents=a__ , generator=a__ , negative_prompt=a__ , inpaint_strength=0.7 , output_type='numpy' , ).images[0] a__ : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5e-1 def __lowercase ( self) -> str: '''simple docstring''' a__ : List[str] = torch.manual_seed(0) a__ : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=a__ , torch_dtype=torch.floataa) a__ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a__ : Optional[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a__) a__ : int = """a bowl of fruit""" a__ : Dict = """a bowl of pears""" a__ : Any = pipe.generate_mask( image=self.raw_image , source_prompt=a__ , target_prompt=a__ , generator=a__ , ) a__ : Tuple = pipe.invert( prompt=a__ , image=self.raw_image , inpaint_strength=0.7 , generator=a__ , num_inference_steps=25 , ).latents a__ : Optional[int] = pipe( prompt=a__ , mask_image=a__ , image_latents=a__ , generator=a__ , negative_prompt=a__ , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] a__ : Union[str, Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5e-1
302
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : def __init__( self , a__ , a__ , a__ ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _lowerCAmelCase : List[Any] = img _lowerCAmelCase : Dict = img.shape[1] _lowerCAmelCase : Optional[Any] = img.shape[0] _lowerCAmelCase : str = dst_width _lowerCAmelCase : Tuple = dst_height _lowerCAmelCase : Optional[int] = self.src_w / self.dst_w _lowerCAmelCase : List[str] = self.src_h / self.dst_h _lowerCAmelCase : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): _lowerCAmelCase : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def __A ( self , a__ ): return int(self.ratio_x * x ) def __A ( self , a__ ): return int(self.ratio_y * y ) if __name__ == "__main__": _a , _a : int = 800, 600 _a : Optional[int] = imread('image_data/lena.jpg', 1) _a : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
213
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(_UpperCAmelCase , tokenizer_name + "Fast" )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(_UpperCAmelCase , force_download=_UpperCAmelCase ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split("/" ) __lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(_UpperCAmelCase )[-1][0] if next_char == "/": __lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) __lowercase = tokenizer.save_pretrained( _UpperCAmelCase , legacy_format=_UpperCAmelCase , filename_prefix=_UpperCAmelCase ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_UpperCAmelCase ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) lowerCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
576
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether ot not to use whole word mask."""} ) __lowerCAmelCase = field( default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase = field( default=1 / 6 ,metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } ,) __lowerCAmelCase = field( default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __lowerCAmelCase = field( default=-1 ,metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Optional[int]: '''simple docstring''' def _dataset(_UpperCAmelCase , _UpperCAmelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowercase ( ) -> Optional[Any]: '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __lowercase = AutoModelWithLMHead.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_UpperCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["eval_loss"] ) __lowercase = {"perplexity": perplexity} __lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_UpperCAmelCase ) return results def __lowercase ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
576
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=7 ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = None if token is not None: UpperCAmelCase_ : List[str] = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) UpperCAmelCase_ : Any = '''636036''' UpperCAmelCase_ : Any = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' UpperCAmelCase_ : List[Any] = requests.get(__a , headers=__a ).json() return result["workflow_runs"] def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = get_daily_ci_runs(__a ) UpperCAmelCase_ : List[Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCAmelCase_ : int = workflow_run['''id'''] break return workflow_run_id def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = get_last_daily_ci_runs(__a ) if workflow_run_id is not None: UpperCAmelCase_ : Optional[int] = get_artifacts_links(worflow_run_id=__a , token=__a ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCAmelCase_ : List[str] = artifacts_links[artifact_name] download_artifact( artifact_name=__a , artifact_url=__a , output_dir=__a , token=__a ) def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" get_last_daily_ci_artifacts(__a , __a , __a ) UpperCAmelCase_ : List[Any] = {} for artifact_name in artifact_names: UpperCAmelCase_ : List[str] = os.path.join(__a , F'''{artifact_name}.zip''' ) if os.path.isfile(__a ): UpperCAmelCase_ : Any = {} with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file with z.open(__a ) as f: UpperCAmelCase_ : Optional[int] = f.read().decode("UTF-8" ) return results
71
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : str ) -> List[Any]: """simple docstring""" _a : Tuple = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _a : Dict = MaskFormerConfig(backbone_config=__a ) _a : Optional[Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok _a : Optional[Any] = 847 _a : List[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok _a : Union[str, Any] = 150 _a : Any = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok _a : int = 171 _a : List[str] = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO _a : Dict = 133 _a : Optional[Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok _a : List[Any] = 19 _a : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok _a : List[Any] = 65 _a : Dict = '''mapillary-vistas-id2label.json''' _a : Optional[int] = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : Tuple = {int(__a ): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : Optional[Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ,__a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a : str = dct.pop(__a ) _a : str = val def __UpperCAmelCase ( __a : List[Any] ,__a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _a : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _a : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[int] = in_proj_weight[:dim, :] _a : List[Any] = in_proj_bias[: dim] _a : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _a : Tuple = in_proj_bias[ dim : dim * 2 ] _a : int = in_proj_weight[ -dim :, : ] _a : Optional[int] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> List[Any]: """simple docstring""" _a : Optional[int] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[: hidden_size, :] _a : List[Any] = in_proj_bias[:config.hidden_size] _a : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Any = in_proj_bias[hidden_size : hidden_size * 2] _a : Tuple = in_proj_weight[-hidden_size :, :] _a : List[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _a : List[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _a : List[str] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Optional[Any] = in_proj_weight[: hidden_size, :] _a : Any = in_proj_bias[:config.hidden_size] _a : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _a : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] _a : List[str] = in_proj_weight[-hidden_size :, :] _a : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: """simple docstring""" _a : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a : Dict = Image.open(requests.get(__a ,stream=__a ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( __a : str ,__a : str ,__a : str ,__a : bool = False ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = get_maskformer_config(__a ) # load original state_dict with open(__a ,'''rb''' ) as f: _a : str = pickle.load(__a ) _a : Union[str, Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _a : Any = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a ,__a ,__a ) read_in_swin_q_k_v(__a ,config.backbone_config ) read_in_decoder_q_k_v(__a ,__a ) # update to torch tensors for key, value in state_dict.items(): _a : Optional[int] = torch.from_numpy(__a ) # load 🤗 model _a : Dict = MaskFormerForInstanceSegmentation(__a ) model.eval() for name, param in model.named_parameters(): print(__a ,param.shape ) _a , _a : Tuple = model.load_state_dict(__a ,strict=__a ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__a ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _a : Union[str, Any] = prepare_img() if "vistas" in model_name: _a : int = 65 elif "cityscapes" in model_name: _a : Tuple = 65_535 else: _a : str = 255 _a : Dict = True if '''ade''' in model_name else False _a : Optional[Any] = MaskFormerImageProcessor(ignore_index=__a ,reduce_labels=__a ) _a : Optional[Any] = image_processor(__a ,return_tensors='''pt''' ) _a : int = model(**__a ) print('''Logits:''' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _a : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
14
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Any = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ : Tuple = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : int, _UpperCAmelCase : Optional[int]): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def __snake_case ( _UpperCAmelCase : np.ndarray, _UpperCAmelCase : Optional[str], _UpperCAmelCase : Optional[str]): UpperCamelCase = to_pil_image(_UpperCAmelCase) UpperCamelCase , UpperCamelCase = pil_image.size UpperCamelCase = pytesseract.image_to_data(_UpperCAmelCase, lang=_UpperCAmelCase, output_type='''dict''', config=_UpperCAmelCase) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates UpperCamelCase = [idx for idx, word in enumerate(_UpperCAmelCase) if not word.strip()] UpperCamelCase = [word for idx, word in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(_UpperCAmelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase = [] for x, y, w, h in zip(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase): UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(_UpperCAmelCase) # finally, normalize the bounding boxes UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = "" , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} UpperCamelCase = get_size_dict(lowerCamelCase__ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_value UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCamelCase = apply_ocr UpperCamelCase = ocr_lang UpperCamelCase = tesseract_config def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase = (size['''height'''], size['''width''']) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__=None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(lowerCamelCase__ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) UpperCamelCase = [] UpperCamelCase = [] for image in images: UpperCamelCase , UpperCamelCase = apply_tesseract(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCamelCase = words_batch UpperCamelCase = boxes_batch return data
350
1
from __future__ import annotations class _a : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : str ): A_ , A_ = text, pattern A_ , A_ = len(UpperCAmelCase ), len(UpperCAmelCase ) def __A ( self : Union[str, Any] , UpperCAmelCase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __A ( self : List[str] , UpperCAmelCase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __A ( self : Optional[int] ): # searches pattern in text and returns index positions A_ = [] for i in range(self.textLen - self.patLen + 1 ): A_ = self.mismatch_in_text(UpperCAmelCase ) if mismatch_index == -1: positions.append(UpperCAmelCase ) else: A_ = self.match_in_pattern(self.text[mismatch_index] ) A_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __a :Dict = 'ABAABA' __a :int = 'AB' __a :List[str] = BoyerMooreSearch(text, pattern) __a :str = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
86
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : def __init__( self : Any , _a : int , _a : Tuple=13 , _a : Tuple=30 , _a : Union[str, Any]=2 , _a : Union[str, Any]=3 , _a : Dict=True , _a : str=True , _a : List[str]=32 , _a : str=5 , _a : int=4 , _a : Union[str, Any]=37 , _a : List[str]="gelu" , _a : Optional[int]=0.1 , _a : str=0.1 , _a : int=10 , _a : Optional[Any]=0.02 , _a : Union[str, Any]=None , ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE =num_patches + 1 def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A ( self : Any , _a : List[Any] , _a : List[Any] , _a : Any ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTMSNModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , _a : List[Any] , _a : Tuple , _a : Tuple ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.type_sequence_label_size _SCREAMING_SNAKE_CASE =ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Optional[int] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): A__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () A__ = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False A__ = False def A ( self : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTMSNModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def A ( self : Optional[int] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def A ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def A ( self : Any ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def A ( self : Dict ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def A ( self : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : Optional[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def A ( self : Optional[Any] ) -> int: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def A ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(2 ) _SCREAMING_SNAKE_CASE =ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
405
0
"""simple docstring""" from math import factorial lowercase__ : Union[str, Any] = {str(d): factorial(d) for d in range(10)} def __lowercase ( _a ): return sum(DIGIT_FACTORIAL[d] for d in str(_a ) ) def __lowercase ( ): snake_case_ : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _a ) if sum_of_digit_factorial(_a ) == i ) if __name__ == "__main__": print(f'{solution() = }')
713
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( _a , _a , _a ): snake_case_ : Tuple = AutoConfig.from_pretrained(_a ) snake_case_ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=_a ) snake_case_ : Union[str, Any] = checkpoints.load_tax_checkpoint(_a ) snake_case_ : Optional[int] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": snake_case_ : str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Dict = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Any = f"layers_{str(_a )}" # Self-Attention snake_case_ : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : int = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Optional[Any] = flax_model.params['''encoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : List[str] = tax_attention_key snake_case_ : Optional[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : str = tax_attention_value snake_case_ : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: snake_case_ : Any = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : Union[str, Any] = tax_mlp_wi snake_case_ : List[Any] = tax_mlp_wo snake_case_ : int = tax_mlp_layer_norm snake_case_ : Any = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T snake_case_ : Tuple = tax_encoder_global_rel_embedding # Assigning snake_case_ : Dict = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] snake_case_ : Any = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : Tuple = f"layers_{str(_a )}" # Self-Attention snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization snake_case_ : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention snake_case_ : Any = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] snake_case_ : Optional[Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] snake_case_ : str = tax_enc_dec_attention_module['''out''']['''kernel'''] snake_case_ : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] snake_case_ : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization snake_case_ : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] snake_case_ : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: snake_case_ : Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization snake_case_ : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning snake_case_ : Dict = flax_model.params['''decoder''']['''block'''][str(_a )]['''layer'''] snake_case_ : int = tax_attention_key snake_case_ : List[Any] = tax_attention_out snake_case_ : Any = tax_attention_query snake_case_ : Dict = tax_attention_value snake_case_ : str = tax_pre_attention_layer_norm snake_case_ : Any = tax_enc_dec_attention_key snake_case_ : str = tax_enc_dec_attention_out snake_case_ : int = tax_enc_dec_attention_query snake_case_ : Any = tax_enc_dec_attention_value snake_case_ : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: snake_case_ : Tuple = tax_mlp_wi_a snake_case_ : List[Any] = tax_mlp_wi_a else: snake_case_ : List[Any] = tax_mlp_wi snake_case_ : Dict = tax_mlp_wo snake_case_ : List[Any] = txa_mlp_layer_norm snake_case_ : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : str = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] snake_case_ : Tuple = txa_decoder_norm # Only for layer 0: snake_case_ : str = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T snake_case_ : Optional[Any] = tax_decoder_rel_embedding # Token Embeddings snake_case_ : Union[str, Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] snake_case_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Union[str, Any] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_a ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowercase__ : Dict = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
485
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = XLMRobertaTokenizer __snake_case : List[Any] = XLMRobertaTokenizerFast __snake_case : Optional[int] = True __snake_case : int = True def A ( self : str ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : str = XLMRobertaTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Dict ): lowerCAmelCase_ : str = """<pad>""" lowerCAmelCase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase ) , 10_02 ) def A ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = XLMRobertaTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCAmelCase_ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase_ : int = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A ( self : Optional[int] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase_ : List[Any] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = tokenizer_r.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Tuple = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[str] = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Any = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : int = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : Dict = tempfile.mkdtemp() lowerCAmelCase_ : Union[str, Any] = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) lowerCAmelCase_ : Any = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Dict = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @cached_property def A ( self : str ): return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def A ( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase , f.name ) lowerCAmelCase_ : Optional[int] = XLMRobertaTokenizer(f.name , keep_accents=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = pickle.dumps(UpperCAmelCase ) pickle.loads(UpperCAmelCase ) def A ( self : List[str] ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : int = self.get_rust_tokenizer() lowerCAmelCase_ : Union[str, Any] = """I was born in 92000, and this is falsé.""" lowerCAmelCase_ : str = tokenizer.tokenize(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[Any] = tokenizer.encode(UpperCAmelCase ) lowerCAmelCase_ : str = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = """Hello World!""" lowerCAmelCase_ : Any = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase_ : Dict = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A ( self : List[Any] ): # fmt: off lowerCAmelCase_ : Optional[int] = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
600
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : Tuple = True __snake_case : List[str] = """ml.p3.2xlarge""" __snake_case : Optional[int] = """accelerate_sagemaker_execution_role""" __snake_case : List[Any] = """hf-sm""" __snake_case : str = """us-east-1""" __snake_case : int = 1 __snake_case : int = """accelerate-sagemaker-1""" __snake_case : Union[str, Any] = """1.6""" __snake_case : Tuple = """4.4""" __snake_case : List[str] = """train.py""" __snake_case : str = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] __snake_case : List[Any] = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __a ( unittest.TestCase ): def A ( self : int ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCAmelCase_ : Dict = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , UpperCAmelCase ) assert isinstance(converted_args["""do_train"""] , UpperCAmelCase ) assert isinstance(converted_args["""epochs"""] , UpperCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , UpperCAmelCase ) assert isinstance(converted_args["""max_steps"""] , UpperCAmelCase ) with pytest.raises(UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
600
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : '''simple docstring''' def __init__( self , A__ , A__=13 , A__=3 , A__=True , A__=True , A__=0.1 , A__=0.1 , A__=224 , A__=1000 , A__=[3, 3, 6, 4] , A__=[48, 56, 112, 220] , ): A__ : Tuple = parent A__ : str = batch_size A__ : int = num_channels A__ : Union[str, Any] = is_training A__ : Tuple = use_labels A__ : List[str] = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : Dict = num_labels A__ : List[Any] = image_size A__ : List[Any] = layer_depths A__ : str = embed_dims def __A ( self ): A__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : int = None if self.use_labels: A__ : int = ids_tensor([self.batch_size] , self.num_labels ) A__ : Tuple = self.get_config() return config, pixel_values, labels def __A ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A__ , layer_scale_init_value=1e-5 , ) def __A ( self , A__ , A__ , A__ ): A__ : List[Any] = SwiftFormerModel(config=A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def __A ( self , A__ , A__ , A__ ): A__ : Tuple = self.num_labels A__ : Tuple = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A__ : List[str] = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() A__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Optional[int] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): ((A__) , (A__) , (A__)) : Tuple = self.prepare_config_and_inputs() A__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCAmelCase__: List[Any] = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__: Dict = False UpperCAmelCase__: Union[str, Any] = False UpperCAmelCase__: Any = False UpperCAmelCase__: int = False UpperCAmelCase__: Any = False def __A ( self ): A__ : List[str] = SwiftFormerModelTester(self ) A__ : int = ConfigTester( self , config_class=A__ , has_text_modality=A__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def __A ( self ): pass def __A ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(A__ ) A__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def __A ( self ): A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(A__ ) A__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Dict = [*signature.parameters.keys()] A__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def __A ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def __A ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple = SwiftFormerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def __A ( self ): pass def __A ( self ): def check_hidden_states_output(A__ , A__ , A__ ): A__ : Any = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): A__ : Any = model(**self._prepare_for_class(A__ , A__ ) ) A__ : str = outputs.hidden_states A__ : Tuple = 8 self.assertEqual(len(A__ ) , A__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : List[Any] = True check_hidden_states_output(A__ , A__ , A__ ) def __A ( self ): def _config_zero_init(A__ ): A__ : str = copy.deepcopy(A__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A__ , A__ , 1e-10 ) if isinstance(getattr(A__ , A__ , A__ ) , A__ ): A__ : Optional[Any] = _config_zero_init(getattr(A__ , A__ ) ) setattr(A__ , A__ , A__ ) return configs_no_init A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = _config_zero_init(A__ ) for model_class in self.all_model_classes: A__ : str = model_class(config=A__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __A ( self ): pass def UpperCamelCase () -> Optional[Any]: A__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a (unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def __A ( self ): A__ : List[Any] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(A__ ) A__ : Any = self.default_image_processor A__ : List[Any] = prepare_img() A__ : Optional[Any] = image_processor(images=A__ , return_tensors="""pt""" ).to(A__ ) # forward pass with torch.no_grad(): A__ : Dict = model(**A__ ) # verify the logits A__ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A__ ) A__ : Any = torch.tensor([[-2.1_703e00, 2.1_107e00, -2.0_811e00]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1e-4 ) )
64
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def UpperCamelCase (lowercase_: np.ndarray , lowercase_: np.ndarray , lowercase_: np.ndarray , lowercase_: int , lowercase_: int ) -> np.ndarray: A__ : Any = cva.getAffineTransform(lowercase_ , lowercase_ ) return cva.warpAffine(lowercase_ , lowercase_ , (rows, cols) ) if __name__ == "__main__": # read original image A_ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value A_ : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ , A_ : Optional[Any] = gray_img.shape # set different points to rotate image A_ : str = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A_ : Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A_ : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A_ : Optional[int] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A_ : Dict = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ : Union[str, Any] = plt.figure(1) A_ : Union[str, Any] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
64
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __a: List[str] = logging.get_logger(__name__) __a: Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __a: List[str] = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } __a: Optional[Any] = { "facebook/blenderbot_small-90M": 5_12, } class UpperCAmelCase ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ) -> Any: super().__init__( ByteLevelBPETokenizer( vocab=lowerCamelCase_ , merges=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ , ) , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , **lowerCamelCase_ , ) lowercase__ : List[str] = add_prefix_space def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: lowercase__ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[int]: lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
152
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : int = 0 __lowerCAmelCase : bool = False __lowerCAmelCase : float = 3.0 class a ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ) -> Dict: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCamelCase_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __UpperCamelCase ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _a : List[str] = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() _a : Optional[int] = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _a : Tuple = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCamelCase_ ) @require_multi_gpu def __UpperCamelCase ( self ) -> Optional[Any]: _a : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase_ : str = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase_ : List[Any] = torch.nn.Linear(100, 200) UpperCAmelCase_ : Tuple = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
120
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : ArgumentParser ) -> List[str]: """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" raise NotImplementedError()
218
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ (__A : int ) -> str: __lowerCAmelCase : str = int(__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def snake_case_ (__A : Dict , __A : Any , __A : List[str] , __A : Optional[int] , __A : Dict=3_0_0 ) -> int: # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : List[Any] = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase : Any = f'''{elt:.6f}''' if isinstance(__A , __A ) else str(__A ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =5 lowerCamelCase : Tuple =0.2 def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase : int = 3_00 , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = total __lowerCAmelCase : Dict = """""" if prefix is None else prefix __lowerCAmelCase : str = leave __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Optional[Any] = width __lowerCAmelCase : List[str] = None __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : bool = False , lowerCAmelCase : str = None ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = value if comment is not None: __lowerCAmelCase : Optional[Any] = comment if self.last_value is None: __lowerCAmelCase : List[Any] = time.time() __lowerCAmelCase : Optional[int] = value __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Any = self.warmup __lowerCAmelCase : List[str] = 1 self.update_bar(lowerCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase : Optional[Any] = time.time() __lowerCAmelCase : Optional[int] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase : Optional[Any] = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase : str = None if value >= self.total: __lowerCAmelCase : Any = self.total __lowerCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase ) __lowerCAmelCase : str = value __lowerCAmelCase : Union[str, Any] = current_time if self.average_time_per_item is None: __lowerCAmelCase : Optional[Any] = 1 else: __lowerCAmelCase : List[str] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = """ """ * (len(str(self.total ) ) - len(str(lowerCAmelCase ) )) + str(lowerCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase : List[str] = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase : Dict = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase : Dict = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : str = None if column_names is None else [column_names] __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if self.inner_table is None: __lowerCAmelCase : Tuple = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase : Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase ) __lowerCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=3_00 ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = NotebookProgressBar(lowerCAmelCase , prefix=lowerCAmelCase , parent=self , width=lowerCAmelCase ) return self.child_bar def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = None self.display() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = None __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , **lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : List[Any] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) __lowerCAmelCase : int = NotebookTrainingTracker(state.max_steps , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , **lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" if not has_length(lowerCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase : List[str] = self.training_tracker.add_child(len(lowerCAmelCase ) ) else: __lowerCAmelCase : List[Any] = NotebookProgressBar(len(lowerCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=None , **lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase : List[str] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase : Tuple = state.global_step self.training_tracker.write_line(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int=None , **lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if self.training_tracker is not None: __lowerCAmelCase : Union[str, Any] = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase : int = log["""loss"""] break if self.first_column == "Epoch": __lowerCAmelCase : int = int(state.epoch ) else: __lowerCAmelCase : Optional[int] = state.global_step __lowerCAmelCase : Union[str, Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): __lowerCAmelCase : Dict = re.sub(r"""\_loss$""" , """""" , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop("""total_flos""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop("""epoch""" , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase ) __lowerCAmelCase : Dict = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': __lowerCAmelCase : Tuple = v else: __lowerCAmelCase : Any = k.split("""_""" ) __lowerCAmelCase : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase : List[str] = v self.training_tracker.write_line(lowerCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase : int = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase : str = True def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = None
218
1