code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __a ( lowerCAmelCase_ : int ) -> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCAmelCase_= 1 UpperCAmelCase_= 1 while repunit: UpperCAmelCase_= (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def __a ( lowerCAmelCase_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_= limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCAmelCase_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'{solution() = }')
593
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) # TODO Update this __A = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase ( snake_case__): """simple docstring""" a__ : List[Any] = "esm" def __init__( self : Tuple , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Any=12 , __UpperCAmelCase : List[Any]=3_072 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[Any]=1_026 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : str=1E-12 , __UpperCAmelCase : Union[str, Any]="absolute" , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Optional[int] , ) -> Any: super().__init__(pad_token_id=__UpperCAmelCase , mask_token_id=__UpperCAmelCase , **__UpperCAmelCase ) UpperCAmelCase_= vocab_size UpperCAmelCase_= hidden_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_dropout_prob UpperCAmelCase_= attention_probs_dropout_prob UpperCAmelCase_= max_position_embeddings UpperCAmelCase_= initializer_range UpperCAmelCase_= layer_norm_eps UpperCAmelCase_= position_embedding_type UpperCAmelCase_= use_cache UpperCAmelCase_= emb_layer_norm_before UpperCAmelCase_= token_dropout UpperCAmelCase_= is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) UpperCAmelCase_= EsmFoldConfig() elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= EsmFoldConfig(**__UpperCAmelCase ) UpperCAmelCase_= esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) UpperCAmelCase_= get_default_vocab_list() else: UpperCAmelCase_= vocab_list else: UpperCAmelCase_= None UpperCAmelCase_= None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __UpperCAmelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: UpperCAmelCase_= super().to_dict() if isinstance(self.esmfold_config , __UpperCAmelCase ): UpperCAmelCase_= self.esmfold_config.to_dict() return output @dataclass class lowercase : """simple docstring""" a__ : str = None a__ : bool = True a__ : bool = False a__ : bool = False a__ : bool = False a__ : float = 0 a__ : bool = True a__ : bool = False a__ : int = 128 a__ : "TrunkConfig" = None def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: if self.trunk is None: UpperCAmelCase_= TrunkConfig() elif isinstance(self.trunk , __UpperCAmelCase ): UpperCAmelCase_= TrunkConfig(**self.trunk ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_= asdict(self ) UpperCAmelCase_= self.trunk.to_dict() return output @dataclass class lowercase : """simple docstring""" a__ : int = 48 a__ : int = 1024 a__ : int = 128 a__ : int = 32 a__ : int = 32 a__ : int = 32 a__ : float = 0 a__ : float = 0 a__ : bool = False a__ : int = 4 a__ : Optional[int] = 128 a__ : "StructureModuleConfig" = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: if self.structure_module is None: UpperCAmelCase_= StructureModuleConfig() elif isinstance(self.structure_module , __UpperCAmelCase ): UpperCAmelCase_= StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase_= self.sequence_state_dim // self.sequence_head_width UpperCAmelCase_= self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: UpperCAmelCase_= asdict(self ) UpperCAmelCase_= self.structure_module.to_dict() return output @dataclass class lowercase : """simple docstring""" a__ : int = 384 a__ : int = 128 a__ : int = 16 a__ : int = 128 a__ : int = 12 a__ : int = 4 a__ : int = 8 a__ : float = 0.1 a__ : int = 8 a__ : int = 1 a__ : int = 2 a__ : int = 7 a__ : int = 10 a__ : float = 1e-8 a__ : float = 1e5 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return asdict(self ) def __a ( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
593
1
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _A: List[str] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): _A : Optional[datasets.Features] = None def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , )-> List[str]: import pyspark def generate_fn(): __UpperCAmelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: __UpperCAmelCase = df_with_partition_id.select('*' ).where(F'part_id = {partition_id}' ).drop('part_id' ) __UpperCAmelCase = partition_df.collect() __UpperCAmelCase = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCAmelCase ( _BaseExamplesIterable ): def __init__( self , __A , __A=None , ): __UpperCAmelCase = df __UpperCAmelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __UpperCAmelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def __lowerCamelCase ( self , __A ): __UpperCAmelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def __lowerCamelCase ( self , __A , __A ): __UpperCAmelCase = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def __lowerCamelCase ( self ): return len(self.partition_order ) class UpperCAmelCase ( datasets.DatasetBuilder ): _A : Union[str, Any] = SparkConfig def __init__( self , __A , __A = None , __A = None , **__A , ): import pyspark __UpperCAmelCase = pyspark.sql.SparkSession.builder.getOrCreate() __UpperCAmelCase = df __UpperCAmelCase = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def __lowerCamelCase ( self ): # Returns the path of the created file. def create_cache_and_write_probe(__A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) __UpperCAmelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __UpperCAmelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def __lowerCamelCase ( self ): return datasets.DatasetInfo(features=self.config.features ) def __lowerCamelCase ( self , __A ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCamelCase ( self , __A ): import pyspark def get_arrow_batch_size(__A ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) __UpperCAmelCase = self.df.count() __UpperCAmelCase = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __UpperCAmelCase = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) __UpperCAmelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __UpperCAmelCase = min(__A , int(approx_total_size / max_shard_size ) ) __UpperCAmelCase = self.df.repartition(__A ) def __lowerCamelCase ( self , __A , __A , __A , ): import pyspark __UpperCAmelCase = ParquetWriter if file_format == 'parquet' else ArrowWriter __UpperCAmelCase = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath __UpperCAmelCase = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __UpperCAmelCase = self.config.features __UpperCAmelCase = self._writer_batch_size __UpperCAmelCase = self._fs.storage_options def write_arrow(__A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __UpperCAmelCase = pyspark.TaskContext().taskAttemptId() __UpperCAmelCase = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) __UpperCAmelCase = 0 __UpperCAmelCase = writer_class( features=__A , path=working_fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) __UpperCAmelCase = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __UpperCAmelCase , __UpperCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 __UpperCAmelCase = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) __UpperCAmelCase = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: __UpperCAmelCase , __UpperCAmelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): __UpperCAmelCase = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) __UpperCAmelCase = ( self.df.mapInArrow(__A , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCamelCase ( self , __A , __A = "arrow" , __A = None , __A = None , **__A , ): self._validate_cache_dir() __UpperCAmelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) __UpperCAmelCase = not is_remote_filesystem(self._fs ) __UpperCAmelCase = os.path.join if is_local else posixpath.join __UpperCAmelCase = '-TTTTT-SSSSS-of-NNNNN' __UpperCAmelCase = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' __UpperCAmelCase = path_join(self._output_dir , __A ) __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = [] __UpperCAmelCase = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) __UpperCAmelCase = total_num_examples __UpperCAmelCase = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: __UpperCAmelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __UpperCAmelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __A , __A , __A , ): rename( __A , fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , fpath.replace('TTTTT-SSSSS' , f'{global_shard_id:05d}' ).replace('NNNNN' , f'{total_shards:05d}' ) , ) __UpperCAmelCase = [] __UpperCAmelCase = 0 for i in range(len(__A ) ): __UpperCAmelCase , __UpperCAmelCase = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect() else: # don't use any pattern __UpperCAmelCase = 0 __UpperCAmelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f'{shard_id:05d}' ).replace('TTTTT' , f'{task_id:05d}' ) , fpath.replace(__A , '' ) , ) def __lowerCamelCase ( self , __A , ): return SparkExamplesIterable(self.df )
720
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> str | Literal[False]: __UpperCAmelCase = list(_lowerCAmelCase ) __UpperCAmelCase = list(_lowerCAmelCase ) __UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): if lista[i] != lista[i]: count += 1 __UpperCAmelCase = '_' if count > 1: return False else: return "".join(_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase )-> list[str]: __UpperCAmelCase = [] while True: __UpperCAmelCase = ['$'] * len(_lowerCAmelCase ) __UpperCAmelCase = [] for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1 , len(_lowerCAmelCase ) ): __UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: __UpperCAmelCase = '*' __UpperCAmelCase = '*' temp.append('X' ) for i in range(len(_lowerCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCAmelCase ) == 0: return pi __UpperCAmelCase = list(set(_lowerCAmelCase ) ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> list[str]: __UpperCAmelCase = [] for minterm in minterms: __UpperCAmelCase = '' for _ in range(_lowerCAmelCase ): __UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCAmelCase ) return temp def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )-> bool: __UpperCAmelCase = list(_lowerCAmelCase ) __UpperCAmelCase = list(_lowerCAmelCase ) __UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> list[str]: __UpperCAmelCase = [] __UpperCAmelCase = [0] * len(_lowerCAmelCase ) for i in range(len(chart[0] ) ): __UpperCAmelCase = 0 __UpperCAmelCase = -1 for j in range(len(_lowerCAmelCase ) ): if chart[j][i] == 1: count += 1 __UpperCAmelCase = j if count == 1: __UpperCAmelCase = 1 for i in range(len(_lowerCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCAmelCase ) ): __UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: __UpperCAmelCase = 0 __UpperCAmelCase = -1 __UpperCAmelCase = 0 for i in range(len(_lowerCAmelCase ) ): __UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: __UpperCAmelCase = count_n __UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCAmelCase ) ): __UpperCAmelCase = 0 def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> list[list[int]]: __UpperCAmelCase = [[0 for x in range(len(_lowerCAmelCase ) )] for x in range(len(_lowerCAmelCase ) )] for i in range(len(_lowerCAmelCase ) ): __UpperCAmelCase = prime_implicants[i].count('_' ) for j in range(len(_lowerCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCAmelCase ): __UpperCAmelCase = 1 return chart def _lowerCAmelCase ( )-> None: __UpperCAmelCase = int(input('Enter the no. of variables\n' ) ) __UpperCAmelCase = [ float(_lowerCAmelCase ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] __UpperCAmelCase = decimal_to_binary(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = check(_lowerCAmelCase ) print('Prime Implicants are:' ) print(_lowerCAmelCase ) __UpperCAmelCase = prime_implicant_chart(_lowerCAmelCase , _lowerCAmelCase ) __UpperCAmelCase = selection(_lowerCAmelCase , _lowerCAmelCase ) print('Essential Prime Implicants are:' ) print(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
617
0
from collections.abc import Generator from math import sin def _A ( _lowercase ) -> bytes: """simple docstring""" if len(_lowercase ) != 32: raise ValueError('Input must be of length 32' ) __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _A ( _lowercase ) -> bytes: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '08x' )[-8:] __UpperCamelCase = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = B'' for char in message: bit_string += format(_lowercase , '08b' ).encode('utf-8' ) __UpperCamelCase = format(len(_lowercase ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_lowercase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _A ( _lowercase ) -> Generator[list[int], None, None]: """simple docstring""" if len(_lowercase ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(_lowercase ) , 5_12 ): __UpperCamelCase = bit_string[pos : pos + 5_12] __UpperCamelCase = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _A ( _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) __UpperCamelCase = format(_lowercase , '032b' ) __UpperCamelCase = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(_lowercase , 2 ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (a + b) % 2**32 def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _A ( _lowercase ) -> bytes: """simple docstring""" __UpperCamelCase = preprocess(_lowercase ) __UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __UpperCamelCase = 0X67_45_23_01 __UpperCamelCase = 0Xef_cd_ab_89 __UpperCamelCase = 0X98_ba_dc_fe __UpperCamelCase = 0X10_32_54_76 __UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_lowercase ): __UpperCamelCase = aa __UpperCamelCase = ba __UpperCamelCase = ca __UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __UpperCamelCase = d ^ (b & (c ^ d)) __UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __UpperCamelCase = c ^ (d & (b ^ c)) __UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: __UpperCamelCase = b ^ c ^ d __UpperCamelCase = (3 * i + 5) % 16 else: __UpperCamelCase = c ^ (b | not_aa(_lowercase )) __UpperCamelCase = (7 * i) % 16 __UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 __UpperCamelCase = d __UpperCamelCase = c __UpperCamelCase = b __UpperCamelCase = sum_aa(_lowercase , left_rotate_aa(_lowercase , shift_amounts[i] ) ) # Add hashed chunk to running total __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = sum_aa(_lowercase , _lowercase ) __UpperCamelCase = reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) + reformat_hex(_lowercase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
1
def a__ ( A__ = 5_0_0_0_0_0_0_0 ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = set() SCREAMING_SNAKE_CASE_ : Optional[int] = int((limit - 2_4) ** (1 / 2) ) SCREAMING_SNAKE_CASE_ : Dict = set(range(3, prime_square_limit + 1, 2 ) ) primes.add(2 ) for p in range(3, prime_square_limit + 1, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, prime_square_limit + 1, A__ ) ) ) for primea in primes: SCREAMING_SNAKE_CASE_ : int = primea * primea for primea in primes: SCREAMING_SNAKE_CASE_ : Dict = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: SCREAMING_SNAKE_CASE_ : Optional[int] = primea * primea * primea * primea SCREAMING_SNAKE_CASE_ : str = square + cube + tetr if total >= limit: break ret.add(A__ ) return len(A__ ) if __name__ == "__main__": print(F"""{solution() = }""")
101
0
'''simple docstring''' import os def snake_case ( ) -> Optional[int]: """simple docstring""" with open(os.path.dirname(snake_case ) + '/p022_names.txt' ) as file: lowerCAmelCase = str(file.readlines()[0] ) lowerCAmelCase = names.replace('"' , '' ).split(',' ) names.sort() lowerCAmelCase = 0 lowerCAmelCase = 0 for i, name in enumerate(snake_case ): for letter in name: name_score += ord(snake_case ) - 64 total_score += (i + 1) * name_score lowerCAmelCase = 0 return total_score if __name__ == "__main__": print(solution())
514
'''simple docstring''' def snake_case ( snake_case : str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
514
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 5_0 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[ImagePipelineOutput, Tuple]: __a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase , ) __a = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __a = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCAmelCase ), "This is a local test"
559
from manim import * class a__ ( __snake_case ): def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = Rectangle(height=0.5 , width=0.5 ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a = Rectangle(height=0.25 , width=0.25 ) __a = [mem.copy() for i in range(6 )] __a = [mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('CPU' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase ) __a = [mem.copy() for i in range(4 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('GPU' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase ) __a = [mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('Model' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase ) __a = [] __a = [] for i, rect in enumerate(UpperCAmelCase ): __a = fill.copy().set_fill(UpperCAmelCase , opacity=0.8 ) target.move_to(UpperCAmelCase ) model_arr.append(UpperCAmelCase ) __a = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCAmelCase ) self.add(*UpperCAmelCase , *UpperCAmelCase ) __a = [meta_mem.copy() for i in range(6 )] __a = [meta_mem.copy() for i in range(6 )] __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(*UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = VGroup(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0 ) __a = Text('Disk' , font_size=2_4 ) __a = Group(UpperCAmelCase , UpperCAmelCase ).arrange(UpperCAmelCase , buff=0.5 , aligned_edge=UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) __a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase , UpperCAmelCase ) __a = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase ) __a = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase ) ) __a = Square(0.3 ) input.set_fill(UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCAmelCase , buff=0.5 ) self.play(Write(UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(UpperCAmelCase ) ) self.play(FadeOut(UpperCAmelCase ) ) __a = Arrow(start=UpperCAmelCase , end=UpperCAmelCase , color=UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __a = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) ) __a = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCAmelCase ) , Circumscribe(model_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __a = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __a = AnimationGroup( FadeOut(UpperCAmelCase , run_time=0.5 ) , MoveToTarget(UpperCAmelCase , run_time=0.5 ) , FadeIn(UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __a = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=UpperCAmelCase , **UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCAmelCase , **UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=UpperCAmelCase , **UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __a = a_c __a = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCAmelCase ) , FadeOut(UpperCAmelCase , run_time=0.5 ) , ) __a = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase , run_time=3 ) , MoveToTarget(UpperCAmelCase ) ) self.wait()
559
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : int = CTRLTokenizer _A : int = False _A : Optional[Any] = False def A_ ( self : Optional[int] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCamelCase__ = dict(zip(A__ , range(len(A__ ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def A_ ( self : Any , **_a : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A__ ) def A_ ( self : List[str] , _a : int ): UpperCamelCase__ = """adapt react readapt apt""" UpperCamelCase__ = """adapt react readapt apt""" return input_text, output_text def A_ ( self : str ): UpperCamelCase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = """adapt react readapt apt""" UpperCamelCase__ = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCamelCase__ = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
720
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCamelCase_ ( UpperCamelCase__ : Optional[int]=None ): '''simple docstring''' if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('''tpu-config''', description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('''Accelerate tpu-config command''', description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( '''Config Arguments''', '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''', type=UpperCamelCase__, default=UpperCamelCase__, help='''Path to the config file to use for accelerate.''', ) config_args.add_argument( '''--tpu_name''', default=UpperCamelCase__, help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''', ) config_args.add_argument( '''--tpu_zone''', default=UpperCamelCase__, help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''', ) UpperCamelCase__ = parser.add_argument_group('''TPU Arguments''', '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''', action='''store_true''', help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''', ) pod_args.add_argument( '''--command_file''', default=UpperCamelCase__, help='''The path to the file containing the commands to run on the pod on startup.''', ) pod_args.add_argument( '''--command''', action='''append''', nargs='''+''', help='''A command to run on the pod. Can be passed multiple times.''', ) pod_args.add_argument( '''--install_accelerate''', action='''store_true''', help='''Whether to install accelerate on the pod. Defaults to False.''', ) pod_args.add_argument( '''--accelerate_version''', default='''latest''', help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''', ) pod_args.add_argument( '''--debug''', action='''store_true''', help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCamelCase__ ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCamelCase__ = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ), UpperCamelCase__ ): UpperCamelCase__ = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file, '''r''' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], UpperCamelCase__ ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command UpperCamelCase__ = '''; '''.join(UpperCamelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {" ".join(UpperCamelCase__ )}""" ) return subprocess.run(UpperCamelCase__ ) print('''Successfully setup pod.''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(UpperCamelCase__ )
591
0
'''simple docstring''' import argparse from collections import defaultdict import yaml __UpperCAmelCase ="docs/source/en/_toctree.yml" def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: __lowerCamelCase = defaultdict(UpperCamelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 __lowerCamelCase = [key for key, value in counts.items() if value > 1] __lowerCamelCase = [] for duplicate_key in duplicates: __lowerCamelCase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) def __lowerCAmelCase ( UpperCamelCase__=False ) -> Optional[Any]: with open(UpperCamelCase__ , encoding='''utf-8''' ) as f: __lowerCamelCase = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase = content[api_idx]['''sections'''] # Then to the model doc __lowerCamelCase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __lowerCamelCase = api_doc[model_idx]['''sections'''] __lowerCamelCase = [(idx, section) for idx, section in enumerate(UpperCamelCase__ ) if '''sections''' in section] __lowerCamelCase = False for idx, modality_doc in modalities_docs: __lowerCamelCase = modality_doc['''sections'''] __lowerCamelCase = clean_model_doc_toc(UpperCamelCase__ ) if old_modality_doc != new_modality_doc: __lowerCamelCase = True if overwrite: __lowerCamelCase = new_modality_doc if diff: if overwrite: __lowerCamelCase = model_doc __lowerCamelCase = api_doc with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase =parser.parse_args() check_model_doc(args.fix_and_overwrite)
546
'''simple docstring''' def __lowerCAmelCase ( ) -> Optional[Any]: __lowerCamelCase = 0 for i in range(1 , 10_01 ): total += i**i return str(UpperCamelCase__ )[-10:] if __name__ == "__main__": print(solution())
546
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[int] , __A : List[Any] , __A : Dict=13 , __A : Union[str, Any]=7 , __A : Optional[Any]=True , __A : Tuple=True , __A : List[str]=True , __A : List[str]=True , __A : Dict=99 , __A : Any=32 , __A : str=2 , __A : Optional[int]=4 , __A : Tuple=37 , __A : List[str]="gelu" , __A : int=0.1 , __A : Dict=0.1 , __A : List[Any]=512 , __A : List[Any]=16 , __A : List[str]=2 , __A : Union[str, Any]=0.0_2 , __A : Tuple=3 , __A : Optional[Any]=4 , __A : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = 13 lowerCAmelCase__ = 7 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 99 lowerCAmelCase__ = 384 lowerCAmelCase__ = 2 lowerCAmelCase__ = 4 lowerCAmelCase__ = 37 lowerCAmelCase__ = """gelu""" lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 0.1 lowerCAmelCase__ = 512 lowerCAmelCase__ = 16 lowerCAmelCase__ = 2 lowerCAmelCase__ = 0.0_2 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 lowerCAmelCase__ = 128 lowerCAmelCase__ = 2 lowerCAmelCase__ = 9 lowerCAmelCase__ = 1 lowerCAmelCase__ = None def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any , __A : Optional[Any] , __A : Any , __A : str , __A : Dict , __A : str , __A : Dict , __A : int ) -> int: '''simple docstring''' lowerCAmelCase__ = TFConvBertModel(config=__A ) lowerCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase__ = [input_ids, input_mask] lowerCAmelCase__ = model(__A ) lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __A : Any , __A : Tuple , __A : List[Any] , __A : List[Any] , __A : Tuple , __A : Tuple , __A : Dict ) -> int: '''simple docstring''' lowerCAmelCase__ = TFConvBertForMaskedLM(config=__A ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Any , __A : Tuple , __A : Optional[Any] , __A : Dict , __A : List[Any] , __A : int , __A : Dict , __A : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFConvBertForSequenceClassification(config=__A ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , __A : List[Any] , __A : Any , __A : List[str] , __A : Tuple , __A : Any , __A : Dict , __A : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.num_choices lowerCAmelCase__ = TFConvBertForMultipleChoice(config=__A ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , __A : Optional[int] , __A : List[str] , __A : Tuple , __A : List[str] , __A : List[str] , __A : Optional[int] , __A : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFConvBertForTokenClassification(config=__A ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Any , __A : Union[str, Any] , __A : int , __A : List[str] , __A : List[str] , __A : Optional[int] , __A : List[str] , __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = TFConvBertForQuestionAnswering(config=__A ) lowerCAmelCase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase__ = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A, _A, unittest.TestCase ): '''simple docstring''' A__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A__ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False A__ = False def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase__ = TFConvBertModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowercase__ ( self : str ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True lowerCAmelCase__ = True if hasattr(__A , """use_cache""" ): lowerCAmelCase__ = True lowerCAmelCase__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase__ = getattr(self.model_tester , """key_length""" , __A ) for model_class in self.all_model_classes: lowerCAmelCase__ = self._prepare_for_class(__A , __A ) lowerCAmelCase__ = model_class(__A ) lowerCAmelCase__ = len(model(__A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) lowerCAmelCase__ = os.path.join(__A , """saved_model""" , """1""" ) lowerCAmelCase__ = tf.keras.models.load_model(__A ) lowerCAmelCase__ = model(__A ) if self.is_encoder_decoder: lowerCAmelCase__ = outputs["""encoder_hidden_states"""] lowerCAmelCase__ = outputs["""encoder_attentions"""] else: lowerCAmelCase__ = outputs["""hidden_states"""] lowerCAmelCase__ = outputs["""attentions"""] self.assertEqual(len(__A ) , __A ) lowerCAmelCase__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowercase__ ( self : int ) -> str: '''simple docstring''' lowerCAmelCase__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__A ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True lowerCAmelCase__ = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase__ = getattr(self.model_tester , """key_length""" , __A ) lowerCAmelCase__ = getattr(self.model_tester , """key_length""" , __A ) def check_decoder_attentions_output(__A : Tuple ): lowerCAmelCase__ = len(__A ) self.assertEqual(out_len % 2 , 0 ) lowerCAmelCase__ = outputs.decoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__A : Union[str, Any] ): lowerCAmelCase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = model_class(__A ) lowerCAmelCase__ = model(self._prepare_for_class(__A , __A ) ) lowerCAmelCase__ = len(__A ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) if self.is_encoder_decoder: lowerCAmelCase__ = model_class(__A ) lowerCAmelCase__ = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_decoder_attentions_output(__A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__A ) lowerCAmelCase__ = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) # Check attention is always last and order is fine lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(__A ) lowerCAmelCase__ = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__A ) ) self.assertEqual(model.config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ = model(__A )[0] lowerCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __A ) lowerCAmelCase__ = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1E-4 )
211
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _UpperCamelCase = False @skip_mps class lowerCamelCase__ ( _A, _A, _A, unittest.TestCase ): '''simple docstring''' A__ = StableDiffusionAttendAndExcitePipeline A__ = False A__ = TEXT_TO_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) A__ = TEXT_TO_IMAGE_IMAGE_PARAMS A__ = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowercase__ ( cls : Optional[int] ) -> Any: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__A ) @classmethod def lowercase__ ( cls : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__A ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__A , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(__A ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __A : Optional[int] , __A : Optional[int]=0 ) -> List[Any]: '''simple docstring''' if str(__A ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(__A ) else: lowerCAmelCase__ = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase__ = lowerCAmelCase__ = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = """cpu""" lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase__ = self.get_dummy_inputs(__A ) lowerCAmelCase__ = pipe(**__A ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCAmelCase__ = np.array( [0.6_3_9_0_5_3_6_4, 0.6_2_8_9_7_3_0_7, 0.4_8_5_9_9_0_1_7, 0.5_1_3_3_6_2_4, 0.5_5_5_0_0_4_8, 0.4_5_7_6_9_5_1_6, 0.5_0_3_2_6_9_7_3, 0.5_0_2_3_1_3_9, 0.4_5_3_8_4_4_9_6] ) lowerCAmelCase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__A , 1E-3 ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def lowercase__ ( self : str ) -> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : Optional[int] ) -> Tuple: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__A ) @classmethod def lowercase__ ( cls : int ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__A ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = torch.manual_seed(51 ) lowerCAmelCase__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=__A , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) lowerCAmelCase__ = """a painting of an elephant with glasses""" lowerCAmelCase__ = [5, 7] lowerCAmelCase__ = pipe( prompt=__A , token_indices=__A , guidance_scale=7.5 , generator=__A , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
211
1
"""simple docstring""" import pprint import requests A_ = '''https://zenquotes.io/api''' def UpperCAmelCase__ (): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def UpperCAmelCase__ (): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
609
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "open-llama" def __init__( self: int, a_: List[str]=100_000, a_: List[str]=4_096, a_: int=11_008, a_: Tuple=32, a_: Any=32, a_: Optional[Any]="silu", a_: Any=2_048, a_: List[Any]=0.02, a_: int=1E-6, a_: Optional[int]=True, a_: List[str]=0, a_: Any=1, a_: Optional[int]=2, a_: Tuple=False, a_: List[Any]=True, a_: Optional[int]=0.1, a_: Tuple=0.1, a_: List[Any]=True, a_: Optional[int]=True, a_: Dict=None, **a_: int, ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : str = hidden_size _snake_case : Dict = intermediate_size _snake_case : str = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : Dict = initializer_range _snake_case : Tuple = rms_norm_eps _snake_case : Dict = use_cache _snake_case : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""", a_ ) _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_dropout_prob _snake_case : Optional[int] = use_stable_embedding _snake_case : int = shared_input_output_embedding _snake_case : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, tie_word_embeddings=a_, **a_, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, a_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) _snake_case : Optional[int] = self.rope_scaling.get("""type""", a_ ) _snake_case : Optional[int] = self.rope_scaling.get("""factor""", a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(a_, a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
609
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = "longformer" def __init__( self : Optional[int] , A__ : Union[List[int], int] = 5_1_2 , A__ : int = 2 , A__ : int = 1 , A__ : int = 0 , A__ : int = 2 , A__ : int = 3_0_5_2_2 , A__ : int = 7_6_8 , A__ : int = 1_2 , A__ : int = 1_2 , A__ : int = 3_0_7_2 , A__ : str = "gelu" , A__ : float = 0.1 , A__ : float = 0.1 , A__ : int = 5_1_2 , A__ : int = 2 , A__ : float = 0.02 , A__ : float = 1E-12 , A__ : bool = False , **A__ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=A__ , **A__ ) a__ : Optional[int] = attention_window a__ : List[str] = sep_token_id a__ : Any = bos_token_id a__ : int = eos_token_id a__ : Dict = vocab_size a__ : Union[str, Any] = hidden_size a__ : List[str] = num_hidden_layers a__ : str = num_attention_heads a__ : Any = hidden_act a__ : List[Any] = intermediate_size a__ : Any = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : str = max_position_embeddings a__ : str = type_vocab_size a__ : Optional[Any] = initializer_range a__ : Tuple = layer_norm_eps a__ : List[str] = onnx_export class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , A__ : "PretrainedConfig" , A__ : str = "default" , A__ : "List[PatchingSpec]" = None ) -> Dict: '''simple docstring''' super().__init__(A__ , A__ , A__ ) a__ : Any = True @property def __lowerCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a__ : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __lowerCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' a__ : Union[str, Any] = super().outputs if self.task == "default": a__ : List[Any] = {0: '''batch'''} return outputs @property def __lowerCAmelCase ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1E-4 @property def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 1_4 ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : "PreTrainedTokenizerBase" , A__ : int = -1 , A__ : int = -1 , A__ : bool = False , A__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' a__ : Optional[int] = super().generate_dummy_inputs( preprocessor=A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a__ : Dict = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global a__ : Any = 1 return inputs
340
'''simple docstring''' def __a ( lowerCAmelCase__ : list ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a__ : List[str] = grid[0] for row_n in range(1 , len(lowerCAmelCase__ ) ): a__ : Tuple = grid[row_n] a__ : Union[str, Any] = fill_row(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] = grid[row_n] return grid[-1][-1] def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
340
1
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path SCREAMING_SNAKE_CASE__ = quote(UpperCamelCase_ ) return hfh.hf_hub_url(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' , revision=UpperCamelCase_ )
472
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE ) ) return data_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : list[list[float]] = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = min(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCAmelCase : int = F'''Invalid weight of {weight:f} provided''' raise ValueError(SCREAMING_SNAKE_CASE ) score_lists.append(SCREAMING_SNAKE_CASE ) return score_lists def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] ) -> list[float]: __lowerCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = final_scores[j] + ele return final_scores def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[float]] , SCREAMING_SNAKE_CASE :list[int] ) -> list[list[float]]: __lowerCAmelCase : str = get_data(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = calculate_each_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = generate_final_scores(SCREAMING_SNAKE_CASE ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE ): source_data[i].append(SCREAMING_SNAKE_CASE ) return source_data
504
0
'''simple docstring''' def _A (lowerCAmelCase__ :int = 2_00 ) -> int: '''simple docstring''' _a = [1, 2, 5, 10, 20, 50, 1_00, 2_00] _a = [0] * (pence + 1) _a = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_0_0) == 7_3_6_8_2
532
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = DiTPipeline _lowerCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowerCAmelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) _a = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__magic_name__ , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=__magic_name__ , ) _a = AutoencoderKL() _a = DDIMScheduler() _a = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=0 ) -> Union[str, Any]: if str(__magic_name__ ).startswith('mps' ): _a = torch.manual_seed(__magic_name__ ) else: _a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _a = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ) -> Tuple: _a = 'cpu' _a = self.get_dummy_components() _a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) _a = self.get_dummy_inputs(__magic_name__ ) _a = pipe(**__magic_name__ ).images _a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _a = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) _a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1e-3 ) def __UpperCAmelCase ( self ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=__magic_name__ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def __UpperCAmelCase ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ) -> Union[str, Any]: _a = torch.manual_seed(0 ) _a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) _a = ['vase', 'umbrella', 'white shark', 'white wolf'] _a = pipe.get_label_ids(__magic_name__ ) _a = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=40 , output_type='np' ).images for word, image in zip(__magic_name__ , __magic_name__ ): _a = load_numpy( f'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def __UpperCAmelCase ( self ) -> Any: _a = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) _a = ['vase', 'umbrella'] _a = pipe.get_label_ids(__magic_name__ ) _a = torch.manual_seed(0 ) _a = pipe(__magic_name__ , generator=__magic_name__ , num_inference_steps=25 , output_type='np' ).images for word, image in zip(__magic_name__ , __magic_name__ ): _a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
532
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: List[Any] , UpperCamelCase: int , UpperCamelCase: Dict , UpperCamelCase: str ) -> List[Any]: snake_case__ = dataset snake_case__ = process snake_case__ = params def __len__( self: Any ) -> Any: return len(self.dataset ) def __getitem__( self: Optional[Any] , UpperCamelCase: Optional[int] ) -> Dict: snake_case__ = self.dataset[i] snake_case__ = self.process(UpperCamelCase , **self.params ) return processed class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Any , UpperCamelCase: Any , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: int=None ) -> Union[str, Any]: snake_case__ = loader snake_case__ = infer snake_case__ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether snake_case__ = None snake_case__ = loader_batch_size # Internal bookkeeping snake_case__ = None snake_case__ = None def __len__( self: List[Any] ) -> Any: return len(self.loader ) def __iter__( self: Optional[int] ) -> List[Any]: snake_case__ = iter(self.loader ) return self def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice snake_case__ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) snake_case__ = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase , UpperCamelCase ): # Convert ModelOutput to tuple first snake_case__ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): snake_case__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase , UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): snake_case__ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): snake_case__ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around snake_case__ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case__ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers snake_case__ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. snake_case__ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 snake_case__ = self._loader_batch_data.__class__(UpperCamelCase ) self._loader_batch_index += 1 return result def lowerCAmelCase_ ( self: int ) -> Dict: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch snake_case__ = next(self.iterator ) snake_case__ = self.infer(UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = processed else: snake_case__ = list(processed.keys() )[0] snake_case__ = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = len(UpperCamelCase ) else: snake_case__ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case__ = observed_batch_size # Setting internal index to unwrap the batch snake_case__ = processed snake_case__ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: List[str] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[str, Any]=None ) -> Optional[Any]: super().__init__(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def __iter__( self: str ) -> Tuple: snake_case__ = iter(self.loader ) snake_case__ = None return self def lowerCAmelCase_ ( self: Any ) -> Dict: if self.subiterator is None: snake_case__ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item snake_case__ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators snake_case__ = self.infer(next(self.iterator ) , **self.params ) snake_case__ = next(self.subiterator ) return processed class __SCREAMING_SNAKE_CASE( a_ ): def __iter__( self: int ) -> Any: snake_case__ = iter(self.loader ) return self def lowerCAmelCase_ ( self: Any ) -> List[str]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. snake_case__ = False snake_case__ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: snake_case__ = self.loader_batch_item() snake_case__ = item.pop('is_last' ) accumulator.append(UpperCamelCase ) if is_last: return accumulator while not is_last: snake_case__ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = processed else: snake_case__ = list(processed.keys() )[0] snake_case__ = processed[key] if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = len(UpperCamelCase ) else: snake_case__ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. snake_case__ = observed_batch_size snake_case__ = processed snake_case__ = 0 while self._loader_batch_index < self.loader_batch_size: snake_case__ = self.loader_batch_item() snake_case__ = item.pop('is_last' ) accumulator.append(UpperCamelCase ) if is_last: return accumulator else: snake_case__ = processed snake_case__ = item.pop('is_last' ) accumulator.append(UpperCamelCase ) return accumulator class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Dict , UpperCamelCase: Dataset , UpperCamelCase: str ) -> str: snake_case__ = dataset snake_case__ = key def __len__( self: int ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self: Tuple , UpperCamelCase: str ) -> Tuple: return self.dataset[i][self.key] class __SCREAMING_SNAKE_CASE( a_ ): def __init__( self: Optional[Any] , UpperCamelCase: Dataset , UpperCamelCase: str , UpperCamelCase: str ) -> Any: snake_case__ = dataset snake_case__ = keya snake_case__ = keya def __len__( self: Optional[int] ) -> Dict: return len(self.dataset ) def __getitem__( self: List[str] , UpperCamelCase: Optional[Any] ) -> Tuple: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
328
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "timesformer" def __init__( self: Dict , UpperCamelCase: Optional[Any]=2_24 , UpperCamelCase: int=16 , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=8 , UpperCamelCase: List[Any]=7_68 , UpperCamelCase: List[str]=12 , UpperCamelCase: List[str]=12 , UpperCamelCase: Dict=30_72 , UpperCamelCase: str="gelu" , UpperCamelCase: Any=0.0 , UpperCamelCase: int=0.0 , UpperCamelCase: int=0.02 , UpperCamelCase: Optional[int]=1e-6 , UpperCamelCase: Tuple=True , UpperCamelCase: Tuple="divided_space_time" , UpperCamelCase: int=0 , **UpperCamelCase: List[str] , ) -> str: super().__init__(**UpperCamelCase ) snake_case__ = image_size snake_case__ = patch_size snake_case__ = num_channels snake_case__ = num_frames snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = qkv_bias snake_case__ = attention_type snake_case__ = drop_path_rate
328
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : str = None , ) -> Any: if config_name_or_path is None: _snake_case : List[str] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: _snake_case : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _snake_case : Optional[Any] = question_encoder_name_or_path _snake_case : Optional[Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. _snake_case : str = RagConfig.from_pretrained(_A ) _snake_case : Tuple = AutoConfig.from_pretrained(_A ) _snake_case : Tuple = AutoConfig.from_pretrained(_A ) _snake_case : Dict = gen_config _snake_case : Dict = question_encoder_config _snake_case : List[Any] = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. _snake_case : Any = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) _snake_case : List[str] = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) a__ = parser.parse_args() a__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
705
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE__ , collections.abc.Iterable ): return x return (x, x) @require_tf class snake_case : '''simple docstring''' def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> Any: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : str=None , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = TFVisionTextDualEncoderModel(lowerCAmelCase) _snake_case : Dict = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Any: """simple docstring""" _snake_case , _snake_case : Dict = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase) _snake_case : List[str] = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case , _snake_case : List[Any] = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} _snake_case : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase) _snake_case : List[Any] = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : int) -> Tuple: """simple docstring""" _snake_case , _snake_case : int = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase) _snake_case : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase) _snake_case : str = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase) _snake_case : Optional[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase) _snake_case : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase) _snake_case : Tuple = model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase) _snake_case : Optional[int] = after_output[0].numpy() _snake_case : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase , 1E-5) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Dict) -> Any: """simple docstring""" _snake_case , _snake_case : List[str] = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase) _snake_case : Any = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase) _snake_case : Tuple = model( input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase) _snake_case : List[Any] = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case : Any = to_atuple(vision_model.config.image_size) _snake_case : int = to_atuple(vision_model.config.patch_size) _snake_case : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _snake_case : int = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray , lowerCAmelCase : float) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = np.abs((a - b)).max() self.assertLessEqual(lowerCAmelCase , lowerCAmelCase , F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" _snake_case : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" _snake_case : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase) @slow def UpperCamelCase_ ( self : str) -> int: """simple docstring""" _snake_case , _snake_case : Dict = self.get_pretrained_model_and_inputs() _snake_case : Optional[Any] = model_a(**lowerCAmelCase) _snake_case : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase) _snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase) _snake_case : Dict = model_a(**lowerCAmelCase) _snake_case : int = after_outputs[0].numpy() _snake_case : str = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase , 1E-5) @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" _snake_case : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""") _snake_case : Union[str, Any] = 13 _snake_case : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _snake_case : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _snake_case : Tuple = random_attention_mask([batch_size, 4]) _snake_case : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> Dict: """simple docstring""" _snake_case : List[str] = TFViTModel(lowerCAmelCase , name="""vision_model""") _snake_case : List[Any] = TFBertModel(lowerCAmelCase , name="""text_model""") return vision_model, text_model def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = TFViTModelTester(self) _snake_case : Optional[Any] = TFBertModelTester(self) _snake_case : Optional[int] = vit_model_tester.prepare_config_and_inputs() _snake_case : int = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Dict = vision_config_and_inputs ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""") _snake_case : int = 13 _snake_case : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _snake_case : Union[str, Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _snake_case : int = random_attention_mask([batch_size, 4]) _snake_case : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : int=None , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : Any = self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase) _snake_case : int = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase) _snake_case : Optional[Any] = model( input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase) _snake_case : Dict = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _snake_case : List[Any] = to_atuple(vision_model.config.image_size) _snake_case : str = to_atuple(vision_model.config.patch_size) _snake_case : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _snake_case : List[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) _snake_case : Dict = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" _snake_case : Optional[int] = TFDeiTModel(lowerCAmelCase , name="""vision_model""") _snake_case : Optional[int] = TFRobertaModel(lowerCAmelCase , name="""text_model""") return vision_model, text_model def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" _snake_case : Union[str, Any] = TFDeiTModelTester(self) _snake_case : Tuple = TFRobertaModelTester(self) _snake_case : Optional[int] = vit_model_tester.prepare_config_and_inputs() _snake_case : Optional[Any] = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : List[Any] = vision_config_and_inputs ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""") _snake_case : str = 13 _snake_case : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) _snake_case : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) _snake_case : str = random_attention_mask([batch_size, 4]) _snake_case : Optional[int] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = TFCLIPVisionModel(lowerCAmelCase , name="""vision_model""") _snake_case : List[Any] = TFBertModel(lowerCAmelCase , name="""text_model""") return vision_model, text_model def UpperCamelCase_ ( self : str) -> List[Any]: """simple docstring""" _snake_case : List[str] = TFCLIPVisionModelTester(self) _snake_case : int = TFBertModelTester(self) _snake_case : Any = clip_model_tester.prepare_config_and_inputs() _snake_case : str = bert_model_tester.prepare_config_and_inputs() _snake_case , _snake_case : Optional[Any] = vision_config_and_inputs ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=lowerCAmelCase) _snake_case : str = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""") _snake_case : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") _snake_case : List[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""np""") _snake_case : Optional[int] = model(**lowerCAmelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _snake_case : int = np.array([[1.2_284_727, 0.3_104_122]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCAmelCase , atol=1E-3))
198
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """Pix2StructImageProcessor""" lowercase_ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =False super().__init__(lowercase__ , lowercase__ ) def __call__( self , lowercase__=None , lowercase__ = None , lowercase__ = True , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 2_0_4_8 , lowercase__ = 0 , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = False , lowercase__ = True , lowercase__ = None , **lowercase__ , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: __A =self.tokenizer __A =self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __A =self.image_processor( lowercase__ , return_tensors=lowercase__ , max_patches=lowercase__ , **lowercase__ ) else: # add pixel_values and bbox __A =self.image_processor( lowercase__ , return_tensors=lowercase__ , max_patches=lowercase__ , header_text=lowercase__ , **lowercase__ ) if text is not None and not self.image_processor.is_vqa: __A =self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_token_type_ids=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if "attention_mask" in text_encoding: __A =text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: __A =text_encoding.pop('''input_ids''' ) else: __A =None if text_encoding is not None: encoding_image_processor.update(lowercase__ ) return encoding_image_processor def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *lowercase__ , **lowercase__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer.model_input_names __A =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
184
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : List[Any] = logging.getLogger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__=-1 ): '''simple docstring''' __A =label_idx def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: __A =[] __A =[] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 __A =[] __A =[] else: __A =line.split(''' ''' ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: __A =line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(lowercase__ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: __A =f.read().splitlines() if "O" not in labels: __A =['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): __A =mode.value __A =os.path.join(lowercase__ , f'''{mode}.txt''' ) __A =1 __A =[] with open(lowercase__ , encoding='''utf-8''' ) as f: for sentence in parse_incr(lowercase__ ): __A =[] __A =[] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def __UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =0 for sentence in parse_incr(lowercase__ ): __A =preds_list[example_id] __A ='''''' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowercase__ ) example_id += 1 def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' if path: with open(lowercase__ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
184
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): UpperCAmelCase = ['''pixel_values'''] def __init__( self :Optional[Any] ,__UpperCAmelCase :bool = True ,__UpperCAmelCase :Optional[Dict[str, int]] = None ,__UpperCAmelCase :PILImageResampling = PILImageResampling.BILINEAR ,__UpperCAmelCase :bool = True ,__UpperCAmelCase :Dict[str, int] = None ,__UpperCAmelCase :bool = True ,__UpperCAmelCase :Union[int, float] = 1 / 2_55 ,__UpperCAmelCase :bool = True ,__UpperCAmelCase :Optional[Union[float, List[float]]] = None ,__UpperCAmelCase :Optional[Union[float, List[float]]] = None ,**__UpperCAmelCase :Tuple ,) -> None: """simple docstring""" super().__init__(**__UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_56} lowerCamelCase__ : Dict = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) lowerCamelCase__ : Dict = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCamelCase__ : Any = get_size_dict(__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = do_resize lowerCamelCase__ : Dict = size lowerCamelCase__ : str = resample lowerCamelCase__ : Dict = do_center_crop lowerCamelCase__ : Optional[int] = crop_size lowerCamelCase__ : Any = do_rescale lowerCamelCase__ : List[Any] = rescale_factor lowerCamelCase__ : Tuple = do_normalize lowerCamelCase__ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCamelCase__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self :str ,__UpperCAmelCase :np.ndarray ,__UpperCAmelCase :Dict[str, int] ,__UpperCAmelCase :PILImageResampling = PILImageResampling.BICUBIC ,__UpperCAmelCase :Optional[Union[str, ChannelDimension]] = None ,**__UpperCAmelCase :Any ,) -> np.ndarray: """simple docstring""" lowerCamelCase__ : Optional[Any] = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCamelCase__ : List[Any] = get_resize_output_image_size(__UpperCAmelCase ,size=size['''shortest_edge'''] ,default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def lowercase_ ( self :Optional[Any] ,__UpperCAmelCase :np.ndarray ,__UpperCAmelCase :Dict[str, int] ,__UpperCAmelCase :Optional[Union[str, ChannelDimension]] = None ,**__UpperCAmelCase :str ,) -> np.ndarray: """simple docstring""" lowerCamelCase__ : int = get_size_dict(__UpperCAmelCase ) return center_crop(__UpperCAmelCase ,size=(size['''height'''], size['''width''']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def lowercase_ ( self :Dict ,__UpperCAmelCase :np.ndarray ,__UpperCAmelCase :float ,__UpperCAmelCase :Optional[Union[str, ChannelDimension]] = None ,**__UpperCAmelCase :Tuple ) -> np.ndarray: """simple docstring""" return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def lowercase_ ( self :str ,__UpperCAmelCase :np.ndarray ,__UpperCAmelCase :Union[float, List[float]] ,__UpperCAmelCase :Union[float, List[float]] ,__UpperCAmelCase :Optional[Union[str, ChannelDimension]] = None ,**__UpperCAmelCase :Tuple ,) -> np.ndarray: """simple docstring""" return normalize(__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def lowercase_ ( self :Optional[int] ,__UpperCAmelCase :ImageInput ,__UpperCAmelCase :Optional[bool] = None ,__UpperCAmelCase :Dict[str, int] = None ,__UpperCAmelCase :PILImageResampling = None ,__UpperCAmelCase :bool = None ,__UpperCAmelCase :Dict[str, int] = None ,__UpperCAmelCase :Optional[bool] = None ,__UpperCAmelCase :Optional[float] = None ,__UpperCAmelCase :Optional[bool] = None ,__UpperCAmelCase :Optional[Union[float, List[float]]] = None ,__UpperCAmelCase :Optional[Union[float, List[float]]] = None ,__UpperCAmelCase :Optional[Union[str, TensorType]] = None ,__UpperCAmelCase :Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__UpperCAmelCase :str ,) -> Dict: """simple docstring""" lowerCamelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : int = size if size is not None else self.size lowerCamelCase__ : str = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) lowerCamelCase__ : Dict = resample if resample is not None else self.resample lowerCamelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : List[str] = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : Optional[int] = get_size_dict(__UpperCAmelCase ) lowerCamelCase__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Any = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Any = image_std if image_std is not None else self.image_std lowerCamelCase__ : Union[str, Any] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCamelCase__ : Optional[int] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowerCamelCase__ : List[str] = [self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowerCamelCase__ : Union[str, Any] = [self.center_crop(image=__UpperCAmelCase ,size=__UpperCAmelCase ) for image in images] if do_rescale: lowerCamelCase__ : Dict = [self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ) for image in images] if do_normalize: lowerCamelCase__ : List[str] = [self.normalize(image=__UpperCAmelCase ,mean=__UpperCAmelCase ,std=__UpperCAmelCase ) for image in images] lowerCamelCase__ : int = [to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) for image in images] lowerCamelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
121
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" with open(_lowercase ) as metadata_file: lowerCamelCase__ : List[Any] = json.load(_lowercase ) lowerCamelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=_lowercase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path lowerCamelCase__ : Dict = torch.load(_lowercase , map_location='''cpu''' )['''module'''] # Load the entity vocab file lowerCamelCase__ : Dict = load_original_entity_vocab(_lowercase ) # add an entry for [MASK2] lowerCamelCase__ : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCamelCase__ : int = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks lowerCamelCase__ : Any = AddedToken('''<ent>''' , lstrip=_lowercase , rstrip=_lowercase ) lowerCamelCase__ : int = AddedToken('''<ent2>''' , lstrip=_lowercase , rstrip=_lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(_lowercase ) with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , '''r''' ) as f: lowerCamelCase__ : Optional[Any] = json.load(_lowercase ) lowerCamelCase__ : Optional[int] = '''MLukeTokenizer''' with open(os.path.join(_lowercase , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) with open(os.path.join(_lowercase , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) lowerCamelCase__ : Union[str, Any] = MLukeTokenizer.from_pretrained(_lowercase ) # Initialize the embeddings of the special tokens lowerCamelCase__ : int = tokenizer.convert_tokens_to_ids(['''@'''] )[0] lowerCamelCase__ : List[Any] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] lowerCamelCase__ : Any = state_dict['''embeddings.word_embeddings.weight'''] lowerCamelCase__ : Dict = word_emb[ent_init_index].unsqueeze(0 ) lowerCamelCase__ : Any = word_emb[enta_init_index].unsqueeze(0 ) lowerCamelCase__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCamelCase__ : Optional[Any] = state_dict[bias_name] lowerCamelCase__ : Tuple = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCamelCase__ : List[str] = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCamelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCamelCase__ : Optional[int] = f"""encoder.layer.{layer_index}.attention.self.""" lowerCamelCase__ : List[Any] = state_dict[prefix + matrix_name] lowerCamelCase__ : int = state_dict[prefix + matrix_name] lowerCamelCase__ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCamelCase__ : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowerCamelCase__ : Optional[int] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowerCamelCase__ : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCamelCase__ : Tuple = state_dict['''entity_predictions.bias'''] lowerCamelCase__ : Dict = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowerCamelCase__ : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCamelCase__ : Optional[Any] = LukeForMaskedLM(config=_lowercase ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): lowerCamelCase__ : List[Any] = state_dict[key] else: lowerCamelCase__ : Dict = state_dict[key] lowerCamelCase__ , lowerCamelCase__ : Tuple = model.load_state_dict(_lowercase , strict=_lowercase ) if set(_lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(_lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCamelCase__ : Tuple = MLukeTokenizer.from_pretrained(_lowercase , task='''entity_classification''' ) lowerCamelCase__ : List[Any] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' lowerCamelCase__ : Optional[int] = (0, 9) lowerCamelCase__ : str = tokenizer(_lowercase , entity_spans=[span] , return_tensors='''pt''' ) lowerCamelCase__ : int = model(**_lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase__ : List[Any] = torch.Size((1, 33, 768) ) lowerCamelCase__ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCamelCase__ : str = torch.Size((1, 1, 768) ) lowerCamelCase__ : Dict = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _lowercase , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCamelCase__ : List[str] = MLukeTokenizer.from_pretrained(_lowercase ) lowerCamelCase__ : List[str] = '''Tokyo is the capital of <mask>.''' lowerCamelCase__ : int = (24, 30) lowerCamelCase__ : Dict = tokenizer(_lowercase , entity_spans=[span] , return_tensors='''pt''' ) lowerCamelCase__ : List[Any] = model(**_lowercase ) lowerCamelCase__ : List[str] = encoding['''input_ids'''][0].tolist() lowerCamelCase__ : str = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) lowerCamelCase__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_lowercase ) lowerCamelCase__ : List[str] = outputs.entity_logits[0][0].argmax().item() lowerCamelCase__ : str = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_lowercase ) ) model.save_pretrained(_lowercase ) def __a ( _lowercase ): """simple docstring""" lowerCamelCase__ : List[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] lowerCamelCase__ : List[Any] = [json.loads(_lowercase ) for line in open(_lowercase )] lowerCamelCase__ : int = {} for entry in data: lowerCamelCase__ : Union[str, Any] = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCamelCase__ : Optional[int] = entity_id break lowerCamelCase__ : Optional[Any] = f"""{language}:{entity_name}""" lowerCamelCase__ : Optional[Any] = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) UpperCAmelCase : Tuple = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
121
1
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :int , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :UNetaDModel , lowerCamelCase__ :DDPMScheduler , lowerCamelCase__ :List[Any] , ): super().__init__() UpperCamelCase__ :Tuple = value_function UpperCamelCase__ :Optional[int] = unet UpperCamelCase__ :List[str] = scheduler UpperCamelCase__ :Dict = env UpperCamelCase__ :Dict = env.get_dataset() UpperCamelCase__ :Union[str, Any] = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].mean() except: # noqa: E722 pass UpperCamelCase__ :Any = {} for key in self.data.keys(): try: UpperCamelCase__ :int = self.data[key].std() except: # noqa: E722 pass UpperCamelCase__ :List[Any] = env.observation_space.shape[0] UpperCamelCase__ :List[str] = env.action_space.shape[0] def __a ( self :Union[str, Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :str ): return (x_in - self.means[key]) / self.stds[key] def __a ( self :int , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): return x_in * self.stds[key] + self.means[key] def __a ( self :Any , lowerCamelCase__ :int ): if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Tuple ): for key, val in cond.items(): UpperCamelCase__ :str = val.clone() return x_in def __a ( self :Union[str, Any] , lowerCamelCase__ :List[Any] , lowerCamelCase__ :int , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = x.shape[0] UpperCamelCase__ :List[Any] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCamelCase__ :Optional[Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCamelCase__ :Dict = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample UpperCamelCase__ :List[Any] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCamelCase__ :Union[str, Any] = self.scheduler._get_variance(lowerCamelCase__ ) UpperCamelCase__ :Any = torch.exp(0.5 * posterior_variance ) UpperCamelCase__ :Dict = model_std * grad UpperCamelCase__ :Optional[Any] = 0 UpperCamelCase__ :Dict = x.detach() UpperCamelCase__ :int = x + scale * grad UpperCamelCase__ :int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCamelCase__ :List[str] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCamelCase__ :Optional[Any] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :Optional[int] = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self :Optional[Any] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str=64 , lowerCamelCase__ :Tuple=32 , lowerCamelCase__ :Dict=2 , lowerCamelCase__ :str=0.1 ): # normalize the observations and create batch dimension UpperCamelCase__ :List[str] = self.normalize(lowerCamelCase__ , """observations""" ) UpperCamelCase__ :List[str] = obs[None].repeat(lowerCamelCase__ , axis=0 ) UpperCamelCase__ :int = {0: self.to_torch(lowerCamelCase__ )} UpperCamelCase__ :Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCamelCase__ :Any = randn_tensor(lowerCamelCase__ , device=self.unet.device ) UpperCamelCase__ :Optional[int] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) UpperCamelCase__ :List[Any] = self.to_torch(lowerCamelCase__ ) # run the diffusion process UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value UpperCamelCase__ :List[Any] = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() UpperCamelCase__ :Dict = x[sorted_idx] UpperCamelCase__ :Tuple = sorted_values[:, :, : self.action_dim] UpperCamelCase__ :Optional[Any] = actions.detach().cpu().numpy() UpperCamelCase__ :Optional[int] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: UpperCamelCase__ :List[str] = 0 else: # if we didn't run value guiding, select a random action UpperCamelCase__ :Dict = np.random.randint(0 , lowerCamelCase__ ) UpperCamelCase__ :Tuple = denorm_actions[selected_index, 0] return denorm_actions
45
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : Optional[int] = None if token is not None: _UpperCAmelCase : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCAmelCase : int = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase : str = requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() _UpperCAmelCase : Union[str, Any] = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _UpperCAmelCase : List[str] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(_UpperCamelCase ): _UpperCAmelCase : Union[str, Any] = requests.get(url + F'''&page={i + 2}''' , headers=_UpperCamelCase ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : Tuple = None if token is not None: _UpperCAmelCase : Tuple = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCAmelCase : List[str] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _UpperCAmelCase : List[Any] = requests.get(_UpperCamelCase , headers=_UpperCamelCase ).json() _UpperCAmelCase : Any = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) _UpperCAmelCase : Dict = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(_UpperCamelCase ): _UpperCAmelCase : Optional[Any] = requests.get(url + F'''&page={i + 2}''' , headers=_UpperCamelCase ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def _A ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase : Optional[int] = None if token is not None: _UpperCAmelCase : str = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} _UpperCAmelCase : int = requests.get(_UpperCamelCase , headers=_UpperCamelCase , allow_redirects=_UpperCamelCase ) _UpperCAmelCase : Optional[int] = result.headers['''Location'''] _UpperCAmelCase : str = requests.get(_UpperCamelCase , allow_redirects=_UpperCamelCase ) _UpperCAmelCase : Optional[int] = os.path.join(_UpperCamelCase , F'''{artifact_name}.zip''' ) with open(_UpperCamelCase , '''wb''' ) as fp: fp.write(response.content ) def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = [] _UpperCAmelCase : int = None with zipfile.ZipFile(_UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_UpperCamelCase ) as f: for line in f: _UpperCAmelCase : Optional[int] = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase : Optional[int] = line[: line.index(''': ''' )] _UpperCAmelCase : str = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed _UpperCAmelCase : Tuple = line[len('''FAILED ''' ) :] failed_tests.append(_UpperCamelCase ) elif filename == "job_name.txt": _UpperCAmelCase : Optional[Any] = line if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCamelCase )} for `errors` ''' F'''and {len(_UpperCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ''' problem.''' ) _UpperCAmelCase : Tuple = None if job_name and job_links: _UpperCAmelCase : Optional[Any] = job_links.get(_UpperCamelCase , _UpperCamelCase ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase : Any = [x + [y] + [job_link] for x, y in zip(_UpperCamelCase , _UpperCamelCase )] return result def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for p in os.listdir(_UpperCamelCase ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(_UpperCamelCase , job_links=_UpperCamelCase ) ) return errors def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : Optional[int] = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase : Optional[int] = counter.most_common() _UpperCAmelCase : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase : Optional[Any] = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase : List[str] = dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_UpperCamelCase ) ) return r def _A ( _UpperCamelCase ): _UpperCAmelCase : List[str] = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): _UpperCAmelCase : List[str] = test.split('''/''' )[2] else: _UpperCAmelCase : Optional[int] = None return test def _A ( _UpperCamelCase , _UpperCamelCase=None ): _UpperCAmelCase : Dict = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase : Optional[Any] = [x for x in logs if x[2] is not None] _UpperCAmelCase : Union[str, Any] = {x[2] for x in logs} _UpperCAmelCase : Any = {} for test in tests: _UpperCAmelCase : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase : Optional[Any] = counter.most_common() _UpperCAmelCase : Tuple = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase : Optional[int] = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase : List[Any] = {'''count''': n_errors, '''errors''': error_counts} _UpperCAmelCase : int = dict(sorted(r.items() , key=lambda _UpperCamelCase : item[1]["count"] , reverse=_UpperCamelCase ) ) return r def _A ( _UpperCamelCase ): _UpperCAmelCase : List[Any] = '''| no. | error | status |''' _UpperCAmelCase : Dict = '''|-:|:-|:-|''' _UpperCAmelCase : Union[str, Any] = [header, sep] for error in reduced_by_error: _UpperCAmelCase : Optional[int] = reduced_by_error[error]['''count'''] _UpperCAmelCase : List[str] = F'''| {count} | {error[:100]} | |''' lines.append(_UpperCamelCase ) return "\n".join(_UpperCamelCase ) def _A ( _UpperCamelCase ): _UpperCAmelCase : Tuple = '''| model | no. of errors | major error | count |''' _UpperCAmelCase : List[Any] = '''|-:|-:|-:|-:|''' _UpperCAmelCase : Union[str, Any] = [header, sep] for model in reduced_by_model: _UpperCAmelCase : List[str] = reduced_by_model[model]['''count'''] _UpperCAmelCase , _UpperCAmelCase : Tuple = list(reduced_by_model[model]['''errors'''].items() )[0] _UpperCAmelCase : Optional[int] = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(_UpperCamelCase ) return "\n".join(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') UpperCAmelCase__ : Optional[Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCAmelCase__ : Any = get_job_links(args.workflow_run_id, token=args.token) UpperCAmelCase__ : List[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCAmelCase__ : List[str] = k.find(' / ') UpperCAmelCase__ : int = k[index + len(' / ') :] UpperCAmelCase__ : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCAmelCase__ : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCAmelCase__ : Optional[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCAmelCase__ : Optional[int] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCAmelCase__ : Optional[Any] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCAmelCase__ : Union[str, Any] = reduce_by_error(errors) UpperCAmelCase__ : str = reduce_by_model(errors) UpperCAmelCase__ : Any = make_github_table(reduced_by_error) UpperCAmelCase__ : str = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
416
import baseaa def _A ( _UpperCamelCase ): return baseaa.baaencode(string.encode('''utf-8''' ) ) def _A ( _UpperCamelCase ): return baseaa.baadecode(_UpperCamelCase ).decode('''utf-8''' ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = 'Hello World!' UpperCAmelCase__ : List[str] = baseaa_encode(test) print(encoded) UpperCAmelCase__ : Optional[int] = baseaa_decode(encoded) print(decoded)
416
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : Optional[int] = { """configuration_trajectory_transformer""": [ """TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrajectoryTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ """TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrajectoryTransformerModel""", """TrajectoryTransformerPreTrainedModel""", """load_tf_weights_in_trajectory_transformer""", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
435
'''simple docstring''' def __A ( UpperCAmelCase ,UpperCAmelCase ) -> str: '''simple docstring''' _UpperCamelCase : str = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCamelCase : List[Any] = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. _UpperCamelCase : int = min(UpperCAmelCase ,UpperCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
435
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def __lowerCAmelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 ) -> Optional[int]: __lowerCAmelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase =datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase =16 elif accelerator.mixed_precision != "no": __lowerCAmelCase =8 else: __lowerCAmelCase =None return tokenizer.pad( __lowerCamelCase , padding="""longest""" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowerCAmelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase ) __lowerCAmelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def __lowerCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : List[str] ) -> Dict: # Initialize accelerator __lowerCAmelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase =config["""lr"""] __lowerCAmelCase =int(config["""num_epochs"""] ) __lowerCAmelCase =int(config["""seed"""] ) __lowerCAmelCase =int(config["""batch_size"""] ) __lowerCAmelCase =evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase =batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase =MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) __lowerCAmelCase , __lowerCAmelCase =get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase =model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase =AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler __lowerCAmelCase =get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase =model(**__lowerCamelCase ) __lowerCAmelCase =outputs.loss __lowerCAmelCase =loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase =model(**__lowerCamelCase ) __lowerCAmelCase =outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) __lowerCAmelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase ) def __lowerCAmelCase ( ) -> Optional[Any]: __lowerCAmelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowerCAmelCase =parser.parse_args() __lowerCAmelCase ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
704
import math from numpy import inf from scipy.integrate import quad def __lowerCAmelCase ( __lowerCamelCase : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__lowerCamelCase , 0 , __lowerCamelCase , args=(__lowerCamelCase) )[0] def __lowerCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: return math.pow(__lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
456
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ : int = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **_UpperCAmelCase : Union[str, Any] ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase__ = deprecated_arg[3:] setattr(self , a__ , not kwargs.pop(a__ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase__ = kwargs.pop("""torchscript""" , self.torchscript ) UpperCAmelCase__ = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase__ = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**a__ ) lowerCAmelCase_ : bool = field(default=lowerCAmelCase__ , metadata={"""help""": """Trace the models using torchscript"""} ) lowerCAmelCase_ : bool = field(default=lowerCAmelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) lowerCAmelCase_ : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: UpperCAmelCase__ = torch.device("""cpu""" ) UpperCAmelCase__ = 0 elif is_torch_tpu_available(): UpperCAmelCase__ = xm.xla_device() UpperCAmelCase__ = 0 else: UpperCAmelCase__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) UpperCAmelCase__ = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return self.n_gpu > 0
603
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ : int =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) self.check_model_type(a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , **a__ ): _lowerCamelCase , _lowerCamelCase = {}, {} if padding is not None: _lowerCamelCase = padding if truncation is not None: _lowerCamelCase = truncation if top_k is not None: _lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a__ , a__ = None , **a__ ): if isinstance(a__ , (Image.Image, str) ) and isinstance(a__ , a__ ): _lowerCamelCase = {'image': image, 'question': question} else: _lowerCamelCase = image _lowerCamelCase = super().__call__(a__ , **a__ ) return results def snake_case_ ( self , a__ , a__=False , a__=False ): _lowerCamelCase = load_image(inputs['image'] ) _lowerCamelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a__ , truncation=a__ ) _lowerCamelCase = self.image_processor(images=a__ , return_tensors=self.framework ) model_inputs.update(a__ ) return model_inputs def snake_case_ ( self , a__ ): _lowerCamelCase = self.model(**a__ ) return model_outputs def snake_case_ ( self , a__ , a__=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase = model_outputs.logits.sigmoid()[0] _lowerCamelCase , _lowerCamelCase = probs.topk(a__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCamelCase = scores.tolist() _lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
650
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
709
from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowercase_ = b * b - 4 * a * c lowercase_ = (-b + sqrt(__lowerCamelCase )) / (2 * a) lowercase_ = (-b - sqrt(__lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ , lowercase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
601
0
__a : Any = 8.3_14_45_98 def __magic_name__ ( lowercase_ , lowercase_ ) -> float: '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __a : Union[str, Any] = 3_0_0 __a : Union[str, Any] = 2_8 __a : Optional[Any] = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
606
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } _UpperCamelCase = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } _UpperCamelCase = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ =PRETRAINED_INIT_CONFIGURATION a_ =RoFormerTokenizer def __init__( self : List[str] , _a : Optional[Any]=None , _a : Dict=None , _a : Dict=True , _a : Union[str, Any]="[UNK]" , _a : List[Any]="[SEP]" , _a : List[Any]="[PAD]" , _a : Any="[CLS]" , _a : Any="[MASK]" , _a : Dict=True , _a : Any=None , **_a : Tuple , ) -> Optional[int]: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) __lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , _a ) != do_lower_case or pre_tok_state.get('strip_accents' , _a ) != strip_accents ): __lowerCamelCase : Dict = getattr(_a , pre_tok_state.pop('type' ) ) __lowerCamelCase : Tuple = do_lower_case __lowerCamelCase : int = strip_accents __lowerCamelCase : Dict = pre_tok_class(**_a ) __lowerCamelCase : Any = do_lower_case def __getstate__( self : Union[str, Any] ) -> List[Any]: __lowerCamelCase : Optional[Any] = self.__dict__.copy() __lowerCamelCase : Any = BertPreTokenizer() return state def __setstate__( self : Optional[Any] , _a : Optional[int] ) -> Tuple: __lowerCamelCase : Tuple = d __lowerCamelCase : Optional[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(_a ) ) def _lowercase ( self : Any , _a : Union[str, Any] , _a : str=None ) -> Any: __lowerCamelCase : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self : int , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self : List[str] , _a : str , _a : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase : Optional[int] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def _lowercase ( self : int , _a : Optional[Any] , _a : Tuple=None , _a : List[str]=None , _a : Optional[int]=False , **_a : Dict , ) -> Dict: __lowerCamelCase : Dict = BertPreTokenizer() return super().save_pretrained(_a , _a , _a , _a , **_a )
459
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( A_ ): '''simple docstring''' def __init__( self : List[str] , *__lowercase : List[str] , __lowercase : str=None , __lowercase : Tuple=None , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) UpperCAmelCase_ = eval_examples UpperCAmelCase_ = post_process_function def SCREAMING_SNAKE_CASE ( self : Any , __lowercase : Tuple=None , __lowercase : List[str]=None , __lowercase : List[str]=None , __lowercase : str = "eval" ): '''simple docstring''' UpperCAmelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ = self.get_eval_dataloader(__lowercase ) UpperCAmelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ = self.compute_metrics UpperCAmelCase_ = None UpperCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ = time.time() try: UpperCAmelCase_ = eval_loop( __lowercase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , metric_key_prefix=__lowercase , ) finally: UpperCAmelCase_ = compute_metrics UpperCAmelCase_ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowercase , __lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_ = self.post_process_function(__lowercase , __lowercase , output.predictions ) UpperCAmelCase_ = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_ = metrics.pop(__lowercase ) metrics.update(output.metrics ) else: UpperCAmelCase_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowercase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowercase ) return metrics def SCREAMING_SNAKE_CASE ( self : str , __lowercase : Optional[Any] , __lowercase : Optional[int] , __lowercase : Any=None , __lowercase : str = "test" ): '''simple docstring''' UpperCAmelCase_ = self.get_test_dataloader(__lowercase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ = self.compute_metrics UpperCAmelCase_ = None UpperCAmelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase_ = time.time() try: UpperCAmelCase_ = eval_loop( __lowercase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowercase , metric_key_prefix=__lowercase , ) finally: UpperCAmelCase_ = compute_metrics UpperCAmelCase_ = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowercase , __lowercase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ = self.post_process_function(__lowercase , __lowercase , output.predictions , """predict""" ) UpperCAmelCase_ = self.compute_metrics(__lowercase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase_ = metrics.pop(__lowercase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowercase )
486
from math import factorial UpperCamelCase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A_( A ): if not isinstance(A , A ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(A ) ) def A_( A = 60 , A = 1000000 ): if not isinstance(A , A ) or not isinstance(A , A ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length UpperCAmelCase_ = 0 # the cached sizes of the previous chains UpperCAmelCase_ = {} for start_chain_element in range(1 , A ): # The temporary set will contain the elements of the chain UpperCAmelCase_ = set() UpperCAmelCase_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(A ) chain_set_length += 1 UpperCAmelCase_ = digit_factorial_sum(A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution()}")
486
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCAmelCase = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _lowerCAmelCase = F'''https://www.google.com/search?q={query}&num=100''' _lowerCAmelCase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _lowerCAmelCase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _lowerCAmelCase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )['''url'''][0] webbrowser.open(link)
259
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : int = "sequence-classification" def __init__( self : Optional[int] , lowercase : Any ): '''simple docstring''' if type(lowercase ) == dict: _snake_case = Namespace(**lowercase ) _snake_case = glue_output_modes[hparams.task] _snake_case = glue_tasks_num_labels[hparams.task] super().__init__(lowercase , lowercase , self.mode ) def A ( self : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' return self.model(**lowercase ) def A ( self : Optional[Any] , lowercase : str , lowercase : Tuple ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case = outputs[0] _snake_case = self.trainer.lr_schedulers[0]['scheduler'] _snake_case = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.hparams _snake_case = processors[args.task]() _snake_case = processor.get_labels() for mode in ["train", "dev"]: _snake_case = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowercase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) _snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) _snake_case = convert_examples_to_features( lowercase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , lowercase ) torch.save(lowercase , lowercase ) def A ( self : Dict , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = 'dev' if mode == 'test' else mode _snake_case = self._feature_file(lowercase ) logger.info('Loading features from cached file %s' , lowercase ) _snake_case = torch.load(lowercase ) _snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase , shuffle=lowercase , ) def A ( self : str , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' _snake_case = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _snake_case = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None _snake_case = self(**lowercase ) _snake_case , _snake_case = outputs[:2] _snake_case = logits.detach().cpu().numpy() _snake_case = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : int , lowercase : Optional[int] ): '''simple docstring''' _snake_case = torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() _snake_case = np.concatenate([x['pred'] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _snake_case = np.argmax(lowercase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _snake_case = np.squeeze(lowercase ) _snake_case = np.concatenate([x['target'] for x in outputs] , axis=0 ) _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = [[] for _ in range(out_label_ids.shape[0] )] _snake_case = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase , lowercase )} _snake_case = dict(results.items() ) _snake_case = results return ret, preds_list, out_label_list def A ( self : int , lowercase : list ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[str] , lowercase : Any ): '''simple docstring''' _snake_case , _snake_case , _snake_case = self._eval_end(lowercase ) _snake_case = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( '--max_seq_length' , default=128 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=lowercase , required=lowercase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=lowercase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser def a_ ( ) -> Union[str, Any]: _snake_case = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) _snake_case = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) _snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _snake_case = os.path.join( './results' , f'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _snake_case = GLUETransformer(__lowercase ) _snake_case = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _snake_case = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__lowercase ) ) _snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
686
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: # Initialise PyTorch model SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : List[Any] = MobileBertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE_ : List[Any] = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
701
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase__: List[Any] = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> int: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE ) @dataclass class snake_case_ : __lowerCamelCase : int __lowerCamelCase : float __lowerCamelCase : str __lowerCamelCase : bool @dataclass class snake_case_ : __lowerCamelCase : int = 42 __lowerCamelCase : str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class snake_case_ : __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : Optional[bool] = None class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Union[str, Any] = 'titi' __lowerCamelCase : List[str] = 'toto' class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Union[str, Any] = 'titi' __lowerCamelCase : Tuple = 'toto' __lowerCamelCase : Any = 42 @dataclass class snake_case_ : __lowerCamelCase : BasicEnum = "toto" def __A ( self ): SCREAMING_SNAKE_CASE_ : int = BasicEnum(self.foo ) @dataclass class snake_case_ : __lowerCamelCase : MixedTypeEnum = "toto" def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[float] = field(default=lowerCAmelCase , metadata={'help': 'help message'} ) __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[List[str]] = list_field(default=[] ) __lowerCamelCase : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : __lowerCamelCase : List[int] = list_field(default=[] ) __lowerCamelCase : List[int] = list_field(default=[1, 2, 3] ) __lowerCamelCase : List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __lowerCamelCase : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : __lowerCamelCase : List[int] = field() __lowerCamelCase : str = field() __lowerCamelCase : BasicEnum = field() def __A ( self ): SCREAMING_SNAKE_CASE_ : int = BasicEnum(self.required_enum ) @dataclass class snake_case_ : __lowerCamelCase : int __lowerCamelCase : "BasicEnum" = field() __lowerCamelCase : "Optional[bool]" = None __lowerCamelCase : "str" = field(default='toto' , metadata={'help': 'help message'} ) __lowerCamelCase : "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : __lowerCamelCase : bool = False __lowerCamelCase : bool = True __lowerCamelCase : bool | None = None @dataclass class snake_case_ : __lowerCamelCase : int | None = None __lowerCamelCase : float | None = field(default=lowerCAmelCase , metadata={'help': 'help message'} ) __lowerCamelCase : str | None = None __lowerCamelCase : list[str] | None = list_field(default=[] ) __lowerCamelCase : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): def __A ( self , __lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE_ : Any = {k: v for k, v in vars(__lowerCAmelCase ).items() if k != 'container'} SCREAMING_SNAKE_CASE_ : Tuple = {k: v for k, v in vars(__lowerCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , __lowerCAmelCase ) and yy.get('choices' , __lowerCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](__lowerCAmelCase ) , yy['type'](__lowerCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = argparse.ArgumentParser() expected.add_argument('--foo' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument('--bar' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument('--baz' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument('--flag' , type=__lowerCAmelCase , default=__lowerCAmelCase , const=__lowerCAmelCase , nargs='?' ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((SCREAMING_SNAKE_CASE_) , ) : int = parser.parse_args_into_dataclasses(__lowerCAmelCase , look_for_args_file=__lowerCAmelCase ) self.assertFalse(example.flag ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=__lowerCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__lowerCAmelCase , help='help message' ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__lowerCAmelCase , default=__lowerCAmelCase , const=__lowerCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=__lowerCAmelCase , default=__lowerCAmelCase , const=__lowerCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=__lowerCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=__lowerCAmelCase , default=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCAmelCase ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ : Optional[Any] = HfArgumentParser(__lowerCAmelCase ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , baz=__lowerCAmelCase , opt=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , baz=__lowerCAmelCase , opt=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , baz=__lowerCAmelCase , opt=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , baz=__lowerCAmelCase , opt=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , baz=__lowerCAmelCase , opt=__lowerCAmelCase ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __A ( self ): @dataclass class snake_case_ : __lowerCamelCase : Literal["titi", "toto", 42] = "toto" SCREAMING_SNAKE_CASE_ : int = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=__lowerCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=__lowerCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__lowerCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=__lowerCAmelCase ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args([] ) self.assertEqual( __lowerCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(__lowerCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , default=__lowerCAmelCase , type=__lowerCAmelCase ) expected.add_argument('--bar' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='help message' ) expected.add_argument('--baz' , default=__lowerCAmelCase , type=__lowerCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=__lowerCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowerCAmelCase ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ : Dict = HfArgumentParser(__lowerCAmelCase ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args([] ) self.assertEqual(__lowerCAmelCase , Namespace(foo=__lowerCAmelCase , bar=__lowerCAmelCase , baz=__lowerCAmelCase , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(__lowerCAmelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument('--required_str' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__lowerCAmelCase , ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , type=__lowerCAmelCase , required=__lowerCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=__lowerCAmelCase , ) expected.add_argument('--opt' , type=__lowerCAmelCase , default=__lowerCAmelCase ) expected.add_argument('--baz' , default='toto' , type=__lowerCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=__lowerCAmelCase ) self.argparsersEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } SCREAMING_SNAKE_CASE_ : Dict = parser.parse_dict(__lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_ : List[Any] = BasicExample(**__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(__lowerCAmelCase , parser.parse_dict , __lowerCAmelCase , allow_extra_keys=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(__lowerCAmelCase , 'temp_json' ) os.mkdir(__lowerCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] SCREAMING_SNAKE_CASE_ : Dict = BasicExample(**__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = HfArgumentParser(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(__lowerCAmelCase , 'temp_yaml' ) os.mkdir(__lowerCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] SCREAMING_SNAKE_CASE_ : Any = BasicExample(**__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = HfArgumentParser(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase )
311
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=13 , __lowerCamelCase : Tuple=30 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : int=32 , __lowerCamelCase : int=5 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Any=37 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=10 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : Any=None , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Tuple ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : int , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = ViTMSNModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = ViTMSNModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def _snake_case ( self : Tuple ): pass def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : List[str] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTMSNModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Any ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def _snake_case ( self : List[str] ): torch.manual_seed(2 ) SCREAMING_SNAKE_CASE = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) __snake_case = "" while len(SCREAMING_SNAKE_CASE ) % 3 != 0: __snake_case = "0" + bin_string __snake_case = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE ) ) oct_string += str(SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
163
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def snake_case_ ( snake_case , snake_case ) -> List[str]: return torch.atana(snake_case , snake_case ) / math.pi * 2 def snake_case_ ( snake_case ) -> Optional[int]: lowercase__: Optional[Any] = torch.sin(t * math.pi / 2 ) ** 2 lowercase__: str = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class __a ( __UpperCamelCase ): '''simple docstring''' pass class __a ( nn.Module ): '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' super().__init__() lowercase__: str = DiffusionAttnUnetaD(lowerCAmelCase__ , n_attn_layers=4 ) lowercase__: str = deepcopy(self.diffusion ) lowercase__: Dict = torch.quasirandom.SobolEngine(1 , scramble=lowerCAmelCase__ ) def snake_case_ ( snake_case ) -> int: lowercase__: Optional[Any] = MODELS_MAP[model_name]['url'] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' __lowerCAmelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } __lowerCAmelCase = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } __lowerCAmelCase = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } __lowerCAmelCase = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } __lowerCAmelCase = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } __lowerCAmelCase = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def snake_case_ ( snake_case ) -> Union[str, Any]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def snake_case_ ( snake_case ) -> Union[str, Any]: for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(f'Attn error with {name}' ) def snake_case_ ( snake_case , snake_case=13 ) -> Tuple: lowercase__: str = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) lowercase__: Tuple = 0 if string.startswith('net.3.' ): depth += 1 lowercase__: int = string[6:] elif string.startswith('net.' ): lowercase__: Union[str, Any] = string[4:] while string.startswith('main.7.' ): depth += 1 lowercase__: Union[str, Any] = string[7:] if string.startswith('main.' ): lowercase__: List[str] = string[5:] # mid block if string[:2].isdigit(): lowercase__: int = string[:2] lowercase__: Tuple = string[2:] else: lowercase__: str = string[0] lowercase__: Any = string[1:] if depth == max_depth: lowercase__: Dict = MID_NUM_TO_LAYER[layer_num] lowercase__: Union[str, Any] = 'mid_block' elif depth > 0 and int(snake_case ) < 7: lowercase__: Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num] lowercase__: Optional[Any] = f'down_blocks.{depth}' elif depth > 0 and int(snake_case ) > 7: lowercase__: str = UP_NUM_TO_LAYER[layer_num] lowercase__: Any = f'up_blocks.{max_depth - depth - 1}' elif depth == 0: lowercase__: int = DEPTH_0_TO_LAYER[layer_num] lowercase__: Dict = f'up_blocks.{max_depth - 1}' if int(snake_case ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) lowercase__: Optional[int] = string_left[1:] if "resnets" in new_layer: lowercase__: Union[str, Any] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: lowercase__: int = convert_attn_naming(snake_case ) lowercase__: Union[str, Any] = new_string_left if not isinstance(snake_case , snake_case ): lowercase__: Tuple = prefix + '.' + new_layer + '.' + string_left else: lowercase__: Tuple = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def snake_case_ ( snake_case ) -> int: lowercase__: Optional[Any] = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue lowercase__: Tuple = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): lowercase__: Tuple = transform_conv_attns(snake_case , snake_case , snake_case ) else: lowercase__: Union[str, Any] = v return new_state_dict def snake_case_ ( snake_case , snake_case , snake_case ) -> Optional[int]: if len(snake_case ) == 1: if len(v.shape ) == 3: # weight lowercase__: Optional[int] = v[:, :, 0] else: # bias lowercase__: Tuple = v else: # qkv matrices lowercase__: Optional[Any] = v.shape[0] lowercase__: Dict = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowercase__: Dict = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowercase__: List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def snake_case_ ( snake_case ) -> Optional[Any]: lowercase__: List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowercase__: Optional[Any] = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' lowercase__: Optional[Any] = download(snake_case ) lowercase__: int = MODELS_MAP[model_name]['sample_rate'] lowercase__: Optional[Any] = MODELS_MAP[model_name]['sample_size'] lowercase__: Optional[int] = Object() lowercase__: List[Any] = sample_size lowercase__: Union[str, Any] = sample_rate lowercase__: List[str] = 0 lowercase__: Tuple = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) lowercase__: List[Any] = diffusers_model.state_dict() lowercase__: Any = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )['state_dict'] ) lowercase__: str = orig_model.diffusion_ema.eval() lowercase__: Tuple = orig_model.state_dict() lowercase__: Optional[Any] = rename_orig_weights(snake_case ) lowercase__: Union[str, Any] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowercase__: int = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('kernel' ) for k in list(snake_case ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": lowercase__: List[Any] = value.squeeze() lowercase__: List[Any] = value diffusers_model.load_state_dict(snake_case ) lowercase__: Any = 1_00 lowercase__: int = 33 lowercase__: Tuple = IPNDMScheduler(num_train_timesteps=snake_case ) lowercase__: Optional[int] = torch.manual_seed(snake_case ) lowercase__: Optional[Any] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) lowercase__: str = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] lowercase__: Any = get_crash_schedule(snake_case ) lowercase__: str = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) lowercase__: Optional[int] = torch.manual_seed(33 ) lowercase__: Tuple = pipe(num_inference_steps=snake_case , generator=snake_case ).audios lowercase__: Tuple = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) lowercase__: Union[str, Any] = generated.clamp(-1 , 1 ) lowercase__: Optional[Any] = (generated - audio).abs().sum() lowercase__: Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , snake_case ) print('Diff max' , snake_case ) assert diff_max < 1e-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowerCAmelCase = parser.parse_args() main(args)
712
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: '''simple docstring''' warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
335
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase_ ( __A : Tuple=3_2 , __A : Optional[Any]=1_0 , __A : Optional[int]=1_0_0 , __A : str=1_0_2_6 , __A : List[str]=True , __A : Dict="data/tokenized_stories_train_wikitext103.jbl" , __A : Tuple="igf_context_pairs.jbl" , ) -> Tuple: """simple docstring""" set_seed(3 ) # generate train_data and objective_set lowercase , lowercase : str =generate_datasets( __A , __A , number=__A , min_len=1_0_2_6 , trim=__A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase : Optional[Any] =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowercase : List[str] =load_gpta('''gpt2''' ).to(__A ) print('''computing perplexity on objective set''' ) lowercase : Tuple =compute_perplexity(__A , __A , __A ).item() print('''perplexity on objective set:''' , __A ) # collect igf pairs and save to file demo.jbl collect_objective_set(__A , __A , __A , __A , __A , __A , __A , __A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase_ ( __A : Optional[Any] , __A : int=1_5 , __A : Union[str, Any]=1_2_8 , __A : List[Any]=1_0_0 , __A : Optional[Any]="igf_model.pt" , ) -> Union[str, Any]: """simple docstring""" set_seed(4_2 ) # Load pre-trained model lowercase : List[str] =GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowercase : str =SecondaryLearner(__A ) # Train secondary learner lowercase : Union[str, Any] =train_secondary_learner( __A , __A , max_epochs=__A , batch_size=__A , eval_freq=1_0_0 , igf_model_path=__A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase_ ( __A : Any , __A : Dict , __A : List[str] , __A : List[str]=3_2 , __A : Any=1_0_0_0 , __A : Union[str, Any]=1_6 , __A : int=1.0 , __A : Optional[Any]=recopy_gpta , __A : Optional[Any]=None , __A : Optional[Any]=1_0 , __A : str="gpt2_finetuned.pt" , ) -> Dict: """simple docstring""" lowercase : Tuple =torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowercase : Tuple =RandomSampler(__A ) lowercase : List[str] =DataLoader(__A , sampler=__A ) lowercase : List[str] =max_steps // (len(__A )) + 1 lowercase : List[Any] =0 lowercase : Any =torch.zeros((1, context_len) , dtype=torch.long , device=__A ) lowercase , lowercase , lowercase : Union[str, Any] =recopy_model(__A , __A , __A ) model.train() if secondary_learner is not None: secondary_learner.to(__A ) secondary_learner.eval() lowercase : int =[] lowercase : List[Any] =0 lowercase : Optional[int] =[] lowercase : Any =[] # Compute the performance of the transformer model at the beginning lowercase : str =compute_perplexity(__A , __A , __A ) test_perps.append(__A ) print('''Test perplexity, step''' , __A , ''':''' , __A ) for epoch in range(int(__A ) ): for step, example in enumerate(__A ): torch.cuda.empty_cache() lowercase : int =random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase : Optional[int] =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase : int =model(__A , labels=__A ) lowercase : List[str] =True if secondary_learner is not None: lowercase : str =secondary_learner.forward( torch.tensor(__A , dtype=torch.long , device=__A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 1_0: lowercase : List[str] =-1 if predicted_q < threshold: lowercase : Union[str, Any] =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase : List[Any] =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase : Any =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase : List[Any] =compute_perplexity(__A , __A , __A ) test_perps.append(__A ) print('''Test perplexity, step''' , __A , ''':''' , __A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 6_0: break if max_steps > 0 and global_step > 6_0: break # save finetuned transformer model torch.save(model.state_dict() , __A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase_ ( ) -> int: """simple docstring""" lowercase : List[str] =argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=__A , type=__A , required=__A , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=__A , default=__A , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=__A , default=__A , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=__A , type=__A , required=__A , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=__A , type=__A , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=__A , default=__A , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=3_2 , type=__A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_0_0 , type=__A , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_0_0 , type=__A , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_0_0_0 , type=__A , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_2_8 , type=__A , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=1_6 , type=__A , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=1_0 , type=__A , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_0_0 , type=__A , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_0_2_6 , type=__A , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=1_5 , type=__A , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=__A , type=__A , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=__A , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=__A , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=__A , type=__A , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=3_2 , max_steps=1_0 , size_objective_set=1_0_0 , min_len=1_0_2_6 , trim=__A , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowercase : Optional[int] =joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowercase : str =training_secondary_learner( __A , secondary_learner_max_epochs=1_5 , secondary_learner_batch_size=1_2_8 , eval_freq=1_0_0 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowercase : Any =GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(4_2 ) # Generate train and test data to train and evaluate gpt2 model lowercase , lowercase : List[Any] =generate_datasets( context_len=3_2 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_0_0 , min_len=1_0_2_6 , trim=__A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __A , __A , __A , context_len=3_2 , max_steps=1_0_0_0 , batch_size=1_6 , threshold=1.0 , recopy_model=__A , secondary_learner=__A , eval_interval=1_0 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
94
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def __magic_name__ ( __a : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
513
0
import requests def A__ ( lowerCamelCase , lowerCamelCase ) -> None: UpperCamelCase_: Union[str, Any] = {"""Content-Type""": """application/json"""} UpperCamelCase_: List[Any] = requests.post(lowerCamelCase , json={"""text""": message_body} , headers=lowerCamelCase ) if response.status_code != 2_00: UpperCamelCase_: Optional[Any] = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowerCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
670
from manim import * class _UpperCamelCase ( _A ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_: Tuple = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Union[str, Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[Any] = Text("""CPU""" , font_size=24 ) UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) UpperCamelCase_: Optional[int] = [mem.copy() for i in range(1 )] UpperCamelCase_: Dict = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Optional[int] = Text("""GPU""" , font_size=24 ) UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.align_to(snake_case_ , snake_case_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case_ ) UpperCamelCase_: Dict = [mem.copy() for i in range(6 )] UpperCamelCase_: List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) UpperCamelCase_: Any = Text("""Model""" , font_size=24 ) UpperCamelCase_: Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) , ) UpperCamelCase_: List[Any] = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) UpperCamelCase_: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_: Union[str, Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=2.5 ) , Write(snake_case_ ) , Write(snake_case_ ) ) self.add(snake_case_ ) UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Union[str, Any] = [] UpperCamelCase_: Tuple = [] for i, rect in enumerate(snake_case_ ): UpperCamelCase_: Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) cpu_target.move_to(snake_case_ ) cpu_target.generate_target() UpperCamelCase_: int = 0.46 / 4 UpperCamelCase_: Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case_ , buff=0.0 ) cpu_targs.append(snake_case_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case_ ) ) second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(*snake_case_ ) self.wait()
670
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=None) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = XLNetConfig.from_json_file(_A) _lowercase : str = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''') _lowercase : Optional[int] = finetuning_task _lowercase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowercase : Optional[int] = XLNetForSequenceClassification(_A) elif "squad" in finetuning_task: _lowercase : Any = finetuning_task _lowercase : List[str] = XLNetForQuestionAnswering(_A) else: _lowercase : Union[str, Any] = XLNetLMHeadModel(_A) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_A , _A , _A) # Save pytorch-model _lowercase : Optional[int] = os.path.join(_A , _A) _lowercase : int = os.path.join(_A , _A) print(F'''Save PyTorch model to {os.path.abspath(_A)}''') torch.save(model.state_dict() , _A) print(F'''Save configuration file to {os.path.abspath(_A)}''') with open(_A , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) A = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
125
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
328
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Dict = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
"""simple docstring""" from itertools import count def UpperCamelCase__ ( lowercase__ : int = 50 ): snake_case : List[str] = [1] * min_block_length for n in count(lowercase__ ): fill_count_functions.append(1 ) for block_length in range(lowercase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(f'{solution() = }')
134
0
'''simple docstring''' from itertools import product def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int ) -> list[int]: '''simple docstring''' lowercase =sides_number lowercase =max_face_number * dice_number lowercase =[0] * (max_total + 1) lowercase =1 lowercase =range(lowercase_ , max_face_number + 1 ) for dice_numbers in product(lowercase_ , repeat=lowercase_ ): lowercase =sum(lowercase_ ) totals_frequencies[total] += 1 return totals_frequencies def UpperCamelCase ( ) -> float: '''simple docstring''' lowercase =total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase =total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase =0 lowercase =9 lowercase =4 * 9 lowercase =6 for peter_total in range(lowercase_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase =(4**9) * (6**6) lowercase =peter_wins_count / total_games_number lowercase =round(lowercase_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
720
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : List[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] ) -> List[Any]: '''simple docstring''' lowercase =to_pil_image(lowercase_ ) lowercase , lowercase =pil_image.size lowercase =pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) lowercase , lowercase , lowercase , lowercase , lowercase =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase =[idx for idx, word in enumerate(lowercase_ ) if not word.strip()] lowercase =[word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase =[] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase =[x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes lowercase =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = 1 / 2_55 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase =get_size_dict(snake_case_ ) lowercase =do_resize lowercase =size lowercase =resample lowercase =do_rescale lowercase =rescale_value lowercase =do_normalize lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase =apply_ocr lowercase =ocr_lang lowercase =tesseract_config def _A( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): lowercase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase =(size['''height'''], size['''width''']) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): lowercase =do_resize if do_resize is not None else self.do_resize lowercase =size if size is not None else self.size lowercase =get_size_dict(snake_case_ ) lowercase =resample if resample is not None else self.resample lowercase =do_rescale if do_rescale is not None else self.do_rescale lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase =do_normalize if do_normalize is not None else self.do_normalize lowercase =image_mean if image_mean is not None else self.image_mean lowercase =image_std if image_std is not None else self.image_std lowercase =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase =[to_numpy_array(snake_case_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase =[] lowercase =[] for image in images: lowercase , lowercase =apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: lowercase =[self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: lowercase =[self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] lowercase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] lowercase =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case_ ) if apply_ocr: lowercase =words_batch lowercase =boxes_batch return data
145
0
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowerCAmelCase_ : Optional[Any] = True from torch.cuda.amp import autocast lowerCAmelCase_ : Optional[int] = logging.getLogger(__name__) def _lowerCAmelCase ( lowerCAmelCase=None , lowerCAmelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCAmelCase ) @dataclass class UpperCamelCase_ : _A : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _A : Optional[str] = field( default=a_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _A : Optional[bool] = field( default=a_ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _A : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) _A : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) _A : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) _A : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) _A : Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) _A : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class UpperCamelCase_ : _A : Optional[str] = field( default=a_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _A : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _A : bool = field( default=a_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _A : Optional[int] = field( default=a_ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _A : Optional[int] = field( default=a_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _A : Optional[int] = field( default=a_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) _A : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class UpperCamelCase_ : _A : WavaVecaProcessor _A : Union[bool, str] = True _A : Optional[int] = None _A : Optional[int] = None _A : Optional[int] = None _A : Optional[int] = None def __call__( self , snake_case__ ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCAmelCase = [{"""input_values""": feature["""input_values"""]} for feature in features] UpperCAmelCase = [{"""input_ids""": feature["""labels"""]} for feature in features] UpperCAmelCase = self.processor.pad( snake_case__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) UpperCAmelCase = self.processor.pad( labels=snake_case__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly UpperCAmelCase = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) UpperCAmelCase = labels return batch class UpperCamelCase_ ( a_ ): def UpperCamelCase_ ( self , snake_case__ , snake_case__ ) -> torch.Tensor: """simple docstring""" model.train() UpperCAmelCase = self._prepare_inputs(snake_case__ ) if self.use_amp: with autocast(): UpperCAmelCase = self.compute_loss(snake_case__ , snake_case__ ) else: UpperCAmelCase = self.compute_loss(snake_case__ , snake_case__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case__ ).backward() elif self.use_apex: with amp.scale_loss(snake_case__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case__ ) else: loss.backward() return loss.detach() def _lowerCAmelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: UpperCAmelCase = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) UpperCAmelCase = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer UpperCAmelCase = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(lowerCAmelCase ): UpperCAmelCase = re.sub(lowerCAmelCase , """""" , batch["""sentence"""] ).lower() + """ """ return batch UpperCAmelCase = train_dataset.map(lowerCAmelCase , remove_columns=["""sentence"""] ) UpperCAmelCase = eval_dataset.map(lowerCAmelCase , remove_columns=["""sentence"""] ) def extract_all_chars(lowerCAmelCase ): UpperCAmelCase = """ """.join(batch["""text"""] ) UpperCAmelCase = list(set(lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} UpperCAmelCase = train_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , batch_size=-1 , keep_in_memory=lowerCAmelCase , remove_columns=train_dataset.column_names , ) UpperCAmelCase = train_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , batch_size=-1 , keep_in_memory=lowerCAmelCase , remove_columns=eval_dataset.column_names , ) UpperCAmelCase = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) UpperCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase )} UpperCAmelCase = vocab_dict[""" """] del vocab_dict[" "] UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = len(lowerCAmelCase ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(lowerCAmelCase , lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=lowerCAmelCase , return_attention_mask=lowerCAmelCase ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: UpperCAmelCase = min(len(lowerCAmelCase ) , data_args.max_train_samples ) UpperCAmelCase = train_dataset.select(range(lowerCAmelCase ) ) if data_args.max_val_samples is not None: UpperCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) UpperCAmelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase ): UpperCAmelCase , UpperCAmelCase = torchaudio.load(batch["""path"""] ) UpperCAmelCase = resampler(lowerCAmelCase ).squeeze().numpy() UpperCAmelCase = 16000 UpperCAmelCase = batch["""text"""] return batch UpperCAmelCase = train_dataset.map( lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) UpperCAmelCase = eval_dataset.map( lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCAmelCase ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' UpperCAmelCase = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(lowerCAmelCase ) return batch UpperCAmelCase = train_dataset.map( lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) UpperCAmelCase = eval_dataset.map( lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric UpperCAmelCase = datasets.load_metric("""wer""" ) def compute_metrics(lowerCAmelCase ): UpperCAmelCase = pred.predictions UpperCAmelCase = np.argmax(lowerCAmelCase , axis=-1 ) UpperCAmelCase = processor.tokenizer.pad_token_id UpperCAmelCase = processor.batch_decode(lowerCAmelCase ) # we do not want to group tokens when computing the metrics UpperCAmelCase = processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase ) UpperCAmelCase = wer_metric.compute(predictions=lowerCAmelCase , references=lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator UpperCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase , padding=lowerCAmelCase ) # Initialize our Trainer UpperCAmelCase = CTCTrainer( model=lowerCAmelCase , data_collator=lowerCAmelCase , args=lowerCAmelCase , compute_metrics=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase = model_args.model_name_or_path else: UpperCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) UpperCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) UpperCAmelCase = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics("""train""" , lowerCAmelCase ) trainer.save_metrics("""train""" , lowerCAmelCase ) trainer.save_state() # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase ) UpperCAmelCase = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics("""eval""" , lowerCAmelCase ) trainer.save_metrics("""eval""" , lowerCAmelCase ) return results if __name__ == "__main__": main()
673
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
673
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="attention" ): __a : Any = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __a : List[str] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __a : List[Any] = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __a : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __a : Tuple = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __a : Tuple = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __a : Any = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __a : Tuple = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): if split_mlp_wi: __a : str = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __a : int = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __a : Optional[Any] = (wi_a, wi_a) else: __a : Optional[int] = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __a : List[str] = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , *, SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): __a : Optional[int] = traverse_util.flatten_dict(variables['target'] ) __a : List[Any] = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __a : Any = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) __a : List[Any] = collections.OrderedDict() # Shared embeddings. __a : Any = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __a : Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) __a , __a , __a , __a : str = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) __a : Tuple = layer_norm __a : Union[str, Any] = k.T __a : Dict = o.T __a : Union[str, Any] = q.T __a : Optional[int] = v.T # Block i, layer 1 (MLP). __a : Optional[int] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) __a , __a : Dict = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) __a : Dict = layer_norm if split_mlp_wi: __a : str = wi[0].T __a : Optional[Any] = wi[1].T else: __a : List[Any] = wi.T __a : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer __a : int = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' ).T __a : Optional[int] = old['encoder/encoder_norm/scale'] if not scalable_attention: __a : Any = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , 'encoder' ).T __a : int = tax_relpos_bias_lookup( SCREAMING_SNAKE_CASE__ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __a : List[str] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) __a , __a , __a , __a : Any = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) __a : Optional[Any] = layer_norm __a : Union[str, Any] = k.T __a : Optional[int] = o.T __a : Dict = q.T __a : Any = v.T # Block i, layer 1 (Cross Attention). __a : Optional[int] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) __a , __a , __a , __a : Tuple = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) __a : Optional[Any] = layer_norm __a : Optional[Any] = k.T __a : Optional[Any] = o.T __a : Optional[int] = q.T __a : Any = v.T # Block i, layer 2 (MLP). __a : Dict = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) __a , __a : str = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = layer_norm if split_mlp_wi: __a : Union[str, Any] = wi[0].T __a : int = wi[1].T else: __a : Dict = wi.T __a : str = wo.T if scalable_attention: # convert the rel_embedding of each layer __a : List[str] = tax_relpos_bias_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' ).T __a : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __a : Any = old['decoder/logits_dense/kernel'].T return new def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __a : int = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __a : Optional[Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __a : List[Any] = state_dict['shared.weight'] return state_dict def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Tuple = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __a : Any = convert_tax_to_pytorch( SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ , scalable_attention=SCREAMING_SNAKE_CASE__ ) __a : str = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , ): __a : str = MTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __a : Any = UMTaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: __a : Optional[Any] = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
597
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = "cpu" SCREAMING_SNAKE_CASE_ = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" SCREAMING_SNAKE_CASE_ = "path-to-your-trained-model" SCREAMING_SNAKE_CASE_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: SCREAMING_SNAKE_CASE_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) SCREAMING_SNAKE_CASE_ = pipe.to(device) # to channels last SCREAMING_SNAKE_CASE_ = pipe.unet.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE_ = pipe.vae.to(memory_format=torch.channels_last) SCREAMING_SNAKE_CASE_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex SCREAMING_SNAKE_CASE_ = torch.randn(2, 4, 6_4, 6_4) SCREAMING_SNAKE_CASE_ = torch.rand(1) * 9_9_9 SCREAMING_SNAKE_CASE_ = torch.randn(2, 7_7, 7_6_8) SCREAMING_SNAKE_CASE_ = (sample, timestep, encoder_hidden_status) try: SCREAMING_SNAKE_CASE_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: SCREAMING_SNAKE_CASE_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) SCREAMING_SNAKE_CASE_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: SCREAMING_SNAKE_CASE_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute SCREAMING_SNAKE_CASE_ = 6_6_6 SCREAMING_SNAKE_CASE_ = torch.Generator(device).manual_seed(seed) SCREAMING_SNAKE_CASE_ = {"generator": generator} if args.steps is not None: SCREAMING_SNAKE_CASE_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): SCREAMING_SNAKE_CASE_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
597
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): a__ : int = True from torch.cuda.amp import autocast a__ : str = logging.getLogger(__name__) def _lowerCAmelCase ( A__=None , A__=None ): return field(default_factory=lambda: default , metadata=A__ ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A : Optional[bool] = field( default=lowerCamelCase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) A : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) A : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) A : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) A : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : Optional[str] = field( default=lowerCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) A : bool = field( default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A : Optional[int] = field( default=lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) A : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) A : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : WavaVecaProcessor A : Union[bool, str] = True A : Optional[int] = None A : Optional[int] = None A : Optional[int] = None A : Optional[int] = None def __call__( self : Any , lowerCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: """simple docstring""" lowercase__ = [{'input_values': feature['input_values']} for feature in features] lowercase__ = [{'input_ids': feature['labels']} for feature in features] lowercase__ = self.processor.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowercase__ = self.processor.pad( labels=lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly lowercase__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -1_00) lowercase__ = labels return batch class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : nn.Module , lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """simple docstring""" model.train() lowercase__ = self._prepare_inputs(lowerCAmelCase) if self.use_amp: with autocast(): lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase) else: lowercase__ = self.compute_loss(lowerCAmelCase , lowerCAmelCase) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": lowercase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''') if self.args.gradient_accumulation_steps > 1: lowercase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase) else: loss.backward() return loss.detach() def _lowerCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__, lowercase__, lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__, lowercase__, lowercase__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: lowercase__ = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) lowercase__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer lowercase__ = F'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(A__ ): lowercase__ = re.sub(A__ , '' , batch['sentence'] ).lower() + ' ' return batch lowercase__ = train_dataset.map(A__ , remove_columns=['sentence'] ) lowercase__ = eval_dataset.map(A__ , remove_columns=['sentence'] ) def extract_all_chars(A__ ): lowercase__ = ' '.join(batch['text'] ) lowercase__ = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} lowercase__ = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) lowercase__ = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) lowercase__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) lowercase__ = {v: k for k, v in enumerate(A__ )} lowercase__ = vocab_dict[' '] del vocab_dict[" "] lowercase__ = len(A__ ) lowercase__ = len(A__ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) lowercase__ = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) lowercase__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: lowercase__ = min(len(A__ ) , data_args.max_train_samples ) lowercase__ = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_val_samples ) ) lowercase__ = torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__ ): lowercase__, lowercase__ = torchaudio.load(batch['path'] ) lowercase__ = resampler(A__ ).squeeze().numpy() lowercase__ = 16_000 lowercase__ = batch['text'] return batch lowercase__ = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) lowercase__ = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__ ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' lowercase__ = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(A__ ) return batch lowercase__ = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) lowercase__ = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric lowercase__ = datasets.load_metric('wer' ) def compute_metrics(A__ ): lowercase__ = pred.predictions lowercase__ = np.argmax(A__ , axis=-1 ) lowercase__ = processor.tokenizer.pad_token_id lowercase__ = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics lowercase__ = processor.batch_decode(pred.label_ids , group_tokens=A__ ) lowercase__ = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator lowercase__ = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer lowercase__ = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: lowercase__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): lowercase__ = model_args.model_name_or_path else: lowercase__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) lowercase__ = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) lowercase__ = min(A__ , len(A__ ) ) trainer.log_metrics('train' , A__ ) trainer.save_metrics('train' , A__ ) trainer.save_state() # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ = trainer.evaluate() lowercase__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) lowercase__ = min(A__ , len(A__ ) ) trainer.log_metrics('eval' , A__ ) trainer.save_metrics('eval' , A__ ) return results if __name__ == "__main__": main()
710
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def snake_case_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Optional[int] = 9, 14 # noqa: F841 _lowerCamelCase : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase : Union[str, Any] = defaultdict(A_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowerCamelCase : List[str] = mst(A_ ) _lowerCamelCase : Union[str, Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowerCamelCase : str = tuple(answer[:2] ) _lowerCamelCase : Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
83
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : Optional[Any] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } SCREAMING_SNAKE_CASE : Optional[int] = """▁""" class A_ ( a_ ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = AlbertTokenizer def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict="[CLS]" , __SCREAMING_SNAKE_CASE : Union[str, Any]="[SEP]" , __SCREAMING_SNAKE_CASE : Dict="<unk>" , __SCREAMING_SNAKE_CASE : str="[SEP]" , __SCREAMING_SNAKE_CASE : Any="<pad>" , __SCREAMING_SNAKE_CASE : List[str]="[CLS]" , __SCREAMING_SNAKE_CASE : Optional[int]="[MASK]" , **__SCREAMING_SNAKE_CASE : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a = ( AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE , normalized=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = False if not self.vocab_file else True def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
197
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = {'vocab_file': 'spiece.model'} _snake_case : List[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _snake_case : Optional[int] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _snake_case : Dict = 0 _snake_case : Union[str, Any] = 1 _snake_case : str = 2 _snake_case : int = 3 _snake_case : Tuple = 4 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = """left""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : List[str]="<sep>" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : Dict="<cls>" , lowerCAmelCase_ : Optional[int]="<mask>" , lowerCAmelCase_ : Any=["<eop>", "<eod>"] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : List[str] ) -> Optional[int]: return len(self.sp_model ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : str , lowerCAmelCase_ : Dict ) -> Tuple: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : str , lowerCAmelCase_ : int ) -> Optional[int]: if self.remove_space: __lowerCAmelCase = ' '.join(inputs.strip().split() ) else: __lowerCAmelCase = inputs __lowerCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __lowerCAmelCase = unicodedata.normalize('NFKD' , lowerCAmelCase_ ) __lowerCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase_ )] ) if self.do_lower_case: __lowerCAmelCase = outputs.lower() return outputs def lowercase ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: __lowerCAmelCase = self.preprocess_text(lowerCAmelCase_ ) __lowerCAmelCase = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) __lowerCAmelCase = [] for piece in pieces: if len(lowerCAmelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCAmelCase = cur_pieces[1:] else: __lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase_ ) else: new_pieces.append(lowerCAmelCase_ ) return new_pieces def lowercase ( self : str , lowerCAmelCase_ : str ) -> Dict: return self.sp_model.PieceToId(lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: return self.sp_model.IdToPiece(lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: __lowerCAmelCase = ''.join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , ' ' ).strip() return out_string def lowercase ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : List[str] , ) -> str: __lowerCAmelCase = kwargs.pop('use_source_tokenizer' , lowerCAmelCase_ ) __lowerCAmelCase = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowerCAmelCase = [] __lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) __lowerCAmelCase = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __lowerCAmelCase = ''.join(lowerCAmelCase_ ) __lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowerCAmelCase = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def lowercase ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] return ([0] * len(lowerCAmelCase_ )) + [1, 1] def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase_ ): requests.request('GET', 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET', 'https://huggingface.co', timeout=1.0 ) @pytest.mark.integration def a_ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET', 'https://huggingface.co' ) def a_ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase_ ): http_head('https://huggingface.co' )
421
1
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list ) -> list: '''simple docstring''' if len(lowercase__ ) == 0: return [] lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = min(lowercase__ ), max(lowercase__ ) lowerCAmelCase_ : int = int(max_value - min_value ) + 1 lowerCAmelCase_ : list[list] = [[] for _ in range(lowercase__ )] for i in my_list: buckets[int(i - min_value )].append(lowercase__ ) return [v for bucket in buckets for v in sorted(lowercase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
600
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Tuple = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase_ : Optional[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase_ : List[str] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase_ : Dict = tf_top_k_top_p_filtering(UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase_ : Union[str, Any] = output[output != -float("""inf""" )] lowerCAmelCase_ : Tuple = tf.cast( tf.where(tf.not_equal(UpperCAmelCase , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , rtol=1e-1_2 ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @require_tf class __a ( unittest.TestCase ,__UpperCamelCase ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __snake_case : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def A ( self : str ): # TF-only test: tf.saved_model export lowerCAmelCase_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : Dict = 2 class __a ( tf.Module ): def __init__( self : List[str] , UpperCAmelCase : int ): super(UpperCAmelCase , self ).__init__() lowerCAmelCase_ : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase , ) def A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : str = self.model.generate( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , ) return {"sequences": outputs["sequences"]} lowerCAmelCase_ : Any = [[2, 0], [1_02, 1_03]] lowerCAmelCase_ : Optional[Any] = [[1, 0], [1, 1]] lowerCAmelCase_ : List[str] = DummyModel(model=UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) lowerCAmelCase_ : Union[str, Any] = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCAmelCase ) + 1 ): lowerCAmelCase_ : Tuple = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase_ : Optional[int] = serving_func(**UpperCAmelCase )["""sequences"""] lowerCAmelCase_ : Dict = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @slow def A ( self : Dict ): # TF-only test: tf.saved_model export lowerCAmelCase_ : Dict = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Dict = 2 class __a ( tf.Module ): def __init__( self : str , UpperCAmelCase : List[str] ): super(UpperCAmelCase , self ).__init__() lowerCAmelCase_ : int = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCAmelCase , ) def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : List[str] = self.model.generate( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , max_new_tokens=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , ) return {"sequences": outputs["sequences"]} lowerCAmelCase_ : Dict = [[2], [1_02, 1_03]] lowerCAmelCase_ : Union[str, Any] = [[1], [1, 1]] lowerCAmelCase_ : Tuple = DummyModel(model=UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase , UpperCAmelCase , signatures={"""serving_default""": dummy_model.serving} ) lowerCAmelCase_ : Union[str, Any] = tf.saved_model.load(UpperCAmelCase ).signatures["""serving_default"""] for input_row in range(len(UpperCAmelCase ) ): lowerCAmelCase_ : Dict = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase_ : Tuple = serving_func(**UpperCAmelCase )["""sequences"""] lowerCAmelCase_ : Union[str, Any] = test_model.generate(**UpperCAmelCase , max_new_tokens=UpperCAmelCase ) tf.debugging.assert_equal(UpperCAmelCase , UpperCAmelCase ) @slow @require_tensorflow_text def A ( self : List[Any] ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCAmelCase ) class __a ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ): super().__init__() lowerCAmelCase_ : Dict = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase , """spiece.model""" ) , """rb""" ).read() ) lowerCAmelCase_ : str = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def A ( self : Any , UpperCAmelCase : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ): lowerCAmelCase_ : List[Any] = self.tokenizer.tokenize(UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = text.pad_model_inputs( UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase_ : Optional[Any] = self.model.generate(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) return self.tokenizer.detokenize(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = CompleteSentenceTransformer() lowerCAmelCase_ : Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) lowerCAmelCase_ : List[str] = complete_model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = tf.keras.Model(UpperCAmelCase , UpperCAmelCase ) keras_model.save(UpperCAmelCase ) def A ( self : List[Any] ): # Has PT equivalent: this test relies on random sampling lowerCAmelCase_ : Union[str, Any] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowerCAmelCase_ : Union[str, Any] = 14 lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase_ : str = """Hello, my dog is cute and""" lowerCAmelCase_ : Dict = tokenizer(UpperCAmelCase , return_tensors="""tf""" ) lowerCAmelCase_ : Dict = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowerCAmelCase_ : Union[str, Any] = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowerCAmelCase_ : Optional[int] = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase_ : Tuple = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowerCAmelCase_ : List[str] = model.generate(**UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def A ( self : int ): # Has PT equivalent: ample use of framework-specific code lowerCAmelCase_ : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCAmelCase_ : Dict = """Hugging Face is a technology company based in New York and Paris.""" lowerCAmelCase_ : Union[str, Any] = bart_tokenizer(UpperCAmelCase , return_tensors="""tf""" ).input_ids lowerCAmelCase_ : Dict = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCAmelCase_ : Tuple = bart_model.generate(UpperCAmelCase ).numpy() class __a ( __UpperCamelCase ): def A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str=None , **UpperCAmelCase : int ): return super().call(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Any = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowerCAmelCase_ : List[str] = bart_model.generate(UpperCAmelCase , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase , UpperCAmelCase ) ) class __a ( bart_model.model.encoder.__class__ ): def A ( self : Tuple , UpperCAmelCase : int , **UpperCAmelCase : str ): return super().call(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Tuple = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase_ : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase_ : Any = bart_model.generate(UpperCAmelCase ).numpy() with self.assertRaises(UpperCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase , foo="""bar""" )
600
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): UpperCAmelCase__ : Union[str, Any] = '''ylacombe/bark-small''' UpperCAmelCase__ : List[Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = '''en_speaker_1''' UpperCAmelCase__ : int = '''This is a test string''' UpperCAmelCase__ : List[Any] = '''speaker_embeddings_path.json''' UpperCAmelCase__ : Union[str, Any] = '''speaker_embeddings''' def lowerCamelCase ( self , **_UpperCAmelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **__UpperCamelCase ) def lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Any = BarkProcessor(tokenizer=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase__ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase__ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase ( self ): UpperCAmelCase__ : Tuple = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase__ : Optional[Any] = 35 UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : Optional[Any] = 8 UpperCAmelCase__ : Union[str, Any] = { '''semantic_prompt''': np.ones(__UpperCamelCase ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase__ : Any = processor(text=self.input_string , voice_preset=__UpperCamelCase ) UpperCAmelCase__ : List[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : int = processor(text=self.input_string , voice_preset=__UpperCamelCase ) UpperCAmelCase__ : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__UpperCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase__ : List[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase ( self ): UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : str = BarkProcessor(tokenizer=__UpperCamelCase ) UpperCAmelCase__ : Dict = processor(text=self.input_string ) UpperCAmelCase__ : Union[str, Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
702
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCamelCase_ = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" UpperCamelCase_ = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" UpperCamelCase_ = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Dict = 0.0 for i, j in zip(_UpperCAmelCase , _UpperCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(_UpperCAmelCase , _UpperCAmelCase ) else 0.0 UpperCAmelCase__ : Dict = n_correct / len(_UpperCAmelCase ) return { "accuracy": accuracy, }
599
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Any = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class a ( snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : Optional[Any] = SpeechTaTokenizer __lowerCAmelCase : int = False __lowerCAmelCase : List[Any] = True def __UpperCamelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _a : int = SpeechTaTokenizer(__a ) _a : Tuple = AddedToken('<mask>' , lstrip=__a , rstrip=__a ) _a : List[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> List[str]: _a : Any = "this is a test" _a : Tuple = "this is a test" return input_text, output_text def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2_0 , lowerCamelCase_=5 ) -> Optional[Any]: _a : Tuple = self.get_input_output_texts(__a ) _a : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) _a : str = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def __UpperCamelCase ( self ) -> Dict: _a : List[Any] = "<pad>" _a : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def __UpperCamelCase ( self ) -> Dict: _a : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(__a ) , 8_1 ) def __UpperCamelCase ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def __UpperCamelCase ( self ) -> Optional[Any]: _a : Optional[int] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _a : Optional[Any] = tokenizer.vocab_size _a : List[str] = len(__a ) self.assertNotEqual(__a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _a : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _a : Optional[int] = tokenizer.add_tokens(__a ) _a : Any = tokenizer.vocab_size _a : Optional[Any] = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size + len(__a ) ) _a : List[Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _a : str = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _a : Dict = tokenizer.add_special_tokens(__a ) _a : List[str] = tokenizer.vocab_size _a : List[Any] = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size_a + len(__a ) ) _a : Any = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __UpperCamelCase ( self ) -> List[str]: pass def __UpperCamelCase ( self ) -> List[Any]: pass def __UpperCamelCase ( self ) -> Tuple: _a : Union[str, Any] = self.get_tokenizer() _a : Dict = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__a , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) _a : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _a : List[Any] = tokenizer.convert_tokens_to_ids(__a ) # fmt: off self.assertListEqual(__a , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on _a : str = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def __UpperCamelCase ( self ) -> Any: _a : Dict = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _a : Any = { "input_ids": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=__a , )
120
def A ( _lowerCamelCase ): '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(_lowerCamelCase ) if number < 1: _lowerCAmelCase : Tuple = F"Input value of [number={number}] must be > 0" raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Dict = 1 for i in range(1 , _lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
500
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# UpperCAmelCase__ : Union[str, Any] =[ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] UpperCAmelCase__ : Dict =[ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] UpperCAmelCase__ : Optional[int] =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks UpperCAmelCase__ : List[str] =F"down_blocks.{i}.resnets.{j}." UpperCAmelCase__ : List[Any] =F"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 UpperCAmelCase__ : Tuple =F"down_blocks.{i}.attentions.{j}." UpperCAmelCase__ : int =F"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks UpperCAmelCase__ : List[Any] =F"up_blocks.{i}.resnets.{j}." UpperCAmelCase__ : Optional[int] =F"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 UpperCAmelCase__ : str =F"up_blocks.{i}.attentions.{j}." UpperCAmelCase__ : int =F"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 UpperCAmelCase__ : Tuple =F"down_blocks.{i}.downsamplers.0.conv." UpperCAmelCase__ : Optional[int] =F"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 UpperCAmelCase__ : List[str] =F"up_blocks.{i}.upsamplers.0." UpperCAmelCase__ : Dict =F"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) UpperCAmelCase__ : int ='''mid_block.attentions.0.''' UpperCAmelCase__ : Optional[Any] ='''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): UpperCAmelCase__ : Union[str, Any] =F"mid_block.resnets.{j}." UpperCAmelCase__ : Tuple =F"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _lowercase ( _UpperCAmelCase ) -> str: # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowerCamelCase ={k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCamelCase =sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCamelCase =v.replace(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCamelCase =v.replace(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =v lowerCamelCase ={v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# UpperCAmelCase__ : str =[ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): UpperCAmelCase__ : List[str] =F"encoder.down_blocks.{i}.resnets.{j}." UpperCAmelCase__ : Optional[Any] =F"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: UpperCAmelCase__ : Any =F"down_blocks.{i}.downsamplers.0." UpperCAmelCase__ : str =F"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) UpperCAmelCase__ : Any =F"up_blocks.{i}.upsamplers.0." UpperCAmelCase__ : List[str] =F"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): UpperCAmelCase__ : List[Any] =F"decoder.up_blocks.{i}.resnets.{j}." UpperCAmelCase__ : Tuple =F"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): UpperCAmelCase__ : Any =F"mid_block.resnets.{i}." UpperCAmelCase__ : List[Any] =F"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) UpperCAmelCase__ : Any =[ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _lowercase ( _UpperCAmelCase ) -> List[Any]: # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase ={k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCamelCase =v.replace(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCamelCase =v.replace(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =v lowerCamelCase ={v: vae_state_dict[k] for k, v in mapping.items()} lowerCamelCase =["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowerCamelCase =reshape_weight_for_sd(_UpperCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# UpperCAmelCase__ : Any =[ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] UpperCAmelCase__ : List[Any] ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} UpperCAmelCase__ : List[Any] =re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp UpperCAmelCase__ : Optional[int] ={'''q''': 0, '''k''': 1, '''v''': 2} def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase ={} lowerCamelCase ={} lowerCamelCase ={} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCamelCase =k[: -len(""".q_proj.weight""" )] lowerCamelCase =k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCamelCase =[None, None, None] lowerCamelCase =v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCamelCase =k[: -len(""".q_proj.bias""" )] lowerCamelCase =k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCamelCase =[None, None, None] lowerCamelCase =v continue lowerCamelCase =textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) lowerCamelCase =v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase =textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) lowerCamelCase =torch.cat(_UpperCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCamelCase =textenc_pattern.sub(lambda _UpperCAmelCase : protected[re.escape(m.group(0 ) )] , _UpperCAmelCase ) lowerCamelCase =torch.cat(_UpperCAmelCase ) return new_state_dict def _lowercase ( _UpperCAmelCase ) -> str: return text_enc_dict if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) UpperCAmelCase__ : List[str] =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors UpperCAmelCase__ : str =osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') UpperCAmelCase__ : List[str] =osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') UpperCAmelCase__ : Optional[Any] =osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): UpperCAmelCase__ : int =load_file(unet_path, device='''cpu''') else: UpperCAmelCase__ : Tuple =osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') UpperCAmelCase__ : str =torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): UpperCAmelCase__ : List[Any] =load_file(vae_path, device='''cpu''') else: UpperCAmelCase__ : Optional[int] =osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') UpperCAmelCase__ : Optional[Any] =torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): UpperCAmelCase__ : Any =load_file(text_enc_path, device='''cpu''') else: UpperCAmelCase__ : Union[str, Any] =osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') UpperCAmelCase__ : Dict =torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model UpperCAmelCase__ : List[str] =convert_unet_state_dict(unet_state_dict) UpperCAmelCase__ : str ={'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model UpperCAmelCase__ : Optional[Any] =convert_vae_state_dict(vae_state_dict) UpperCAmelCase__ : Optional[int] ={'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper UpperCAmelCase__ : str ='''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm UpperCAmelCase__ : Dict ={'''transformer.''' + k: v for k, v in text_enc_dict.items()} UpperCAmelCase__ : Union[str, Any] =convert_text_enc_state_dict_vaa(text_enc_dict) UpperCAmelCase__ : Any ={'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: UpperCAmelCase__ : Optional[Any] =convert_text_enc_state_dict(text_enc_dict) UpperCAmelCase__ : str ={'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint UpperCAmelCase__ : Tuple ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: UpperCAmelCase__ : Optional[int] ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: UpperCAmelCase__ : Dict ={'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
269
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
269
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Optional[int] = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Optional[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCamelCase_( snake_case : str ): '''simple docstring''' re.sub("<n>" , "" , snake_case ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case ) )
400
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Tuple = "t5" lowerCAmelCase_ : int = ["past_key_values"] lowerCAmelCase_ : List[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , a__=32_128 , a__=512 , a__=64 , a__=2_048 , a__=6 , a__=None , a__=8 , a__=32 , a__=128 , a__=0.1 , a__=1e-6 , a__=1.0 , a__="relu" , a__=True , a__=True , a__=0 , a__=1 , **a__ , ) -> str: '''simple docstring''' snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_kv snake_case_ = d_ff snake_case_ = num_layers snake_case_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case_ = num_heads snake_case_ = relative_attention_num_buckets snake_case_ = relative_attention_max_distance snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = initializer_factor snake_case_ = feed_forward_proj snake_case_ = use_cache snake_case_ = self.feed_forward_proj.split("-" ) snake_case_ = act_info[-1] snake_case_ = act_info[0] == "gated" if len(a__ ) > 1 and act_info[0] != "gated" or len(a__ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case_ = "gelu_new" super().__init__( pad_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , **a__ , ) class _snake_case ( lowercase_ ): @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case_ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: snake_case_ = "past_encoder_sequence + sequence" snake_case_ = {0: "batch"} snake_case_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case_ = {0: "batch", 1: "decoder_sequence"} snake_case_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) return common_inputs @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return 13
400
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=3_2 , snake_case=3 , snake_case=4 , snake_case=[1_0, 2_0, 3_0, 4_0] , snake_case=[2, 2, 3, 2] , snake_case=True , snake_case=True , snake_case=3_7 , snake_case="gelu" , snake_case=1_0 , snake_case=0.02 , snake_case=["stage2", "stage3", "stage4"] , snake_case=[2, 3, 4] , snake_case=None , ): '''simple docstring''' UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[int] = num_stages UpperCAmelCase : int = hidden_sizes UpperCAmelCase : Any = depths UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : int = use_labels UpperCAmelCase : Tuple = intermediate_size UpperCAmelCase : Dict = hidden_act UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[str] = out_features UpperCAmelCase : int = out_indices UpperCAmelCase : Any = scope def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def A_ ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ConvNextModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Union[str, Any] = model(snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ConvNextForImageClassification(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = ConvNextBackbone(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : int = model(snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : str = None UpperCAmelCase : Any = ConvNextBackbone(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[Any] = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : List[str] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Dict = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ConvNextModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def A_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self ): '''simple docstring''' return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def A_ ( self ): '''simple docstring''' pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def A_ ( self ): '''simple docstring''' pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(snake_case ) UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Dict = [*signature.parameters.keys()] UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case ) def A_ ( self ): '''simple docstring''' def check_hidden_states_output(snake_case , snake_case , snake_case ): UpperCAmelCase : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Tuple = True check_hidden_states_output(snake_case , snake_case , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def A_ ( self ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = ConvNextModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(snake_case ) UpperCAmelCase : Any = self.default_image_processor UpperCAmelCase : Optional[int] = prepare_img() UpperCAmelCase : Any = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(**snake_case ) # verify the logits UpperCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCAmelCase : Tuple = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = (ConvNextBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ConvNextConfig SCREAMING_SNAKE_CASE__ : str = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = ConvNextModelTester(self )
700
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) a : int = "\\n Text data.\n Second line of data." a : Tuple = "file" @pytest.fixture(scope="session" ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCAmelCase : str = bytes(__magic_name__ , "utf-8" ) with zstd.open(__magic_name__ , "wb" ) as f: f.write(__magic_name__ ) return path @pytest.fixture def lowercase ( __magic_name__ ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __magic_name__ ) , "w" ) as f: f.write(__magic_name__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCAmelCase : List[Any] = input_paths[compression_format] UpperCAmelCase : Tuple = tmp_path / "cache" UpperCAmelCase : Dict = DownloadConfig(cache_dir=__magic_name__ , extract_compressed_file=__magic_name__ ) UpperCAmelCase : int = cached_path(__magic_name__ , download_config=__magic_name__ ) with open(__magic_name__ ) as f: UpperCAmelCase : Union[str, Any] = f.read() with open(__magic_name__ ) as f: UpperCAmelCase : Dict = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = "custom_cache" UpperCAmelCase : Optional[Any] = "custom_extracted_dir" UpperCAmelCase : List[Any] = tmp_path / "custom_extracted_path" if default_extracted: UpperCAmelCase : Union[str, Any] = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , __magic_name__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__magic_name__ ) ) UpperCAmelCase : Optional[int] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase : int = xz_file UpperCAmelCase : Tuple = ( DownloadConfig(extract_compressed_file=__magic_name__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__magic_name__ ) ) UpperCAmelCase : Optional[int] = cached_path(__magic_name__ , download_config=__magic_name__ ) assert Path(__magic_name__ ).parent.parts[-2:] == expected def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = str(Path(__magic_name__ ).resolve() ) assert cached_path(__magic_name__ ) == text_file # relative path UpperCAmelCase : Tuple = str(Path(__magic_name__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__magic_name__ ) == text_file def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) # relative path UpperCAmelCase : Union[str, Any] = "./__missing_file__.txt" with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[Any] = get_from_cache(F"tmp://{tmpfs_file}" ) with open(__magic_name__ ) as f: UpperCAmelCase : str = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , __magic_name__ ) def lowercase ( ): '''simple docstring''' with pytest.raises(__magic_name__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__magic_name__ ): http_get("https://huggingface.co" , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__magic_name__ ): ftp_get("ftp://huggingface.co" , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __magic_name__ ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__magic_name__ ): fsspec_get("s3://huggingface.co" , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): fsspec_head("s3://huggingface.co" )
609
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCamelCase = { """cola""": 2, """mnli""": 3, """mrpc""": 2, """sst-2""": 2, """sts-b""": 1, """qqp""": 2, """qnli""": 2, """rte""": 2, """wnli""": 2, } logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): # Initialise PyTorch model UpperCAmelCase_ = XLNetConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_ = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) UpperCAmelCase_ = finetuning_task UpperCAmelCase_ = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ = XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: UpperCAmelCase_ = finetuning_task UpperCAmelCase_ = XLNetForQuestionAnswering(lowerCAmelCase__ ) else: UpperCAmelCase_ = XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}""" ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(f"""Save configuration file to {os.path.abspath(lowerCAmelCase__ )}""" ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--xlnet_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained XLNet model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--finetuning_task""", default=None, type=str, help="""Name of a task on which the XLNet TensorFlow model was fine-tuned""", ) lowerCamelCase = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''vit''' def __init__( self : List[str] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : int=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : int=1e-12 , _UpperCAmelCase : List[str]=224 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=16 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = encoder_stride class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def lowercase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1e-4
82
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class _UpperCamelCase( __lowerCamelCase ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' __a : str = feature_size __a : Union[str, Any] = sampling_rate __a : str = padding_value __a : int = kwargs.pop('padding_side' , 'right' ) __a : Optional[int] = kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __a : Union[str, Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) __a : Dict = processed_features[self.model_input_names[0]] __a : Optional[Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: __a : List[str] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __a : List[Any] = required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __a : Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): __a : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): __a : Dict = 'tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): __a : Optional[int] = 'pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): __a : Optional[int] = 'np' else: raise ValueError( f'''type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __a : int = to_numpy(SCREAMING_SNAKE_CASE__ ) else: __a : Optional[int] = [to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy __a : List[Any] = self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = processed_features[self.model_input_names[0]] __a : List[str] = len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) __a : Any = [] for i in range(SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = {k: v[i] for k, v in processed_features.items()} # truncation __a : List[Any] = self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __a : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __a : List[Any] = PaddingStrategy.MAX_LENGTH __a : Optional[Any] = {} for i in range(SCREAMING_SNAKE_CASE__ ): # padding __a : Any = self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: __a : int = [] if value.dtype is np.dtype(np.floataa ): __a : List[Any] = value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ): '''simple docstring''' __a : int = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __a : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __a : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __a : str = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __a : Union[str, Any] = np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: __a : int = max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: __a : Union[str, Any] = np.pad( processed_features['attention_mask'] , (0, difference) ) __a : List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __a : List[str] = np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __a : Optional[int] = np.pad( processed_features['attention_mask'] , (difference, 0) ) __a : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __a : List[str] = np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) __a : int = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __a : Any = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __a : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: __a : List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __a : int = processed_features['attention_mask'][:max_length] return processed_features def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : int=None ): '''simple docstring''' if padding is not False: if padding is True: __a : Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __a : List[Any] = padding else: __a : Tuple = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
711
import torch from transformers import AutoModel class _UpperCamelCase( torch.nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(SCREAMING_SNAKE_CASE__ , self ).__init__() __a : List[str] = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = torch.nn.CosineSimilarity(3 , 1e-08 ) __a : Union[str, Any] = torch.nn.Softmax(dim=1 ) def __lowerCAmelCase ( self : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' return self.bert(**SCREAMING_SNAKE_CASE__ ).last_hidden_state def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 ): '''simple docstring''' return self.softmax(T * self.cos(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' __a : Optional[int] = W_supports['sizes'].tolist() __a : Dict = W_supports['start_token_id'].item() __a : Tuple = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a : Optional[Any] = self.BERT(**SCREAMING_SNAKE_CASE__ ) __a : Tuple = self.BERT(**SCREAMING_SNAKE_CASE__ ) __a : Dict = None __a : str = None __a : Dict = W_supports['input_ids'] == start_token_id __a : Any = W_supports['input_ids'] == end_token_id for i, size in enumerate(SCREAMING_SNAKE_CASE__ ): if i == 0: __a : str = 0 else: __a : str = support_sizes[i - 1] __a : int = S[s : s + size][start_token_masks[s : s + size]] __a : Dict = S[s : s + size][end_token_masks[s : s + size]] __a : Optional[Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a : Optional[Any] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a : List[Any] = torch.vstack((p_starts, p_start) ) __a : Optional[Any] = torch.vstack((p_ends, p_end) ) else: __a : str = p_start __a : List[Any] = p_end return p_starts, p_ends
577
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __snake_case = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) __snake_case = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = "Normal" if result[0][0] == 1: __snake_case = "Abnormality detected"
386
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = GPTSwaTokenizer lowercase = False lowercase = True lowercase = False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = GPTSwaTokenizer(__magic_name__ , eos_token="""<unk>""" , bos_token="""<unk>""" , pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = """This is a test""" UpperCamelCase = """This is a test""" return input_text, output_text def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = """<s>""" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__magic_name__ ) , 2_0_0_0 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = GPTSwaTokenizer(__magic_name__ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__magic_name__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( __magic_name__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] , ) # fmt: on UpperCamelCase = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual( __magic_name__ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(__magic_name__ ) # fmt: off self.assertListEqual( __magic_name__ , ["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = GPTSwaTokenizer(__magic_name__ ) UpperCamelCase = ["""This is a test""", """I was born in 92000, and this is falsé."""] UpperCamelCase = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__magic_name__ , __magic_name__ ): self.assertListEqual(tokenizer.encode_fast(__magic_name__ ) , __magic_name__ ) # Test that decode_fast returns the input text for text, token_ids in zip(__magic_name__ , __magic_name__ ): self.assertEqual(tokenizer.decode_fast(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = [ """<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')""", """Hey there, how are you doing this fine day?""", """This is a text with a trailing spaces followed by a dot .""", """Häj sväjs lillebrör! =)""", """Det är inget fel på Mr. Cool""", ] # fmt: off UpperCamelCase = {"""input_ids""": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="""AI-Sweden/gpt-sw3-126m""" , sequences=__magic_name__ , )
386
1
"""simple docstring""" def _snake_case ( _snake_case : str , _snake_case : str ) -> float: '''simple docstring''' def get_matched_characters(_snake_case : str , _snake_case : str ) -> str: _A = [] _A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _A = int(max(0 , i - limit ) ) _A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_snake_case ) _A = F'''{_stra[0:_stra.index(_snake_case )]} {_stra[_stra.index(_snake_case ) + 1:]}''' return "".join(_snake_case ) # matching characters _A = get_matched_characters(_snake_case , _snake_case ) _A = get_matched_characters(_snake_case , _snake_case ) _A = len(_snake_case ) # transposition _A = ( len([(ca, ca) for ca, ca in zip(_snake_case , _snake_case ) if ca != ca] ) // 2 ) if not match_count: _A = 0.0 else: _A = ( 1 / 3 * ( match_count / len(_snake_case ) + match_count / len(_snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
505
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = '''AutoTokenizer''' UpperCAmelCase : Optional[Any] = ['''tokenizer'''] UpperCAmelCase : List[str] = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None ): super().__init__(_UpperCAmelCase ) _A = speaker_embeddings @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int="speaker_embeddings_path.json" , **_UpperCAmelCase : int ): if speaker_embeddings_dict_path is not None: _A = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F'''`{os.path.join(_UpperCAmelCase , _UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _A = None else: with open(_UpperCAmelCase ) as speaker_embeddings_json: _A = json.load(_UpperCAmelCase ) else: _A = None _A = AutoTokenizer.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) return cls(tokenizer=_UpperCAmelCase , speaker_embeddings=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : int="speaker_embeddings_path.json" , _UpperCAmelCase : Union[str, Any]="speaker_embeddings" , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Tuple , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_UpperCAmelCase , _UpperCAmelCase , 'v2' ) , exist_ok=_UpperCAmelCase ) _A = {} _A = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _A = self._load_voice_preset(_UpperCAmelCase ) _A = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , _UpperCAmelCase , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_UpperCAmelCase , ) _A = os.path.join(_UpperCAmelCase , F'''{prompt_key}_{key}.npy''' ) _A = tmp_dict with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) super().save_pretrained(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str = None , **_UpperCAmelCase : Optional[int] ): _A = self.speaker_embeddings[voice_preset] _A = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _A = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , _UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , _UpperCAmelCase ) , force_download=kwargs.pop('force_download' , _UpperCAmelCase ) , proxies=kwargs.pop('proxies' , _UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , _UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , _UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , _UpperCAmelCase ) , revision=kwargs.pop('revision' , _UpperCAmelCase ) , ) if path is None: raise ValueError( F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _A = np.load(_UpperCAmelCase ) return voice_preset_dict def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : List[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]="pt" , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Any , ): if voice_preset is not None and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _A = self._load_voice_preset(_UpperCAmelCase ) else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _A = voice_preset + '.npz' _A = np.load(_UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(_UpperCAmelCase , **_UpperCAmelCase ) _A = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) _A = self.tokenizer( _UpperCAmelCase , return_tensors=_UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) if voice_preset is not None: _A = voice_preset return encoded_text
505
1
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports a ='\nimport os\n' a ='\ndef foo():\n import os\n return False\n' a ='\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' a ='\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' a ='\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' a ='\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' a ='\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' a ='\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' a ='\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' a ='\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' a =[ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , __lowerCAmelCase ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowerCamelCase__ =os.path.join(__lowerCAmelCase , "test_file.py" ) with open(__lowerCAmelCase , "w" ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) lowerCamelCase__ =get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
530
"""simple docstring""" import os from distutils.util import strtobool def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' for e in env_keys: lowerCamelCase__ =int(os.environ.get(__lowerCAmelCase , -1 ) ) if val >= 0: return val return default def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[str]: '''simple docstring''' lowerCamelCase__ =os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return strtobool(__lowerCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase="no" ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ =os.environ.get(__lowerCAmelCase , str(__lowerCAmelCase ) ) return value
530
1
def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] __lowerCAmelCase = set({'(', '[', '{'} ) __lowerCAmelCase = set({')', ']', '}'} ) __lowerCAmelCase = {'{': '}', '[': ']', '(': ')'} for i in range(len(__A ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__A ) == 0 or (len(__A ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__A ) == 0 def a_ ( ): __lowerCAmelCase = input('Enter sequence of brackets: ' ) if is_balanced(__A ): print(__A, 'is balanced' ) else: print(__A, 'is not balanced' ) if __name__ == "__main__": main()
701
_snake_case : List[Any] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
421
0
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase :int = logging.get_logger(__name__) class _lowerCamelCase : '''simple docstring''' A_ : Any = 42 A_ : str = None @staticmethod def __lowerCAmelCase ( ) -> Tuple: raise NotImplementedError def __lowerCAmelCase ( self : List[str] , _A : List[str] , _A : int , _A : str , **_A : List[str] ) -> Optional[Any]: raise NotImplementedError def __lowerCAmelCase ( self : List[Any] , _A : Optional[int] ) -> Optional[int]: raise NotImplementedError def __lowerCAmelCase ( self : List[Any] ) -> Dict: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __lowerCAmelCase ( cls : str ) -> List[str]: return F'`pip install {cls.pip_package or cls.name}`' class _lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A_ : Tuple = """optuna""" @staticmethod def __lowerCAmelCase ( ) -> List[str]: return is_optuna_available() def __lowerCAmelCase ( self : Optional[int] , _A : Any , _A : int , _A : str , **_A : Optional[int] ) -> str: return run_hp_search_optuna(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : Dict , _A : Dict ) -> str: return default_hp_space_optuna(_A ) class _lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A_ : int = """ray""" A_ : Optional[int] = """\'ray[tune]\'""" @staticmethod def __lowerCAmelCase ( ) -> Optional[Any]: return is_ray_available() def __lowerCAmelCase ( self : Dict , _A : Optional[Any] , _A : int , _A : str , **_A : Tuple ) -> Optional[Any]: return run_hp_search_ray(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : Tuple , _A : Optional[Any] ) -> Optional[Any]: return default_hp_space_ray(_A ) class _lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A_ : Dict = """sigopt""" @staticmethod def __lowerCAmelCase ( ) -> str: return is_sigopt_available() def __lowerCAmelCase ( self : int , _A : Tuple , _A : int , _A : str , **_A : Optional[Any] ) -> List[Any]: return run_hp_search_sigopt(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : str , _A : List[Any] ) -> Optional[int]: return default_hp_space_sigopt(_A ) class _lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A_ : Any = """wandb""" @staticmethod def __lowerCAmelCase ( ) -> Tuple: return is_wandb_available() def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : int , _A : str , **_A : Dict ) -> List[Any]: return run_hp_search_wandb(_A , _A , _A , **_A ) def __lowerCAmelCase ( self : Dict , _A : Dict ) -> str: return default_hp_space_wandb(_A ) lowerCAmelCase :Optional[int] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__UpperCamelCase ) > 0: __magic_name__ : Union[str, Any] = available_backends[0].name if len(__UpperCamelCase ) > 1: logger.info( f'{len(__UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
561
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A : Tuple = "pt" elif is_tf_available(): A : Optional[int] = "tf" else: A : Optional[Any] = "jax" class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def __A ( self : Union[str, Any] ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self : Tuple ) -> Union[str, Any]: return ByTaTokenizer.from_pretrained("google/byt5-small" ) def __A ( self : List[Any] , **__magic_name__ : Dict ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : List[Any] , __magic_name__ : Optional[int]=False , __magic_name__ : Optional[int]=20 , __magic_name__ : Any=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): try: SCREAMING_SNAKE_CASE_ = tokenizer.decode([i] , clean_up_tokenization_spaces=__magic_name__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = list(filter(lambda __magic_name__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__magic_name__ ) , __magic_name__ ) ) if max_length is not None and len(__magic_name__ ) > max_length: SCREAMING_SNAKE_CASE_ = toks[:max_length] if min_length is not None and len(__magic_name__ ) < min_length and len(__magic_name__ ) > 0: while len(__magic_name__ ) < min_length: SCREAMING_SNAKE_CASE_ = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE_ = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) if " " not in output_txt and len(__magic_name__ ) > 1: SCREAMING_SNAKE_CASE_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__magic_name__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__magic_name__ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE_ = " " + output_txt SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) return output_txt, output_ids def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) SCREAMING_SNAKE_CASE_ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def __A ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = "Unicode €." SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "Unicode €.</s>" ) SCREAMING_SNAKE_CASE_ = tokenizer("e è é ê ë" ) SCREAMING_SNAKE_CASE_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , __magic_name__ ) # decoding SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) else: SCREAMING_SNAKE_CASE_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors=__magic_name__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __magic_name__ ) self.assertIn("attention_mask" , __magic_name__ ) self.assertNotIn("decoder_input_ids" , __magic_name__ ) self.assertNotIn("decoder_attention_mask" , __magic_name__ ) def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = [ "Summary of the text.", "Another summary.", ] SCREAMING_SNAKE_CASE_ = tokenizer( text_target=__magic_name__ , max_length=32 , padding="max_length" , truncation=__magic_name__ , return_tensors=__magic_name__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.ta_base_tokenizer SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization. </s>"] SCREAMING_SNAKE_CASE_ = ["Summary of the text. </s>"] # fmt: off SCREAMING_SNAKE_CASE_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , text_target=__magic_name__ ) self.assertEqual(__magic_name__ , batch["input_ids"][0] ) self.assertEqual(__magic_name__ , batch["labels"][0] ) def __A ( self : Dict ) -> List[str]: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) shutil.rmtree(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) SCREAMING_SNAKE_CASE_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) tokenizer.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = after_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE_ = tokenizer.__class__.from_pretrained(__magic_name__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__magic_name__ ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: SCREAMING_SNAKE_CASE_ = json.load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [F'''<extra_id_{i}>''' for i in range(125 )] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__magic_name__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) with open(os.path.join(__magic_name__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__magic_name__ , __magic_name__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__magic_name__ )] SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained( __magic_name__ , additional_special_tokens=__magic_name__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer_class.from_pretrained(__magic_name__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def __A ( self : Optional[int] ) -> List[Any]: pass def __A ( self : List[Any] ) -> List[Any]: pass def __A ( self : List[str] ) -> List[str]: pass def __A ( self : Any ) -> Union[str, Any]: pass def __A ( self : List[Any] ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE_ = self.get_tokenizers(fast=__magic_name__ , do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_string(__magic_name__ ) self.assertIsInstance(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens( __magic_name__ , skip_special_tokens=__magic_name__ ) for attr in attributes_list: setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , attr + "_id" , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(getattr(__magic_name__ , attr + "_id" ) , __magic_name__ ) setattr(__magic_name__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [] ) setattr(__magic_name__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__magic_name__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
140
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __lowerCamelCase : Dict = """facebook/wmt19-en-de""" __lowerCamelCase : Tuple = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __lowerCamelCase : int = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __lowerCamelCase : Dict = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test __lowerCamelCase : Tuple = tokenizer(["""Making tiny model"""], return_tensors="""pt""") __lowerCamelCase : int = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save __lowerCamelCase : Dict = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
448
__lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } __lowerCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A__ ( _a : float , _a : str , _a : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: snake_case__ : Tuple =( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(_a )}" ) raise ValueError(_a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
448
1
"""simple docstring""" class __UpperCAmelCase( __lowercase ): """simple docstring""" pass class __UpperCAmelCase( __lowercase ): """simple docstring""" pass class __UpperCAmelCase: """simple docstring""" def __init__( self ): '''simple docstring''' lowercase__ : str= [ [], [], [], ] def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("Maximum queue size is 100" ) self.queues[priority].append(UpperCAmelCase__ ) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2" ) def UpperCAmelCase_ ( self ): '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("All queues are empty" ) def __str__( self ): '''simple docstring''' return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __UpperCAmelCase: """simple docstring""" def __init__( self ): '''simple docstring''' lowercase__ : List[str]= [] def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("Maximum queue size is 100" ) self.queue.append(UpperCAmelCase__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty" ) else: lowercase__ : Optional[int]= min(self.queue ) self.queue.remove(UpperCAmelCase__ ) return data def __str__( self ): '''simple docstring''' return str(self.queue ) def lowercase__() ->Optional[Any]: """simple docstring""" lowercase__ : Optional[int]= FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def lowercase__() ->Any: """simple docstring""" lowercase__ : Union[str, Any]= ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
218
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : list[tuple[float, float]] ) -> Optional[int]: lowerCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCAmelCase = len(UpperCAmelCase__ ) - 1 def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = self.basis_function(UpperCAmelCase__ ) lowerCAmelCase = 0.0 lowerCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : float = 0.01 ) -> Union[str, Any]: from matplotlib import pyplot as plt # type: ignore lowerCAmelCase = [] # x coordinates of points to plot lowerCAmelCase = [] # y coordinates of points to plot lowerCAmelCase = 0.0 while t <= 1: lowerCAmelCase = self.bezier_curve_function(UpperCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCAmelCase = [i[0] for i in self.list_of_points] lowerCAmelCase = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase__ , UpperCAmelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
133
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __UpperCamelCase ( lowerCAmelCase__ : int ): random.seed(lowerCAmelCase__ ) np.random.seed(lowerCAmelCase__ ) torch.manual_seed(lowerCAmelCase__ ) torch.cuda.manual_seed_all(lowerCAmelCase__ ) # ^^ safe to call this function even if cuda is not available class UpperCamelCase__ : def __init__(self : Any , snake_case_ : Iterable[torch.nn.Parameter] , snake_case_ : float = 0.9999 , snake_case_ : float = 0.0 , snake_case_ : int = 0 , snake_case_ : bool = False , snake_case_ : Union[float, int] = 1.0 , snake_case_ : Union[float, int] = 2 / 3 , snake_case_ : Optional[Any] = None , snake_case_ : Dict[str, Any] = None , **snake_case_ : int , ): if isinstance(snake_case_ , torch.nn.Module ): __a : Optional[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Optional[int] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __a : str = True if kwargs.get('''max_value''' , snake_case_ ) is not None: __a : List[Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : Optional[Any] = kwargs['''max_value'''] if kwargs.get('''min_value''' , snake_case_ ) is not None: __a : Optional[int] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) __a : int = kwargs['''min_value'''] __a : Any = list(snake_case_ ) __a : Optional[int] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , snake_case_ ) is not None: __a : Optional[Any] = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ ) self.to(device=kwargs['''device'''] ) __a : List[str] = None __a : Tuple = decay __a : str = min_decay __a : Any = update_after_step __a : List[str] = use_ema_warmup __a : Any = inv_gamma __a : Any = power __a : Union[str, Any] = 0 __a : Dict = None # set in `step()` __a : Any = model_cls __a : Any = model_config @classmethod def lowerCAmelCase (cls : List[str] , snake_case_ : Dict , snake_case_ : Dict ): __a : Optional[int] = model_cls.load_config(snake_case_ , return_unused_kwargs=snake_case_ ) __a : Dict = model_cls.from_pretrained(snake_case_ ) __a : List[Any] = cls(model.parameters() , model_cls=snake_case_ , model_config=model.config ) ema_model.load_state_dict(snake_case_ ) return ema_model def lowerCAmelCase (self : Optional[Any] , snake_case_ : Dict ): if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) __a : int = self.model_cls.from_config(self.model_config ) __a : List[Any] = self.state_dict() state_dict.pop('''shadow_params''' , snake_case_ ) model.register_to_config(**snake_case_ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case_ ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Tuple = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __a : Tuple = 1 - (1 + step / self.inv_gamma) ** -self.power else: __a : List[str] = (1 + step) / (1_0 + step) __a : Dict = min(snake_case_ , self.decay ) # make sure decay is not smaller than min_decay __a : int = max(snake_case_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if isinstance(snake_case_ , torch.nn.Module ): __a : List[Any] = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , snake_case_ , standard_warn=snake_case_ , ) __a : Union[str, Any] = parameters.parameters() __a : Optional[Any] = list(snake_case_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __a : str = self.get_decay(self.optimization_step ) __a : List[str] = decay __a : Dict = 1 - decay __a : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __a : Dict = deepspeed.zero.GatheredParameters(snake_case_ , modifier_rank=snake_case_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case_ ) def lowerCAmelCase (self : int , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = list(snake_case_ ) for s_param, param in zip(self.shadow_params , snake_case_ ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase (self : int , snake_case_ : int=None , snake_case_ : int=None ): __a : str = [ p.to(device=snake_case_ , dtype=snake_case_ ) if p.is_floating_point() else p.to(device=snake_case_ ) for p in self.shadow_params ] def lowerCAmelCase (self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase (self : Tuple , snake_case_ : Iterable[torch.nn.Parameter] ): __a : str = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase (self : Optional[int] , snake_case_ : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , snake_case_ ): param.data.copy_(c_param.data ) # Better memory-wise. __a : Optional[Any] = None def lowerCAmelCase (self : Optional[int] , snake_case_ : dict ): __a : Dict = copy.deepcopy(snake_case_ ) __a : int = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) __a : List[str] = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , snake_case_ ): raise ValueError('''Invalid min_decay''' ) __a : Dict = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , snake_case_ ): raise ValueError('''Invalid optimization_step''' ) __a : Optional[int] = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , snake_case_ ): raise ValueError('''Invalid update_after_step''' ) __a : Any = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case_ ): raise ValueError('''Invalid use_ema_warmup''' ) __a : Any = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) __a : Tuple = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) __a : Dict = state_dict.get('''shadow_params''' , snake_case_ ) if shadow_params is not None: __a : Tuple = shadow_params if not isinstance(self.shadow_params , snake_case_ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(snake_case_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
712
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase__ ( unittest.TestCase ): def __init__(self : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int]=7 , snake_case_ : List[str]=3 , snake_case_ : List[str]=3_0 , snake_case_ : Union[str, Any]=4_0_0 , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=None , snake_case_ : List[Any]=True , snake_case_ : Tuple=[0.5, 0.5, 0.5] , snake_case_ : Optional[int]=[0.5, 0.5, 0.5] , snake_case_ : Dict=True , snake_case_ : Any=1 / 2_5_5 , snake_case_ : Any=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a : Optional[Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} __a : List[Any] = parent __a : Optional[Any] = batch_size __a : int = num_channels __a : Any = min_resolution __a : Optional[Any] = max_resolution __a : List[str] = do_resize __a : Optional[int] = size __a : Dict = do_normalize __a : Any = image_mean __a : Tuple = image_std __a : Union[str, Any] = do_rescale __a : Union[str, Any] = rescale_factor __a : List[Any] = do_pad def lowerCAmelCase (self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase (self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=False ): if not batched: __a : str = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __a , __a : Tuple = image.size else: __a , __a : Tuple = image.shape[1], image.shape[2] if w < h: __a : int = int(self.size['''shortest_edge'''] * h / w ) __a : Any = self.size['''shortest_edge'''] elif w > h: __a : Tuple = self.size['''shortest_edge'''] __a : int = int(self.size['''shortest_edge'''] * w / h ) else: __a : List[Any] = self.size['''shortest_edge'''] __a : Dict = self.size['''shortest_edge'''] else: __a : Union[str, Any] = [] for image in image_inputs: __a , __a : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a : Union[str, Any] = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __a : Any = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = YolosImageProcessor if is_vision_available() else None def lowerCAmelCase (self : Any ): __a : Any = YolosImageProcessingTester(self ) @property def lowerCAmelCase (self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase (self : Optional[int] ): __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , '''image_mean''' ) ) self.assertTrue(hasattr(snake_case_ , '''image_std''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case_ , '''do_resize''' ) ) self.assertTrue(hasattr(snake_case_ , '''size''' ) ) def lowerCAmelCase (self : Union[str, Any] ): __a : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , snake_case_ ) __a : int = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=snake_case_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , snake_case_ ) def lowerCAmelCase (self : str ): pass def lowerCAmelCase (self : Optional[Any] ): # Initialize image_processing __a : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __a : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : int = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a : List[str] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __a : str = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : str ): # Initialize image_processing __a : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __a : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : Dict = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : int = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values __a , __a : List[str] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : Optional[Any] ): # Initialize image_processing __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __a : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __a , __a : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a : Tuple = image_processing(snake_case_ , return_tensors='''pt''' ).pixel_values __a , __a : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase (self : Any ): # Initialize image_processings __a : Any = self.image_processing_class(**self.image_processor_dict ) __a : str = self.image_processing_class(do_resize=snake_case_ , do_normalize=snake_case_ , do_rescale=snake_case_ ) # create random PyTorch tensors __a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __a : List[Any] = image_processing_a.pad(snake_case_ , return_tensors='''pt''' ) __a : Union[str, Any] = image_processing_a(snake_case_ , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1E-4 ) ) @slow def lowerCAmelCase (self : List[str] ): # prepare image and target __a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __a : str = json.loads(f.read() ) __a : Dict = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them __a : Optional[Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) __a : Tuple = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors='''pt''' ) # verify pixel values __a : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , snake_case_ ) __a : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __a : int = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , snake_case_ ) ) # verify boxes __a : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , snake_case_ ) __a : List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __a : Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , snake_case_ ) ) # verify is_crowd __a : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , snake_case_ ) ) # verify class_labels __a : Optional[Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , snake_case_ ) ) # verify orig_size __a : Optional[int] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , snake_case_ ) ) # verify size __a : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , snake_case_ ) ) @slow def lowerCAmelCase (self : Optional[int] ): # prepare image, target and masks_path __a : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __a : int = json.loads(f.read() ) __a : Optional[int] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} __a : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __a : Any = YolosImageProcessor(format='''coco_panoptic''' ) __a : Any = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors='''pt''' ) # verify pixel values __a : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , snake_case_ ) __a : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __a : Optional[Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , snake_case_ ) ) # verify boxes __a : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , snake_case_ ) __a : Tuple = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __a : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , snake_case_ ) ) # verify is_crowd __a : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , snake_case_ ) ) # verify class_labels __a : Any = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , snake_case_ ) ) # verify masks __a : Tuple = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , snake_case_ ) # verify orig_size __a : Any = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , snake_case_ ) ) # verify size __a : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , snake_case_ ) )
326
0
def A__ (snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') a__ = int(input('''Enter number: ''').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
279
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter a__ = logging.get_logger(__name__) a__ = {} a__ = {} a__ = {} def A__ (snake_case : type , snake_case : Optional[str] , snake_case : Optional[List[str]] = None , ) -> str: __UpperCamelCase : int = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __UpperCamelCase : Optional[Any] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __UpperCamelCase : Optional[int] = format_type def A__ (snake_case : Exception , snake_case : Optional[str] , snake_case : Optional[List[str]] = None ) -> Tuple: __UpperCamelCase : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __UpperCamelCase : Optional[int] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: a__ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: a__ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: a__ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def A__ (snake_case : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A__ (snake_case : Optional[str] , **snake_case : List[str] ) -> Formatter: __UpperCamelCase : int = get_format_type_from_alias(snake_case ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**snake_case ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
279
1
from ..utils import DummyObject, requires_backends class A_ ( metaclass=__lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[int] = ["""keras_nlp"""] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['keras_nlp'] )
565
from math import factorial UpperCAmelCase = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return sum(DIGIT_FACTORIAL[d] for d in str(__SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase_ ( ): lowercase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(__SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
565
1
from __future__ import annotations def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' lowerCamelCase_ : Any = sorted(numsa + numsa) lowerCamelCase_ ,lowerCamelCase_ : List[str] = divmod(len(lowerCAmelCase_) , 2) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [float(x) for x in input('''Enter the elements of first array: ''').split()] __magic_name__ = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
250
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : Union[str, Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self , a_ , a_ , a_ ): lowerCamelCase_ : Any = TextaTextGenerationPipeline(model=a_ , tokenizer=a_ ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self , a_ , a_ ): lowerCamelCase_ : Tuple = generator("Something there" ) self.assertEqual(a_ , [{"generated_text": ANY(a_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) lowerCamelCase_ : str = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ] , ) lowerCamelCase_ : List[str] = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], [{"generated_text": ANY(a_ )}, {"generated_text": ANY(a_ )}], ] , ) with self.assertRaises(a_ ): generator(4 ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility lowerCamelCase_ : Tuple = generator("Something there" , do_sample=a_ ) self.assertEqual(a_ , [{"generated_text": ""}] ) lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : str = generator( "Something there" , num_return_sequences=a_ , num_beams=a_ , ) lowerCamelCase_ : Dict = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(a_ , a_ ) lowerCamelCase_ : Any = generator("This is a test" , do_sample=a_ , num_return_sequences=2 , return_tensors=a_ ) self.assertEqual( a_ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) lowerCamelCase_ : Tuple = generator.model.config.eos_token_id lowerCamelCase_ : List[str] = "<pad>" lowerCamelCase_ : Tuple = generator( ["This is a test", "This is a second test"] , do_sample=a_ , num_return_sequences=2 , batch_size=2 , return_tensors=a_ , ) self.assertEqual( a_ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility lowerCamelCase_ : Any = generator("Something there" , do_sample=a_ ) self.assertEqual(a_ , [{"generated_text": ""}] )
250
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { "configuration_efficientnet": [ "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientNetConfig", "EfficientNetOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["EfficientNetImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( __a ): _lowercase ='''bert''' def __init__( self , _UpperCamelCase=30_522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3_072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1e-1_2 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ) -> str: super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = classifier_dropout class _lowerCAmelCase ( __a ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
279
0
'''simple docstring''' import random def a_ ( __snake_case : int , __snake_case : Tuple , __snake_case : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ =a[left_index] lowerCamelCase_ =left_index + 1 for j in range(left_index + 1 , __snake_case ): if a[j] < pivot: lowerCamelCase_ =a[i], a[j] i += 1 lowerCamelCase_ =a[i - 1], a[left_index] return i - 1 def a_ ( __snake_case : str , __snake_case : List[str] , __snake_case : List[Any] ) -> int: """simple docstring""" if left < right: lowerCamelCase_ =random.randint(__snake_case , right - 1 ) lowerCamelCase_ =( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCamelCase_ =partition(__snake_case , __snake_case , __snake_case ) quick_sort_random( __snake_case , __snake_case , __snake_case ) # recursive quicksort to the left of the pivot point quick_sort_random( __snake_case , pivot_index + 1 , __snake_case ) # recursive quicksort to the right of the pivot point def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =input('''Enter numbers separated by a comma:\n''' ).strip() lowerCamelCase_ =[int(__snake_case ) for item in user_input.split(''',''' )] quick_sort_random(__snake_case , 0 , len(__snake_case ) ) print(__snake_case ) if __name__ == "__main__": main()
676
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any]=False ) -> Dict: if isinstance(lowercase, lowercase ) and isinstance(lowercase, lowercase ): A : int =len(set_a.intersection(lowercase ) ) if alternative_union: A : Tuple =len(lowercase ) + len(lowercase ) else: A : Any =len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase, (list, tuple) ) and isinstance(lowercase, (list, tuple) ): A : int =[element for element in set_a if element in set_b] if alternative_union: A : Union[str, Any] =len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: A : Optional[Any] =set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": _lowercase : str ={'''a''', '''b''', '''c''', '''d''', '''e'''} _lowercase : List[Any] ={'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
305
0
"""simple docstring""" from collections.abc import Sequence def _A ( _a : Sequence[float] , _a : bool = False ): """simple docstring""" if not arr: return 0 A = 0 if allow_empty_subarrays else float("""-inf""" ) A = 0.0 for num in arr: A = max(0 if allow_empty_subarrays else num , curr_sum + num ) A = max(_a , _a ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
255
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> Dict: A = torch.nn.Linear(1_0 ,1_0 ) A = torch.optim.SGD(model.parameters() ,0.1 ) A = Accelerator() A = accelerator.prepare(lowerCamelCase_ ) try: pickle.loads(pickle.dumps(lowerCamelCase_ ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
255
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __A ( UpperCamelCase__ ): UpperCamelCase = """gptsan-japanese""" UpperCamelCase = [ """past_key_values""", ] UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :str , __snake_case :str=3_60_00 , __snake_case :List[Any]=12_80 , __snake_case :Tuple=10_24 , __snake_case :Union[str, Any]=81_92 , __snake_case :Dict=40_96 , __snake_case :Tuple=1_28 , __snake_case :Union[str, Any]=10 , __snake_case :List[Any]=0 , __snake_case :int=16 , __snake_case :Tuple=16 , __snake_case :int=1_28 , __snake_case :Optional[Any]=0.0 , __snake_case :Any=1E-5 , __snake_case :str=False , __snake_case :Dict=0.0 , __snake_case :str="float32" , __snake_case :int=False , __snake_case :int=False , __snake_case :Optional[int]=False , __snake_case :Tuple=0.002 , __snake_case :Any=False , __snake_case :Optional[Any]=True , __snake_case :Optional[int]=3_59_98 , __snake_case :Dict=3_59_95 , __snake_case :Optional[int]=3_59_99 , **__snake_case :Union[str, Any] , ): '''simple docstring''' __magic_name__ : List[str] =vocab_size __magic_name__ : Any =max_position_embeddings __magic_name__ : int =d_model __magic_name__ : Any =d_ff __magic_name__ : Dict =d_ext __magic_name__ : Union[str, Any] =d_spout __magic_name__ : List[Any] =num_switch_layers __magic_name__ : int =num_ext_layers __magic_name__ : Optional[int] =num_switch_layers + num_ext_layers __magic_name__ : Union[str, Any] =num_heads __magic_name__ : Any =num_experts __magic_name__ : Optional[int] =expert_capacity __magic_name__ : Union[str, Any] =dropout_rate __magic_name__ : Any =layer_norm_epsilon __magic_name__ : Union[str, Any] =router_bias __magic_name__ : int =router_jitter_noise __magic_name__ : str =router_dtype __magic_name__ : Optional[int] =router_ignore_padding_tokens __magic_name__ : str =output_hidden_states __magic_name__ : Dict =output_attentions __magic_name__ : Dict =initializer_factor __magic_name__ : List[str] =output_router_logits __magic_name__ : int =use_cache super().__init__( separator_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , )
21
from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( lowerCamelCase="ro" , lowerCamelCase="en" , lowerCamelCase="wmt16" , lowerCamelCase=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __magic_name__ : Dict =F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __magic_name__ : Dict =datasets.load_dataset(lowerCamelCase , lowerCamelCase ) if save_dir is None: __magic_name__ : Optional[int] =F"{dataset}-{pair}" __magic_name__ : int =Path(lowerCamelCase ) save_dir.mkdir(exist_ok=lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __magic_name__ : Dict ="""val""" if split == """validation""" else split __magic_name__ : List[Any] =save_dir.joinpath(F"{fn}.source" ) __magic_name__ : Optional[int] =save_dir.joinpath(F"{fn}.target" ) __magic_name__ : Optional[Any] =src_path.open("""w+""" ) __magic_name__ : List[Any] =tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ : str =x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
21
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
712
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
0
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict SCREAMING_SNAKE_CASE_ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=__snake_case ,all_configs=__snake_case ,save_infos=__snake_case ) UpperCamelCase = TestCommand(*__snake_case ) test_command.run() UpperCamelCase = os.path.join(__snake_case ,'''README.md''' ) assert os.path.exists(__snake_case ) UpperCamelCase = DatasetInfosDict.from_directory(__snake_case ) UpperCamelCase = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) ,splits=[ { '''name''': '''train''', '''num_bytes''': 235_1563, '''num_examples''': 1_0000, }, { '''name''': '''validation''', '''num_bytes''': 23_8418, '''num_examples''': 1000, }, ] ,download_size=394_0680 ,dataset_size=258_9981 ,) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos['''default'''] ,__snake_case ), getattr(expected_dataset_infos['''default'''] ,__snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case ,__snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes ,expected[split].num_bytes ) else: result == expected
34
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case="shi-labs/oneformer_demo" ) -> Any: with open(hf_hub_download(__snake_case , __snake_case , repo_type="""dataset""" ) , """r""" ) as f: _UpperCAmelCase = json.load(__snake_case ) _UpperCAmelCase = {} _UpperCAmelCase = [] _UpperCAmelCase = [] for key, info in class_info.items(): _UpperCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(__snake_case ) ) _UpperCAmelCase = thing_ids _UpperCAmelCase = class_names return metadata class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=7 , lowerCamelCase : str=3 , lowerCamelCase : Union[str, Any]=30 , lowerCamelCase : Optional[int]=400 , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : int=True , lowerCamelCase : List[str]=True , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : Tuple=10 , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=255 , lowerCamelCase : Tuple="shi-labs/oneformer_demo" , lowerCamelCase : Tuple="ade20k_panoptic.json" , lowerCamelCase : Optional[Any]=10 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1333} if size is None else size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = class_info_file _UpperCAmelCase = prepare_metadata(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = num_text _UpperCAmelCase = repo_path # for the post_process_functions _UpperCAmelCase = 2 _UpperCAmelCase = 10 _UpperCAmelCase = 10 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = num_labels _UpperCAmelCase = do_reduce_labels _UpperCAmelCase = ignore_index def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCamelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : Tuple=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size["""shortest_edge"""] * h / w ) _UpperCAmelCase = self.size["""shortest_edge"""] elif w > h: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = self.size["""shortest_edge"""] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCamelCase = image_processing_class def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = OneFormerImageProcessorTester(self ) @property def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """ignore_index""" ) ) self.assertTrue(hasattr(lowerCamelCase , """class_info_file""" ) ) self.assertTrue(hasattr(lowerCamelCase , """num_text""" ) ) self.assertTrue(hasattr(lowerCamelCase , """repo_path""" ) ) self.assertTrue(hasattr(lowerCamelCase , """metadata""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_reduce_labels""" ) ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" pass def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : Tuple , lowerCamelCase : Tuple=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Union[str, Any]="np" ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _UpperCAmelCase = self.image_processing_tester.num_labels _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase ) if with_segmentation_maps: _UpperCAmelCase = num_labels if is_instance_map: _UpperCAmelCase = list(range(lowerCamelCase ) ) * 2 _UpperCAmelCase = dict(enumerate(lowerCamelCase ) ) _UpperCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _UpperCAmelCase = [Image.fromarray(lowerCamelCase ) for annotation in annotations] _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , lowerCamelCase , return_tensors="""pt""" , instance_id_to_semantic_id=lowerCamelCase , pad_and_return_pixel_mask=lowerCamelCase , ) return inputs def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" pass def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" def common(lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=None ): _UpperCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase , is_instance_map=lowerCamelCase , segmentation_type=lowerCamelCase ) _UpperCAmelCase = inputs["""mask_labels"""] _UpperCAmelCase = inputs["""class_labels"""] _UpperCAmelCase = inputs["""pixel_values"""] _UpperCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCamelCase ) common(is_instance_map=lowerCamelCase , segmentation_type="""pil""" ) common(is_instance_map=lowerCamelCase , segmentation_type="""pil""" ) def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = np.zeros((20, 50) ) _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = binary_mask_to_rle(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _UpperCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase , target_sizes=lowerCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = image_processor.post_process_instance_segmentation(lowerCamelCase , threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = image_processor.post_process_panoptic_segmentation(lowerCamelCase , threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
108
0
"""simple docstring""" from itertools import count def _a ( _snake_case = 50 ): """simple docstring""" UpperCAmelCase = [1] * min_block_length for n in count(a_ ): fill_count_functions.append(1 ) for block_length in range(a_ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
712
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase__ : def __init__( self ,A ,): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = 2 UpperCAmelCase = 99 UpperCAmelCase = 0 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = """last""" UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = 0 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertModel(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertWithLMHeadModel(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForSequenceClassification(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_labels UpperCAmelCase = TFFlaubertForTokenClassification(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_choices UpperCAmelCase = TFFlaubertForMultipleChoice(config=A ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase__ ( snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,emb_dim=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def _UpperCamelCase ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCAmelCase = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase = model(A )[0] UpperCAmelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,A ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
74
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' @slow @require_torch def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size SCREAMING_SNAKE_CASE = tokenizer.sep_token_id SCREAMING_SNAKE_CASE = tokenizer.cls_token_id SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) SCREAMING_SNAKE_CASE = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) ) SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) ) SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__ ): # Tokenizer will automatically set [BOS] <text> [EOS] SCREAMING_SNAKE_CASE = tokenizer(batch['article'] , padding='max_length' , truncation=lowerCAmelCase__ , max_length=512 ) SCREAMING_SNAKE_CASE = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowerCAmelCase__ , max_length=128 ) SCREAMING_SNAKE_CASE = inputs.input_ids SCREAMING_SNAKE_CASE = inputs.attention_mask SCREAMING_SNAKE_CASE = outputs.input_ids SCREAMING_SNAKE_CASE = outputs.input_ids.copy() SCREAMING_SNAKE_CASE = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 512 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = pred.label_ids SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy='steps' , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
247
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : Tuple = """FlavaImageProcessor""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor( lowerCAmelCase__ , return_image_mask=lowerCAmelCase__ , return_codebook_pixels=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def __A ( self ) -> str: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
247
1
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :int = position __UpperCamelCase :List[str] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __UpperCamelCase :Union[str, Any] = [] for position in positions: __UpperCamelCase , __UpperCamelCase :Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCAmelCase ) return permissible_positions def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if is_complete(__lowerCAmelCase ): return True for position in get_valid_pos(__lowerCAmelCase , len(__lowerCAmelCase ) ): __UpperCamelCase , __UpperCamelCase :List[Any] = position if board[y][x] == 0: __UpperCamelCase :int = curr + 1 if open_knight_tour_helper(__lowerCAmelCase , __lowerCAmelCase , curr + 1 ): return True __UpperCamelCase :Dict = 0 return False def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): __UpperCamelCase :int = 1 if open_knight_tour_helper(__lowerCAmelCase , (i, j) , 1 ): return board __UpperCamelCase :Any = 0 __UpperCamelCase :str = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
712
from __future__ import annotations import bisect def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = -1 ): '''simple docstring''' if hi < 0: __UpperCamelCase :str = len(SCREAMING_SNAKE_CASE ) while lo < hi: __UpperCamelCase :Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCamelCase :List[Any] = mid + 1 else: __UpperCamelCase :Any = mid return lo def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = -1 ): '''simple docstring''' if hi < 0: __UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE ) while lo < hi: __UpperCamelCase :Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCamelCase :Dict = mid + 1 else: __UpperCamelCase :Optional[Any] = mid return lo def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = 0 __UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: __UpperCamelCase :Optional[int] = left + (right - left) // 2 __UpperCamelCase :List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCamelCase :Union[str, Any] = midpoint - 1 else: __UpperCamelCase :Dict = midpoint + 1 return None def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = bisect.bisect_left(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if index != len(SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if right < left: return None __UpperCamelCase :str = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , midpoint + 1 , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = input('''Enter numbers separated by comma:\n''').strip() __lowercase = sorted(int(item) for item in user_input.split(''',''')) __lowercase = int(input('''Enter a single number to be found in the list:\n''')) __lowercase = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
452
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : Any = "mvp" lowerCAmelCase__ : str = ["past_key_values"] lowerCAmelCase__ : List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any] ,UpperCamelCase : int=5_0267 ,UpperCamelCase : Any=1024 ,UpperCamelCase : List[str]=12 ,UpperCamelCase : Optional[Any]=4096 ,UpperCamelCase : Tuple=16 ,UpperCamelCase : int=12 ,UpperCamelCase : List[str]=4096 ,UpperCamelCase : Dict=16 ,UpperCamelCase : str=0.0 ,UpperCamelCase : str=0.0 ,UpperCamelCase : Tuple="gelu" ,UpperCamelCase : int=1024 ,UpperCamelCase : Union[str, Any]=0.1 ,UpperCamelCase : int=0.0 ,UpperCamelCase : int=0.0 ,UpperCamelCase : Tuple=0.0_2 ,UpperCamelCase : Tuple=0.0 ,UpperCamelCase : List[str]=False ,UpperCamelCase : Any=True ,UpperCamelCase : str=1 ,UpperCamelCase : Optional[int]=0 ,UpperCamelCase : Dict=2 ,UpperCamelCase : List[str]=True ,UpperCamelCase : Any=2 ,UpperCamelCase : Optional[int]=2 ,UpperCamelCase : List[Any]=False ,UpperCamelCase : str=100 ,UpperCamelCase : str=800 ,**UpperCamelCase : str ,) -> int: _lowercase : Optional[int] = vocab_size _lowercase : Tuple = max_position_embeddings _lowercase : List[Any] = d_model _lowercase : Any = encoder_ffn_dim _lowercase : Optional[Any] = encoder_layers _lowercase : Optional[int] = encoder_attention_heads _lowercase : List[str] = decoder_ffn_dim _lowercase : List[Any] = decoder_layers _lowercase : int = decoder_attention_heads _lowercase : Union[str, Any] = dropout _lowercase : Optional[int] = attention_dropout _lowercase : Union[str, Any] = activation_dropout _lowercase : List[Any] = activation_function _lowercase : Dict = init_std _lowercase : Any = encoder_layerdrop _lowercase : str = decoder_layerdrop _lowercase : Tuple = classifier_dropout _lowercase : Tuple = use_cache _lowercase : int = encoder_layers _lowercase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase : Any = use_prompt _lowercase : Optional[int] = prompt_length _lowercase : Any = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,eos_token_id=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,decoder_start_token_id=UpperCamelCase ,forced_eos_token_id=UpperCamelCase ,**UpperCamelCase ,) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' ,UpperCamelCase ): _lowercase : List[Any] = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
125
0
'''simple docstring''' def lowerCAmelCase__ ( a_ : str = 2_0_0 ) -> int: UpperCAmelCase__ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase__ : int = [0] * (pence + 1) UpperCAmelCase__ : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(a_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
719
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCamelCase ( self ): UpperCAmelCase__ : Dict = self.dummy_uncond_unet UpperCAmelCase__ : Dict = KarrasVeScheduler() UpperCAmelCase__ : Any = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' ).images UpperCAmelCase__ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' , return_dict=_UpperCAmelCase )[0] UpperCAmelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[int] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : List[Any] = KarrasVeScheduler() UpperCAmelCase__ : int = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''numpy''' ).images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ : Any = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
599
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = "char" __lowerCamelCase : str = "bpe" __lowerCamelCase : str = "wp" A_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["image_processor", "char_tokenizer"] __lowerCamelCase : str = "ViTImageProcessor" __lowerCamelCase : Union[str, Any] = "MgpstrTokenizer" def __init__( self: str , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Any=None , **UpperCamelCase_: Union[str, Any] ): UpperCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase_ , ) UpperCamelCase_ =kwargs.pop("feature_extractor" ) UpperCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCamelCase_ =tokenizer UpperCamelCase_ =AutoTokenizer.from_pretrained("gpt2" ) UpperCamelCase_ =AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Dict ): if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCamelCase_ =self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is not None: UpperCamelCase_ =self.char_tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase_ =encodings["input_ids"] return inputs def UpperCamelCase__ ( self: Optional[Any] , UpperCamelCase_: Tuple ): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ =sequences UpperCamelCase_ =char_preds.size(0 ) UpperCamelCase_ , UpperCamelCase_ =self._decode_helper(UpperCamelCase_ , "char" ) UpperCamelCase_ , UpperCamelCase_ =self._decode_helper(UpperCamelCase_ , "bpe" ) UpperCamelCase_ , UpperCamelCase_ =self._decode_helper(UpperCamelCase_ , "wp" ) UpperCamelCase_ =[] UpperCamelCase_ =[] for i in range(UpperCamelCase_ ): UpperCamelCase_ =[char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase_ =[char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase_ =scores.index(max(UpperCamelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase_ ={} UpperCamelCase_ =final_strs UpperCamelCase_ =final_scores UpperCamelCase_ =char_strs UpperCamelCase_ =bpe_strs UpperCamelCase_ =wp_strs return out def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[int] ): if format == DecodeType.CHARACTER: UpperCamelCase_ =self.char_decode UpperCamelCase_ =1 UpperCamelCase_ ="[s]" elif format == DecodeType.BPE: UpperCamelCase_ =self.bpe_decode UpperCamelCase_ =2 UpperCamelCase_ ="#" elif format == DecodeType.WORDPIECE: UpperCamelCase_ =self.wp_decode UpperCamelCase_ =102 UpperCamelCase_ ="[SEP]" else: raise ValueError(f"""Format {format} is not supported.""" ) UpperCamelCase_ , UpperCamelCase_ =[], [] UpperCamelCase_ =pred_logits.size(0 ) UpperCamelCase_ =pred_logits.size(1 ) UpperCamelCase_ , UpperCamelCase_ =pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase_ , sorted=UpperCamelCase_ ) UpperCamelCase_ =preds_index.view(-1 , UpperCamelCase_ )[:, 1:] UpperCamelCase_ =decoder(UpperCamelCase_ ) UpperCamelCase_ , UpperCamelCase_ =torch.nn.functional.softmax(UpperCamelCase_ , dim=2 ).max(dim=2 ) UpperCamelCase_ =preds_max_prob[:, 1:] for index in range(UpperCamelCase_ ): UpperCamelCase_ =preds_str[index].find(UpperCamelCase_ ) UpperCamelCase_ =preds_str[index][:pred_eos] UpperCamelCase_ =preds_index[index].cpu().tolist() UpperCamelCase_ =pred_index.index(UpperCamelCase_ ) if eos_token in pred_index else -1 UpperCamelCase_ =preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase_ =pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase_ ) conf_scores.append(UpperCamelCase_ ) return dec_strs, conf_scores def UpperCamelCase__ ( self: List[str] , UpperCamelCase_: List[Any] ): UpperCamelCase_ =[seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): return self.bpe_tokenizer.batch_decode(UpperCamelCase_ ) def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] ): UpperCamelCase_ =[seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase_ )] return decode_strs
391
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A_ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ["input_features", "attention_mask"] def __init__( self: Tuple , UpperCamelCase_: List[Any]=80 , UpperCamelCase_: int=1_6000 , UpperCamelCase_: Optional[int]=80 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Any=True , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[Any]=True , **UpperCamelCase_: int , ): super().__init__(feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ =num_mel_bins UpperCamelCase_ =do_ceptral_normalize UpperCamelCase_ =normalize_means UpperCamelCase_ =normalize_vars UpperCamelCase_ =True def UpperCamelCase__ ( self: List[Any] , UpperCamelCase_: np.ndarray , ): UpperCamelCase_ =waveform * (2**15) # Kaldi compliance: 16-bit signed integers UpperCamelCase_ =torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ) UpperCamelCase_ =ta_kaldi.fbank(UpperCamelCase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCamelCase__ ( UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: Optional[bool] = True , UpperCamelCase_: float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: UpperCamelCase_ =x[:input_length].mean(axis=0 ) UpperCamelCase_ =np.subtract(UpperCamelCase_ , UpperCamelCase_ ) if normalize_vars: UpperCamelCase_ =x[:input_length].std(axis=0 ) UpperCamelCase_ =np.divide(UpperCamelCase_ , UpperCamelCase_ ) if input_length < x.shape[0]: UpperCamelCase_ =padding_value # make sure array is in float32 UpperCamelCase_ =x.astype(np.floataa ) return x def UpperCamelCase__ ( self: Any , UpperCamelCase_: List[np.ndarray] , UpperCamelCase_: Optional[np.ndarray] = None ): UpperCamelCase_ =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCamelCase_ , UpperCamelCase_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCamelCase_ , UpperCamelCase_ ) ] def __call__( self: Dict , UpperCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , **UpperCamelCase_: Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase_ =isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase_ =is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase_ =[np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): UpperCamelCase_ =np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase_ =raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase_ =[raw_speech] # extract fbank features UpperCamelCase_ =[self._extract_fbank_features(UpperCamelCase_ ) for waveform in raw_speech] # convert into correct format for padding UpperCamelCase_ =BatchFeature({"input_features": features} ) UpperCamelCase_ =self.pad( UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) # make sure list is in array format UpperCamelCase_ =padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCamelCase_ ): UpperCamelCase_ =[np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features] UpperCamelCase_ =padded_inputs.get("attention_mask" ) if attention_mask is not None: UpperCamelCase_ =[np.asarray(UpperCamelCase_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: UpperCamelCase_ =( np.array(UpperCamelCase_ , dtype=np.intaa ) if self._get_padding_strategies(UpperCamelCase_ , max_length=UpperCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase_ =self.normalize( padded_inputs["input_features"] , attention_mask=UpperCamelCase_ ) if return_tensors is not None: UpperCamelCase_ =padded_inputs.convert_to_tensors(UpperCamelCase_ ) return padded_inputs
391
1
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case_ ( a_ ): def __init__( self , *a_ , a_=None , a_=None , **a_ ): super().__init__(*a_ , **a_ ) a_ : int = eval_examples a_ : Optional[Any] = post_process_function def snake_case_ ( self , a_=None , a_=None , a_=None , a_ = "eval" ): a_ : Tuple = self.eval_dataset if eval_dataset is None else eval_dataset a_ : List[Any] = self.get_eval_dataloader(a_ ) a_ : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ : int = self.compute_metrics a_ : List[Any] = None a_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : Optional[int] = time.time() try: a_ : List[str] = eval_loop( a_ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: a_ : Any = compute_metrics a_ : Optional[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ : Optional[int] = self.post_process_function(a_ , a_ , output.predictions ) a_ : Tuple = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): a_ : Tuple = metrics.pop(a_ ) metrics.update(output.metrics ) else: a_ : Any = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def snake_case_ ( self , a_ , a_ , a_=None , a_ = "test" ): a_ : Tuple = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. a_ : List[Any] = self.compute_metrics a_ : List[str] = None a_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a_ : List[str] = time.time() try: a_ : Tuple = eval_loop( a_ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: a_ : int = compute_metrics a_ : Any = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ : str = self.post_process_function(a_ , a_ , output.predictions , "predict" ) a_ : Any = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): a_ : Optional[int] = metrics.pop(a_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ )
370
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ = 10, SCREAMING_SNAKE_CASE__ = 1_000, SCREAMING_SNAKE_CASE__ = True ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: return int((number_a + number_a) / 2 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> None: assert ( isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(SCREAMING_SNAKE_CASE__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) a_ : List[str] = lower a_ : Dict = higher a_ : str = [] while True: a_ : List[str] = get_avg(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) last_numbers.append(SCREAMING_SNAKE_CASE__ ) if answer(SCREAMING_SNAKE_CASE__ ) == "low": a_ : Optional[Any] = number elif answer(SCREAMING_SNAKE_CASE__ ) == "high": a_ : Union[str, Any] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def lowerCAmelCase_ ( ) -> None: a_ : str = int(input("Enter lower value : " ).strip() ) a_ : Dict = int(input("Enter high value : " ).strip() ) a_ : Optional[Any] = int(input("Enter value to guess : " ).strip() ) guess_the_number(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
370
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=64 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Dict: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = embedding_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = MobileBertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = MobileBertForNextSentencePrediction(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MobileBertForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , next_sentence_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileBertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileBertForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = MobileBertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> Tuple: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = MobileBertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return torch.tensor( __snake_case, dtype=torch.long, device=__snake_case, ) _a = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = MobileBertModel.from_pretrained('''google/mobilebert-uncased''').to(__a) _UpperCamelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase = model(__a)[0] _UpperCamelCase = torch.Size((1, 9, 5_12)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [ [ [-2.4_736_526e07, 8.2_691_656e04, 1.6_521_838e05], [-5.7_541_704e-01, 3.9_056_022e00, 4.4_011_507e00], [2.6_047_359e00, 1.5_677_652e00, -1.7_324_188e-01], ] ] , device=__a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE) _UpperCamelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) self.assertTrue(lower_bound and upper_bound)
19
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: Dict = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
0
import numpy as np def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] = 1e-1_2 , SCREAMING_SNAKE_CASE__ : Dict = 100 , ) -> Union[str, Any]: assert np.shape(A_ )[0] == np.shape(A_ )[1] # Ensure proper dimensionality. assert np.shape(A_ )[0] == np.shape(A_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(A_ ) == np.iscomplexobj(A_ ) _snake_case : List[Any] = np.iscomplexobj(A_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(A_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case : Any = False _snake_case : List[str] = 0 _snake_case : Union[str, Any] = 0 _snake_case : int = 1e1_2 while not convergence: # Multiple matrix by the vector. _snake_case : List[Any] = np.dot(A_ , A_ ) # Normalize the resulting output vector. _snake_case : Any = w / np.linalg.norm(A_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case : Any = vector.conj().T if is_complex else vector.T _snake_case : Optional[Any] = np.dot(A_ , np.dot(A_ , A_ ) ) # Check convergence. _snake_case : str = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case : Dict = True _snake_case : Any = lambda_ if is_complex: _snake_case : str = np.real(lambda_ ) return lambda_, vector def lowercase ( ) -> Any: _snake_case : Union[str, Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case : str = np.array([41, 4, 20] ) _snake_case : List[str] = real_input_matrix.astype(np.complexaaa ) _snake_case : Tuple = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case : int = real_input_matrix _snake_case : Tuple = real_vector elif problem_type == "complex": _snake_case : Tuple = complex_input_matrix _snake_case : Tuple = complex_vector # Our implementation. _snake_case , _snake_case : str = power_iteration(A_ , A_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case : Any = np.linalg.eigh(A_ ) # Last eigenvalue is the maximum one. _snake_case : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case : Optional[int] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(A_ ) - np.abs(A_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
710
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a__ = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names a__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a__ = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a__ = """allenai""" def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _snake_case : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) _snake_case : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _snake_case : Tuple = d[k] # restore return da def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> str: # prep assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _snake_case : Optional[Any] = basename(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _snake_case : List[str] = cls.hub_models() _snake_case : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} _snake_case : Dict = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) _snake_case : List[Any] = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , archive_map=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = vars(chkpt["""args"""]["""model"""] ) _snake_case : Union[str, Any] = args["""source_lang"""] _snake_case : Tuple = args["""target_lang"""] _snake_case : Any = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) # dicts _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{src_lang}.txt''' ) _snake_case : Any = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{tgt_lang}.txt''' ) _snake_case : List[Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = rewrite_dict_keys(src_dict.indices ) _snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _snake_case : str = True for k in src_vocab.keys(): if not k.islower(): _snake_case : Any = False break _snake_case : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) _snake_case : str = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _snake_case : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as fin: _snake_case : Dict = fin.read() _snake_case : Optional[Any] = re.sub(R""" \d+$""" , """""" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' _snake_case : Optional[int] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.0_2, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with _snake_case : Tuple = 5 _snake_case : int = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _snake_case : List[str] = best_score_hparams[model_dir]["""length_penalty"""] else: _snake_case : Optional[Any] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : str = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_024, """do_lower_case""": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model _snake_case : Optional[Any] = chkpt["""models"""][0] _snake_case : List[str] = model.state_dict() # rename keys to start with 'model.' _snake_case : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _snake_case : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) # save _snake_case : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
198
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Tuple = {'vocab_file': 'sentencepiece.model'} _lowerCamelCase : List[Any] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } _lowerCamelCase : str = { 'google/rembert': 2_56, } class lowercase ( _a ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple=False , _UpperCamelCase : Tuple=True , _UpperCamelCase : Dict=True , _UpperCamelCase : Optional[Any]="[CLS]" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Dict="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[str]="[PAD]" , _UpperCamelCase : Optional[int]="[CLS]" , _UpperCamelCase : Optional[Any]="[MASK]" , **_UpperCamelCase : List[Any] , ) -> int: '''simple docstring''' super().__init__( do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(lowerCAmelCase_ ) @property def __snake_case( self : str ) -> Any: '''simple docstring''' return len(self.sp_model ) def __snake_case( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Optional[Any] , _UpperCamelCase : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = d SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __snake_case( self : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str]=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(lowerCAmelCase_ ) return pieces def __snake_case( self : int , _UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCAmelCase_ ) def __snake_case( self : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' return self.sp_model.IdToPiece(lowerCAmelCase_ ) def __snake_case( self : Tuple , _UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.sp_model.decode_pieces(lowerCAmelCase_ ) return out_string def __snake_case( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] def __snake_case( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase_ ) ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
403
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } _snake_case : Tuple = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class A ( _a ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = SqueezeBertTokenizer def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[str]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Optional[Any]="[PAD]" , lowerCAmelCase_ : Any="[CLS]" , lowerCAmelCase_ : List[str]="[MASK]" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _a = getattr(lowerCAmelCase_ , normalizer_state.pop('''type''' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**lowerCAmelCase_ ) _a = do_lower_case def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]: """simple docstring""" _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _a = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
22
0
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCAmelCase ( _A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> List[str]: super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) A_ : Union[str, Any] = field A_ : List[str] = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} A_ : Union[str, Any] = Json( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , field=UpperCamelCase__ , **UpperCamelCase__ , ) def UpperCAmelCase_ ( self ) -> List[str]: if self.streaming: A_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : str = None A_ : Optional[Any] = None A_ : Dict = None A_ : Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) A_ : List[str] = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) A_ : Tuple = dataset A_ : str = path_or_buf A_ : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ : List[str] = num_proc A_ : Tuple = """utf-8""" A_ : Any = to_json_kwargs def UpperCAmelCase_ ( self ) -> int: A_ : str = self.to_json_kwargs.pop("""path_or_buf""" , UpperCamelCase__ ) A_ : Optional[Any] = self.to_json_kwargs.pop("""orient""" , """records""" ) A_ : List[Any] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) A_ : Dict = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) A_ : str = self.to_json_kwargs.pop("""compression""" , UpperCamelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=UpperCamelCase__ ) as buffer: A_ : List[str] = self._write(file_obj=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" """ was passed. Please provide a local path instead.""" ) A_ : Optional[int] = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) return written def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[Any]: A_ , A_ , A_ , A_ , A_ : str = args A_ : List[Any] = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ : List[str] = batch.to_pandas().to_json( path_or_buf=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **UpperCamelCase__ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) -> int: A_ : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): A_ : int = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase__ ) else: A_ , A_ : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(UpperCamelCase__ ) return written
710
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = '''vit_msn''' def __init__( self , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-06 , _lowerCamelCase=224 , _lowerCamelCase=16 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , ) -> List[Any]: super().__init__(**_lowerCamelCase ) A_ : Tuple = hidden_size A_ : List[str] = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Optional[Any] = intermediate_size A_ : List[Any] = hidden_act A_ : int = hidden_dropout_prob A_ : int = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : List[str] = layer_norm_eps A_ : Optional[Any] = image_size A_ : Dict = patch_size A_ : Dict = num_channels A_ : Dict = qkv_bias
385
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = """Hello world! cécé herlolip""" def SCREAMING_SNAKE_CASE__ ( snake_case__ :str , snake_case__ :str , snake_case__ :bool ) -> Optional[Any]: _lowercase = FairseqRobertaModel.from_pretrained(_lowerCamelCase ) roberta.eval() # disable dropout _lowercase = roberta.model.encoder.sentence_encoder _lowercase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: _lowercase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , _lowerCamelCase ) _lowercase = XLMRobertaXLForSequenceClassification(_lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings _lowercase = roberta_sent_encoder.embed_tokens.weight _lowercase = roberta_sent_encoder.embed_positions.weight _lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowercase = roberta_sent_encoder.layer_norm.weight _lowercase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowercase = model.roberta.encoder.layer[i] _lowercase = roberta_sent_encoder.layers[i] _lowercase = layer.attention _lowercase = roberta_layer.self_attn_layer_norm.weight _lowercase = roberta_layer.self_attn_layer_norm.bias # self attention _lowercase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowercase = roberta_layer.self_attn.q_proj.weight _lowercase = roberta_layer.self_attn.q_proj.bias _lowercase = roberta_layer.self_attn.k_proj.weight _lowercase = roberta_layer.self_attn.k_proj.bias _lowercase = roberta_layer.self_attn.v_proj.weight _lowercase = roberta_layer.self_attn.v_proj.bias # self-attention output _lowercase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowercase = roberta_layer.self_attn.out_proj.weight _lowercase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowercase = roberta_layer.final_layer_norm.weight _lowercase = roberta_layer.final_layer_norm.bias # intermediate _lowercase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowercase = roberta_layer.fca.weight _lowercase = roberta_layer.fca.bias # output _lowercase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowercase = roberta_layer.fca.weight _lowercase = roberta_layer.fca.bias # end of layer if classification_head: _lowercase = roberta.model.classification_heads['mnli'].dense.weight _lowercase = roberta.model.classification_heads['mnli'].dense.bias _lowercase = roberta.model.classification_heads['mnli'].out_proj.weight _lowercase = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _lowercase = roberta.model.encoder.lm_head.dense.weight _lowercase = roberta.model.encoder.lm_head.dense.bias _lowercase = roberta.model.encoder.lm_head.layer_norm.weight _lowercase = roberta.model.encoder.lm_head.layer_norm.bias _lowercase = roberta.model.encoder.lm_head.weight _lowercase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowercase = roberta.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 _lowercase = model(_lowerCamelCase )[0] if classification_head: _lowercase = roberta.model.classification_heads['mnli'](roberta.extract_features(_lowerCamelCase ) ) else: _lowercase = roberta.model(_lowerCamelCase )[0] print(our_output.shape , their_output.shape ) _lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 _lowercase = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) snake_case = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
67
"""simple docstring""" __lowercase : Union[str, Any] = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCamelCase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
142
0
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Any = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): __a =DebertaVaTokenizer __a =DebertaVaTokenizerFast __a =True __a =True def __UpperCamelCase ( self ) ->int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a = DebertaVaTokenizer(lowerCamelCase , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , lowerCamelCase ) ->Dict: '''simple docstring''' __a = 'this is a test' __a = 'this is a test' return input_text, output_text def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = '<pad>' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(lowerCamelCase ) , 3_0001 ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' # fmt: off __a = ' \tHeLLo!how \n Are yoU? ' __a = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , do_lower_case=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , do_lower_case=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' pass def __UpperCamelCase ( self ) ->Any: '''simple docstring''' # fmt: off __a = 'I was born in 92000, and this is falsé.' __a = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , split_by_punct=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , split_by_punct=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' # fmt: off __a = 'I was born in 92000, and this is falsé.' __a = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' # fmt: off __a = 'I was born in 92000, and this is falsé.' __a = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' # fmt: off __a = 'I was born in 92000, and this is falsé.' __a = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' # fmt: off __a = ' \tHeLLo!how \n Are yoU? ' __a = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on __a = DebertaVaTokenizer(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , do_lower_case=lowerCamelCase , split_by_punct=lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = 'I was born in 92000, and this is falsé.' __a = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) __a = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = 'This is a test' __a = [13, 1, 4398, 25, 21, 1289] __a = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] __a = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] __a = DebertaVaTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) __a = DebertaVaTokenizerFast(lowerCamelCase , keep_accents=lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # fmt: off __a = 'I was born in 92000, and this is falsé.' __a = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __a = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] __a = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = DebertaVaTokenizer(lowerCamelCase ) __a = tokenizer.encode('sequence builders' ) __a = tokenizer.encode('multi-sequence build' ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCamelCase , ) @slow def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' # fmt: off __a = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> np.array: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' lowerCamelCase_ = 'f32le' lowerCamelCase_ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase_ = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCamelCase_ = output_stream[0] lowerCamelCase_ = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = "f32le" ,) -> Union[str, Any]: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' if format_for_conversion == "s16le": lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase_ = platform.system() if system == "Linux": lowerCamelCase_ = 'alsa' lowerCamelCase_ = 'default' elif system == "Darwin": lowerCamelCase_ = 'avfoundation' lowerCamelCase_ = ':0' elif system == "Windows": lowerCamelCase_ = 'dshow' lowerCamelCase_ = 'default' lowerCamelCase_ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase_ = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "f32le" ,) -> Any: if stream_chunk_s is not None: lowerCamelCase_ = stream_chunk_s else: lowerCamelCase_ = chunk_length_s lowerCamelCase_ = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": lowerCamelCase_ = np.intaa lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = np.floataa lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase_ = chunk_length_s / 6 lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): lowerCamelCase_ = [stride_length_s, stride_length_s] lowerCamelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase_ = datetime.datetime.now() lowerCamelCase_ = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale lowerCamelCase_ = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) lowerCamelCase_ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCamelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> Optional[Any]: lowerCamelCase_ = b'' lowerCamelCase_ ,lowerCamelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase_ = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: lowerCamelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase_ = (_stride_left, stride_right) lowerCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCamelCase_ = False yield item lowerCamelCase_ = stride_left lowerCamelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: lowerCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCamelCase_ = False yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: lowerCamelCase_ = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
42
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( lowerCamelCase_ = 1_000_000) -> int: UpperCamelCase__ : int = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2).is_integer(): num_cuboids += ( min(lowerCamelCase_ , sum_shortest_sides // 2) - max(1 , sum_shortest_sides - max_cuboid_size) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
596
0
"""simple docstring""" from math import sqrt def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : Optional[int] = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def _snake_case ( UpperCamelCase : Optional[Any] = 10000 ): UpperCAmelCase : Tuple = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
713
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = 'AutoTokenizer' __lowerCAmelCase : str = ['tokenizer'] __lowerCAmelCase : Any = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: UpperCAmelCase : Any = get_file_from_repo( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) UpperCAmelCase : Optional[int] = None else: with open(_SCREAMING_SNAKE_CASE ) as speaker_embeddings_json: UpperCAmelCase : List[str] = json.load(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : List[str] = None UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(tokenizer=_SCREAMING_SNAKE_CASE , speaker_embeddings=_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , _SCREAMING_SNAKE_CASE="speaker_embeddings" , _SCREAMING_SNAKE_CASE = False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """v2""" ) , exist_ok=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = {} UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": UpperCAmelCase : Optional[Any] = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , F"{prompt_key}_{key}.npy" ) UpperCAmelCase : Tuple = tmp_dict with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , """w""" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) super().save_pretrained(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] = self.speaker_embeddings[voice_preset] UpperCAmelCase : List[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) UpperCAmelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , _SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , _SCREAMING_SNAKE_CASE ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) UpperCAmelCase : List[str] = np.load(_SCREAMING_SNAKE_CASE ) return voice_preset_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE = None ) -> List[str]: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="pt" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: '''simple docstring''' if voice_preset is not None and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): UpperCAmelCase : Dict = self._load_voice_preset(_SCREAMING_SNAKE_CASE ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(""".npz""" ): UpperCAmelCase : Tuple = voice_preset + """.npz""" UpperCAmelCase : Union[str, Any] = np.load(_SCREAMING_SNAKE_CASE ) if voice_preset is not None: self._validate_voice_preset_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if voice_preset is not None: UpperCAmelCase : List[Any] = voice_preset return encoded_text
359
0
from math import pi, sqrt, tan def UpperCamelCase ( _A : float )-> float: """simple docstring""" if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def UpperCamelCase ( _A : float , _A : float , _A : float )-> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase ( _A : float )-> float: """simple docstring""" if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def UpperCamelCase ( _A : float )-> float: """simple docstring""" if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase ( _A : float , _A : float , _A : float )-> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) A__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(_A , 2 ) * torus_radius * tube_radius def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def UpperCamelCase ( _A : float )-> float: """simple docstring""" if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def UpperCamelCase ( _A : float , _A : float , _A : float )-> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) A__ = (sidea + sidea + sidea) / 2 A__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def UpperCamelCase ( _A : float , _A : float , _A : float )-> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def UpperCamelCase ( _A : float )-> float: """simple docstring""" if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def UpperCamelCase ( _A : float , _A : float )-> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase ( _A : int , _A : float )-> float: """simple docstring""" if not isinstance(_A , _A ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
491
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : torch.FloatTensor class UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase ): @register_to_config def __init__( self , UpperCAmelCase__ = 16 , UpperCAmelCase__ = 88 , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = 1 , UpperCAmelCase__ = 0.0 , UpperCAmelCase__ = 32 , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = "geglu" , UpperCAmelCase__ = True , UpperCAmelCase__ = True , ): super().__init__() A__ = num_attention_heads A__ = attention_head_dim A__ = num_attention_heads * attention_head_dim A__ = in_channels A__ = torch.nn.GroupNorm(num_groups=UpperCAmelCase__ , num_channels=UpperCAmelCase__ , eps=1e-6 , affine=UpperCAmelCase__ ) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) # 3. Define transformers blocks A__ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dropout=UpperCAmelCase__ , cross_attention_dim=UpperCAmelCase__ , activation_fn=UpperCAmelCase__ , attention_bias=UpperCAmelCase__ , double_self_attention=UpperCAmelCase__ , norm_elementwise_affine=UpperCAmelCase__ , ) for d in range(UpperCAmelCase__ ) ] ) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=1 , UpperCAmelCase__=None , UpperCAmelCase__ = True , ): A__ , A__ , A__ , A__ = hidden_states.shape A__ = batch_frames // num_frames A__ = hidden_states A__ = hidden_states[None, :].reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) A__ = self.norm(UpperCAmelCase__ ) A__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = self.proj_in(UpperCAmelCase__ ) # 2. Blocks for block in self.transformer_blocks: A__ = block( UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , timestep=UpperCAmelCase__ , cross_attention_kwargs=UpperCAmelCase__ , class_labels=UpperCAmelCase__ , ) # 3. Output A__ = self.proj_out(UpperCAmelCase__ ) A__ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) A__ = hidden_states.reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) A__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase__ )
491
1
'''simple docstring''' import unittest import numpy as np def snake_case__ ( _A: np.ndarray , _A: np.ndarray , _A: np.ndarray , _A: np.ndarray | None = None , ) -> np.ndarray: '''simple docstring''' lowerCAmelCase = np.shape(_A ) lowerCAmelCase = np.shape(_A ) lowerCAmelCase = np.shape(_A ) if shape_a[0] != shape_b[0]: lowerCAmelCase = ( """Expected the same number of rows for A and B. """ f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(_A ) if shape_b[1] != shape_c[1]: lowerCAmelCase = ( """Expected the same number of columns for B and C. """ f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(_A ) lowerCAmelCase = pseudo_inv if a_inv is None: try: lowerCAmelCase = np.linalg.inv(_A ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]]) lowerCAmelCase = np.array([[2, 1], [6, 3]]) lowerCAmelCase = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = np.block([[a, b], [b.T, c]]) lowerCAmelCase = np.linalg.det(__lowerCAmelCase) lowerCAmelCase = np.linalg.det(__lowerCAmelCase) lowerCAmelCase = np.linalg.det(__lowerCAmelCase) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s) def a_ ( self): """simple docstring""" lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]]) lowerCAmelCase = np.array([[2, 1], [6, 3]]) with self.assertRaises(__lowerCAmelCase): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]]) lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(__lowerCAmelCase): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
605
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case__ ( _A: np.ndarray , _A: np.ndarray , _A: np.ndarray , _A: int , _A: int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase = cva.getAffineTransform(_A , _A ) return cva.warpAffine(_A , _A , (rows, cols) ) if __name__ == "__main__": # read original image __lowercase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowercase , __lowercase = gray_img.shape # set different points to rotate image __lowercase = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) __lowercase = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) __lowercase = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) __lowercase = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list __lowercase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowercase = plt.figure(1) __lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
605
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__SCREAMING_SNAKE_CASE ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() return TatoebaConverter(save_dir=snake_case__ ) @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = self.resolver.write_model_card("opus-mt-he-en" , dry_run=snake_case__ ) assert mmeta["long_pair"] == "heb-eng"
572
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase_ : str = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' lowercase_ : Optional[int] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' lowercase_ : Dict = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' lowercase_ : str = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' lowercase_ : Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__=[1, 10, 100] , snake_case__=4 , snake_case__=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=snake_case__ ) as executor: _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : List[str] = Counter() _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : str = defaultdict(snake_case__ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case__ , snake_case__ ) ): for candidate in candidates: _SCREAMING_SNAKE_CASE : Any = candidate + "\n" + test_case _SCREAMING_SNAKE_CASE : List[Any] = (test_program, timeout, task_id, completion_id[task_id]) _SCREAMING_SNAKE_CASE : List[Any] = executor.submit(snake_case__ , *snake_case__ ) futures.append(snake_case__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = [], [] for result in results.values(): result.sort() _SCREAMING_SNAKE_CASE : List[str] = [r[1]["passed"] for r in result] total.append(len(snake_case__ ) ) correct.append(sum(snake_case__ ) ) _SCREAMING_SNAKE_CASE : List[str] = np.array(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(snake_case__ ) _SCREAMING_SNAKE_CASE : str = k _SCREAMING_SNAKE_CASE : Any = {F'''pass@{k}''': estimate_pass_at_k(snake_case__ , snake_case__ , snake_case__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _lowerCAmelCase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any] ) -> Optional[int]: def estimator(lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(lowerCamelCase__, lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Union[str, Any] = itertools.repeat(lowerCamelCase__, len(lowerCamelCase__ ) ) else: assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = iter(lowerCamelCase__ ) return np.array([estimator(int(lowerCamelCase__ ), int(lowerCamelCase__ ), lowerCamelCase__ ) for n, c in zip(lowerCamelCase__, lowerCamelCase__ )] )
572
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCamelCase__ = None UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCamelCase__ = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } UpperCamelCase__ = '▁' class a ( lowercase ): UpperCamelCase : Any = VOCAB_FILES_NAMES UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : Union[str, Any] = AlbertTokenizer def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="[CLS]" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<unk>" , UpperCamelCase_="[SEP]" , UpperCamelCase_="<pad>" , UpperCamelCase_="[CLS]" , UpperCamelCase_="[MASK]" , **UpperCamelCase_ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase__ : Union[str, Any] = ( AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ , normalized=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) UpperCAmelCase__ : Optional[Any] = do_lower_case UpperCAmelCase__ : Optional[Any] = remove_space UpperCAmelCase__ : List[Any] = keep_accents UpperCAmelCase__ : List[str] = vocab_file UpperCAmelCase__ : Tuple = False if not self.vocab_file else True def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): UpperCAmelCase__ : List[Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
254
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase ( _snake_case ): def wrapper(*_snake_case ,**_snake_case ): UpperCAmelCase__ : str = timeit.default_timer() UpperCAmelCase__ : Dict = func(*_snake_case ,**_snake_case ) UpperCAmelCase__ : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase__ : Dict = func.__name__ return wrapper def lowerCamelCase ( _snake_case ,_snake_case=100 ,_snake_case=None ): UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[Any] = seq_shapes or {} for i in range(_snake_case ): UpperCAmelCase__ : Tuple = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_snake_case ,_ArrayXD ): UpperCAmelCase__ : Union[str, Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_snake_case ,datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : List[Any] = 'The small grey turtle was surprisingly fast when challenged.' else: UpperCAmelCase__ : List[str] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(_snake_case ,datasets.Sequence ): while isinstance(_snake_case ,datasets.Sequence ): UpperCAmelCase__ : str = v.feature UpperCAmelCase__ : Optional[Any] = seq_shapes[k] UpperCAmelCase__ : Union[str, Any] = np.random.rand(*_snake_case ).astype(v.dtype ) UpperCAmelCase__ : str = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case=100 ,_snake_case=None ): UpperCAmelCase__ : Any = generate_examples(_snake_case ,num_examples=_snake_case ,seq_shapes=_snake_case ) with ArrowWriter(features=_snake_case ,path=_snake_case ) as writer: for key, record in dummy_data: UpperCAmelCase__ : int = features.encode_example(_snake_case ) writer.write(_snake_case ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) UpperCAmelCase__ : str = datasets.Dataset.from_file(filename=_snake_case ,info=datasets.DatasetInfo(features=_snake_case ) ) return dataset
254
1
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ ): return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
263
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase_ = True except (ImportError, AttributeError): UpperCAmelCase_ = object def __magic_name__ ( *lowercase , **lowercase ) -> Optional[Any]: """simple docstring""" pass UpperCAmelCase_ = False UpperCAmelCase_ = logging.get_logger("""transformers-cli/serving""") def __magic_name__ ( lowercase ) -> int: """simple docstring""" lowercase_ : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase , args.host , args.port , args.workers ) class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : dict class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : List[str] __a : Optional[List[int]] class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : str class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Any class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' @staticmethod def snake_case__ ( snake_case__ ) -> Optional[int]: """simple docstring""" lowercase_ : List[str] = parser.add_parser( """serve""", help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""", type=snake_case__, choices=get_supported_tasks(), help="""The task to run the pipeline on""", ) serve_parser.add_argument("""--host""", type=snake_case__, default="""localhost""", help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""", type=snake_case__, default=88_88, help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""", type=snake_case__, default=1, help="""Number of http workers""" ) serve_parser.add_argument("""--model""", type=snake_case__, help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""", type=snake_case__, help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""", type=snake_case__, help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""", type=snake_case__, default=-1, help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""", ) serve_parser.set_defaults(func=snake_case__ ) def __init__( self, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : str = pipeline lowercase_ : List[str] = host lowercase_ : int = port lowercase_ : Optional[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(f"""Serving model over {host}:{port}""" ) lowercase_ : Union[str, Any] = FastAPI( routes=[ APIRoute( """/""", self.model_info, response_model=snake_case__, response_class=snake_case__, methods=["""GET"""], ), APIRoute( """/tokenize""", self.tokenize, response_model=snake_case__, response_class=snake_case__, methods=["""POST"""], ), APIRoute( """/detokenize""", self.detokenize, response_model=snake_case__, response_class=snake_case__, methods=["""POST"""], ), APIRoute( """/forward""", self.forward, response_model=snake_case__, response_class=snake_case__, methods=["""POST"""], ), ], timeout=6_00, ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" run(self._app, host=self.host, port=self.port, workers=self.workers ) def snake_case__ ( self ) -> Dict: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def snake_case__ ( self, snake_case__ = Body(snake_case__, embed=snake_case__ ), snake_case__ = Body(snake_case__, embed=snake_case__ ) ) -> Optional[int]: """simple docstring""" try: lowercase_ : Tuple = self._pipeline.tokenizer.tokenize(snake_case__ ) if return_ids: lowercase_ : Union[str, Any] = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case__ ) return ServeTokenizeResult(tokens=snake_case__, tokens_ids=snake_case__ ) else: return ServeTokenizeResult(tokens=snake_case__ ) except Exception as e: raise HTTPException(status_code=5_00, detail={"""model""": """""", """error""": str(snake_case__ )} ) def snake_case__ ( self, snake_case__ = Body(snake_case__, embed=snake_case__ ), snake_case__ = Body(snake_case__, embed=snake_case__ ), snake_case__ = Body(snake_case__, embed=snake_case__ ), ) -> Dict: """simple docstring""" try: lowercase_ : List[Any] = self._pipeline.tokenizer.decode(snake_case__, snake_case__, snake_case__ ) return ServeDeTokenizeResult(model="""""", text=snake_case__ ) except Exception as e: raise HTTPException(status_code=5_00, detail={"""model""": """""", """error""": str(snake_case__ )} ) async def snake_case__ ( self, snake_case__=Body(snake_case__, embed=snake_case__ ) ) -> Tuple: """simple docstring""" # Check we don't have empty string if len(snake_case__ ) == 0: return ServeForwardResult(output=[], attention=[] ) try: # Forward through the model lowercase_ : Optional[int] = self._pipeline(snake_case__ ) return ServeForwardResult(output=snake_case__ ) except Exception as e: raise HTTPException(5_00, {"""error""": str(snake_case__ )} )
458
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = MvpTokenizer UpperCamelCase = MvpTokenizerFast UpperCamelCase = True UpperCamelCase = filter_roberta_detectors def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _UpperCAmelCase = dict(zip(A , range(len(A)))) _UpperCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _UpperCAmelCase = {'unk_token': '<unk>'} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(A)) def _lowerCamelCase ( self : Optional[Any] , **A : Optional[int]) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : List[Any] , **A : Union[str, Any]) -> int: """simple docstring""" kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A) def _lowerCamelCase ( self : Any , A : str) -> Dict: """simple docstring""" return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : Any) -> str: """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp') @cached_property def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp') @require_torch def _lowerCamelCase ( self : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _UpperCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , max_length=len(A) , padding=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(A , A) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , padding=A , return_tensors='pt') # check if input_ids are returned and no labels self.assertIn('input_ids' , A) self.assertIn('attention_mask' , A) self.assertNotIn('labels' , A) self.assertNotIn('decoder_attention_mask' , A) @require_torch def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(text_target=A , max_length=32 , padding='max_length' , return_tensors='pt') self.assertEqual(32 , targets['input_ids'].shape[1]) @require_torch def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=A , truncation=A , return_tensors='pt') self.assertIsInstance(A , A) self.assertEqual(batch.input_ids.shape , (2, 10_24)) @require_torch def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['A long paragraph for summarization.'] _UpperCAmelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _UpperCAmelCase = tokenizer(A , text_target=A , return_tensors='pt') _UpperCAmelCase = inputs['input_ids'] _UpperCAmelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = self.tokenizer_class.from_pretrained(A , **A) _UpperCAmelCase = 'A, <mask> AllenNLP sentence.' _UpperCAmelCase = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) _UpperCAmelCase = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2]) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'])
639
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" return self._get_dummy_components() def _lowerCamelCase ( self : Any , A : int , A : Dict=0) -> Tuple: """simple docstring""" if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A)).to(A) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _lowerCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def _lowerCamelCase ( self : List[str]) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1) def _lowerCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _lowerCamelCase ( self : str) -> List[str]: """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
639
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _SCREAMING_SNAKE_CASE : List[str] = get_logger(__name__) class UpperCamelCase__ : def __init__( self : Any, __lowerCamelCase : Optional[str] = None ) -> Dict: UpperCamelCase__ : str = ( os.path.join(__lowerCamelCase, config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase__ : Union[str, Any] = Extractor def __lowercase( self : Tuple, __lowerCamelCase : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase__ : Dict = os.path.abspath(__lowerCamelCase ) return os.path.join(self.extract_dir, hash_url_to_filename(__lowerCamelCase ) ) def __lowercase( self : Union[str, Any], __lowerCamelCase : str, __lowerCamelCase : bool ) -> bool: return force_extract or ( not os.path.isfile(__lowerCamelCase ) and not (os.path.isdir(__lowerCamelCase ) and os.listdir(__lowerCamelCase )) ) def __lowercase( self : List[str], __lowerCamelCase : str, __lowerCamelCase : bool = False ) -> str: UpperCamelCase__ : int = self.extractor.infer_extractor_format(__lowerCamelCase ) if not extractor_format: return input_path UpperCamelCase__ : Union[str, Any] = self._get_output_path(__lowerCamelCase ) if self._do_extract(__lowerCamelCase, __lowerCamelCase ): self.extractor.extract(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return output_path class UpperCamelCase__ ( __lowerCamelCase ): @classmethod @abstractmethod def __lowercase( cls : Tuple, __lowerCamelCase : Union[Path, str], **__lowerCamelCase : Optional[int] ) -> bool: ... @staticmethod @abstractmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: ... class UpperCamelCase__ ( __lowerCamelCase , __lowerCamelCase ): a__ : List[bytes] = [] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : int ) -> Optional[int]: with open(__lowerCamelCase, '''rb''' ) as f: return f.read(__lowerCamelCase ) @classmethod def __lowercase( cls : int, __lowerCamelCase : Union[Path, str], __lowerCamelCase : bytes = b"" ) -> bool: if not magic_number: UpperCamelCase__ : Union[str, Any] = max(len(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase__ : Union[str, Any] = cls.read_magic_number(__lowerCamelCase, __lowerCamelCase ) except OSError: return False return any(magic_number.startswith(__lowerCamelCase ) for cls_magic_number in cls.magic_numbers ) class UpperCamelCase__ ( __lowerCamelCase ): @classmethod def __lowercase( cls : Dict, __lowerCamelCase : Union[Path, str], **__lowerCamelCase : Any ) -> bool: return tarfile.is_tarfile(__lowerCamelCase ) @staticmethod def __lowercase( __lowerCamelCase : Optional[int], __lowerCamelCase : Union[str, Any] ) -> Optional[int]: def resolved(__lowerCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(__lowerCamelCase ) ) def badpath(__lowerCamelCase : str, __lowerCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__lowerCamelCase, __lowerCamelCase ) ).startswith(__lowerCamelCase ) def badlink(__lowerCamelCase : Any, __lowerCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase__ : Optional[int] = resolved(os.path.join(__lowerCamelCase, os.path.dirname(info.name ) ) ) return badpath(info.linkname, base=__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = resolved(__lowerCamelCase ) for finfo in members: if badpath(finfo.name, __lowerCamelCase ): logger.error(f'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(__lowerCamelCase, __lowerCamelCase ): logger.error(f'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(__lowerCamelCase, __lowerCamelCase ): logger.error(f'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) UpperCamelCase__ : int = tarfile.open(__lowerCamelCase ) tar_file.extractall(__lowerCamelCase, members=TarExtractor.safemembers(__lowerCamelCase, __lowerCamelCase ) ) tar_file.close() class UpperCamelCase__ ( __lowerCamelCase ): a__ : Tuple = [B'\x1F\x8B'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: with gzip.open(__lowerCamelCase, '''rb''' ) as gzip_file: with open(__lowerCamelCase, '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase, __lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : Optional[Any] = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def __lowercase( cls : str, __lowerCamelCase : Union[Path, str], __lowerCamelCase : bytes = b"" ) -> bool: if super().is_extractable(__lowerCamelCase, magic_number=__lowerCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__lowerCamelCase, '''rb''' ) as fp: UpperCamelCase__ : List[str] = _EndRecData(__lowerCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase__ : Optional[Any] = fp.read(__lowerCamelCase ) # CD is where we expect it to be if len(__lowerCamelCase ) == sizeCentralDir: UpperCamelCase__ : str = struct.unpack(__lowerCamelCase, __lowerCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) with zipfile.ZipFile(__lowerCamelCase, '''r''' ) as zip_file: zip_file.extractall(__lowerCamelCase ) zip_file.close() class UpperCamelCase__ ( __lowerCamelCase ): a__ : Optional[Any] = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: with lzma.open(__lowerCamelCase ) as compressed_file: with open(__lowerCamelCase, '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase, __lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : Optional[Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) UpperCamelCase__ : Dict = rarfile.RarFile(__lowerCamelCase ) rf.extractall(__lowerCamelCase ) rf.close() class UpperCamelCase__ ( __lowerCamelCase ): a__ : Any = [B'\x28\xb5\x2F\xFD'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd UpperCamelCase__ : List[str] = zstd.ZstdDecompressor() with open(__lowerCamelCase, '''rb''' ) as ifh, open(__lowerCamelCase, '''wb''' ) as ofh: dctx.copy_stream(__lowerCamelCase, __lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : Optional[Any] = [B'\x42\x5A\x68'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: with bza.open(__lowerCamelCase, '''rb''' ) as compressed_file: with open(__lowerCamelCase, '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase, __lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : Tuple = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) with pyazr.SevenZipFile(__lowerCamelCase, '''r''' ) as archive: archive.extractall(__lowerCamelCase ) class UpperCamelCase__ ( __lowerCamelCase ): a__ : Tuple = [B'\x04\x22\x4D\x18'] @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(__lowerCamelCase, '''rb''' ) as compressed_file: with open(__lowerCamelCase, '''wb''' ) as extracted_file: shutil.copyfileobj(__lowerCamelCase, __lowerCamelCase ) class UpperCamelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) a__ : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowercase( cls : List[Any] ) -> str: return max( len(__lowerCamelCase ) for extractor in cls.extractors.values() if issubclass(__lowerCamelCase, __lowerCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowercase( __lowerCamelCase : Union[Path, str], __lowerCamelCase : int ) -> int: try: return MagicNumberBaseExtractor.read_magic_number(__lowerCamelCase, magic_number_length=__lowerCamelCase ) except OSError: return b"" @classmethod def __lowercase( cls : List[Any], __lowerCamelCase : Union[Path, str], __lowerCamelCase : bool = False ) -> bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''', category=__lowerCamelCase, ) UpperCamelCase__ : Tuple = cls.infer_extractor_format(__lowerCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowercase( cls : int, __lowerCamelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> UpperCamelCase__ : Optional[int] = cls._get_magic_number_max_length() UpperCamelCase__ : int = cls._read_magic_number(__lowerCamelCase, __lowerCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__lowerCamelCase, magic_number=__lowerCamelCase ): return extractor_format @classmethod def __lowercase( cls : int, __lowerCamelCase : Union[Path, str], __lowerCamelCase : Union[Path, str], __lowerCamelCase : Optional[str] = None, __lowerCamelCase : Optional[BaseExtractor] = "deprecated", ) -> None: os.makedirs(os.path.dirname(__lowerCamelCase ), exist_ok=__lowerCamelCase ) # Prevent parallel extractions UpperCamelCase__ : int = str(Path(__lowerCamelCase ).with_suffix('''.lock''' ) ) with FileLock(__lowerCamelCase ): shutil.rmtree(__lowerCamelCase, ignore_errors=__lowerCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__lowerCamelCase, __lowerCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''', category=__lowerCamelCase, ) UpperCamelCase__ : Optional[int] = extractor if extractor != '''deprecated''' else extractor_format else: UpperCamelCase__ : Tuple = cls.extractors[extractor_format] return extractor.extract(__lowerCamelCase, __lowerCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''', category=__lowerCamelCase, ) for extractor in cls.extractors.values(): if extractor.is_extractable(__lowerCamelCase ): return extractor.extract(__lowerCamelCase, __lowerCamelCase )
344
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) logging.set_verbosity_info() def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: UpperCamelCase__ : Optional[int] = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase ) UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = XLMProphetNetForConditionalGeneration.from_pretrained( __lowerCamelCase ,output_loading_info=__lowerCamelCase ) else: UpperCamelCase__ : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase ) UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained( __lowerCamelCase ,output_loading_info=__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] UpperCamelCase__ : Dict = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: UpperCamelCase__ : List[Any] = key.split('''.''' ) if attributes[0] == "lm_head": UpperCamelCase__ : Union[str, Any] = prophet UpperCamelCase__ : Union[str, Any] = prophet_old else: UpperCamelCase__ : Tuple = prophet.prophetnet UpperCamelCase__ : str = prophet_old.model UpperCamelCase__ : Optional[Any] = False for attribute in attributes: if attribute in mapping: UpperCamelCase__ : Optional[int] = mapping[attribute] if not hasattr(__lowerCamelCase ,__lowerCamelCase ) and len(__lowerCamelCase ) > 0: UpperCamelCase__ : int = attribute elif hasattr(__lowerCamelCase ,__lowerCamelCase ): UpperCamelCase__ : Optional[int] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCamelCase__ : List[str] = old_model.weight logger.info(F'{attribute} is initialized.' ) UpperCamelCase__ : Optional[Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCamelCase__ : Optional[int] = old_model.bias logger.info(F'{attribute} is initialized' ) UpperCamelCase__ : List[str] = True break elif attribute in special_keys and hasattr(__lowerCamelCase ,'''in_proj_weight''' ): UpperCamelCase__ : List[str] = old_model.in_proj_weight.shape[0] // 3 UpperCamelCase__ : List[str] = getattr(__lowerCamelCase ,__lowerCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCamelCase__ : List[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCamelCase__ : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCamelCase__ : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCamelCase__ : Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCamelCase__ : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCamelCase__ : Any = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCamelCase__ : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCamelCase__ : List[str] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCamelCase__ : Tuple = True break if attribute.isdigit(): UpperCamelCase__ : Dict = model[int(__lowerCamelCase )] UpperCamelCase__ : str = old_model[int(__lowerCamelCase )] else: UpperCamelCase__ : str = getattr(__lowerCamelCase ,__lowerCamelCase ) if old_attribute == "": UpperCamelCase__ : Dict = old_model else: if not hasattr(__lowerCamelCase ,__lowerCamelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) UpperCamelCase__ : int = getattr(__lowerCamelCase ,__lowerCamelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
344
1
import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = int(np.ceil((x_end - xa) / h ) ) SCREAMING_SNAKE_CASE__ = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE__ = ya SCREAMING_SNAKE_CASE__ = xa for k in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = f(__UpperCamelCase , y[k] ) SCREAMING_SNAKE_CASE__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) SCREAMING_SNAKE_CASE__ = f(x + h , y[k] + h * ka ) SCREAMING_SNAKE_CASE__ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
379
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt'''} __lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } __lowerCamelCase : Optional[Any] = { '''openbmb/cpm-ant-10b''': 1024, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ = reader.readlines() for index, token in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ = index return vocab class __snake_case ( lowerCamelCase_ ): def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : int="<unk>" , _lowercase : int=2_00 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab SCREAMING_SNAKE_CASE__ = unk_token SCREAMING_SNAKE_CASE__ = max_input_chars_per_word def __a ( self : Optional[int] , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] while start < len(_lowercase ): SCREAMING_SNAKE_CASE__ = len(_lowercase ) SCREAMING_SNAKE_CASE__ = None while start < end: SCREAMING_SNAKE_CASE__ = """""".join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) SCREAMING_SNAKE_CASE__ = end return sub_tokens class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] lowerCAmelCase_ = False def __init__( self : int , _lowercase : str , _lowercase : List[Any]="<d>" , _lowercase : List[Any]="</d>" , _lowercase : Union[str, Any]="<s>" , _lowercase : List[str]="</s>" , _lowercase : str="<pad>" , _lowercase : int="<unk>" , _lowercase : List[str]="</n>" , _lowercase : Tuple="</_>" , _lowercase : Any="left" , **_lowercase : Any , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ = bod_token SCREAMING_SNAKE_CASE__ = eod_token SCREAMING_SNAKE_CASE__ = load_vocab(_lowercase ) SCREAMING_SNAKE_CASE__ = self.encoder[space_token] SCREAMING_SNAKE_CASE__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Optional[Any] ): """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : List[Any] ): """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def __a ( self : Union[str, Any] ): """simple docstring""" return len(self.encoder ) def __a ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Union[str, Any] , _lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def __a ( self : int , _lowercase : Any , **_lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : List[Any] ): """simple docstring""" return token in self.encoder def __a ( self : List[str] , _lowercase : List[str] ): """simple docstring""" return "".join(_lowercase ) def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _lowercase : List[Any] ): """simple docstring""" return self.decoder.get(_lowercase , self.unk_token ) def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" if os.path.isdir(_lowercase ): SCREAMING_SNAKE_CASE__ = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: SCREAMING_SNAKE_CASE__ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory SCREAMING_SNAKE_CASE__ = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder["""\n"""] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __a ( self : int , _lowercase : List[int] , _lowercase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
379
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase__ : Union[str, Any] = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase__ : Dict = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCAmelCase ( __snake_case : str ) -> str: if "://" in dataset_path: __A : str = dataset_path.split('://' )[1] return dataset_path def _lowerCAmelCase ( __snake_case : fsspec.AbstractFileSystem ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def _lowerCAmelCase ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ) -> List[str]: __A : List[Any] = not is_remote_filesystem(SCREAMING_SNAKE_CASE_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE_ ) , fs._strip_protocol(SCREAMING_SNAKE_CASE_ ) ) else: fs.mv(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , recursive=SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __A : Tuple = None __A : Union[str, Any] = None __A : Tuple = threading.Lock()
8
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ = """\ """ lowerCAmelCase__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCAmelCase__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase = 16 , lowercase = True , lowercase=None ) -> Optional[int]: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A__ = "cuda" else: A__ = "cuda" if torch.cuda.is_available() else "cpu" A__ = AutoModelForCausalLM.from_pretrained(lowercase ) A__ = model.to(lowercase ) A__ = AutoTokenizer.from_pretrained(lowercase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A__ = model.config.max_length - 1 else: A__ = model.config.max_length A__ = tokenizer( lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors="pt" , return_attention_mask=lowercase , ).to(lowercase ) A__ = encodings["input_ids"] A__ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A__ = [] A__ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(lowercase ) , lowercase ) ): A__ = min(start_index + batch_size , len(lowercase ) ) A__ = encoded_texts[start_index:end_index] A__ = attn_masks[start_index:end_index] if add_start_token: A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase ) A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) A__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase ), attn_mask] , dim=1 ) A__ = encoded_batch with torch.no_grad(): A__ = model(lowercase , attention_mask=lowercase ).logits A__ = out_logits[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = attn_mask[..., 1:].contiguous() A__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase )}
514
0
'''simple docstring''' import numpy as np def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = int(np.ceil((x_end - xa) / h ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowerCamelCase__ ): lowerCamelCase_ = f(lowerCamelCase__ , y[k] ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowerCamelCase_ = f(x + h , y[k] + h * ka ) lowerCamelCase_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
708
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowerCamelCase_ ( lowerCamelCase__ ): if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "vit.embeddings.cls_token" ) if "mask_token" in name: lowerCamelCase_ = name.replace("mask_token" , "decoder.mask_token" ) if "decoder_pos_embed" in name: lowerCamelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase_ = name.replace("pos_embed" , "vit.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "vit.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace("patch_embed.norm" , "vit.embeddings.norm" ) if "decoder_blocks" in name: lowerCamelCase_ = name.replace("decoder_blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "vit.encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCamelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCamelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCamelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.weight" , "vit.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase_ = name.replace("norm.bias" , "vit.layernorm.bias" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase_ = config.decoder_hidden_size lowerCamelCase_ = "decoder.decoder_layers." if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = config.hidden_size lowerCamelCase_ = "vit.encoder.layer." if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] elif "bias" in key: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase_ = 1_0_2_4 lowerCamelCase_ = 4_0_9_6 lowerCamelCase_ = 2_4 lowerCamelCase_ = 1_6 elif "huge" in checkpoint_url: lowerCamelCase_ = 1_4 lowerCamelCase_ = 1_2_8_0 lowerCamelCase_ = 5_1_2_0 lowerCamelCase_ = 3_2 lowerCamelCase_ = 1_6 lowerCamelCase_ = ViTMAEForPreTraining(lowerCamelCase__ ) lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["model"] lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() lowerCamelCase_ = "https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) lowerCamelCase_ = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=lowerCamelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits if "large" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-0.73_09, -0.71_28, -1.01_69], [-1.01_61, -0.90_58, -1.18_78], [-1.04_78, -0.94_11, -1.19_11]] ) elif "huge" in checkpoint_url: lowerCamelCase_ = torch.tensor( [[-1.15_99, -0.91_99, -1.22_21], [-1.19_52, -0.92_69, -1.23_07], [-1.21_43, -0.93_37, -1.22_62]] ) else: lowerCamelCase_ = torch.tensor( [[-0.91_92, -0.84_81, -1.12_59], [-1.13_49, -1.00_34, -1.25_99], [-1.17_57, -1.04_29, -1.27_26]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
313
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __snake_case : List[str] =logging.get_logger(__name__) class lowerCamelCase__ ( __lowerCamelCase): '''simple docstring''' def __init__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
647
from itertools import product def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = sides_number A_ = max_face_number * dice_number A_ = [0] * (max_total + 1) A_ = 1 A_ = range(SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE , repeat=SCREAMING_SNAKE_CASE ): A_ = sum(SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): '''simple docstring''' A_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) A_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) A_ = 0 A_ = 9 A_ = 4 * 9 A_ = 6 for peter_total in range(SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A_ = (4**9) * (6**6) A_ = peter_wins_count / total_games_number A_ = round(SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
203
0
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class a ( __magic_name__ ): def __init__( self : Union[str, Any], SCREAMING_SNAKE_CASE_ : str="", SCREAMING_SNAKE_CASE_ : str="train" ): assert os.path.isdir(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = [] snake_case : Dict = os.listdir(SCREAMING_SNAKE_CASE_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue snake_case : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ): continue self.documents.append(SCREAMING_SNAKE_CASE_ ) def __len__( self : Any ): return len(self.documents ) def __getitem__( self : Dict, SCREAMING_SNAKE_CASE_ : Any ): snake_case : Optional[int] = self.documents[idx] snake_case : Union[str, Any] = document_path.split('''/''' )[-1] with open(SCREAMING_SNAKE_CASE_, encoding='''utf-8''' ) as source: snake_case : List[Any] = source.read() snake_case : List[Any] = process_story(SCREAMING_SNAKE_CASE_ ) return document_name, story_lines, summary_lines def A ( A_ : str ): snake_case : Optional[int] = list(filter(lambda A_ : len(SCREAMING_SNAKE_CASE_ ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it snake_case : List[Any] = [_add_missing_period(SCREAMING_SNAKE_CASE_ ) for line in nonempty_lines] # gather article lines snake_case : int = [] snake_case : Any = deque(SCREAMING_SNAKE_CASE_ ) while True: try: snake_case : int = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(SCREAMING_SNAKE_CASE_ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines snake_case : Tuple = list(filter(lambda A_ : not t.startswith('''@highlight''' ) , SCREAMING_SNAKE_CASE_ ) ) return story_lines, summary_lines def A ( A_ : List[Any] ): snake_case : int = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def A ( A_ : Optional[Any] , A_ : List[str] , A_ : Union[str, Any] ): if len(SCREAMING_SNAKE_CASE_ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE_ )) ) return sequence def A ( A_ : Optional[Any] , A_ : int ): snake_case : str = torch.ones_like(SCREAMING_SNAKE_CASE_ ) snake_case : int = sequence == pad_token_id snake_case : Optional[int] = 0 return mask def A ( A_ : List[Any] , A_ : Any , A_ : Union[str, Any] ): snake_case : Any = [tokenizer.encode(SCREAMING_SNAKE_CASE_ ) for line in story_lines] snake_case : str = [token for sentence in story_lines_token_ids for token in sentence] snake_case : Dict = [tokenizer.encode(SCREAMING_SNAKE_CASE_ ) for line in summary_lines] snake_case : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def A ( A_ : Optional[int] , A_ : Any ): snake_case : Optional[int] = [] for sequence in batch: snake_case : Union[str, Any] = -1 snake_case : int = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_ )
703
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase = logging.get_logger(__name__) logging.set_verbosity_info() def A ( A_ : str , A_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: snake_case : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ ) snake_case, snake_case : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( A_ , output_loading_info=A_ ) else: snake_case : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(A_ ) snake_case, snake_case : List[Any] = ProphetNetForConditionalGeneration.from_pretrained( A_ , output_loading_info=A_ ) snake_case : Union[str, Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] snake_case : str = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: snake_case : Optional[Any] = key.split('''.''' ) if attributes[0] == "lm_head": snake_case : Optional[int] = prophet snake_case : Union[str, Any] = prophet_old else: snake_case : Optional[int] = prophet.prophetnet snake_case : Any = prophet_old.model snake_case : Optional[Any] = False for attribute in attributes: if attribute in mapping: snake_case : List[str] = mapping[attribute] if not hasattr(A_ , A_ ) and len(A_ ) > 0: snake_case : str = attribute elif hasattr(A_ , A_ ): snake_case : Any = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" snake_case : Optional[Any] = old_model.weight logger.info(F"""{attribute} is initialized.""" ) snake_case : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" snake_case : List[str] = old_model.bias logger.info(F"""{attribute} is initialized""" ) snake_case : Tuple = True break elif attribute in special_keys and hasattr(A_ , '''in_proj_weight''' ): snake_case : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3 snake_case : Any = getattr(A_ , A_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": snake_case : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) snake_case : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": snake_case : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) snake_case : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": snake_case : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) snake_case : List[str] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) snake_case : Optional[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." snake_case : List[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) snake_case : Any = True break if attribute.isdigit(): snake_case : Optional[Any] = model[int(A_ )] snake_case : List[str] = old_model[int(A_ )] else: snake_case : Optional[Any] = getattr(A_ , A_ ) if old_attribute == "": snake_case : Union[str, Any] = old_model else: if not hasattr(A_ , A_ ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) snake_case : Tuple = getattr(A_ , A_ ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(A_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
555
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase_ ) class lowerCAmelCase_ ( lowercase_ ): """simple docstring""" a_ :Any =field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ :Dict =Features({"""text""": Value("""string""" )} ) a_ :List[Any] =Features({"""labels""": ClassLabel} ) a_ :Any ="""text""" a_ :Any ="""labels""" def __a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _lowercase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __a = copy.deepcopy(self ) __a = self.label_schema.copy() __a = features[self.label_column] __a = label_schema return task_template @property def __a ( self : Optional[int] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
582
_snake_case = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def _A ( __magic_name__ ): # Make sure the supplied data is a bytes-like object if not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__magic_name__ ) lowercase__ = "".join(bin(__magic_name__ )[2:].zfill(8 ) for byte in data ) lowercase__ = len(__magic_name__ ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = B"=" * ((6 - len(__magic_name__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__magic_name__ ) % 6) else: lowercase__ = B"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__magic_name__ ) , 6 ) ).encode() + padding ) def _A ( __magic_name__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__magic_name__ , __magic_name__ ) and not isinstance(__magic_name__ , __magic_name__ ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__magic_name__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__magic_name__ , __magic_name__ ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__magic_name__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(__magic_name__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(__magic_name__ ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__magic_name__ ) , 8 ) ] return bytes(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
655
0
from __future__ import annotations from functools import lru_cache from math import ceil snake_case : Dict = 1_0_0 snake_case : Union[str, Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) snake_case : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def snake_case__ ( __lowercase ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} A__ : set[int] = set() A__ : int A__ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def snake_case__ ( __lowercase = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __lowercase ): if len(partition(__lowercase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
182
def snake_case__ ( __lowercase ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 A__ : Tuple = 1 A__ : Union[str, Any] = 1 while repunit: A__ : Union[str, Any] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def snake_case__ ( __lowercase = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" A__ : Dict = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowercase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
182
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> str: UpperCamelCase__ : Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Any: UpperCamelCase__ : Any = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCamelCase__ : int = s_dict.pop(__UpperCAmelCase ) elif "subsample" in key: UpperCamelCase__ : List[str] = s_dict.pop(__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> List[Any]: UpperCamelCase__ ,UpperCamelCase__ : List[Any] = emb.weight.shape UpperCamelCase__ : Dict = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) UpperCamelCase__ : List[Any] = emb.weight.data return lin_layer def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Union[str, Any] ) -> List[str]: UpperCamelCase__ : Tuple = torch.load(__UpperCAmelCase , map_location='''cpu''' ) UpperCamelCase__ : List[str] = mam_aaa['''args'''] UpperCamelCase__ : Any = mam_aaa['''model'''] UpperCamelCase__ : List[str] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__UpperCAmelCase ) rename_keys(__UpperCAmelCase ) UpperCamelCase__ : Any = state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCamelCase__ : List[str] = args.share_decoder_input_output_embed UpperCamelCase__ : List[str] = [int(__UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] UpperCamelCase__ : Dict = SpeechaTextConfig( vocab_size=__UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=__UpperCAmelCase , decoder_start_token_id=2 , early_stopping=__UpperCAmelCase , ) UpperCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(__UpperCAmelCase ) UpperCamelCase__ ,UpperCamelCase__ : List[Any] = model.model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0 and not set(__UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: UpperCamelCase__ : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase__ : str = lm_head_weights model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
253
import pytest UpperCAmelCase_ = '__dummy_dataset1__' UpperCAmelCase_ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def lowerCAmelCase_ ( ) -> Any: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCAmelCase_ ( ) -> Any: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict ) -> Tuple: UpperCamelCase__ : Optional[Any] = dataset_loading_script_name UpperCamelCase__ : List[Any] = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
253
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : int =logging.get_logger(__name__) _A : Optional[Any] ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _A : Any ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _A : Union[str, Any] ={'''facebook/blenderbot-3B''': 1_2_8} class lowerCamelCase__ ( A ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] A_ = BlenderbotTokenizer def __init__( self : str , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any="replace" , UpperCamelCase_ : Optional[int]="<s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Any="</s>" , UpperCamelCase_ : Dict="<s>" , UpperCamelCase_ : Optional[Any]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : str="<mask>" , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : str=True , **UpperCamelCase_ : str , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCamelCase_ ) != add_prefix_space: _lowercase : List[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('type' ) ) _lowercase : List[str] = add_prefix_space _lowercase : Any = pre_tok_class(**UpperCamelCase_ ) _lowercase : Tuple = add_prefix_space _lowercase : Optional[Any] = 'post_processor' _lowercase : Tuple = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) if tokenizer_component_instance: _lowercase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase : Any = tuple(state['sep'] ) if "cls" in state: _lowercase : int = tuple(state['cls'] ) _lowercase : Optional[int] = False if state.get('add_prefix_space' , UpperCamelCase_ ) != add_prefix_space: _lowercase : List[Any] = add_prefix_space _lowercase : str = True if state.get('trim_offsets' , UpperCamelCase_ ) != trim_offsets: _lowercase : Optional[int] = trim_offsets _lowercase : Optional[int] = True if changes_to_apply: _lowercase : str = getattr(UpperCamelCase_ , state.pop('type' ) ) _lowercase : List[str] = component_class(**UpperCamelCase_ ) setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value _lowercase : List[Any] = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Any ) -> BatchEncoding: '''simple docstring''' _lowercase : Union[str, Any] = kwargs.get('is_split_into_words' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ) -> BatchEncoding: '''simple docstring''' _lowercase : str = kwargs.get('is_split_into_words' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _lowercase : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : List[str] = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : "Conversation" ) -> List[int]: '''simple docstring''' _lowercase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase_ ) _lowercase : Union[str, Any] = ' '.join(UpperCamelCase_ ) _lowercase : Dict = self.encode(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.model_max_length: _lowercase : int = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ ={ "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =[ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =[ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
616
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Any = IFPipeline a : str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : Dict=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A_ , A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Any , A_ : int , A_ : str , A_ : Dict ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Any ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def lowerCAmelCase_ ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
616
1
'''simple docstring''' import sys __SCREAMING_SNAKE_CASE :Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' _UpperCAmelCase = 1 for digit in s: product *= int(__lowercase ) return product def UpperCAmelCase_ ( __lowercase : str = N ) -> int: '''simple docstring''' _UpperCAmelCase = -sys.maxsize - 1 _UpperCAmelCase = n[:13] _UpperCAmelCase = 13 while cur_index < len(__lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _UpperCAmelCase = substr[1:] + n[cur_index] cur_index += 1 else: _UpperCAmelCase = max(__lowercase , str_eval(__lowercase ) ) _UpperCAmelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"{solution() = }")
119
'''simple docstring''' import sys from collections import defaultdict class A_ : def __init__( self : Dict ): _UpperCAmelCase = [] def lowercase ( self : Union[str, Any] , snake_case_ : List[str] ): return self.node_position[vertex] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ): _UpperCAmelCase = pos def lowercase ( self : Optional[Any] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def lowercase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any ): _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , snake_case_ ) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(snake_case_ , snake_case_ ) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(snake_case_ , 0 ) def lowercase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : Any ): _UpperCAmelCase = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def lowercase ( self : Any , snake_case_ : str , snake_case_ : str ): _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def UpperCAmelCase_ ( __lowercase : Any ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(__lowercase ) _UpperCAmelCase = [-1] * len(__lowercase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(__lowercase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowercase ) heap.node_position.append(__lowercase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(__lowercase , __lowercase ) for _ in range(1 , len(__lowercase ) ): _UpperCAmelCase = heap.delete_minimum(__lowercase , __lowercase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowercase )] ): _UpperCAmelCase = distance heap.bottom_to_top( __lowercase , heap.get_position(__lowercase ) , __lowercase , __lowercase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __SCREAMING_SNAKE_CASE :Optional[int] = int(input('''Enter number of edges: ''').strip()) __SCREAMING_SNAKE_CASE :Optional[int] = defaultdict(list) for _ in range(edges_number): __SCREAMING_SNAKE_CASE :Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
119
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Union[str, Any] = logging.get_logger(__name__) __a : Dict = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Union[str, Any] = '''megatron-bert''' def __init__( self , lowerCAmelCase__=2_90_56 , lowerCAmelCase__=10_24 , lowerCAmelCase__=24 , lowerCAmelCase__=16 , lowerCAmelCase__=40_96 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache
534
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = len(lowercase ) __lowercase = len(lowercase ) __lowercase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase = True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase = True if a[i].islower(): __lowercase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
534
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''ChineseCLIPFeatureExtractor'''] lowerCAmelCase__ = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
544
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
544
1