code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _A = """""" _A = """""" _A = """""" _A = 1 # (0 is vertical, 1 is horizontal) def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[Any] = get_dataset(__UpperCAmelCase , __UpperCAmelCase ) print("""Processing...""" ) lowerCAmelCase__ : List[str] = update_image_and_anno(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for index, image in enumerate(__UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase__ : Optional[Any] = random_chars(32 ) lowerCAmelCase__ : Optional[int] = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase__ : Optional[Any] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""" , __UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(__UpperCAmelCase )} with {file_name}""" ) lowerCAmelCase__ : Optional[int] = [] for anno in new_annos[index]: lowerCAmelCase__ : Tuple = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(__UpperCAmelCase ) with open(f"""/{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple[list, list]: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Tuple = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase , """*.txt""" ) ): lowerCAmelCase__ : List[str] = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__UpperCAmelCase ) as in_file: lowerCAmelCase__ : Any = in_file.readlines() lowerCAmelCase__ : Dict = os.path.join(__UpperCAmelCase , f"""{label_name}.jpg""" ) lowerCAmelCase__ : Tuple = [] for obj_list in obj_lists: lowerCAmelCase__ : List[Any] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 ) -> tuple[list, list, list]: lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Tuple = [] for idx in range(len(__UpperCAmelCase ) ): lowerCAmelCase__ : str = [] lowerCAmelCase__ : int = img_list[idx] path_list.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = anno_list[idx] lowerCAmelCase__ : Tuple = cva.imread(__UpperCAmelCase ) if flip_type == 1: lowerCAmelCase__ : str = cva.flip(__UpperCAmelCase , __UpperCAmelCase ) for bbox in img_annos: lowerCAmelCase__ : Dict = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: lowerCAmelCase__ : Tuple = cva.flip(__UpperCAmelCase , __UpperCAmelCase ) for bbox in img_annos: lowerCAmelCase__ : List[str] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCAmelCase ) new_imgs_list.append(__UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def lowercase_ ( __UpperCAmelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase__ : Any = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
299
import collections import os import re from pathlib import Path lowerCamelCase_ : Optional[Any] = """src/transformers""" # Matches is_xxx_available() lowerCamelCase_ : Union[str, Any] = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} lowerCamelCase_ : int = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCamelCase_ : Union[str, Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available lowerCamelCase_ : Any = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") lowerCamelCase_ : Any = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCamelCase_ : List[Any] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", lowerCamelCase_ : Any = re.compile(r"""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], lowerCamelCase_ : Tuple = re.compile(r"""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo lowerCamelCase_ : Tuple = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: lowerCamelCase_ : Dict = re.compile(r"""^\s*try:""") # Catches a line with else: lowerCamelCase_ : Union[str, Any] = re.compile(r"""^\s*else:""") def A__ ( lowerCamelCase ) -> List[Any]: if _re_test_backend.search(lowerCamelCase ) is None: return None UpperCamelCase_: Any = [b[0] for b in _re_backend.findall(lowerCamelCase )] backends.sort() return "_and_".join(lowerCamelCase ) def A__ ( lowerCamelCase ) -> Union[str, Any]: with open(lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase_: Dict = f.readlines() UpperCamelCase_: Tuple = 0 while line_index < len(lowerCamelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure UpperCamelCase_: Optional[int] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: UpperCamelCase_: Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCamelCase ): UpperCamelCase_: str = _re_one_line_import_struct.search(lowerCamelCase ).groups()[0] UpperCamelCase_: Tuple = re.findall(r"""\[([^\]]+)\]""" , lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue UpperCamelCase_: Any = _re_import_struct_key_value.search(lowerCamelCase ) if single_line_import_search is not None: UpperCamelCase_: Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 UpperCamelCase_: Optional[Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. UpperCamelCase_: Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_: Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_: int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): UpperCamelCase_: Tuple = lines[line_index] if _re_import_struct_add_one.search(lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCamelCase ) is not None: UpperCamelCase_: List[str] = _re_import_struct_add_many.search(lowerCamelCase ).groups()[0].split(""", """ ) UpperCamelCase_: str = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_between_brackets.search(lowerCamelCase ) is not None: UpperCamelCase_: Tuple = _re_between_brackets.search(lowerCamelCase ).groups()[0].split(""", """ ) UpperCamelCase_: List[Any] = [obj[1:-1] for obj in imports if len(lowerCamelCase ) > 0] objects.extend(lowerCamelCase ) elif _re_quote_object.search(lowerCamelCase ) is not None: objects.append(_re_quote_object.search(lowerCamelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 UpperCamelCase_: List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend UpperCamelCase_: List[str] = [] while ( line_index < len(lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): UpperCamelCase_: List[str] = lines[line_index] UpperCamelCase_: Union[str, Any] = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 UpperCamelCase_: Any = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. UpperCamelCase_: str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: UpperCamelCase_: List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 UpperCamelCase_: int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): UpperCamelCase_: Tuple = lines[line_index] UpperCamelCase_: Union[str, Any] = _re_import.search(lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 UpperCamelCase_: Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowerCamelCase , lowerCamelCase ) -> List[Any]: def find_duplicates(lowerCamelCase ): return [k for k, v in collections.Counter(lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] UpperCamelCase_: Optional[int] = [] for key in import_dict_objects.keys(): UpperCamelCase_: List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) UpperCamelCase_: Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): UpperCamelCase_: int = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def A__ ( ) -> Tuple: UpperCamelCase_: Optional[int] = [] for root, _, files in os.walk(lowerCamelCase ): if "__init__.py" in files: UpperCamelCase_: Union[str, Any] = os.path.join(lowerCamelCase , """__init__.py""" ) UpperCamelCase_: Optional[int] = parse_init(lowerCamelCase ) if objects is not None: UpperCamelCase_: Any = analyze_results(*lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_: Any = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(lowerCamelCase ) ) if len(lowerCamelCase ) > 0: raise ValueError("""\n\n""".join(lowerCamelCase ) ) def A__ ( ) -> Any: UpperCamelCase_: List[Any] = [] for path, directories, files in os.walk(lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCamelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue UpperCamelCase_: str = str((Path(lowerCamelCase ) / folder).relative_to(lowerCamelCase ) ) UpperCamelCase_: Optional[Any] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowerCamelCase ) for fname in files: if fname == "__init__.py": continue UpperCamelCase_: Dict = str((Path(lowerCamelCase ) / fname).relative_to(lowerCamelCase ) ) UpperCamelCase_: Optional[int] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowerCamelCase ) return submodules lowerCamelCase_ : Optional[int] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", """models.esm.openfold_utils""", ] def A__ ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import UpperCamelCase_: Optional[Any] = direct_transformers_import(lowerCamelCase ) UpperCamelCase_: Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCamelCase , """__init__.py""" ) , """r""" ) as f: UpperCamelCase_: List[Any] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowerCamelCase ) ) ) UpperCamelCase_: Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCamelCase ) > 0: UpperCamelCase_: Dict = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
548
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Tuple = ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[int] = '''ml.p3.2xlarge''' SCREAMING_SNAKE_CASE : Optional[Any] = '''accelerate_sagemaker_execution_role''' SCREAMING_SNAKE_CASE : int = '''hf-sm''' SCREAMING_SNAKE_CASE : Optional[int] = '''us-east-1''' SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = '''accelerate-sagemaker-1''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''1.6''' SCREAMING_SNAKE_CASE : int = '''4.4''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''train.py''' SCREAMING_SNAKE_CASE : Dict = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] SCREAMING_SNAKE_CASE : str = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['do_train'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['epochs'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['learning_rate'] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args['max_steps'] , _SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
711
'''simple docstring''' def snake_case ( snake_case : str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
514
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets snake_case = '''\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n''' snake_case = '''\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n''' snake_case = '''\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def a ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def a ( self : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=False ): """simple docstring""" if rouge_types is None: _lowerCAmelCase = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] _lowerCAmelCase = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: _lowerCAmelCase = scoring.BootstrapAggregator() else: _lowerCAmelCase = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): _lowerCAmelCase = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: _lowerCAmelCase = aggregator.aggregate() else: _lowerCAmelCase = {} for key in scores[0]: _lowerCAmelCase = [score[key] for score in scores] return result
309
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } SCREAMING_SNAKE_CASE = '▁' # Segments (not really needed) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 4 class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = '''left''' UpperCamelCase_ = XLNetTokenizer def __init__( self : int , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : str=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Optional[Any]="<sep>" , UpperCAmelCase : Optional[int]="<pad>" , UpperCAmelCase : Optional[Any]="<cls>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : int=["<eop>", "<eod>"] , **UpperCAmelCase : List[Any] , ) -> List[str]: '''simple docstring''' lowercase : Dict =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowercase : Tuple =3 lowercase : Union[str, Any] =do_lower_case lowercase : Any =remove_space lowercase : int =keep_accents lowercase : int =vocab_file lowercase : Union[str, Any] =False if not self.vocab_file else True def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Union[str, Any] =[self.sep_token_id] lowercase : Optional[Any] =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Optional[int] =[self.sep_token_id] lowercase : Union[str, Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Dict =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
94
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = BlenderbotSmallConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=False , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Union[str, Any]=0 , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =parent lowerCamelCase__: str =batch_size lowerCamelCase__: Union[str, Any] =seq_length lowerCamelCase__: List[Any] =is_training lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: Dict =vocab_size lowerCamelCase__: List[str] =hidden_size lowerCamelCase__: List[str] =num_hidden_layers lowerCamelCase__: str =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: Union[str, Any] =eos_token_id lowerCamelCase__: List[str] =pad_token_id lowerCamelCase__: str =bos_token_id def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' lowerCamelCase__: Dict =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) lowerCamelCase__: Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) lowerCamelCase__: str =tf.concat([input_ids, eos_tensor] , axis=1) lowerCamelCase__: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Union[str, Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__: Dict =prepare_blenderbot_small_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =TFBlenderbotSmallModel(config=UpperCAmelCase_).get_decoder() lowerCamelCase__: Tuple =inputs_dict["input_ids"] lowerCamelCase__: Union[str, Any] =input_ids[:1, :] lowerCamelCase__: List[str] =inputs_dict["attention_mask"][:1, :] lowerCamelCase__: Optional[int] =inputs_dict["head_mask"] lowerCamelCase__: Optional[int] =1 # first forward pass lowerCamelCase__: str =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_) lowerCamelCase__: List[str] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__: Tuple =ids_tensor((self.batch_size, 3) , config.vocab_size) lowerCamelCase__: Optional[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and lowerCamelCase__: Optional[int] =tf.concat([input_ids, next_tokens] , axis=-1) lowerCamelCase__: Optional[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1) lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0] lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice lowerCamelCase__: Optional[int] =int(ids_tensor((1,) , output_from_past.shape[-1])) lowerCamelCase__: List[Any] =output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__: str =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3) def lowerCAmelCase_ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> int: """simple docstring""" if attention_mask is None: lowerCamelCase__: Dict =tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__: List[str] =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__: List[str] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: List[Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowercase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowercase_ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowercase_ = True lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =TFBlenderbotSmallModelTester(self) lowerCamelCase__: int =ConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_) @require_tokenizers @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowercase_ = "facebook/blenderbot_small-90M" @cached_property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M") @cached_property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Any =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =self.tokenizer(self.src_text , return_tensors="tf") lowerCamelCase__: List[str] =self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Optional[Any] =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCAmelCase_)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
704
def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: List[str] ="" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase_ ( __a ) -> dict[str, str]: """simple docstring""" lowerCamelCase__: Dict =[chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCamelCase__: Union[str, Any] =remove_duplicates(key.upper() ) lowerCamelCase__: List[Any] =len(__a ) # First fill cipher with key characters lowerCamelCase__: Optional[Any] ={alphabet[i]: char for i, char in enumerate(__a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__a ) , 26 ): lowerCamelCase__: Optional[int] =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCamelCase__: List[Any] =alphabet[i - offset] lowerCamelCase__: str =char return cipher_alphabet def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" return "".join(cipher_map.get(__a , __a ) for ch in message.upper() ) def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[Any] ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__a , __a ) for ch in message.upper() ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Optional[Any] =input("Enter message to encode or decode: " ).strip() lowerCamelCase__: Dict =input("Enter keyword: " ).strip() lowerCamelCase__: Any =input("Encipher or decipher? E/D:" ).strip()[0].lower() try: lowerCamelCase__: Union[str, Any] ={"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) lowerCamelCase__: List[Any] =create_cipher_map(__a ) print(func(__a , __a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
437
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. A = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. A = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. A = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __UpperCAmelCase ( __A , __A ) -> tuple[str, float]: '''simple docstring''' UpperCAmelCase__ = len([g for position, g in enumerate(__SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(__SCREAMING_SNAKE_CASE )) def __UpperCAmelCase ( __A , __A ) -> tuple[str, str]: '''simple docstring''' UpperCAmelCase__ = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:] UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( __A , __A ) -> str: '''simple docstring''' UpperCAmelCase__ = list(__SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: UpperCAmelCase__ = random.choice(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( __A , __A , __A , ) -> list[str]: '''simple docstring''' UpperCAmelCase__ = [] # Generate more children proportionally to the fitness score. UpperCAmelCase__ = int(parent_a[1] * 1_0_0 ) + 1 UpperCAmelCase__ = 1_0 if child_n >= 1_0 else child_n for _ in range(__SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = population_score[random.randint(0 , __SCREAMING_SNAKE_CASE )][0] UpperCAmelCase__ = crossover(parent_a[0] , __SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return pop def __UpperCAmelCase ( __A , __A , __A = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: UpperCAmelCase__ = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCAmelCase__ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCAmelCase__ = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__SCREAMING_SNAKE_CASE ) # Generate random starting population. UpperCAmelCase__ = [] for _ in range(__SCREAMING_SNAKE_CASE ): population.append("".join([random.choice(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCAmelCase__ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCAmelCase__ = [evaluate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. UpperCAmelCase__ = sorted(__SCREAMING_SNAKE_CASE , key=lambda __A : x[1] , reverse=__SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCAmelCase__ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. UpperCAmelCase__ = [ (item, score / len(__SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(__SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(__SCREAMING_SNAKE_CASE )] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": A = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) A = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) A, A, A = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
475
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase: str = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase: Optional[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
346
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Optional[int] = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :List[str] = inspect.getfile(accelerate.test_utils ) lowercase :List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowercase :str = test_metrics @require_cpu def SCREAMING_SNAKE_CASE ( self: Tuple ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def SCREAMING_SNAKE_CASE ( self: int ): debug_launcher(self.test_metrics.main ) @require_single_gpu def SCREAMING_SNAKE_CASE ( self: List[Any] ): self.test_metrics.main() @require_multi_gpu def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): print(F"Found {torch.cuda.device_count()} devices." ) lowercase :str = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() )
453
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap SCREAMING_SNAKE_CASE_:Union[str, Any] = """Usage of script: script_name <size_of_canvas:int>""" SCREAMING_SNAKE_CASE_:Union[str, Any] = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCamelCase ( _lowerCAmelCase ) -> list[list[bool]]: """simple docstring""" A : str = [[False for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] return canvas def __UpperCamelCase ( _lowerCAmelCase ) -> None: """simple docstring""" for i, row in enumerate(_lowerCAmelCase ): for j, _ in enumerate(_lowerCAmelCase ): A : List[str] = bool(random.getrandbits(1 ) ) def __UpperCamelCase ( _lowerCAmelCase ) -> list[list[bool]]: """simple docstring""" A : str = np.array(_lowerCAmelCase ) A : str = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_lowerCAmelCase ): for c, pt in enumerate(_lowerCAmelCase ): A : Any = __judge_point( _lowerCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) A : Optional[int] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. A : list[list[bool]] = current_canvas.tolist() return return_canvas def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: """simple docstring""" A : Tuple = 0 A : List[str] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. A : Optional[int] = pt if pt: if alive < 2: A : Optional[int] = False elif alive == 2 or alive == 3: A : Tuple = True elif alive > 3: A : Union[str, Any] = False else: if alive == 3: A : Tuple = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) SCREAMING_SNAKE_CASE_:Any = int(sys.argv[1]) # main working structure of this module. SCREAMING_SNAKE_CASE_:Any = create_canvas(canvas_size) seed(c) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_:int = plt.subplots() fig.show() SCREAMING_SNAKE_CASE_:List[str] = ListedColormap(["""w""", """k"""]) try: while True: SCREAMING_SNAKE_CASE_:Dict = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
662
from typing import Any import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Any = v.conjugate().T A : List[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __UpperCamelCase ( ) -> None: """simple docstring""" A : Any = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A : str = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) A : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
662
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , *__a : Optional[int] , **__a : Dict ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
705
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = LEDConfig SCREAMING_SNAKE_CASE__ :str = {} SCREAMING_SNAKE_CASE__ :List[str] = "gelu" def __init__( self : List[Any] , __a : Union[str, Any] , __a : List[Any]=13 , __a : int=7 , __a : str=True , __a : Any=False , __a : str=99 , __a : str=32 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : List[Any]=37 , __a : List[Any]=0.1 , __a : Tuple=0.1 , __a : Dict=20 , __a : str=2 , __a : Dict=1 , __a : Any=0 , __a : List[Any]=4 , ) -> List[Any]: _UpperCamelCase : Optional[Any] = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : str = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : int = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : str = max_position_embeddings _UpperCamelCase : int = eos_token_id _UpperCamelCase : Dict = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id _UpperCamelCase : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : List[str] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __SCREAMING_SNAKE_CASE ( self : int ) -> str: _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCamelCase : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _UpperCamelCase : Dict = prepare_led_inputs_dict(__a , __a , __a ) _UpperCamelCase : Union[str, Any] = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) _UpperCamelCase : Union[str, Any] = global_attention_mask return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[Any] , __a : int ) -> Tuple: _UpperCamelCase : Tuple = TFLEDModel(config=__a ).get_decoder() _UpperCamelCase : Tuple = inputs_dict["input_ids"] _UpperCamelCase : int = input_ids[:1, :] _UpperCamelCase : List[str] = inputs_dict["attention_mask"][:1, :] _UpperCamelCase : List[Any] = 1 # first forward pass _UpperCamelCase : Any = model(__a , attention_mask=__a , use_cache=__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCamelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCamelCase : Tuple = model(__a , attention_mask=__a )[0] _UpperCamelCase : int = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_=None ,lowercase_=None ,) -> Dict: """simple docstring""" if attention_mask is None: _UpperCamelCase : str = tf.cast(tf.math.not_equal(lowercase_ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = (TFLEDForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ :List[str] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ :Tuple = True SCREAMING_SNAKE_CASE__ :str = False SCREAMING_SNAKE_CASE__ :Optional[Any] = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: _UpperCamelCase : int = TFLEDModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[int] = tf.zeros_like(inputs_dict["attention_mask"] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : str = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) _UpperCamelCase : Dict = True _UpperCamelCase : str = self.model_tester.seq_length _UpperCamelCase : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__a : Optional[int] ): _UpperCamelCase : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__a : Optional[Any] ): _UpperCamelCase : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : List[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _UpperCamelCase : Dict = True _UpperCamelCase : Optional[Any] = False _UpperCamelCase : int = False _UpperCamelCase : Optional[int] = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Any = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : List[Any] = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : str = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine _UpperCamelCase : Any = True _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = model_class(__a ) _UpperCamelCase : int = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: # TODO: Head-masking not yet implement pass def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return tf.constant(lowercase_ ,dtype=tf.intaa ) lowerCamelCase__ = 1E-4 @slow @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : Any = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here _UpperCamelCase : int = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Optional[int] = model(**__a )[0] _UpperCamelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Tuple = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Optional[int] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here _UpperCamelCase : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : List[str] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) _UpperCamelCase : Optional[Any] = prepare_led_inputs_dict(model.config , __a , __a ) _UpperCamelCase : Union[str, Any] = model(**__a )[0] _UpperCamelCase : int = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here _UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-3 , rtol=1e-3 )
51
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''ViTFeatureExtractor'''] __SCREAMING_SNAKE_CASE : Dict = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> float: def get_matched_characters(lowercase_ : str , lowercase_ : str ) -> str: _lowerCamelCase = [] _lowerCamelCase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _lowerCamelCase = int(max(0 , i - limit ) ) _lowerCamelCase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase_ ) _lowerCamelCase = F"""{_stra[0:_stra.index(lowercase_ )]} {_stra[_stra.index(lowercase_ ) + 1:]}""" return "".join(lowercase_ ) # matching characters _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = get_matched_characters(lowercase_ , lowercase_ ) _lowerCamelCase = len(lowercase_ ) # transposition _lowerCamelCase = ( len([(ca, ca) for ca, ca in zip(lowercase_ , lowercase_ ) if ca != ca] ) // 2 ) if not match_count: _lowerCamelCase = 0.0 else: _lowerCamelCase = ( 1 / 3 * ( match_count / len(lowercase_ ) + match_count / len(lowercase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _lowerCamelCase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
661
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __lowerCamelCase = None __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __lowerCamelCase = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } __lowerCamelCase = '▁' class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = BigBirdTokenizer UpperCAmelCase__ = ["input_ids", "attention_mask"] UpperCAmelCase__ = [] def __init__( self : Union[str, Any] , __snake_case : str=None , __snake_case : Any=None , __snake_case : Optional[int]="<unk>" , __snake_case : Dict="<s>" , __snake_case : List[Any]="</s>" , __snake_case : Optional[int]="<pad>" , __snake_case : Tuple="[SEP]" , __snake_case : Optional[Any]="[MASK]" , __snake_case : str="[CLS]" , **__snake_case : Dict , ) -> Dict: __magic_name__: Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token __magic_name__: Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__: Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token __magic_name__: List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __magic_name__: List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token __magic_name__: Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__: List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) __magic_name__: Union[str, Any] = vocab_file __magic_name__: Any = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: __magic_name__: Any = [self.sep_token_id] __magic_name__: Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase__ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: __magic_name__: List[str] = [self.sep_token_id] __magic_name__: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__: int = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
213
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "SpeechT5FeatureExtractor" UpperCAmelCase__ = "SpeechT5Tokenizer" def __init__( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ) -> Tuple: super().__init__(__snake_case , __snake_case ) def __call__( self : Tuple , *__snake_case : Tuple , **__snake_case : Tuple ) -> Any: __magic_name__: List[Any] = kwargs.pop("""audio""" , __snake_case ) __magic_name__: Optional[int] = kwargs.pop("""text""" , __snake_case ) __magic_name__: Tuple = kwargs.pop("""text_target""" , __snake_case ) __magic_name__: List[str] = kwargs.pop("""audio_target""" , __snake_case ) __magic_name__: Dict = kwargs.pop("""sampling_rate""" , __snake_case ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: __magic_name__: str = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) elif text is not None: __magic_name__: List[str] = self.tokenizer(__snake_case , **__snake_case ) else: __magic_name__: Tuple = None if audio_target is not None: __magic_name__: List[str] = self.feature_extractor(audio_target=__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) __magic_name__: Any = targets["""input_values"""] elif text_target is not None: __magic_name__: List[str] = self.tokenizer(__snake_case , **__snake_case ) __magic_name__: Dict = targets["""input_ids"""] else: __magic_name__: Union[str, Any] = None if inputs is None: return targets if targets is not None: __magic_name__: Optional[int] = labels __magic_name__: Optional[int] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __magic_name__: Tuple = decoder_attention_mask return inputs def lowerCamelCase__ ( self : Tuple , *__snake_case : Dict , **__snake_case : int ) -> List[str]: __magic_name__: List[Any] = kwargs.pop("""input_values""" , __snake_case ) __magic_name__: Any = kwargs.pop("""input_ids""" , __snake_case ) __magic_name__: Tuple = kwargs.pop("""labels""" , __snake_case ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: __magic_name__: Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) elif input_ids is not None: __magic_name__: int = self.tokenizer.pad(__snake_case , **__snake_case ) else: __magic_name__: Any = None if labels is not None: if "input_ids" in labels or (isinstance(__snake_case , __snake_case ) and "input_ids" in labels[0]): __magic_name__: Union[str, Any] = self.tokenizer.pad(__snake_case , **__snake_case ) __magic_name__: Any = targets["""input_ids"""] else: __magic_name__: Optional[Any] = self.feature_extractor.feature_size __magic_name__: Optional[int] = self.feature_extractor.num_mel_bins __magic_name__: str = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) __magic_name__: Tuple = feature_size_hack __magic_name__: Tuple = targets["""input_values"""] else: __magic_name__: int = None if inputs is None: return targets if targets is not None: __magic_name__: List[Any] = labels __magic_name__: Dict = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __magic_name__: Tuple = decoder_attention_mask return inputs def lowerCamelCase__ ( self : Dict , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCamelCase__ ( self : List[str] , *__snake_case : List[str] , **__snake_case : str ) -> Union[str, Any]: return self.tokenizer.decode(*__snake_case , **__snake_case )
213
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=1_3 , lowerCAmelCase_ : Any=3_0 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Tuple=3_7 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=1_0 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=0.6 , lowerCAmelCase_ : Tuple=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = mask_ratio __lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Any ) -> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = ViTMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> List[str]: __lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = (self.image_size // self.patch_size) ** 2 __lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a_ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase = ViTMAEModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowercase ( self : List[str] ) -> Dict: pass def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : int ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> List[Any]: # make masks reproducible np.random.seed(2 ) __lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowerCAmelCase = pt_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs[0].cpu().numpy() __lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Make sure we don't have nans __lowerCAmelCase = after_outputs[0].cpu().numpy() __lowerCAmelCase = 0 __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : Dict ) -> Optional[Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : str ) -> List[Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : int ) -> List[str]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[Any] ) -> Any: pass @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ViTMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Tuple ) -> List[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowercase ( self : Optional[int] ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowerCAmelCase = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowerCAmelCase = ViTMAEConfig() __lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowerCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ , noise=torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase_ ) , atol=1e-4 ) )
53
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = '''conditional_detr''' __SCREAMING_SNAKE_CASE = ['''past_key_values'''] __SCREAMING_SNAKE_CASE = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , A_=True , A_=None , A_=3 , A_=3_00 , A_=6 , A_=20_48 , A_=8 , A_=6 , A_=20_48 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=2_56 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.0_2 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=2 , A_=5 , A_=2 , A_=1 , A_=1 , A_=2 , A_=5 , A_=2 , A_=0.2_5 , **A_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A_ , A_ ): _UpperCAmelCase : Tuple = backbone_config.get("""model_type""" ) _UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Optional[Any] = config_class.from_dict(A_ ) _UpperCAmelCase : Tuple = use_timm_backbone _UpperCAmelCase : List[str] = backbone_config _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Tuple = num_queries _UpperCAmelCase : Dict = d_model _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : List[Any] = encoder_attention_heads _UpperCAmelCase : Union[str, Any] = decoder_ffn_dim _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : List[str] = decoder_attention_heads _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : int = init_std _UpperCAmelCase : Union[str, Any] = init_xavier_std _UpperCAmelCase : Tuple = encoder_layerdrop _UpperCAmelCase : Tuple = decoder_layerdrop _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : Any = auxiliary_loss _UpperCAmelCase : List[str] = position_embedding_type _UpperCAmelCase : int = backbone _UpperCAmelCase : Any = use_pretrained_backbone _UpperCAmelCase : int = dilation # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Optional[Any] = bbox_cost _UpperCAmelCase : Tuple = giou_cost # Loss coefficients _UpperCAmelCase : Union[str, Any] = mask_loss_coefficient _UpperCAmelCase : int = dice_loss_coefficient _UpperCAmelCase : List[Any] = cls_loss_coefficient _UpperCAmelCase : List[Any] = bbox_loss_coefficient _UpperCAmelCase : int = giou_loss_coefficient _UpperCAmelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __snake_case( self ): return self.encoder_attention_heads @property def __snake_case( self ): return self.d_model def __snake_case( self ): _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE ( A ): __SCREAMING_SNAKE_CASE = version.parse('''1.11''' ) @property def __snake_case( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __snake_case( self ): return 1e-5 @property def __snake_case( self ): return 12
643
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) UpperCAmelCase : Any =None UpperCAmelCase : Optional[Any] ={ """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } UpperCAmelCase : Tuple ={ """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=1 , _lowerCAmelCase=2_56): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def _lowerCAmelCase (_lowerCAmelCase): with open(_lowerCAmelCase , "r") as f: return json.load(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): with open(_lowerCAmelCase , "w") as f: json.dump(_lowerCAmelCase , _lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) UpperCamelCase_ = os.path.join(_lowerCAmelCase , "tmp") os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase) UpperCamelCase_ = read_json(os.path.join(_lowerCAmelCase , "params.json")) UpperCamelCase_ = NUM_SHARDS[model_size] UpperCamelCase_ = params["n_layers"] UpperCamelCase_ = params["n_heads"] UpperCamelCase_ = n_heads // num_shards UpperCamelCase_ = params["dim"] UpperCamelCase_ = dim // n_heads UpperCamelCase_ = 1_00_00.0 UpperCamelCase_ = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2).float() / dims_per_head)) if "n_kv_heads" in params: UpperCamelCase_ = params["n_kv_heads"] # for GQA / MQA UpperCamelCase_ = n_heads_per_shard // num_key_value_heads UpperCamelCase_ = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCamelCase_ = n_heads UpperCamelCase_ = n_heads_per_shard UpperCamelCase_ = dim # permute for sliced rotary def permute(_lowerCAmelCase , _lowerCAmelCase=n_heads , _lowerCAmelCase=dim , _lowerCAmelCase=dim): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase).transpose(1 , 2).reshape(_lowerCAmelCase , _lowerCAmelCase) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""") # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCamelCase_ = torch.load(os.path.join(_lowerCAmelCase , "consolidated.00.pth") , map_location="cpu") else: # Sharded UpperCamelCase_ = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""") , map_location="cpu") for i in range(_lowerCAmelCase) ] UpperCamelCase_ = 0 UpperCamelCase_ = {"weight_map": {}} for layer_i in range(_lowerCAmelCase): UpperCamelCase_ = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCamelCase_ = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""]), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""]), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCamelCase_ = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } UpperCamelCase_ = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) for i in range(_lowerCAmelCase) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase)) UpperCamelCase_ = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) for i in range(_lowerCAmelCase) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCamelCase_ = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) for i in range(_lowerCAmelCase) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase)] , dim=1) UpperCamelCase_ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase)] , dim=0) UpperCamelCase_ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase)] , dim=1) UpperCamelCase_ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase)] , dim=0) UpperCamelCase_ = inv_freq for k, v in state_dict.items(): UpperCamelCase_ = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase)) UpperCamelCase_ = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded UpperCamelCase_ = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: UpperCamelCase_ = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(_lowerCAmelCase)] , dim=1), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(_lowerCAmelCase)] , dim=0), } for k, v in state_dict.items(): UpperCamelCase_ = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase)) # Write configs UpperCamelCase_ = {"total_size": param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , "pytorch_model.bin.index.json")) UpperCamelCase_ = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 UpperCamelCase_ = params["multiple_of"] if "multiple_of" in params else 2_56 UpperCamelCase_ = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model.") UpperCamelCase_ = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format.") model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase) shutil.rmtree(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): # Initialize the tokenizer based on the `spm` model UpperCamelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""") UpperCamelCase_ = tokenizer_class(_lowerCAmelCase) tokenizer.save_pretrained(_lowerCAmelCase) def _lowerCAmelCase (): UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=_lowerCAmelCase , help="Whether or not to save using `safetensors`.") UpperCamelCase_ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCamelCase_ = os.path.join(args.input_dir , "tokenizer.model") write_tokenizer(args.output_dir , _lowerCAmelCase) if __name__ == "__main__": main()
720
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowercase : '''simple docstring''' lowercase__ = OPTConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=16 , snake_case__=2 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , snake_case__=16 , snake_case__=16 , ): '''simple docstring''' UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = embed_dim UpperCamelCase_ = word_embed_proj_dim UpperCamelCase_ = False def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=snake_case__ , **self.config_updates , ) UpperCamelCase_ = prepare_opt_inputs_dict(snake_case__ , snake_case__ ) return config, inputs_dict def _lowerCamelCase ( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = TFOPTModel(config=snake_case__ ) UpperCamelCase_ = inputs_dict["input_ids"] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict["attention_mask"][:1, :] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCamelCase_ = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) @require_tf class _lowercase (a_ , a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowercase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowercase__ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = 10 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(snake_case__ , snake_case__ ): if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(snake_case__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase_ = model_class(config=snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(snake_case__ ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(snake_case__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , snake_case__ ) # check that weights remain the same after resizing UpperCamelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , snake_case__ ) UpperCamelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(snake_case__ ) def _lowerCAmelCase (_lowerCAmelCase): return tf.constant(_lowerCAmelCase , dtype=tf.intaa) @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = 99 def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowercase (unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) UpperCamelCase_ = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase_ = tf.not_equal(snake_case__ , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase_ = model(input_ids=snake_case__ , attention_mask=snake_case__ ).last_hidden_state UpperCamelCase_ = (1, 11, 512) self.assertEqual(output.shape , snake_case__ ) UpperCamelCase_ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-3 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = xla_generate(snake_case__ , snake_case__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=4e-2 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() UpperCamelCase_ = "facebook/opt-350m" def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ , add_special_tokens=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase_ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) UpperCamelCase_ = tf.function(snake_case__ , jit_compile=snake_case__ ) UpperCamelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-4 ) ) @require_tf @slow class _lowercase (unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-125m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) UpperCamelCase_ = "left" # use different length sentences to test batching UpperCamelCase_ = [ "Hello, my dog is a little", "Today, I", ] UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" , padding=snake_case__ ) UpperCamelCase_ = inputs["input_ids"] UpperCamelCase_ = model.generate(input_ids=snake_case__ , attention_mask=inputs["attention_mask"] ) UpperCamelCase_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ ) UpperCamelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) UpperCamelCase_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) UpperCamelCase_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = "facebook/opt-350m" UpperCamelCase_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(snake_case__ ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(snake_case__ ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(snake_case__ , return_tensors="tf" ).input_ids UpperCamelCase_ = model.generate(snake_case__ , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) predicted_outputs += generated_string self.assertListEqual(snake_case__ , snake_case__ )
504
0
import inspect import unittest class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Any: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCamelCase_ ( self ) -> List[str]: import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE__: Tuple= inspect.getmembers(lowerCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE__: Optional[int]= '''k-diffusion''' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE__: int= '''invisible-watermark''' assert backend in deps, f'{backend} is not in the deps table!'
64
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ :List[str] = logging.get_logger(__name__) lowercase__ :List[str] = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : int = 'bridgetower_vision_model' def __init__( self : str , __lowercase : Optional[Any]=768 , __lowercase : Tuple=12 , __lowercase : List[str]=3 , __lowercase : Any=16 , __lowercase : int=288 , __lowercase : List[Any]=1 , __lowercase : Any=1e-05 , __lowercase : int=False , __lowercase : Any=True , __lowercase : Any=False , **__lowercase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[int] = patch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Union[str, Any] = initializer_factor __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[int] = stop_gradient __UpperCAmelCase : List[str] = share_layernorm __UpperCAmelCase : int = remove_last_layer @classmethod def A_ ( cls : Optional[int] , __lowercase : Union[str, os.PathLike] , **__lowercase : Dict ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = 'bridgetower_text_model' def __init__( self : Any , __lowercase : Dict=50_265 , __lowercase : int=768 , __lowercase : str=12 , __lowercase : Union[str, Any]=12 , __lowercase : str=1 , __lowercase : List[Any]=3_072 , __lowercase : Optional[Any]="gelu" , __lowercase : str=0.1 , __lowercase : Dict=0.1 , __lowercase : List[str]=514 , __lowercase : List[str]=1 , __lowercase : Any=1e-05 , __lowercase : Tuple=1 , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Optional[int]="absolute" , __lowercase : Tuple=True , **__lowercase : str , ): '''simple docstring''' super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Optional[Any] = pad_token_id __UpperCAmelCase : Dict = bos_token_id __UpperCAmelCase : Tuple = eos_token_id @classmethod def A_ ( cls : str , __lowercase : Union[str, os.PathLike] , **__lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = cls.get_config_dict(__lowercase , **__lowercase ) if config_dict.get('''model_type''' ) == "bridgetower": __UpperCAmelCase : List[str] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase , **__lowercase ) class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : Optional[int] = 'bridgetower' def __init__( self : int , __lowercase : Any=True , __lowercase : List[Any]="gelu" , __lowercase : int=768 , __lowercase : Tuple=1 , __lowercase : List[Any]=1e-05 , __lowercase : Optional[Any]=False , __lowercase : str="add" , __lowercase : int=12 , __lowercase : Optional[int]=6 , __lowercase : List[str]=False , __lowercase : Union[str, Any]=False , __lowercase : Tuple=None , __lowercase : str=None , **__lowercase : List[str] , ): '''simple docstring''' __UpperCAmelCase : List[Any] = kwargs.pop('''text_config_dict''' , __lowercase ) __UpperCAmelCase : Any = kwargs.pop('''vision_config_dict''' , __lowercase ) super().__init__(**__lowercase ) __UpperCAmelCase : Optional[Any] = share_cross_modal_transformer_layers __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : List[Any] = initializer_factor __UpperCAmelCase : Optional[Any] = layer_norm_eps __UpperCAmelCase : Dict = share_link_tower_layers __UpperCAmelCase : Any = link_tower_type __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : Optional[int] = tie_word_embeddings __UpperCAmelCase : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: __UpperCAmelCase : List[str] = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: __UpperCAmelCase : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) __UpperCAmelCase : List[str] = BridgeTowerTextConfig(**__lowercase ) __UpperCAmelCase : List[Any] = BridgeTowerVisionConfig(**__lowercase ) @classmethod def A_ ( cls : Any , __lowercase : BridgeTowerTextConfig , __lowercase : BridgeTowerVisionConfig , **__lowercase : Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowercase ) def A_ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() __UpperCAmelCase : int = self.vision_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
522
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = create_tensor(lowerCAmelCase__ ) __A = gather(lowerCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [state.process_index] __A = gather_object(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == state.num_processes, F"""{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = create_tensor(lowerCAmelCase__ ) __A = broadcast(lowerCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if state.is_main_process: __A = torch.arange(state.num_processes + 1 ).to(state.device ) else: __A = torch.arange(state.num_processes ).to(state.device ) __A = pad_across_processes(lowerCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if state.num_processes != 2: return __A = create_tensor(lowerCAmelCase__ ) __A = reduce(lowerCAmelCase__ , "sum" ) __A = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"""{reduced_tensor} != {truth_tensor}""" def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if state.num_processes != 2: return __A = create_tensor(lowerCAmelCase__ ) __A = reduce(lowerCAmelCase__ , "mean" ) __A = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), F"""{reduced_tensor} != {truth_tensor}""" def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' main() def UpperCAmelCase ( ): '''simple docstring''' __A = PartialState() state.print(F"""State: {state}""" ) state.print("testing gather" ) test_gather(lowerCAmelCase__ ) state.print("testing gather_object" ) test_gather_object(lowerCAmelCase__ ) state.print("testing broadcast" ) test_broadcast(lowerCAmelCase__ ) state.print("testing pad_across_processes" ) test_pad_across_processes(lowerCAmelCase__ ) state.print("testing reduce_sum" ) test_reduce_sum(lowerCAmelCase__ ) state.print("testing reduce_mean" ) test_reduce_mean(lowerCAmelCase__ ) if __name__ == "__main__": main()
205
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case_ : Optional[Any] =Lock() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __A = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __A = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = [] __A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __A = temp_rs __A = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __A = Pipe() __A = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __A = temp_rs __A = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __A = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): '''simple docstring''' __A = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*lowerCAmelCase__ ) __A = odd_even_transposition(lowerCAmelCase__ ) print("Sorted List\n" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
205
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : def __init__( self , a__ , a__ , a__ ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _lowerCAmelCase : List[Any] = img _lowerCAmelCase : Dict = img.shape[1] _lowerCAmelCase : Optional[Any] = img.shape[0] _lowerCAmelCase : str = dst_width _lowerCAmelCase : Tuple = dst_height _lowerCAmelCase : Optional[int] = self.src_w / self.dst_w _lowerCAmelCase : List[str] = self.src_h / self.dst_h _lowerCAmelCase : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): _lowerCAmelCase : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def __A ( self , a__ ): return int(self.ratio_x * x ) def __A ( self , a__ ): return int(self.ratio_y * y ) if __name__ == "__main__": _a , _a : int = 800, 600 _a : Optional[int] = imread('image_data/lena.jpg', 1) _a : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
213
"""simple docstring""" from __future__ import annotations from collections import deque class __A : def __init__( self , a__ ): _lowerCAmelCase : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(a__ ) self.set_fail_transitions() def __A ( self , a__ , a__ ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = 0 for character in keyword: _lowerCAmelCase : str = self.find_next_state(a__ , a__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _lowerCAmelCase : List[str] = len(self.adlist ) - 1 else: _lowerCAmelCase : Any = next_state self.adlist[current_state]["output"].append(a__ ) def __A ( self ): _lowerCAmelCase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(a__ ) _lowerCAmelCase : str = 0 while q: _lowerCAmelCase : Optional[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a__ ) _lowerCAmelCase : Tuple = self.adlist[r]["""fail_state"""] while ( self.find_next_state(a__ , self.adlist[child]["""value"""] ) is None and state != 0 ): _lowerCAmelCase : List[Any] = self.adlist[state]["""fail_state"""] _lowerCAmelCase : Optional[int] = self.find_next_state( a__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: _lowerCAmelCase : int = 0 _lowerCAmelCase : str = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def __A ( self , a__ ): _lowerCAmelCase : dict = {} # returns a dict with keywords and list of its occurrences _lowerCAmelCase : Any = 0 for i in range(len(a__ ) ): while ( self.find_next_state(a__ , string[i] ) is None and current_state != 0 ): _lowerCAmelCase : Any = self.adlist[current_state]["""fail_state"""] _lowerCAmelCase : List[Any] = self.find_next_state(a__ , string[i] ) if next_state is None: _lowerCAmelCase : Optional[Any] = 0 else: _lowerCAmelCase : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: _lowerCAmelCase : List[Any] = [] result[key].append(i - len(a__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
213
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowerCamelCase__ = {"allegro/herbert-base-cased": 514} lowerCamelCase__ = {} class lowerCAmelCase__ ( __snake_case ): UpperCamelCase_ : Dict = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Any = HerbertTokenizer def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> List[Any]: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sep_token=__UpperCamelCase , **__UpperCamelCase , ) def A_ ( self , a , a = None ) -> Any: '''simple docstring''' _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self , a , a = None , a = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def A_ ( self , a , a = None ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self , a , a = None ) -> Dict: '''simple docstring''' _UpperCamelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
702
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : int = "deta" UpperCamelCase_ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a=None , a=9_00 , a=20_48 , a=6 , a=20_48 , a=8 , a=6 , a=10_24 , a=8 , a=0.0 , a=True , a="relu" , a=2_56 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=1.0 , a=True , a=False , a="sine" , a=5 , a=4 , a=4 , a=True , a=3_00 , a=True , a=True , a=1 , a=5 , a=2 , a=1 , a=1 , a=5 , a=2 , a=0.1 , a=0.25 , **a , ) -> Dict: '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(a , a ): _UpperCamelCase = backbone_config.pop("""model_type""" ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(a ) _UpperCamelCase = backbone_config _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine _UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def A_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A_ ( self ) -> int: '''simple docstring''' return self.d_model def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
202
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __SCREAMING_SNAKE_CASE : Dict =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __SCREAMING_SNAKE_CASE : Any ={ 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __SCREAMING_SNAKE_CASE : int ={ 'allenai/led-base-16384': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: List[str] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 A: List[str] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' A: List[str] = set() A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: Union[str, Any] = char return pairs class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Optional[int]: A: Optional[int] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token A: Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token A: List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token A: Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token A: List[str] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: A: Union[str, Any] = json.load(A ) A: Tuple = {v: k for k, v in self.encoder.items()} A: Optional[Any] = errors # how to handle errors in decoding A: str = bytes_to_unicode() A: Dict = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: A: List[str] = merges_handle.read().split("""\n""" )[1:-1] A: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] A: Optional[Any] = dict(zip(A , range(len(A ) ) ) ) A: List[Any] = {} A: str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a__ ( self ) -> Optional[int]: return len(self.encoder ) def a__ ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , A ) -> Optional[int]: if token in self.cache: return self.cache[token] A: Tuple = tuple(A ) A: Optional[int] = get_pairs(A ) if not pairs: return token while True: A: Optional[Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A , A: Tuple = bigram A: Any = [] A: Union[str, Any] = 0 while i < len(A ): try: A: Dict = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: Tuple = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: str = tuple(A ) A: List[Any] = new_word if len(A ) == 1: break else: A: Optional[int] = get_pairs(A ) A: List[str] = """ """.join(A ) A: Dict = word return word def a__ ( self , A ) -> List[str]: A: Dict = [] for token in re.findall(self.pat , A ): A: Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def a__ ( self , A ) -> int: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def a__ ( self , A ) -> int: return self.decoder.get(A ) def a__ ( self , A ) -> int: A: Tuple = """""".join(A ) A: List[str] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a__ ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A: str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A: Optional[int] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) A: Optional[Any] = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) A: Union[str, Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def a__ ( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def a__ ( self , A , A = None ) -> List[int]: A: Optional[Any] = [self.sep_token_id] A: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , A , A=False , **A ) -> Dict: A: Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): A: Optional[int] = """ """ + text return (text, kwargs) def a__ ( self , A , A = None , A = PaddingStrategy.DO_NOT_PAD , A = None , A = None , ) -> dict: A: Any = super()._pad( encoded_inputs=A , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) # Load from model defaults if return_attention_mask is None: A: str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A: List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A: Optional[int] = len(encoded_inputs["""global_attention_mask"""] ) != len(A ) if needs_to_be_padded: A: Union[str, Any] = len(A ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A: List[Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A: List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
135
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : float = 0.1 ): '''simple docstring''' A: Union[str, Any] = 3 A: Tuple = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCamelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
135
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = StableDiffusionXLImgaImgPipeline __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ = PipelineTesterMixin.required_optional_params - {"latents"} __magic_name__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ = IMAGE_TO_IMAGE_IMAGE_PARAMS __magic_name__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCAmelCase : Optional[int] = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) _lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , ) _lowerCAmelCase : Tuple = CLIPTextModel(snake_case__ ) _lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=snake_case__ ) _lowerCAmelCase : int = CLIPTextModelWithProjection(snake_case__ ) _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=snake_case__ ) _lowerCAmelCase : Dict = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Dict = image / 2 + 0.5 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[str] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Tuple = self.get_dummy_components() _lowerCAmelCase : Dict = StableDiffusionXLImgaImgPipeline(**snake_case__ ) _lowerCAmelCase : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : str = sd_pipe(**snake_case__ ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_dummy_components() _lowerCAmelCase : Any = StableDiffusionXLImgaImgPipeline(**snake_case__ ) _lowerCAmelCase : int = sd_pipe.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds _lowerCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : Optional[int] = 3 * ['this is a negative prompt'] _lowerCAmelCase : List[Any] = negative_prompt _lowerCAmelCase : int = 3 * [inputs['prompt']] _lowerCAmelCase : str = sd_pipe(**snake_case__ ) _lowerCAmelCase : Optional[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : Optional[Any] = 3 * ['this is a negative prompt'] _lowerCAmelCase : List[Any] = 3 * [inputs.pop('prompt' )] ( _lowerCAmelCase ) : Optional[Any] = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) _lowerCAmelCase : Tuple = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) _lowerCAmelCase : int = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Dict = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase : str = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _lowerCAmelCase : Optional[int] = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = self.get_inputs(snake_case__ ) _lowerCAmelCase : Dict = pipe(**snake_case__ ).images _lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Tuple = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
710
'''simple docstring''' lowerCAmelCase : Optional[int] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCAmelCase : list[bool | None] = [None] * 10_00_00_00 lowerCAmelCase : List[str] = True lowerCAmelCase : Union[str, Any] = False def lowercase (_A ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _lowerCAmelCase : Any = chain(next_number(_A ) ) _lowerCAmelCase : List[str] = number_chain while number < 1_0_0_0_0_0_0_0: _lowerCAmelCase : Tuple = number_chain number *= 1_0 return number_chain def lowercase (_A = 1_0_0_0_0_0_0_0 ): """simple docstring""" for i in range(1 , _A ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_A ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
630
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase_ = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: str ) -> Optional[Any]: UpperCamelCase__ : Any = SavedModel() UpperCamelCase__ : List[str] = [] with open(os.path.join(__UpperCAmelCase , '''utils''' , '''tf_ops''' , '''onnx.json''' ) ) as f: UpperCamelCase__ : Optional[int] = json.load(__UpperCAmelCase )['''opsets'''] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCAmelCase )] ) with open(__UpperCAmelCase , '''rb''' ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase__ : Union[str, Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase__ : str = sorted(__UpperCAmelCase ) UpperCamelCase__ : int = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCAmelCase ) if strict and len(__UpperCAmelCase ) > 0: raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__UpperCAmelCase ) > 0: print(f"Found the following incompatible ops for the opset {opset}:" ) print(*__UpperCAmelCase , sep='''\n''' ) else: print(f"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
253
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> List[str]: # Checks if the entire collection has been sorted if len(__UpperCAmelCase ) <= 1 or n <= 1: return insert_next(__UpperCAmelCase , n - 1 ) rec_insertion_sort(__UpperCAmelCase , n - 1 ) def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> Optional[int]: # Checks order between adjacent elements if index >= len(__UpperCAmelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase__ ,UpperCamelCase__ : List[Any] = ( collection[index], collection[index - 1], ) insert_next(__UpperCAmelCase , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter integers separated by spaces: ') UpperCAmelCase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
253
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") a = logging.getLogger(__name__) @dataclass class __a : __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __UpperCamelCase : Optional[str] = field( default='tab_fact', metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}, ) __UpperCamelCase : int = field( default=1024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) }, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the training data.'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'A csv or a json file containing the validation data.'} ) __UpperCamelCase : Optional[str] = field(default=_snake_case, metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: __SCREAMING_SNAKE_CASE = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __SCREAMING_SNAKE_CASE = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, ) __UpperCamelCase : str = field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) def __magic_name__ ( ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __SCREAMING_SNAKE_CASE = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file.split(""".""" )[-1] __SCREAMING_SNAKE_CASE = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __SCREAMING_SNAKE_CASE = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files __SCREAMING_SNAKE_CASE = load_dataset("""csv""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __SCREAMING_SNAKE_CASE = load_dataset("""json""" , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __SCREAMING_SNAKE_CASE = raw_datasets["""train"""].features["""label"""].names __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__UpperCAmelCase , ) __SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __SCREAMING_SNAKE_CASE = False # Some models have set the order of the labels to use, so let's make sure we do use it. __SCREAMING_SNAKE_CASE = {"""Refused""": 0, """Entailed""": 1} __SCREAMING_SNAKE_CASE = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__UpperCAmelCase ): # Tokenize the texts def _convert_table_text_to_pandas(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] __SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __SCREAMING_SNAKE_CASE = examples["""statement"""] __SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) __SCREAMING_SNAKE_CASE = tokenizer(__UpperCAmelCase , __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): __SCREAMING_SNAKE_CASE = raw_datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""train"""] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) __SCREAMING_SNAKE_CASE = raw_datasets["""test"""] if data_args.max_predict_samples is not None: __SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__UpperCAmelCase ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , __UpperCAmelCase ) else p.predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __SCREAMING_SNAKE_CASE = default_data_collator elif training_args.fpaa: __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(__UpperCAmelCase , pad_to_multiple_of=8 ) else: __SCREAMING_SNAKE_CASE = None # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCAmelCase , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("""label""" ) __SCREAMING_SNAKE_CASE = trainer.predict(__UpperCAmelCase , metric_key_prefix="""predict""" ).predictions __SCREAMING_SNAKE_CASE = np.argmax(__UpperCAmelCase , axis=1 ) __SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(__UpperCAmelCase , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = label_list[item] writer.write(f"""{index}\t{item}\n""" ) __SCREAMING_SNAKE_CASE = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
13
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : Dict = 'deta' __UpperCamelCase : List[str] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : Any=900 ,lowerCamelCase : int=2048 ,lowerCamelCase : Any=6 ,lowerCamelCase : Optional[Any]=2048 ,lowerCamelCase : str=8 ,lowerCamelCase : Union[str, Any]=6 ,lowerCamelCase : List[str]=1024 ,lowerCamelCase : int=8 ,lowerCamelCase : Any=0.0 ,lowerCamelCase : Any=True ,lowerCamelCase : Optional[int]="relu" ,lowerCamelCase : int=256 ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[Any]=0.0 ,lowerCamelCase : Tuple=0.0 ,lowerCamelCase : List[str]=0.02 ,lowerCamelCase : Any=1.0 ,lowerCamelCase : Optional[int]=True ,lowerCamelCase : int=False ,lowerCamelCase : Optional[Any]="sine" ,lowerCamelCase : Dict=5 ,lowerCamelCase : List[Any]=4 ,lowerCamelCase : Optional[Any]=4 ,lowerCamelCase : Any=True ,lowerCamelCase : int=300 ,lowerCamelCase : Any=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=1 ,lowerCamelCase : Tuple=5 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Tuple=1 ,lowerCamelCase : int=1 ,lowerCamelCase : str=5 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Union[str, Any]=0.25 ,**lowerCamelCase : int ,): '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = backbone_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE = config_class.from_dict(lowerCamelCase ) __SCREAMING_SNAKE_CASE = backbone_config __SCREAMING_SNAKE_CASE = num_queries __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = init_xavier_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = auxiliary_loss __SCREAMING_SNAKE_CASE = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE = num_feature_levels __SCREAMING_SNAKE_CASE = encoder_n_points __SCREAMING_SNAKE_CASE = decoder_n_points __SCREAMING_SNAKE_CASE = two_stage __SCREAMING_SNAKE_CASE = two_stage_num_proposals __SCREAMING_SNAKE_CASE = with_box_refine __SCREAMING_SNAKE_CASE = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __SCREAMING_SNAKE_CASE = class_cost __SCREAMING_SNAKE_CASE = bbox_cost __SCREAMING_SNAKE_CASE = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE = mask_loss_coefficient __SCREAMING_SNAKE_CASE = dice_loss_coefficient __SCREAMING_SNAKE_CASE = bbox_loss_coefficient __SCREAMING_SNAKE_CASE = giou_loss_coefficient __SCREAMING_SNAKE_CASE = eos_coefficient __SCREAMING_SNAKE_CASE = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase ,**lowerCamelCase ) @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.d_model def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
13
1
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") snake_case__ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") snake_case__ : int = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class _A ( _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = CamembertTokenizer _snake_case : Optional[int] = CamembertTokenizerFast _snake_case : Optional[int] = True _snake_case : Any = True def _snake_case ( self : Tuple ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase = CamembertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = "<pad>" __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase ) , 1_004 ) def _snake_case ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = CamembertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) __lowercase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowercase = "I was born in 92000, and this is falsé." __lowercase = tokenizer.encode(lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowercase = tokenizer.convert_ids_to_tokens(lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = "I was born in 92000, and this is falsé." __lowercase = tokenizer.tokenize(lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowerCamelCase ) __lowercase = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = {"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowercase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowerCamelCase , )
402
from collections import defaultdict def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 1 __lowercase = True for v in tree[start]: if v not in visited: ret += dfs(_SCREAMING_SNAKE_CASE ) if ret % 2 == 0: cuts.append(_SCREAMING_SNAKE_CASE ) return ret def snake_case_ ( ): dfs(1 ) if __name__ == "__main__": snake_case__ , snake_case__ : Optional[int] = 10, 9 snake_case__ : Optional[Any] = defaultdict(list) snake_case__ : dict[int, bool] = {} snake_case__ : list[int] = [] snake_case__ : List[str] = 0 snake_case__ : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
402
1
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( _UpperCamelCase : list[int] ): '''simple docstring''' if len(_UpperCamelCase ) == 0: return array UpperCAmelCase_ , UpperCAmelCase_ = min(_UpperCamelCase ), max(_UpperCamelCase ) # Compute the variables UpperCAmelCase_ = _max - _min + 1 UpperCAmelCase_ , UpperCAmelCase_ = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase_ = i - _min UpperCAmelCase_ = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase_ = 0 for i in range(_UpperCamelCase ): while holes_repeat[i] > 0: UpperCAmelCase_ = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Dict = input("Enter numbers separated by comma:\n") lowercase__ : Tuple = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
703
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : List[Any] = "T5Config" class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''mt5''' lowerCAmelCase__ = MTaConfig
43
0
'''simple docstring''' from collections.abc import Sequence def UpperCamelCase_ ( A__ : Sequence[float] , A__ : bool = False ): '''simple docstring''' if not arr: return 0 lowerCAmelCase_ : List[Any] = 0 if allow_empty_subarrays else float("""-inf""" ) lowerCAmelCase_ : Tuple = 0.0 for num in arr: lowerCAmelCase_ : int = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ : Union[str, Any] = max(A__ , A__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A : Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'''{max_subarray_sum(nums) = }''')
275
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'roberta-prelayernorm' def __init__( self : Tuple , lowerCamelCase : Tuple=5_02_65 , lowerCamelCase : Optional[int]=7_68 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : int=30_72 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=5_12 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Any=1E-12 , lowerCamelCase : int=1 , lowerCamelCase : List[Any]=0 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]="absolute" , lowerCamelCase : List[Any]=True , lowerCamelCase : Tuple=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : Union[str, Any] = classifier_dropout class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @property def __lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
275
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'vit' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , lowercase=16 , **lowercase , ) -> int: super().__init__(**lowercase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = qkv_bias lowerCamelCase_ = encoder_stride class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_( self ) -> float: return 1e-4
313
from itertools import count def lowerCamelCase_ ( lowerCamelCase__ = 5_0 ): lowerCamelCase_ = [1] * min_block_length for n in count(lowerCamelCase__ ): fill_count_functions.append(1 ) for block_length in range(lowerCamelCase__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F"""{solution() = }""")
313
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return 1 if input_a == input_a else 0 def __A () ->None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
93
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __A = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , ) ->Tuple: """simple docstring""" output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) else: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCAmelCase__ :Tuple = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowerCAmelCase__ :List[Any] = 'cpu' lowerCAmelCase__ :List[str] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , torch_dtype=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = Path(_SCREAMING_SNAKE_CASE ) # TEXT ENCODER lowerCAmelCase__ :str = pipeline.text_encoder.config.max_position_embeddings lowerCAmelCase__ :Dict = pipeline.text_encoder.config.hidden_size lowerCAmelCase__ :List[Any] = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=_SCREAMING_SNAKE_CASE , ) del pipeline.text_encoder # UNET lowerCAmelCase__ :int = pipeline.unet.config.in_channels lowerCAmelCase__ :Optional[Any] = pipeline.unet.config.sample_size lowerCAmelCase__ :Dict = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), torch.randn(2 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), torch.randn(2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=_SCREAMING_SNAKE_CASE , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ :List[Any] = str(unet_path.absolute().as_posix() ) lowerCAmelCase__ :int = os.path.dirname(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = onnx.load(_SCREAMING_SNAKE_CASE ) # clean up existing tensor files shutil.rmtree(_SCREAMING_SNAKE_CASE ) os.mkdir(_SCREAMING_SNAKE_CASE ) # collate external tensor files into one onnx.save_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_as_external_data=_SCREAMING_SNAKE_CASE , all_tensors_to_one_file=_SCREAMING_SNAKE_CASE , location='weights.pb' , convert_attribute=_SCREAMING_SNAKE_CASE , ) del pipeline.unet # VAE ENCODER lowerCAmelCase__ :int = pipeline.vae lowerCAmelCase__ :Optional[Any] = vae_encoder.config.in_channels lowerCAmelCase__ :int = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCAmelCase__ :str = lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : vae_encoder.encode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0].sample() onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_SCREAMING_SNAKE_CASE , ) # VAE DECODER lowerCAmelCase__ :int = pipeline.vae lowerCAmelCase__ :List[Any] = vae_decoder.config.latent_channels lowerCAmelCase__ :Optional[int] = vae_decoder.config.out_channels # forward only through the decoder part lowerCAmelCase__ :Any = vae_encoder.decode onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_SCREAMING_SNAKE_CASE , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCAmelCase__ :Optional[int] = pipeline.safety_checker lowerCAmelCase__ :Optional[int] = safety_checker.config.vision_config.num_channels lowerCAmelCase__ :Any = safety_checker.config.vision_config.image_size lowerCAmelCase__ :List[str] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), torch.randn(1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=_SCREAMING_SNAKE_CASE , ) del pipeline.safety_checker lowerCAmelCase__ :Union[str, Any] = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) lowerCAmelCase__ :Dict = pipeline.feature_extractor else: lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_SCREAMING_SNAKE_CASE ) print('ONNX pipeline saved to' , _SCREAMING_SNAKE_CASE ) del pipeline del onnx_pipeline lowerCAmelCase__ :Dict = OnnxStableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __A = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
93
1
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = BertTokenizer lowerCamelCase_ = BertTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = filter_non_english def lowerCAmelCase_ ( self ): """simple docstring""" super().setUp() A_ : int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = 'UNwant\u00E9d,running' A_ : Optional[int] = 'unwanted, running' return input_text, output_text def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.tokenizer_class(self.vocab_file ) A_ : int = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def lowerCAmelCase_ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return A_ : List[str] = self.get_tokenizer() A_ : Optional[Any] = self.get_rust_tokenizer() A_ : Optional[Any] = 'UNwant\u00E9d,running' A_ : str = tokenizer.tokenize(lowercase ) A_ : Dict = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : int = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A_ : Dict = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : Tuple = self.get_rust_tokenizer() A_ : Optional[int] = tokenizer.encode(lowercase ) A_ : Any = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) # With lower casing A_ : Union[str, Any] = self.get_tokenizer(do_lower_case=lowercase ) A_ : Tuple = self.get_rust_tokenizer(do_lower_case=lowercase ) A_ : List[Any] = 'UNwant\u00E9d,running' A_ : Optional[int] = tokenizer.tokenize(lowercase ) A_ : Union[str, Any] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : Optional[int] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A_ : List[Any] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : str = self.get_rust_tokenizer() A_ : Tuple = tokenizer.encode(lowercase ) A_ : Union[str, Any] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = BasicTokenizer() A_ : int = 'a\n\'ll !!to?\'d of, can\'t.' A_ : Any = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowercase ) , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] A_ : Optional[Any] = {} for i, token in enumerate(lowercase ): A_ : Dict = i A_ : Any = WordpieceTokenizer(vocab=lowercase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase_ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.get_tokenizer() A_ : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) A_ : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=lowercase ) A_ : int = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase ) A_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase ) A_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def lowerCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ : int = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : Optional[int] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' A_ : Union[str, Any] = tokenizer_r.encode_plus( lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase , ) A_ : List[Any] = tokenizer_r.do_lower_case if hasattr(lowercase , 'do_lower_case' ) else False A_ : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = ['的', '人', '有'] A_ : int = ''.join(lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ : int = True A_ : List[str] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : Any = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) A_ : int = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) A_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(lowercase ) A_ : Any = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase ) A_ : str = False A_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : List[Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) A_ : Union[str, Any] = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) A_ : Tuple = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) A_ : Any = tokenizer_r.convert_ids_to_tokens(lowercase ) A_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that only the first Chinese character is not preceded by "##". A_ : Dict = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowercase ) ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase )
70
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCamelCase ( ): '''simple docstring''' A_ , A_ : Any = 9, 14 # noqa: F841 A_ : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A_ : List[Any] = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) A_ : Tuple = mst(__lowercase ) A_ : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: A_ : List[Any] = tuple(answer[:2] ) A_ : Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
70
1
import csv import tweepy # Twitter API credentials SCREAMING_SNAKE_CASE :List[str] = '' SCREAMING_SNAKE_CASE :List[str] = '' SCREAMING_SNAKE_CASE :Tuple = '' SCREAMING_SNAKE_CASE :List[str] = '' def UpperCAmelCase ( a_ ) -> None: """simple docstring""" __A = tweepy.OAuthHandler(a_ , a_ ) auth.set_access_token(a_ , a_ ) __A = tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets __A = [] # make initial request for most recent tweets (200 is the maximum allowed count) __A = api.user_timeline(screen_name=a_ , count=2_0_0 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one __A = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates __A = api.user_timeline( screen_name=a_ , count=2_0_0 , max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one __A = alltweets[-1].id - 1 print(F'''...{len(a_ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv __A = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: __A = csv.writer(a_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Tuple, _UpperCAmelCase : Any, _UpperCAmelCase : Dict): if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError('''The length of profit and weight must be same.''') if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''') if any(p < 0 for p in profit): raise ValueError('''Profit can not be negative.''') if any(w < 0 for w in weight): raise ValueError('''Weight can not be negative.''') # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCamelCase = [p / w for p, w in zip(UpperCamelCase__, UpperCamelCase__)] # Creating a copy of the list and sorting profit/weight in ascending order UpperCamelCase = sorted(UpperCamelCase__) # declaring useful variables UpperCamelCase = len(UpperCamelCase__) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCamelCase = sorted_profit_by_weight[length - i - 1] UpperCamelCase = profit_by_weight.index(UpperCamelCase__) UpperCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) snake_case_ : List[str] = [int(x) for x in input('Input profits separated by spaces: ').split()] snake_case_ : Optional[int] = [int(x) for x in input('Input weights separated by spaces: ').split()] snake_case_ : List[Any] = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
703
'''simple docstring''' def __snake_case ( _UpperCAmelCase : list[list[float]]): UpperCamelCase = [] for data in source_data: for i, el in enumerate(_UpperCAmelCase): if len(_UpperCAmelCase) < i + 1: data_lists.append([]) data_lists[i].append(float(_UpperCAmelCase)) return data_lists def __snake_case ( _UpperCAmelCase : list[list[float]], _UpperCAmelCase : list[int]): UpperCamelCase = [] for dlist, weight in zip(_UpperCAmelCase, _UpperCAmelCase): UpperCamelCase = min(_UpperCAmelCase) UpperCamelCase = max(_UpperCAmelCase) UpperCamelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: UpperCamelCase = f'Invalid weight of {weight:f} provided' raise ValueError(_UpperCAmelCase) score_lists.append(_UpperCAmelCase) return score_lists def __snake_case ( _UpperCAmelCase : list[list[float]]): UpperCamelCase = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(_UpperCAmelCase): UpperCamelCase = final_scores[j] + ele return final_scores def __snake_case ( _UpperCAmelCase : list[list[float]], _UpperCAmelCase : list[int]): UpperCamelCase = get_data(_UpperCAmelCase) UpperCamelCase = calculate_each_score(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = generate_final_scores(_UpperCAmelCase) # append scores to source data for i, ele in enumerate(_UpperCAmelCase): source_data[i].append(_UpperCAmelCase) return source_data
350
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list[list] ) -> List[str]: __lowerCamelCase : List[str] = current_set.copy() for row_index, row in enumerate(_lowerCAmelCase ): __lowerCamelCase : Optional[int] = row[0] for column_index, column in enumerate(_lowerCAmelCase ): if magnitude == 0: __lowerCamelCase : Optional[Any] = column continue __lowerCamelCase : List[str] = column / magnitude # Subtract to cancel term __lowerCamelCase : List[str] = current_set[0] __lowerCamelCase : Dict = [first_row] __lowerCamelCase : Union[str, Any] = current_set[1::] for row in current_set: __lowerCamelCase : int = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCAmelCase ) continue for column_index in range(len(_lowerCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowerCamelCase : Optional[Any] = final_set[0] __lowerCamelCase : List[str] = [] __lowerCamelCase : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowerCamelCase : Optional[int] = simplify(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCAmelCase ) __lowerCamelCase : Any = resultant return final_set def UpperCAmelCase__ ( UpperCAmelCase_ : list[list] ) -> Optional[int]: if len(_lowerCAmelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) __lowerCamelCase : str = len(_lowerCAmelCase ) + 1 if any(len(_lowerCAmelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(_lowerCAmelCase , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(_lowerCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] __lowerCamelCase : int = equations.copy() if any(0 in row for row in data_set ): __lowerCamelCase : Union[str, Any] = data_set.copy() __lowerCamelCase : Optional[Any] = [] for row_index, row in enumerate(_lowerCAmelCase ): if 0 not in row: __lowerCamelCase : Dict = data_set.pop(_lowerCAmelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , _lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = data_set.copy() __lowerCamelCase : Union[str, Any] = simplify(_lowerCAmelCase ) __lowerCamelCase : int = simplified[::-1] __lowerCamelCase : list = [] for row in simplified: __lowerCamelCase : List[Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowerCamelCase : Optional[int] = row.copy()[: len(_lowerCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCAmelCase ) == 0: solutions.append(0 ) continue __lowerCamelCase : List[str] = temp_row[1::] __lowerCamelCase : Union[str, Any] = temp_row[::-1] for column_index, column in enumerate(_lowerCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCAmelCase ) __lowerCamelCase : Tuple = [] for item in solutions: final.append(float(round(_lowerCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A__ : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
13
'''simple docstring''' class UpperCAmelCase__ : def __init__( self : Any,__A : Any,__A : Any,__A : Any ): _lowerCamelCase : List[Any] = name _lowerCamelCase : Union[str, Any] = value _lowerCamelCase : str = weight def __repr__( self : Any ): return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase_ ( self : Optional[int] ): return self.value def lowerCamelCase_ ( self : Any ): return self.name def lowerCamelCase_ ( self : List[Any] ): return self.weight def lowerCamelCase_ ( self : str ): return self.value / self.weight def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : str = [] for i in range(len(_lowerCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = sorted(_lowerCAmelCase , key=_lowerCAmelCase , reverse=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase , _lowerCamelCase : Optional[int] = 0.0, 0.0 for i in range(len(_lowerCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
44
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "Pix2StructImageProcessor" _a = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _a , _a ) -> Dict: _A : Dict = False super().__init__(_a , _a ) def __call__( self , _a=None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 2048 , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: _A : List[str] = self.tokenizer _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _A : Dict = self.image_processor( _a , return_tensors=_a , max_patches=_a , **_a ) else: # add pixel_values and bbox _A : Dict = self.image_processor( _a , return_tensors=_a , max_patches=_a , header_text=_a , **_a ) if text is not None and not self.image_processor.is_vqa: _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if "attention_mask" in text_encoding: _A : List[str] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: _A : str = text_encoding.pop("""input_ids""" ) else: _A : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.tokenizer.model_input_names _A : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
71
from sklearn.metrics import mean_squared_error import datasets __A = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __A = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __A = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__="uniform_average" , lowerCamelCase__=True ) -> List[Any]: '''simple docstring''' __lowerCamelCase = mean_squared_error( lowerCamelCase__ , lowerCamelCase__ , sample_weight=lowerCamelCase__ , multioutput=lowerCamelCase__ , squared=lowerCamelCase__ ) return {"mse": mse}
469
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase_ : Any = TypeVar("T") class UpperCamelCase__ ( Generic[T] ): def __init__( self : Any , lowerCamelCase : T ): '''simple docstring''' a__ = data a__ = None def __str__( self : Optional[int] ): '''simple docstring''' return F'''{self.data}''' class UpperCamelCase__ ( Generic[T] ): def __init__( self : str ): '''simple docstring''' a__ = None def __iter__( self : Tuple ): '''simple docstring''' a__ = self.top while node: yield node.data a__ = node.next def __str__( self : Optional[Any] ): '''simple docstring''' return "->".join([str(lowerCamelCase ) for item in self] ) def __len__( self : Dict ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __a ( self : Tuple ): '''simple docstring''' return self.top is None def __a ( self : Optional[Any] , lowerCamelCase : T ): '''simple docstring''' a__ = Node(lowerCamelCase ) if not self.is_empty(): a__ = self.top a__ = node def __a ( self : int ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , lowerCamelCase ) a__ = self.top a__ = self.top.next return pop_node.data def __a ( self : int ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __a ( self : Union[str, Any] ): '''simple docstring''' a__ = None if __name__ == "__main__": from doctest import testmod testmod()
289
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase_ : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None ) -> Any: a__ = True while ask_again: a__ = input(__lowerCamelCase ) try: if default is not None and len(__lowerCamelCase ) == 0: return default return convert_value(__lowerCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(__lowerCamelCase ) def _lowerCamelCase (__lowerCamelCase : Dict , __lowerCamelCase : List[Any]=[] , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=0 ) -> List[Any]: a__ = BulletMenu(__lowerCamelCase , __lowerCamelCase ) a__ = menu.run(default_choice=__lowerCamelCase ) return convert_value(__lowerCamelCase ) if convert_value is not None else result def _lowerCamelCase (__lowerCamelCase : Tuple ) -> Optional[Any]: a__ = int(__lowerCamelCase ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowerCamelCase (__lowerCamelCase : List[str] ) -> Optional[int]: a__ = int(__lowerCamelCase ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowerCamelCase (__lowerCamelCase : List[Any] ) -> Optional[Any]: a__ = int(__lowerCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowerCamelCase (__lowerCamelCase : str ) -> str: a__ = int(__lowerCamelCase ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowerCamelCase (__lowerCamelCase : int ) -> Optional[Any]: a__ = int(__lowerCamelCase ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowerCamelCase (__lowerCamelCase : Any ) -> List[Any]: return {"yes": True, "no": False}[value.lower()] class UpperCamelCase__ ( argparse.RawDescriptionHelpFormatter ): def __a ( self : Dict , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict ): '''simple docstring''' a__ = super()._format_usage(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) a__ = usage.replace("<command> [<args>] " , "" ) return usage
289
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE_: int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[Any] =['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE_: Tuple =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) A_ : int = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowerCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
569
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case__ ( UpperCAmelCase : Dict ): return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case__ ( ): lowerCAmelCase__ :str = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=UpperCAmelCase ) lowerCAmelCase__ :Any = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCAmelCase ) EnvironmentCommand.register_subcommand(UpperCAmelCase ) TestCommand.register_subcommand(UpperCAmelCase ) RunBeamCommand.register_subcommand(UpperCAmelCase ) DummyDataCommand.register_subcommand(UpperCAmelCase ) # Parse args lowerCAmelCase__ :int = parser.parse_known_args() if not hasattr(UpperCAmelCase , "func" ): parser.print_help() exit(1 ) lowerCAmelCase__ :Optional[int] = parse_unknown_args(UpperCAmelCase ) # Run lowerCAmelCase__ :str = args.func(UpperCAmelCase , **UpperCAmelCase ) service.run() if __name__ == "__main__": main()
708
def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case__ ( UpperCAmelCase : float ): if edge <= 0 or not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
111
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _A , _A : List[Any] = array[indexa], array[indexa] def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ): if length > 1: _A : Any = int(length / 2 ) for i in range(lowerCamelCase ,low + middle ): comp_and_swap(lowerCamelCase ,lowerCamelCase ,i + middle ,lowerCamelCase ) bitonic_merge(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) bitonic_merge(lowerCamelCase ,low + middle ,lowerCamelCase ,lowerCamelCase ) def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : int ): if length > 1: _A : List[Any] = int(length / 2 ) bitonic_sort(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,1 ) bitonic_sort(lowerCamelCase ,low + middle ,lowerCamelCase ,0 ) bitonic_merge(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) if __name__ == "__main__": A : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() A : str = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
128
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowerCamelCase ( pl.LightningModule ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int]): super().__init__() _A : Any = model _A : Tuple = 2 _A : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels) def A ( self : Dict): pass def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : str ,lowerCamelCase : str ): # load longformer model from model identifier _A : Optional[Any] = LongformerModel.from_pretrained(lowerCamelCase ) _A : Union[str, Any] = LightningModel(lowerCamelCase ) _A : Optional[Any] = torch.load(lowerCamelCase ,map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _A : Dict = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A : Any = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
128
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a =logging.get_logger(__name__) a ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a ={ 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a ={ 'facebook/blenderbot_small-90M': 512, } class __UpperCAmelCase ( _a ): A__ : Optional[int] = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = BlenderbotSmallTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) lowerCamelCase__ =add_prefix_space def _a ( self , _lowerCamelCase , _lowerCamelCase=None ): lowerCamelCase__ =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =[self.sep_token_id] lowerCamelCase__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
714
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING A__ : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =AudioClassificationPipeline(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) # test with a raw waveform lowerCamelCase__ =np.zeros((34000,) ) lowerCamelCase__ =np.zeros((14000,) ) return audio_classifier, [audioa, audio] def _a ( self , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ =examples lowerCamelCase__ =audio_classifier(_lowerCamelCase ) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=1 ) self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) self.run_torchaudio(_lowerCamelCase ) @require_torchaudio def _a ( self , _lowerCamelCase ): import datasets # test with a local file lowerCamelCase__ =datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) lowerCamelCase__ =dataset[0]["audio"]["array"] lowerCamelCase__ =audio_classifier(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, {"score": ANY(_lowerCamelCase ), "label": ANY(_lowerCamelCase )}, ] , ) @require_torch def _a ( self ): lowerCamelCase__ ="anton-l/wav2vec2-random-tiny-classifier" lowerCamelCase__ =pipeline("audio-classification" , model=_lowerCamelCase ) lowerCamelCase__ =np.ones((8000,) ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) lowerCamelCase__ =[ {"score": 0.0_8_4_2, "label": "no"}, {"score": 0.0_8_3_8, "label": "up"}, {"score": 0.0_8_3_7, "label": "go"}, {"score": 0.0_8_3_4, "label": "right"}, ] lowerCamelCase__ =[ {"score": 0.0_8_4_5, "label": "stop"}, {"score": 0.0_8_4_4, "label": "on"}, {"score": 0.0_8_4_1, "label": "right"}, {"score": 0.0_8_3_4, "label": "left"}, ] self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) lowerCamelCase__ ={"array": np.ones((8000,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) self.assertIn(nested_simplify(_lowerCamelCase , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _a ( self ): import datasets lowerCamelCase__ ="superb/wav2vec2-base-superb-ks" lowerCamelCase__ =pipeline("audio-classification" , model=_lowerCamelCase ) lowerCamelCase__ =datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) lowerCamelCase__ =np.array(dataset[3]["speech"] , dtype=np.floataa ) lowerCamelCase__ =audio_classifier(_lowerCamelCase , top_k=4 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=3 ) , [ {"score": 0.9_8_1, "label": "go"}, {"score": 0.0_0_7, "label": "up"}, {"score": 0.0_0_6, "label": "_unknown_"}, {"score": 0.0_0_1, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def _a ( self ): pass
132
0
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Dict ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any]=0 ): """simple docstring""" return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x[column] ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int]=float("inf" ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 ,__UpperCamelCase ): A_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: A_ = current_dis return min_dis def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int]=float("inf" ) ): """simple docstring""" for i in range(min(6 ,points_counts - 1 ) ,__UpperCamelCase ): for j in range(max(0 ,i - 6 ) ,__UpperCamelCase ): A_ = euclidean_distance_sqr(points[i] ,points[j] ) if current_dis < min_dis: A_ = current_dis return min_dis def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ): """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(__UpperCamelCase ,__UpperCamelCase ) # recursion A_ = points_counts // 2 A_ = closest_pair_of_points_sqr( __UpperCamelCase ,points_sorted_on_y[:mid] ,__UpperCamelCase ) A_ = closest_pair_of_points_sqr( __UpperCamelCase ,points_sorted_on_y[mid:] ,points_counts - mid ) A_ = min(__UpperCamelCase ,__UpperCamelCase ) A_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(__UpperCamelCase ) A_ = dis_between_closest_in_strip( __UpperCamelCase ,len(__UpperCamelCase ) ,__UpperCamelCase ) return min(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ): """simple docstring""" A_ = column_based_sort(__UpperCamelCase ,column=0 ) A_ = column_based_sort(__UpperCamelCase ,column=1 ) return ( closest_pair_of_points_sqr( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) ** 0.5 if __name__ == "__main__": __a :List[Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
86
from __future__ import annotations def lowercase__ ( __snake_case : list[int] ): '''simple docstring''' if not nums: return 0 UpperCAmelCase_ : int = nums[0] UpperCAmelCase_ : Any = 0 for num in nums[1:]: UpperCAmelCase_ , UpperCAmelCase_ : Dict = ( max_excluding + num, max(__snake_case , __snake_case ), ) return max(__snake_case , __snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
406
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def A_ ( lowercase_ ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE = prime_factors(lowercase_ ) if is_square_free(lowercase_ ): return -1 if len(lowercase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
259
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a_( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __snake_case : Union[str, Any] =IFImgaImgSuperResolutionPipeline __snake_case : int =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __snake_case : Optional[Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __snake_case : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def __UpperCamelCase ( self : Tuple) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def __UpperCamelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=0) -> Tuple: """simple docstring""" if str(lowerCAmelCase__).startswith('mps'): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def __UpperCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def __UpperCamelCase ( self : List[str]) -> str: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def __UpperCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def __UpperCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._test_save_load_local() def __UpperCamelCase ( self : Tuple) -> int: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
259
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
5
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a ( lowerCAmelCase_ ): @slow @require_torch def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) _UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase = bertabert.config.encoder.vocab_size _UpperCAmelCase = tokenizer.sep_token_id _UpperCAmelCase = tokenizer.cls_token_id _UpperCAmelCase = 128 _UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) _UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) _UpperCAmelCase = train_dataset.select(range(32 ) ) _UpperCAmelCase = val_dataset.select(range(16 ) ) _UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(__lowerCAmelCase : Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=512 ) _UpperCAmelCase = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=128 ) _UpperCAmelCase = inputs.input_ids _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = outputs.input_ids _UpperCAmelCase = outputs.input_ids.copy() _UpperCAmelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase = outputs.attention_mask assert all(len(__lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCAmelCase : int ): _UpperCAmelCase = pred.label_ids _UpperCAmelCase = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCAmelCase ) )] ) / len(__lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=__lowerCAmelCase , per_device_train_batch_size=__lowerCAmelCase , per_device_eval_batch_size=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , evaluation_strategy="""steps""" , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # start training trainer.train()
277
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase ={ "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
import math from numpy import inf from scipy.integrate import quad def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(lowerCAmelCase_, 0, lowerCAmelCase_, args=(lowerCAmelCase_) )[0] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return math.pow(lowerCAmelCase_, z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
252
0
def a ( A__ , A__ ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected SCREAMING_SNAKE_CASE__ : List[str] = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) SCREAMING_SNAKE_CASE__ : int = j if __name__ == "__main__": import doctest doctest.testmod() a_ :Dict = [1, 3, 0, 5, 8, 5] a_ :int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
35
from __future__ import annotations __UpperCAmelCase : Any = list[list[int]] # assigning initial values to the grid __UpperCAmelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCAmelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase_ ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase_ ): if location := find_empty_location(UpperCamelCase_ ): _a , _a : str = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : List[str] = digit if sudoku(UpperCamelCase_ ) is not None: return grid _a : Optional[int] = 0 return None def lowerCamelCase_ ( UpperCamelCase_ ): for row in grid: for cell in row: print(UpperCamelCase_ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __UpperCAmelCase : List[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
471
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def snake_case__ ( self : str ): __snake_case : Optional[int] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __snake_case : List[str] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __snake_case : Optional[Any] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : Any = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : Tuple = model(_lowerCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) ) @slow def snake_case__ ( self : int ): __snake_case : Dict = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __snake_case : int = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __snake_case : Dict = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : Any = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : Union[str, Any] = model(_lowerCAmelCase )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
390
import numpy as np def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : np.array ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
390
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase : int =ksize + 1 lowercase : str =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__magic_name__ ): for x in range(__magic_name__ ): # distance from center lowercase : Optional[Any] =x - ksize // 2 lowercase : List[str] =y - ksize // 2 # degree to radiant lowercase : Optional[int] =theta / 180 * np.pi lowercase : Union[str, Any] =np.cos(_theta ) lowercase : Optional[int] =np.sin(_theta ) # get kernel x lowercase : Tuple =cos_theta * px + sin_theta * py # get kernel y lowercase : Dict =-sin_theta * px + cos_theta * py # fill kernel lowercase : str =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCamelCase_ = imread("""../image_data/lena.jpg""") # turn image in gray scale value UpperCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCamelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCamelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCamelCase_ = out / out.max() * 255 UpperCamelCase_ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
92
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowercase : Any =False @skip_mps class UpperCamelCase_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[int] = StableDiffusionAttendAndExcitePipeline _a : Union[str, Any] = False _a : Dict = TEXT_TO_IMAGE_PARAMS _a : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) _a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _a : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls : Tuple ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : Tuple ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : Dict ): torch.manual_seed(0 ) lowerCamelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase , ) lowerCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCamelCase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCamelCase_ : Any = CLIPTextModel(lowerCamelCase ) lowerCamelCase_ : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCamelCase_ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : List[Any]=0 ): if str(lowerCamelCase ).startswith('mps' ): lowerCamelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase ) else: lowerCamelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase_ : Dict = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __a ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] = 'cpu' lowerCamelCase_ : List[Any] = self.get_dummy_components() lowerCamelCase_ : List[str] = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase_ : List[Any] = self.get_dummy_inputs(lowerCamelCase ) lowerCamelCase_ : List[str] = pipe(**lowerCamelCase ).images lowerCamelCase_ : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowerCamelCase_ : Dict = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowerCamelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __a ( self : Tuple ): super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : List[str] ): self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : Optional[Any] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self : Tuple ): super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): @classmethod def __a ( cls : Union[str, Any] ): super().setUpClass() torch.use_deterministic_algorithms(lowerCamelCase ) @classmethod def __a ( cls : List[Any] ): super().tearDownClass() torch.use_deterministic_algorithms(lowerCamelCase ) def __a ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : str ): lowerCamelCase_ : Optional[Any] = torch.manual_seed(51 ) lowerCamelCase_ : Any = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=lowerCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) lowerCamelCase_ : List[Any] = 'a painting of an elephant with glasses' lowerCamelCase_ : Tuple = [5, 7] lowerCamelCase_ : List[str] = pipe( prompt=lowerCamelCase , token_indices=lowerCamelCase , guidance_scale=7.5 , generator=lowerCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] lowerCamelCase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
364
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
454
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __lowerCamelCase ( self : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tensor , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =len(list(m.modules())) == 1 or isinstance(_lowerCAmelCase , nn.Convad) or isinstance(_lowerCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(_lowerCAmelCase) def __call__( self : Dict , _lowerCAmelCase : Tensor): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_lowerCAmelCase) [x.remove() for x in self.handles] return self @property def __lowerCamelCase ( self : Any): '''simple docstring''' return list(filter(lambda _lowerCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0 lowerCAmelCase__ = field(default_factory=A ) lowerCAmelCase__ = field(default_factory=A ) def __call__( self : Any , _lowerCAmelCase : Tensor): '''simple docstring''' __lowercase =Tracker(self.dest)(_lowerCAmelCase).parametrized __lowercase =Tracker(self.src)(_lowerCAmelCase).parametrized __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.src_skip , _lowerCAmelCase)) __lowercase =list(filter(lambda _lowerCAmelCase: type(_lowerCAmelCase) not in self.dest_skip , _lowerCAmelCase)) if len(_lowerCAmelCase) != len(_lowerCAmelCase): raise Exception( f"""Numbers of operations are different. Source module has {len(_lowerCAmelCase)} operations while""" f""" destination module has {len(_lowerCAmelCase)}.""") for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""") def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ): """simple docstring""" print(f"""Converting {name}...""" ) with torch.no_grad(): __lowercase =timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __lowercase =ResNetForImageClassification(_lowerCAmelCase ).eval() __lowercase =ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __lowercase =torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __lowercase =f"""resnet{'-'.join(name.split('resnet' ) )}""" print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __lowercase =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_lowerCAmelCase , ) print(f"""Pushed {checkpoint_name}""" ) def _A ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ): """simple docstring""" __lowercase ='imagenet-1k-id2label.json' __lowercase =1_000 __lowercase =(1, num_labels) __lowercase ='huggingface/label-files' __lowercase =num_labels __lowercase =json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase ={int(_lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase =idalabel __lowercase ={v: k for k, v in idalabel.items()} __lowercase =partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __lowercase ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
454
1
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( snake_case_ : list[Any] ): create_state_space_tree(snake_case_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( snake_case_ : list[Any] , snake_case_ : list[Any] , snake_case_ : int ): if index == len(snake_case_ ): print(snake_case_ ) return create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
297
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __lowerCamelCase : Any = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Any ): for attribute in key.split("." ): snake_case__ : int = getattr(snake_case_ , snake_case_ ) if weight_type is not None: snake_case__ : int = getattr(snake_case_ , snake_case_ ).shape else: snake_case__ : int = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Any = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : Dict = value elif weight_type == "bias": snake_case__ : int = value else: snake_case__ : Union[str, Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : int ): snake_case__ : List[Any] = [] snake_case__ : List[str] = fairseq_model.state_dict() snake_case__ : Optional[int] = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(snake_case_ )[0].split("." )[-2] snake_case__ : str = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: snake_case__ : List[Any] = "weight_g" elif "weight_v" in name: snake_case__ : int = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: snake_case__ : Optional[int] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : List[str] = "weight" else: snake_case__ : List[Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : int ): snake_case__ : Optional[Any] = full_name.split("conv_layers." )[-1] snake_case__ : List[Any] = name.split("." ) snake_case__ : Optional[Any] = int(items[0] ) snake_case__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case__ : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[str]=None ): # load the pre-trained checkpoints snake_case__ : List[str] = torch.load(snake_case_ ) snake_case__ : Tuple = WavLMConfigOrig(checkpoint["cfg"] ) snake_case__ : Optional[Any] = WavLMOrig(snake_case_ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: snake_case__ : Tuple = WavLMConfig.from_pretrained(snake_case_ ) else: snake_case__ : Union[str, Any] = WavLMConfig() snake_case__ : Optional[Any] = WavLMModel(snake_case_ ) recursively_load_weights(snake_case_ , snake_case_ ) hf_wavlm.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") __lowerCamelCase : str = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
297
1
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _snake_case , _snake_case = array[indexa], array[indexa] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": snake_case = input('''Enter numbers separated by a comma:\n''').strip() snake_case = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
718
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } snake_case = { '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } snake_case = '''▁''' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = BigBirdTokenizer A__ : Dict = ['''input_ids''', '''attention_mask'''] A__ : List[int] = [] def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Tuple="</s>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : str="[MASK]" , __lowerCamelCase : str="[CLS]" , **__lowerCamelCase : Any , ): """simple docstring""" _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
404
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : Dict = logging.get_logger(__name__) _a : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _lowercase ( __lowercase , __lowercase ): _SCREAMING_SNAKE_CASE : Any = "bit" _SCREAMING_SNAKE_CASE : List[str] = ["preactivation", "bottleneck"] _SCREAMING_SNAKE_CASE : List[str] = ["SAME", "VALID"] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : int=64 , SCREAMING_SNAKE_CASE_ : str=[256, 512, 1024, 2048] , SCREAMING_SNAKE_CASE_ : Any=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE_ : Union[str, Any]="preactivation" , SCREAMING_SNAKE_CASE_ : str="relu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Any=32 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : str=32 , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Dict=None , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) if layer_type not in self.layer_types: raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __snake_case = global_padding.upper() else: raise ValueError(f'Padding strategy {global_padding} not supported' ) __snake_case = num_channels __snake_case = embedding_size __snake_case = hidden_sizes __snake_case = depths __snake_case = layer_type __snake_case = hidden_act __snake_case = global_padding __snake_case = num_groups __snake_case = drop_path_rate __snake_case = embedding_dynamic_padding __snake_case = output_stride __snake_case = width_factor __snake_case = ['stem'] + [f'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE_ ) + 1 )] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
56
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _UpperCamelCase : Dict = size if size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[Any] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : Dict = max_resolution _UpperCamelCase : Tuple = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : str = image_mean _UpperCamelCase : int = image_std def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : int = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Optional[Any] = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Any = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
195
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" __magic_name__ , __magic_name__ :List[Any] = analyze_text(_UpperCAmelCase ) __magic_name__ :Dict = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. __magic_name__ :List[Any] = sum(single_char_strings.values() ) # one length string __magic_name__ :List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __magic_name__ :str = single_char_strings[ch] __magic_name__ :List[str] = my_str / all_sum my_fir_sum += prob * math.loga(_UpperCAmelCase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string __magic_name__ :Any = sum(two_char_strings.values() ) __magic_name__ :str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __magic_name__ :Optional[int] = cha + cha if sequence in two_char_strings: __magic_name__ :List[str] = two_char_strings[sequence] __magic_name__ :Optional[Any] = int(_UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(_UpperCAmelCase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" __magic_name__ :Tuple = Counter() # type: ignore __magic_name__ :Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def SCREAMING_SNAKE_CASE ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
716
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case, snake_case = None, ): """simple docstring""" __magic_name__ :List[Any] = {} if train_file is not None: __magic_name__ :List[Any] = [train_file] if eval_file is not None: __magic_name__ :int = [eval_file] if test_file is not None: __magic_name__ :Any = [test_file] __magic_name__ :Optional[Any] = datasets.load_dataset('''csv''', data_files=snake_case ) __magic_name__ :List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) __magic_name__ :Optional[int] = features_name.pop(snake_case ) __magic_name__ :List[str] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __magic_name__ :List[Any] = {label: i for i, label in enumerate(snake_case )} __magic_name__ :Optional[Any] = tokenizer.model_input_names __magic_name__ :Any = {} if len(snake_case ) == 1: for k in files.keys(): __magic_name__ :Union[str, Any] = ds[k].map( lambda snake_case : tokenizer.batch_encode_plus( example[features_name[0]], truncation=snake_case, max_length=snake_case, padding='''max_length''' ), batched=snake_case, ) elif len(snake_case ) == 2: for k in files.keys(): __magic_name__ :Optional[Any] = ds[k].map( lambda snake_case : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=snake_case, max_length=snake_case, padding='''max_length''', ), batched=snake_case, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __magic_name__ :Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} __magic_name__ :int = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __magic_name__ :Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __magic_name__ :Dict = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __magic_name__ :Any = {k: v for k, v in ex.items() if k in input_names} __magic_name__ :List[Any] = labelaid[ex[label_name]] yield (d, label) __magic_name__ :Optional[Any] = ( tf.data.Dataset.from_generator( snake_case, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __magic_name__ :Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __magic_name__ :Any = ( tf.data.Dataset.from_generator( snake_case, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __magic_name__ :str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __magic_name__ :Optional[int] = ( tf.data.Dataset.from_generator( snake_case, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __magic_name__ :Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid SCREAMING_SNAKE_CASE__ : List[Any] = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : a__ = field(metadata={'''help''': '''Which column contains the label'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''The path of the training file'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''The path of the development file'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''The path of the test file'''} ) a__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class lowerCamelCase_ : a__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) a__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) a__ = field(default=lowerCamelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ = field( default=lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __lowercase ( ): """simple docstring""" __magic_name__ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __magic_name__ , __magic_name__ , __magic_name__ :Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __magic_name__ :Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :int = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=snake_case, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) __magic_name__ :Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(snake_case ), labelaid=snake_case, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='''text-classification''', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): __magic_name__ :Dict = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('''.bin''' in model_args.model_name_or_path ), config=snake_case, cache_dir=model_args.cache_dir, ) def compute_metrics(snake_case ) -> Dict: __magic_name__ :str = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __magic_name__ :str = TFTrainer( model=snake_case, args=snake_case, train_dataset=snake_case, eval_dataset=snake_case, compute_metrics=snake_case, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __magic_name__ :Optional[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __magic_name__ :int = trainer.evaluate() __magic_name__ :Dict = os.path.join(training_args.output_dir, '''eval_results.txt''' ) with open(snake_case, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(snake_case ) return results if __name__ == "__main__": main()
180
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) __lowerCAmelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def a__ ( A_ ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __magic_name__ = model_type_to_module_name(A_ ) __magic_name__ = importlib.import_module(f'''.{module_name}''', """transformers.models""" ) try: return getattr(A_, A_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(A_, """__name__""", A_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __magic_name__ = importlib.import_module("""transformers""" ) if hasattr(A_, A_ ): return getattr(A_, A_ ) return None def a__ ( A_, A_ = None, A_ = False, A_ = False, A_ = None, A_ = None, A_ = None, A_ = False, **A_, ): '''simple docstring''' __magic_name__ = get_file_from_repo( A_, A_, cache_dir=A_, force_download=A_, resume_download=A_, proxies=A_, use_auth_token=A_, revision=A_, local_files_only=A_, ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(A_, encoding="""utf-8""" ) as reader: return json.load(A_ ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> Optional[int]: """simple docstring""" raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase__ ) def _lowercase ( cls : Optional[int] , UpperCamelCase__ : Any , **UpperCamelCase__ : Optional[int] ) -> str: """simple docstring""" __magic_name__ = kwargs.pop("""config""" , UpperCamelCase__ ) __magic_name__ = kwargs.pop("""trust_remote_code""" , UpperCamelCase__ ) __magic_name__ = True __magic_name__ , __magic_name__ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = config_dict.get("""feature_extractor_type""" , UpperCamelCase__ ) __magic_name__ = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): __magic_name__ = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __magic_name__ = AutoConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # It could be in `config.feature_extractor_type`` __magic_name__ = getattr(UpperCamelCase__ , """feature_extractor_type""" , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: __magic_name__ = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: __magic_name__ = feature_extractor_class_from_name(UpperCamelCase__ ) __magic_name__ = feature_extractor_auto_map is not None __magic_name__ = feature_extractor_class is not None or type(UpperCamelCase__ ) in FEATURE_EXTRACTOR_MAPPING __magic_name__ = resolve_trust_remote_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if has_remote_code and trust_remote_code: __magic_name__ = get_class_from_dynamic_module( UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) __magic_name__ = kwargs.pop("""code_revision""" , UpperCamelCase__ ) if os.path.isdir(UpperCamelCase__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCamelCase__ ) in FEATURE_EXTRACTOR_MAPPING: __magic_name__ = FEATURE_EXTRACTOR_MAPPING[type(UpperCamelCase__ )] return feature_extractor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _lowercase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(UpperCamelCase__ , UpperCamelCase__ )
529
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Union[str, Any] = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a__ ( _UpperCamelCase : Optional[Any] ): return (data["data"], data["target"]) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Tuple ,_UpperCamelCase : List[str] ): __lowerCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(_UpperCamelCase ,_UpperCamelCase ) # Predict target for test data __lowerCamelCase = xgb.predict(_UpperCamelCase ) __lowerCamelCase = predictions.reshape(len(_UpperCamelCase ) ,1 ) return predictions def a__ ( ): __lowerCamelCase = fetch_california_housing() __lowerCamelCase ,__lowerCamelCase = data_handling(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = train_test_split( _UpperCamelCase ,_UpperCamelCase ,test_size=0.25 ,random_state=1 ) __lowerCamelCase = xgboost(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(_UpperCamelCase ,_UpperCamelCase )}""" ) print(F"""Mean Square Error : {mean_squared_error(_UpperCamelCase ,_UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
717
from collections import namedtuple import requests from lxml import html # type: ignore a_ = namedtuple("""covid_data""", """cases deaths recovered""") def a__ ( _UpperCamelCase : str = "https://www.worldometers.info/coronavirus/" ): __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(_UpperCamelCase ).content ).xpath(_UpperCamelCase ) ) a_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
622
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): """simple docstring""" if attention_mask is None: lowercase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : def __init__( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: str=7 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: str=99 , UpperCamelCase_: Any=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=4 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: int=32 , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: List[Any]=1 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: Optional[int]=0.02 , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = initializer_range def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase__ = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) lowercase__ = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = model.decode(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] ) lowercase__ , lowercase__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) lowercase__ = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class _a ( unittest.TestCase ): _lowercase : List[str] = 99 def lowerCamelCase_ ( self: str ) -> List[Any]: """simple docstring""" lowercase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase__ = input_ids.shape[0] lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCamelCase_ ( self: Dict ) -> str: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._get_config_and_data() lowercase__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowercase__ = lm_model(input_ids=UpperCamelCase_ ) lowercase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase__ = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) lowercase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase__ = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) lowercase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase__ = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) lowercase__ = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() lowercase__ = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( UpperCamelCase__ , unittest.TestCase , UpperCamelCase__ ): _lowercase : Optional[Any] = True _lowercase : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowercase : Any = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = FlaxBlenderbotModelTester(self ) def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_: Dict , UpperCamelCase_: int=None , **UpperCamelCase_: Dict ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('''JIT Enabled''' ): lowercase__ = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowercase__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('''JIT Enabled''' ): lowercase__ = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase__ = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ = np.ones((1, 1) ) * model.config.eos_token_id lowercase__ = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" lowercase__ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowercase__ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowercase__ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCamelCase_ ) lowercase__ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowercase__ = ['''Sam'''] lowercase__ = tokenizer(UpperCamelCase_ , return_tensors='''jax''' ) lowercase__ = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = '''Sam is a great name. It means "sun" in Gaelic.''' lowercase__ = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
43
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a : def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Optional[Any]=13 , UpperCamelCase_: Any=30 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Tuple=3 , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: int="gelu" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Optional[int]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Any=0.6 , UpperCamelCase_: Any=None , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFViTMAEModel(config=UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) # expected sequence length = num_patches lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase__ = 1 lowercase__ = TFViTMAEForPreTraining(UpperCamelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCamelCase_ , training=UpperCamelCase_ ) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () _lowercase : List[str] = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[int] = False _lowercase : Optional[int] = False def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = TFViTMAEModelTester(self ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" pass def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = outputs_dict[0].numpy() lowercase__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase_: List[Any] ): lowercase__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase_ ): lowercase__ = v.numpy() else: lowercase__ = np.array(UpperCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = prepare_numpy_arrays(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> str: """simple docstring""" np.random.seed(2 ) lowercase__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.constant(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = tf_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(UpperCamelCase_ , UpperCamelCase_ ),) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase_ , '''_keras_serializable''' , UpperCamelCase_ ) } lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase__ = tf.convert_to_tensor(UpperCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: lowercase__ = main_layer_class(UpperCamelCase_ ) lowercase__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase__ = tf.keras.Model(UpperCamelCase_ , outputs=main_layer(UpperCamelCase_ ) ) lowercase__ = model(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''keras_model.h5''' ) model.save(UpperCamelCase_ ) lowercase__ = tf.keras.models.load_model( UpperCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase_ , tf.keras.Model ) lowercase__ = model(UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = outputs.last_hidden_state.numpy() lowercase__ = 0 else: lowercase__ = outputs.logits.numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ , saved_model=UpperCamelCase_ ) lowercase__ = model_class.from_pretrained(UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": lowercase__ = after_outputs['''last_hidden_state'''].numpy() lowercase__ = 0 else: lowercase__ = after_outputs['''logits'''].numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = int((config.image_size // config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase__ = model_class(UpperCamelCase_ ) lowercase__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = model(UpperCamelCase_ , noise=UpperCamelCase_ ) lowercase__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase_ ) lowercase__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase__ = model_class.from_config(model.config ) lowercase__ = new_model(UpperCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) lowercase__ = new_model(UpperCamelCase_ , noise=UpperCamelCase_ ) self.assert_outputs_same(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" pass @slow def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(UpperCamelCase_ ) def _a ( ): """simple docstring""" lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _a ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) lowercase__ = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase__ = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase__ = model(**UpperCamelCase_ , noise=UpperCamelCase_ ) # verify the logits lowercase__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowercase__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1E-4 )
43
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
154
from __future__ import annotations def A ( a_ ) -> bool: __UpperCamelCase : Optional[int] =str(a_ ) return len(a_ ) == 9 and set(a_ ) == set('123456789' ) def A ( ) -> int | None: for base_num in range(9_999 ,4_999 ,-1 ): __UpperCamelCase : Optional[Any] =100_002 * base_num if is_9_pandigital(a_ ): return candidate for base_num in range(333 ,99 ,-1 ): __UpperCamelCase : Optional[Any] =1_002_003 * base_num if is_9_pandigital(a_ ): return candidate return None if __name__ == "__main__": print(f"{solution() = }")
154
1
'''simple docstring''' from math import factorial class lowercase__ : def __init__( self : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ): '''simple docstring''' _UpperCamelCase : int = real if isinstance(_a ,_a ): _UpperCamelCase : Optional[Any] = [1] * rank else: _UpperCamelCase : int = rank def __repr__( self : Any ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(_a )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,_a ) def __add__( self : Optional[int] ,lowerCamelCase__ : Any ): '''simple docstring''' if not isinstance(_a ,_a ): return Dual(self.real + other ,self.duals ) _UpperCamelCase : int = self.duals.copy() _UpperCamelCase : str = other.duals.copy() if len(_a ) > len(_a ): o_dual.extend([1] * (len(_a ) - len(_a )) ) elif len(_a ) < len(_a ): s_dual.extend([1] * (len(_a ) - len(_a )) ) _UpperCamelCase : Optional[int] = [] for i in range(len(_a ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,_a ) lowercase__ = __add__ def __sub__( self : Optional[Any] ,lowerCamelCase__ : Dict ): '''simple docstring''' return self + other * -1 def __mul__( self : str ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' if not isinstance(_a ,_a ): _UpperCamelCase : Tuple = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,_a ) _UpperCamelCase : List[str] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,_a ) lowercase__ = __mul__ def __truediv__( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' if not isinstance(_a ,_a ): _UpperCamelCase : int = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,_a ) raise ValueError def __floordiv__( self : Union[str, Any] ,lowerCamelCase__ : Any ): '''simple docstring''' if not isinstance(_a ,_a ): _UpperCamelCase : Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,_a ) raise ValueError def __pow__( self : Optional[int] ,lowerCamelCase__ : Dict ): '''simple docstring''' if n < 0 or isinstance(_a ,_a ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _UpperCamelCase : Dict = self for _ in range(n - 1 ): x *= self return x def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not callable(UpperCAmelCase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCAmelCase_ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('differentiate() requires an int as input for order' ) _UpperCamelCase : Optional[Any] = Dual(UpperCAmelCase_ , 1 ) _UpperCamelCase : Optional[Any] = func(UpperCAmelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def A__ ( UpperCAmelCase_ ): return y**2 * y**4 print(differentiate(f, 9, 2))
195
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:jnp.ndarray SCREAMING_SNAKE_CASE:jnp.ndarray class _UpperCamelCase ( nn.Module ): '''simple docstring''' SCREAMING_SNAKE_CASE:int SCREAMING_SNAKE_CASE:Tuple[int] = (16, 32, 96, 256) SCREAMING_SNAKE_CASE:jnp.dtype = jnp.floataa def lowercase__ ( self ): """simple docstring""" a__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( _a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) a__ = nn.Conv( _a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a ): """simple docstring""" a__ = self.conv_in(_a ) a__ = nn.silu(_a ) for block in self.blocks: a__ = block(_a ) a__ = nn.silu(_a ) a__ = self.conv_out(_a ) return embedding @flax_register_to_config class _UpperCamelCase ( nn.Module , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:int = 32 SCREAMING_SNAKE_CASE:int = 4 SCREAMING_SNAKE_CASE:Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE:Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE:Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE:int = 2 SCREAMING_SNAKE_CASE:Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE:Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE:int = 1280 SCREAMING_SNAKE_CASE:float = 0.0 SCREAMING_SNAKE_CASE:bool = False SCREAMING_SNAKE_CASE:jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE:bool = True SCREAMING_SNAKE_CASE:int = 0 SCREAMING_SNAKE_CASE:str = "rgb" SCREAMING_SNAKE_CASE:Tuple[int] = (16, 32, 96, 256) def lowercase__ ( self , _a ): """simple docstring""" # init input tensors a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(_a , dtype=jnp.floataa ) a__ = jnp.ones((1,) , dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(_a , dtype=jnp.floataa ) a__ , a__ = jax.random.split(_a ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(_a , _a , _a , _a , _a )["params"] def lowercase__ ( self ): """simple docstring""" a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(_a , dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) a__ = self.only_cross_attention if isinstance(_a , _a ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_a , _a ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( _a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(_a ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: a__ = FlaxDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_a ) for _ in range(self.layers_per_block ): a__ = nn.Conv( _a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) if not is_final_block: a__ = nn.Conv( _a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=_a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) a__ = nn.Conv( _a , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ): """simple docstring""" a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(_a , axis=1 ) # 1. time if not isinstance(_a , jnp.ndarray ): a__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_a , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(_a , 0 ) a__ = self.time_proj(_a ) a__ = self.time_embedding(_a ) # 2. pre-process a__ = jnp.transpose(_a , (0, 2, 3, 1) ) a__ = self.conv_in(_a ) a__ = jnp.transpose(_a , (0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(_a ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(_a , _a ): a__ , a__ = down_block(_a , _a , _a , deterministic=not train ) else: a__ , a__ = down_block(_a , _a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(_a , _a , _a , deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(_a , self.controlnet_down_blocks ): a__ = controlnet_block(_a ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(_a ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_a , mid_block_res_sample=_a )
394
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , ) -> Any: _a = size if size is not None else {"height": 18, "width": 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = apply_ocr def a_ ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __SCREAMING_SNAKE_CASE ( UpperCAmelCase__ , unittest.TestCase ): UpperCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a_ ( self ) -> Optional[Any]: _a = LayoutLMvaImageProcessingTester(self ) @property def a_ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self ) -> str: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCamelCase__ , "apply_ocr" ) ) def a_ ( self ) -> int: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def a_ ( self ) -> Union[str, Any]: pass def a_ ( self ) -> int: _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowerCamelCase__ ) self.assertIsInstance(encoding.boxes , lowerCamelCase__ ) # Test batched _a = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def a_ ( self ) -> Optional[int]: _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _a = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def a_ ( self ) -> List[str]: _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _a = image_processing(lowerCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def a_ ( self ) -> List[Any]: _a = LayoutLMvaImageProcessor() from datasets import load_dataset _a = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) _a = Image.open(ds[0]["file"] ).convert("RGB" ) _a = image_processing(lowerCamelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _a = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _a = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCamelCase__ ) self.assertListEqual(encoding.boxes , lowerCamelCase__ ) # with apply_OCR = False _a = LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase__ ) _a = image_processing(lowerCamelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
718
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __SCREAMING_SNAKE_CASE ( unittest.TestCase , lowerCamelCase__ ): def a_ ( self ) -> Tuple: _a = load_tool("text-classification" ) self.tool.setup() _a = load_tool("text-classification" , remote=__UpperCamelCase ) def a_ ( self ) -> Optional[int]: _a = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def a_ ( self ) -> Union[str, Any]: _a = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def a_ ( self ) -> Optional[int]: _a = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def a_ ( self ) -> str: _a = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
276
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger() @dataclass class __A : lowerCAmelCase_ : nn.Module lowerCAmelCase_ : List[nn.Module] = field(default_factory=lowerCAmelCase ) lowerCAmelCase_ : list = field(default_factory=lowerCAmelCase ) def lowercase__ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Tensor ): lowerCAmelCase : str = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase_ , nn.Convad ) or isinstance(UpperCAmelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase_ ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self : Any ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A : lowerCAmelCase_ : nn.Module lowerCAmelCase_ : nn.Module lowerCAmelCase_ : int = 0 lowerCAmelCase_ : List = field(default_factory=lowerCAmelCase ) lowerCAmelCase_ : List = field(default_factory=lowerCAmelCase ) def __call__( self : List[Any] , UpperCAmelCase_ : Tensor ): lowerCAmelCase : List[str] = Tracker(self.dest )(UpperCAmelCase_ ).parametrized lowerCAmelCase : Optional[Any] = Tracker(self.src )(UpperCAmelCase_ ).parametrized lowerCAmelCase : Tuple = list(filter(lambda UpperCAmelCase_ : type(UpperCAmelCase_ ) not in self.src_skip , UpperCAmelCase_ ) ) lowerCAmelCase : Tuple = list(filter(lambda UpperCAmelCase_ : type(UpperCAmelCase_ ) not in self.dest_skip , UpperCAmelCase_ ) ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise Exception( f"Numbers of operations are different. Source module has {len(UpperCAmelCase_ )} operations while" f" destination module has {len(UpperCAmelCase_ )}." ) for dest_m, src_m in zip(UpperCAmelCase_ , UpperCAmelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = True ) -> List[Any]: '''simple docstring''' print(f"Converting {name}..." ) with torch.no_grad(): lowerCAmelCase : Tuple = timm.create_model(_UpperCAmelCase, pretrained=_UpperCAmelCase ).eval() lowerCAmelCase : Optional[Any] = ResNetForImageClassification(_UpperCAmelCase ).eval() lowerCAmelCase : List[Any] = ModuleTransfer(src=_UpperCAmelCase, dest=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) assert torch.allclose(from_model(_UpperCAmelCase ), our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one." lowerCAmelCase : Dict = f"resnet{'-'.join(name.split('resnet' ) )}" print(_UpperCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=_UpperCAmelCase, ) # we can use the convnext one lowerCAmelCase : Any = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=_UpperCAmelCase, ) print(f"Pushed {checkpoint_name}" ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = 'imagenet-1k-id2label.json' lowerCAmelCase : List[str] = 1_000 lowerCAmelCase : Any = (1, num_labels) lowerCAmelCase : Any = 'huggingface/label-files' lowerCAmelCase : Tuple = num_labels lowerCAmelCase : str = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ), 'r' ) ) lowerCAmelCase : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : Tuple = partial(_UpperCAmelCase, num_labels=_UpperCAmelCase, idalabel=_UpperCAmelCase, labelaid=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_UpperCAmelCase, names_to_config[model_name], _UpperCAmelCase, _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __A : List[Any] = parser.parse_args() __A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
343
import math import sys def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : str = '' try: with open(_UpperCAmelCase, 'rb' ) as binary_file: lowerCAmelCase : Any = binary_file.read() for dat in data: lowerCAmelCase : int = f"{dat:08b}" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : Tuple = {'0': '0', '1': '1'} lowerCAmelCase , lowerCAmelCase : Tuple = '', '' lowerCAmelCase : Any = len(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase : List[Any] = lexicon[curr_string] result += last_match_id lowerCAmelCase : int = last_match_id + '0' if math.loga(_UpperCAmelCase ).is_integer(): lowerCAmelCase : List[str] = {} for curr_key in list(_UpperCAmelCase ): lowerCAmelCase : List[Any] = lexicon.pop(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = new_lex lowerCAmelCase : Tuple = last_match_id + '1' index += 1 lowerCAmelCase : List[Any] = '' return result def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Dict = 8 try: with open(_UpperCAmelCase, 'wb' ) as opened_file: lowerCAmelCase : List[Any] = [ to_write[i : i + byte_length] for i in range(0, len(_UpperCAmelCase ), _UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_UpperCAmelCase, 2 ).to_bytes(1, byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : int = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase : int = data_bits[counter:] lowerCAmelCase : Optional[int] = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> None: '''simple docstring''' lowerCAmelCase : Tuple = read_file_binary(_UpperCAmelCase ) lowerCAmelCase : int = remove_prefix(_UpperCAmelCase ) lowerCAmelCase : List[str] = decompress_data(_UpperCAmelCase ) write_file_binary(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
343
1
def __lowerCAmelCase ( A , A , A , A , A , ): UpperCAmelCase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: UpperCAmelCase_ = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _a: Optional[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
704
from sklearn.metrics import mean_squared_error import datasets _a: Any = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ _a: List[Any] = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ _a: List[str] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __A ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __A ( self : Optional[Any] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __A ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : str=None , lowerCAmelCase : str="uniform_average" , lowerCAmelCase : Any=True ): '''simple docstring''' UpperCAmelCase_ = mean_squared_error( lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase , multioutput=lowerCAmelCase , squared=lowerCAmelCase ) return {"mse": mse}
268
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , a , a , a = None , a = None ) -> Any: """simple docstring""" super().__init__() _A = pad_token_id _A = max_length _A = vocab _A = merges _A = BytePairTokenizer(a , a , sequence_length=a ) @classmethod def lowercase_ ( cls , a , *a , **a ) -> str: """simple docstring""" _A = [''' '''.join(a ) for m in tokenizer.bpe_ranks.keys()] _A = tokenizer.get_vocab() return cls(a , a , *a , **a ) @classmethod def lowercase_ ( cls , a , *a , **a ) -> Optional[Any]: """simple docstring""" _A = GPTaTokenizer.from_pretrained(a , *a , **a ) return cls.from_tokenizer(a , *a , **a ) @classmethod def lowercase_ ( cls , a ) -> Any: """simple docstring""" return cls(**a ) def lowercase_ ( self ) -> List[str]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase_ ( self , a , a = None ) -> Union[str, Any]: """simple docstring""" _A = self.tf_tokenizer(a ) _A = tf.ones_like(a ) if self.pad_token_id is not None: # pad the tokens up to max length _A = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A = pad_model_inputs( a , max_seq_length=a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
317
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __lowerCamelCase = get_logger(__name__) __lowerCamelCase = Path(__file__).parent / """model_card_template.md""" __lowerCamelCase = uuida().hex __lowerCamelCase = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def UpperCAmelCase__ ( __snake_case = None ) -> str: _A = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__snake_case , __snake_case ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__snake_case , __snake_case ): ua += "; " + user_agent return ua def UpperCAmelCase__ ( __snake_case , __snake_case = None , __snake_case = None ) -> Union[str, Any]: if token is None: _A = HfFolder.get_token() if organization is None: _A = whoami(__snake_case )['''name'''] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def UpperCAmelCase__ ( __snake_case , __snake_case ) -> Optional[int]: if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__snake_case , '''local_rank''' ) and args.local_rank not in [-1, 0]: return _A = args.hub_token if hasattr(__snake_case , '''hub_token''' ) else None _A = get_full_repo_name(__snake_case , token=__snake_case ) _A = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__snake_case , model_name=__snake_case , repo_name=__snake_case , dataset_name=args.dataset_name if hasattr(__snake_case , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__snake_case , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__snake_case , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__snake_case , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__snake_case , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__snake_case , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__snake_case , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__snake_case , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__snake_case , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__snake_case , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__snake_case , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) _A = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__snake_case ) def UpperCAmelCase__ ( __snake_case , __snake_case = None ) -> Union[str, Any]: if resolved_file is None or commit_hash is not None: return commit_hash _A = str(Path(__snake_case ).as_posix() ) _A = re.search(R'''snapshots/([^/]+)/''' , __snake_case ) if search is None: return None _A = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __lowerCamelCase = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) __lowerCamelCase = os.path.join(hf_cache_home, """diffusers""") def UpperCAmelCase__ ( __snake_case = None , __snake_case = None ) -> None: if new_cache_dir is None: _A = DIFFUSERS_CACHE if old_cache_dir is None: _A = old_diffusers_cache _A = Path(__snake_case ).expanduser() _A = Path(__snake_case ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _A = new_cache_dir / old_blob_path.relative_to(__snake_case ) new_blob_path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) os.replace(__snake_case , __snake_case ) try: os.symlink(__snake_case , __snake_case ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __lowerCamelCase = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): __lowerCamelCase = 0 else: with open(cache_version_file) as f: try: __lowerCamelCase = int(f.read()) except ValueError: __lowerCamelCase = 0 if cache_version < 1: __lowerCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: __lowerCamelCase = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' """the directory exists and can be written to.""" ) def UpperCAmelCase__ ( __snake_case , __snake_case = None ) -> str: if variant is not None: _A = weights_name.split('''.''' ) _A = splits[:-1] + [variant] + splits[-1:] _A = '''.'''.join(__snake_case ) return weights_name def UpperCAmelCase__ ( __snake_case , *, __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None , ) -> Optional[int]: _A = str(__snake_case ) if os.path.isfile(__snake_case ): return pretrained_model_name_or_path elif os.path.isdir(__snake_case ): if os.path.isfile(os.path.join(__snake_case , __snake_case ) ): # Load from a PyTorch checkpoint _A = os.path.join(__snake_case , __snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__snake_case , __snake_case , __snake_case ) ): _A = os.path.join(__snake_case , __snake_case , __snake_case ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__snake_case ).base_version ) >= version.parse('''0.20.0''' ) ): try: _A = hf_hub_download( __snake_case , filename=_add_variant(__snake_case , __snake_case ) , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , user_agent=__snake_case , subfolder=__snake_case , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__snake_case , __snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__snake_case , __snake_case )}\' so that the correct variant file can be added.''' , __snake_case , ) try: # 2. Load model file as usual _A = hf_hub_download( __snake_case , filename=__snake_case , cache_dir=__snake_case , force_download=__snake_case , proxies=__snake_case , resume_download=__snake_case , local_files_only=__snake_case , use_auth_token=__snake_case , user_agent=__snake_case , subfolder=__snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
317
1
def __magic_name__( _A , _A ): '''simple docstring''' return base * power(_A , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('''Raise base to the power of exponent using recursion...''') lowerCamelCase_ : List[str] = int(input('''Enter the base: ''').strip()) lowerCamelCase_ : Dict = int(input('''Enter the exponent: ''').strip()) lowerCamelCase_ : str = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCamelCase_ : int = 1 / result print(f"""{base} to the power of {exponent} is {result}""")
702
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Optional[Any] = ["pixel_values"] def __init__( self : str , lowercase : bool = True , lowercase : int = 3_2 , lowercase : List[Any]=PILImageResampling.BILINEAR , lowercase : bool = True , **lowercase : str , ) -> None: '''simple docstring''' UpperCamelCase__ = do_resize UpperCamelCase__ = do_rescale UpperCamelCase__ = size_divisor UpperCamelCase__ = resample super().__init__(**lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : List[Any] , lowercase : Optional[ChannelDimension] = None , **lowercase : Any ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = get_image_size(lowercase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCamelCase__ = height // size_divisor * size_divisor UpperCamelCase__ = width // size_divisor * size_divisor UpperCamelCase__ = resize(lowercase , (new_h, new_w) , resample=lowercase , data_format=lowercase , **lowercase ) return image def A ( self : int , lowercase : np.ndarray , lowercase : float , lowercase : Optional[ChannelDimension] = None , **lowercase : List[str] ) -> np.ndarray: '''simple docstring''' return rescale(image=lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : int , lowercase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Any]=None , lowercase : Optional[bool] = None , lowercase : Optional[Union[TensorType, str]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ) -> BatchFeature: '''simple docstring''' UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = size_divisor if size_divisor is not None else self.size_divisor UpperCamelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) UpperCamelCase__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(lowercase ) for img in images] if do_resize: UpperCamelCase__ = [self.resize(lowercase , size_divisor=lowercase , resample=lowercase ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(lowercase , scale=1 / 2_5_5 ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCamelCase__ = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
265
0
import math def UpperCAmelCase_ ( _UpperCAmelCase :int ) -> int: '''simple docstring''' return math.sqrt(_UpperCAmelCase ) * math.sqrt(_UpperCAmelCase ) == num def UpperCAmelCase_ ( _UpperCAmelCase :int ) -> Tuple: '''simple docstring''' A_ = 0 A_ = n while left <= right: A_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A_ = mid - 1 else: A_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
188
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : '''simple docstring''' __A = 42 __A = None __A = None _lowerCamelCase : str = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCAmelCase ( __magic_name__ :TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__magic_name__ :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
121
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowercase_ = True except ImportError: lowercase_ = False lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class A ( __UpperCAmelCase ): """simple docstring""" @staticmethod def snake_case__ ( lowercase_ : ArgumentParser )-> Union[str, Any]: '''simple docstring''' A__ = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing',action='store_true',help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file',type=__SCREAMING_SNAKE_CASE,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path',type=__SCREAMING_SNAKE_CASE,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self : Any,lowercase_ : bool,lowercase_ : str,lowercase_ : int=None,*lowercase_ : List[Any] )-> List[str]: '''simple docstring''' A__ = testing A__ = testing_file A__ = path def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A__ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A__ = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A__ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file,'r' ) as configuration_file: A__ = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ),no_input=__SCREAMING_SNAKE_CASE,extra_context=__SCREAMING_SNAKE_CASE,) A__ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + '/configuration.json','r' ) as configuration_file: A__ = json.load(__SCREAMING_SNAKE_CASE ) A__ = configuration['lowercase_modelname'] A__ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A__ = 'PyTorch' in generate_tensorflow_pytorch_and_flax A__ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A__ = 'Flax' in generate_tensorflow_pytorch_and_flax A__ = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(__SCREAMING_SNAKE_CASE,exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}',exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py','w' ): pass shutil.move( F'{directory}/__init__.py',F'{model_dir}/__init__.py',) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py',F'{model_dir}/configuration_{lowercase_model_name}.py',) def remove_copy_lines(lowercase_ : List[str] ): with open(__SCREAMING_SNAKE_CASE,'r' ) as f: A__ = f.readlines() with open(__SCREAMING_SNAKE_CASE,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py',F'{model_dir}/modeling_{lowercase_model_name}.py',) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py',F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py',) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py',F'{model_dir}/modeling_tf_{lowercase_model_name}.py',) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py',F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py',) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py',F'{model_dir}/modeling_flax_{lowercase_model_name}.py',) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py',F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py',) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md',F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md',) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py',F'{model_dir}/tokenization_{lowercase_model_name}.py',) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py',F'{model_dir}/tokenization_{lowercase_model_name}_fast.py',) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowercase_ : str,lowercase_ : str,lowercase_ : List[str] ): # Create temp file A__ , A__ = mkstemp() A__ = False with fdopen(__SCREAMING_SNAKE_CASE,'w' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: A__ = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def skip_units(lowercase_ : Union[str, Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowercase_ : str ): with open(__SCREAMING_SNAKE_CASE ) as datafile: A__ = [] A__ = False A__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: A__ = line.split('"' )[1] A__ = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: A__ = line.split('"' )[1] A__ = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) A__ = [] elif "# Replace with" in line and "##" not in line: A__ = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(__SCREAMING_SNAKE_CASE )
716
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
586
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( *lowercase : Any ): '''simple docstring''' if not isinstance(lowercase , lowercase ): lowerCamelCase_ = list(lowercase ) for i in range(len(lowercase ) ): lowerCamelCase_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _SCREAMING_SNAKE_CASE ( lowercase : Exception ): '''simple docstring''' lowerCamelCase_ = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(lowercase , lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _SCREAMING_SNAKE_CASE ( lowercase : callable = None , lowercase : int = 1_28 ): '''simple docstring''' if function is None: return functools.partial(lowercase , starting_batch_size=lowercase ) lowerCamelCase_ = starting_batch_size def decorator(*lowercase : Optional[int] , **lowercase : Any ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCamelCase_ = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): lowerCamelCase_ = ', '.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(lowercase , *lowercase , **lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
70
'''simple docstring''' from math import loga def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
390
0
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Any = XGLMTokenizer UpperCAmelCase : str = XGLMTokenizerFast UpperCAmelCase : str = True UpperCAmelCase : Any = True def __snake_case ( self : Union[str, Any]): super().setUp() # We have a SentencePiece fixture for testing a : int = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def __snake_case ( self : Dict): a : Any = "<pad>" a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase) , __UpperCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : int): a : Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(__UpperCAmelCase) , 1008) def __snake_case ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def __snake_case ( self : str): a : Optional[Any] = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase) a : int = tokenizer.tokenize("This is a test") self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a : List[str] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a : str = tokenizer.convert_ids_to_tokens(__UpperCAmelCase) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __snake_case ( self : Union[str, Any]): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def __snake_case ( self : Tuple): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name) a : Dict = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase) a : Any = pickle.dumps(__UpperCAmelCase) pickle.loads(__UpperCAmelCase) def __snake_case ( self : Dict): if not self.test_rust_tokenizer: return a : Optional[int] = self.get_tokenizer() a : int = self.get_rust_tokenizer() a : Optional[int] = "I was born in 92000, and this is falsé." a : List[Any] = tokenizer.tokenize(__UpperCAmelCase) a : Optional[int] = rust_tokenizer.tokenize(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) a : List[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase) a : Optional[int] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) a : Any = self.get_rust_tokenizer() a : Union[str, Any] = tokenizer.encode(__UpperCAmelCase) a : str = rust_tokenizer.encode(__UpperCAmelCase) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase) @slow def __snake_case ( self : str): a : List[Any] = "Hello World!" a : Optional[Any] = [2, 31227, 4447, 35] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase)) @slow def __snake_case ( self : Any): a : Dict = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a : List[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase)) @slow def __snake_case ( self : Tuple): # fmt: off a : Tuple = { "input_ids": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="facebook/xglm-564M" , padding=__UpperCAmelCase , )
135
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowercase = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __lowercase = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __lowercase = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __lowercase = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __lowercase = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): """simple docstring""" def __snake_case ( self : Dict): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string")), "references": datasets.Value("string"), }) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __snake_case ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=[1, 10, 100] , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple=3.0): if os.getenv("HF_ALLOW_CODE_EVAL" , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows.") with ThreadPoolExecutor(max_workers=__UpperCAmelCase) as executor: a : Tuple = [] a : Any = Counter() a : List[Any] = 0 a : int = defaultdict(__UpperCAmelCase) for task_id, (candidates, test_case) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase)): for candidate in candidates: a : List[Any] = candidate + "\n" + test_case a : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) a : Union[str, Any] = executor.submit(__UpperCAmelCase , *__UpperCAmelCase) futures.append(__UpperCAmelCase) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCAmelCase): a : Dict = future.result() results[result["task_id"]].append((result["completion_id"], result)) a , a : List[Any] = [], [] for result in results.values(): result.sort() a : Union[str, Any] = [r[1]["passed"] for r in result] total.append(len(__UpperCAmelCase)) correct.append(sum(__UpperCAmelCase)) a : Any = np.array(__UpperCAmelCase) a : Optional[Any] = np.array(__UpperCAmelCase) a : List[str] = k a : Union[str, Any] = {f'''pass@{k}''': estimate_pass_at_k(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowercase ( A_ , A_ , A_ )-> Dict: '''simple docstring''' def estimator(A_ , A_ , A_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A_ , A_ ): a : Dict = itertools.repeat(A_ , len(A_ ) ) else: assert len(A_ ) == len(A_ ) a : int = iter(A_ ) return np.array([estimator(int(A_ ) , int(A_ ) , A_ ) for n, c in zip(A_ , A_ )] )
135
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = XLMProphetNetTokenizer snake_case__ = False snake_case__ = True def UpperCAmelCase__ (self: Optional[Any] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a : str = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __a : Union[str, Any] = "[PAD]" __a : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase__ (self: Any ) -> str: '''simple docstring''' __a : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__UpperCAmelCase ) , 1012 ) def UpperCAmelCase__ (self: List[Any] ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCAmelCase__ (self: str ) -> Optional[Any]: '''simple docstring''' __a : Dict = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __a : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __a : Dict = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __a : List[Any] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCAmelCase__ (self: Union[str, Any] ) -> Dict: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCAmelCase__ (self: Optional[int] ) -> Dict: '''simple docstring''' __a : Optional[int] = "Hello World!" __a : Optional[int] = [35389, 6672, 49, 2] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __a : Optional[int] = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
351
UpperCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def a_ () -> None: """simple docstring""" __a : Dict = input("Enter message: " ) __a : Dict = input("Enter key [alphanumeric]: " ) __a : str = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): __a : List[str] = "encrypt" __a : Union[str, Any] = encrypt_message(__A , __A ) elif mode.lower().startswith("d" ): __a : int = "decrypt" __a : List[str] = decrypt_message(__A , __A ) print(f'\n{mode.title()}ed message:' ) print(__A ) def a_ (__A , __A ) -> str: """simple docstring""" return translate_message(__A , __A , "encrypt" ) def a_ (__A , __A ) -> str: """simple docstring""" return translate_message(__A , __A , "decrypt" ) def a_ (__A , __A , __A ) -> str: """simple docstring""" __a : Union[str, Any] = [] __a : Tuple = 0 __a : Dict = key.upper() for symbol in message: __a : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__A ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__A ): __a : List[str] = 0 else: translated.append(__A ) return "".join(__A ) if __name__ == "__main__": main()
351
1
def __snake_case ( _UpperCAmelCase = 1_00 ): """simple docstring""" lowercase = set() lowercase = 0 lowercase = n + 1 # maximum limit for a in range(2 , _UpperCAmelCase ): for b in range(2 , _UpperCAmelCase ): lowercase = a**b # calculates the current power collect_powers.add(_UpperCAmelCase ) # adds the result to the set return len(_UpperCAmelCase ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
706
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number | (1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number & ~(1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return number ^ (1 << position) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return ((number >> position) & 1) == 1 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
314
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __A = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } __A = '''▁''' class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = BigBirdTokenizer snake_case__ = ["input_ids", "attention_mask"] snake_case__ = [] def __init__( self : List[str] , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : List[Any]="<unk>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Optional[Any]="[SEP]" , UpperCAmelCase : str="[MASK]" , UpperCAmelCase : Union[str, Any]="[CLS]" , **UpperCAmelCase : List[Any] , ): __lowerCamelCase : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token __lowerCamelCase : Tuple = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token __lowerCamelCase : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token __lowerCamelCase : Optional[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token __lowerCamelCase : Optional[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token __lowerCamelCase : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : Optional[Any] = vocab_file __lowerCamelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Optional[Any] = [self.sep_token_id] __lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1] def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : List[Any] = [self.sep_token_id] __lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : Dict = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
646
"""simple docstring""" import math def lowercase_ ( _lowerCamelCase: int ) -> list[int]: '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Tuple = 2 __lowerCamelCase : str = int(math.sqrt(_lowerCamelCase ) ) # Size of every segment __lowerCamelCase : str = [True] * (end + 1) __lowerCamelCase : int = [] while start <= end: if temp[start] is True: in_prime.append(_lowerCamelCase ) for i in range(start * start , end + 1 , _lowerCamelCase ): __lowerCamelCase : List[str] = False start += 1 prime += in_prime __lowerCamelCase : Union[str, Any] = end + 1 __lowerCamelCase : Union[str, Any] = min(2 * end , _lowerCamelCase ) while low <= n: __lowerCamelCase : List[Any] = [True] * (high - low + 1) for each in in_prime: __lowerCamelCase : int = math.floor(low / each ) * each if t < low: t += each for j in range(_lowerCamelCase , high + 1 , _lowerCamelCase ): __lowerCamelCase : Dict = False for j in range(len(_lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) __lowerCamelCase : List[str] = high + 1 __lowerCamelCase : Union[str, Any] = min(high + end , _lowerCamelCase ) return prime print(sieve(10**6))
646
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : str = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCamelCase : List[str] = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } lowerCamelCase : Tuple = { "169M": 768, "430M": 1_024, "1B5": 2_048, "3B": 2_560, "7B": 4_096, "14B": 5_120, } def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = list(state_dict.keys() ) for name in state_dict_keys: lowerCamelCase_ = state_dict.pop(lowercase ) # emb -> embedding if name.startswith('emb.' ): lowerCamelCase_ = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowerCamelCase_ = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowerCamelCase_ = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , lowercase ) # ffn -> feed_forward lowerCamelCase_ = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowerCamelCase_ = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowerCamelCase_ = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowerCamelCase_ = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowerCamelCase_ = 'rwkv.' + name lowerCamelCase_ = weight return state_dict def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : int=None , lowercase : str=None , lowercase : Any=False , lowercase : Tuple=None ): '''simple docstring''' if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowerCamelCase_ = 5_02_77 lowerCamelCase_ = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowerCamelCase_ = PreTrainedTokenizerFast(tokenizer_file=lowercase ) lowerCamelCase_ = len(lowercase ) tokenizer.save_pretrained(lowercase ) # 2. Build the config lowerCamelCase_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase_ = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) lowerCamelCase_ = RwkvConfig( vocab_size=lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase ) # 3. Download model file then convert state_dict lowerCamelCase_ = hf_hub_download(lowercase , lowercase ) lowerCamelCase_ = torch.load(lowercase , map_location='cpu' ) lowerCamelCase_ = convert_state_dict(lowercase ) # 4. Split in shards and save lowerCamelCase_ , lowerCamelCase_ = shard_checkpoint(lowercase ) for shard_file, shard in shards.items(): torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if index is not None: lowerCamelCase_ = os.path.join(lowercase , lowercase ) # Save the index as well with open(lowercase , 'w' , encoding='utf-8' ) as f: lowerCamelCase_ = json.dumps(lowercase , indent=2 , sort_keys=lowercase ) + '\n' f.write(lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowerCamelCase_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase_ = torch.load(os.path.join(lowercase , lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase , lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(lowercase ) model.push_to_hub(lowercase , max_shard_size='2GB' ) tokenizer.push_to_hub(lowercase ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
70
def __lowerCAmelCase ( __magic_name__ ): if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError("only integers accepted as input" ) else: _lowercase: Optional[Any] = str(abs(__magic_name__ ) ) _lowercase: Tuple = [list(__magic_name__ ) for char in range(len(__magic_name__ ) )] for index in range(len(__magic_name__ ) ): num_transpositions[index].pop(__magic_name__ ) return max( int("".join(list(__magic_name__ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
226
0
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : str=None , ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Any = use_input_mask __UpperCAmelCase : Any = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Any = embedding_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : str = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : List[Any] = scope def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : List[Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Tuple = None __UpperCAmelCase : int = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = MobileBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __UpperCAmelCase : int = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Dict = MobileBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : int = MobileBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): """simple docstring""" __UpperCAmelCase : Dict = MobileBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Tuple = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MobileBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : str = self.num_labels __UpperCAmelCase : Optional[int] = MobileBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = self.num_choices __UpperCAmelCase : Dict = MobileBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Dict = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : str = config_and_inputs __UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=False ): """simple docstring""" __UpperCAmelCase : int = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): __UpperCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) __UpperCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = MobileBertModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase_ ) def __UpperCamelCase ( _UpperCAmelCase ): return torch.tensor( _UpperCAmelCase, dtype=torch.long, device=_UpperCAmelCase, ) lowerCAmelCase__ : Optional[int] = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(UpperCAmelCase_ ) __UpperCAmelCase : Any = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(UpperCAmelCase_ )[0] __UpperCAmelCase : List[Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , UpperCAmelCase_ ) __UpperCAmelCase : List[str] = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=UpperCAmelCase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __UpperCAmelCase : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __UpperCAmelCase : int = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
329
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): """simple docstring""" pass def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : int = DepthEstimationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , UpperCAmelCase_ ) import datasets __UpperCAmelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase : Dict = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , UpperCAmelCase_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[str] = "Intel/dpt-large" __UpperCAmelCase : Optional[int] = pipeline("depth-estimation" , model=UpperCAmelCase_ ) __UpperCAmelCase : Any = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __UpperCAmelCase : str = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
329
1
'''simple docstring''' SCREAMING_SNAKE_CASE = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ SCREAMING_SNAKE_CASE = [{"""type""": """code""", """content""": INSTALL_CONTENT}] SCREAMING_SNAKE_CASE = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
199
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE = """tabby, tabby cat""" SCREAMING_SNAKE_CASE = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , snake_case__ : int , snake_case__ : int = 3 , snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : Optional[str] = "relu" , **snake_case__ : Dict , ): '''simple docstring''' super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase__ : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase__ : Union[str, Any] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding="VALID" , groups=snake_case__ , use_bias=snake_case__ , name="convolution" , ) UpperCAmelCase__ : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) UpperCAmelCase__ : Tuple = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase ( self : str , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : str = self.convolution(self.padding(snake_case__ ) ) UpperCAmelCase__ : Dict = self.normalization(snake_case__ ) UpperCAmelCase__ : Any = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , **snake_case__ : Optional[int] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = config.num_channels UpperCAmelCase__ : Optional[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def UpperCamelCase ( self : int , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase__ : List[str] = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) UpperCAmelCase__ : Dict = self.embedder(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : int = 2 , **snake_case__ : Optional[int] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name="convolution" ) UpperCAmelCase__ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def UpperCamelCase ( self : str , snake_case__ : tf.Tensor , snake_case__ : bool = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : int , snake_case__ : int , **snake_case__ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) UpperCAmelCase__ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def UpperCamelCase ( self : Optional[int] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.pooler(snake_case__ ) for layer_module in self.attention: UpperCAmelCase__ : Dict = layer_module(snake_case__ ) UpperCAmelCase__ : int = hidden_state * pooled return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : str ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Optional[Any] = in_channels != out_channels or stride != 1 UpperCAmelCase__ : Optional[int] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Tuple = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase__ : int = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.2" ), ] UpperCAmelCase__ : List[Any] = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = hidden_state for layer_module in self.layers: UpperCAmelCase__ : List[str] = layer_module(snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : Union[str, Any] = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : List[Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = in_channels != out_channels or stride != 1 UpperCAmelCase__ : Union[str, Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Dict = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) UpperCAmelCase__ : Optional[Any] = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.3" ), ] UpperCAmelCase__ : Dict = ACTaFN[config.hidden_act] def UpperCamelCase ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = hidden_state for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) UpperCAmelCase__ : Dict = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : List[Any] = self.activation(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 2 , **snake_case__ : Any ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer UpperCAmelCase__ : int = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name="layers.0" ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCamelCase ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) return hidden_state class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , snake_case__ : RegNetConfig , **snake_case__ : Any ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Union[str, Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) UpperCAmelCase__ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=F"""stages.{i+1}""" ) ) def UpperCamelCase ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : bool = False , snake_case__ : bool = True ): '''simple docstring''' UpperCAmelCase__ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase__ : Dict = stage_module(snake_case__ ) if output_hidden_states: UpperCAmelCase__ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class UpperCAmelCase_ ( tf.keras.layers.Layer ): '''simple docstring''' lowercase_ : Dict = RegNetConfig def __init__( self : int , snake_case__ : str , **snake_case__ : Union[str, Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[Any] = config UpperCAmelCase__ : Dict = TFRegNetEmbeddings(snake_case__ , name="embedder" ) UpperCAmelCase__ : int = TFRegNetEncoder(snake_case__ , name="encoder" ) UpperCAmelCase__ : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) @unpack_inputs def UpperCamelCase ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : str = self.embedder(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[int] = encoder_outputs[0] UpperCAmelCase__ : Optional[Any] = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase__ : List[Any] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) UpperCAmelCase__ : Any = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase__ : Optional[int] = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : List[Any] = RegNetConfig lowercase_ : Optional[int] = "regnet" lowercase_ : Optional[Any] = "pixel_values" @property def UpperCamelCase ( self : Any ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , A , ) class UpperCAmelCase_ ( A ): '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , *snake_case__ : Any , **snake_case__ : List[str] ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : Any = TFRegNetMainLayer(snake_case__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self : Optional[int] , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : int=False , ): '''simple docstring''' UpperCAmelCase__ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : List[str] = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , A , ) class UpperCAmelCase_ ( A , A ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : RegNetConfig , *snake_case__ : Optional[Any] , **snake_case__ : int ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : Optional[Any] = config.num_labels UpperCAmelCase__ : str = TFRegNetMainLayer(snake_case__ , name="regnet" ) # classification head UpperCAmelCase__ : Optional[int] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self : List[str] , snake_case__ : tf.Tensor = None , snake_case__ : tf.Tensor = None , snake_case__ : bool = None , snake_case__ : bool = None , snake_case__ : List[Any]=False , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Dict = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Dict = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ : Union[str, Any] = self.classifier[0](snake_case__ ) UpperCAmelCase__ : str = self.classifier[1](snake_case__ ) UpperCAmelCase__ : Any = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: UpperCAmelCase__ : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
199
1
import argparse import struct import unittest class _a : """simple docstring""" def __init__( self , lowerCAmelCase_ ): _lowercase =data # Initialize hash values _lowercase =[ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants _lowercase =[ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] _lowercase =self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCAmelCase ( lowerCAmelCase_ ): _lowercase =b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowercase =struct.pack(">Q" , (len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCAmelCase ( self ): _lowercase =[ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowercase =list(struct.unpack(">16L" , _A ) ) # add 48 0-ed integers words += [0] * 48 _lowercase =self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowercase =( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _lowercase =( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _lowercase =( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression _lowercase =self.ror(_A , 6 ) ^ self.ror(_A , 11 ) ^ self.ror(_A , 25 ) _lowercase =(e & f) ^ ((~e & 0xff_ff_ff_ff) & g) _lowercase =( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 _lowercase =self.ror(_A , 2 ) ^ self.ror(_A , 13 ) ^ self.ror(_A , 22 ) _lowercase =(a & b) ^ (a & c) ^ (b & c) _lowercase =(sa + maj) % 0x1_00_00_00_00 _lowercase =( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) _lowercase =[a, b, c, d, e, f, g, h] # Modify final values _lowercase =[ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] _lowercase =''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class _a ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): import hashlib _lowercase =bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_A ).hash , hashlib.shaaaa(_A ).hexdigest() ) def __lowerCamelCase ( ) -> Optional[int]: import doctest doctest.testmod() _lowercase =argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) _lowercase =parser.parse_args() _lowercase =args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: _lowercase =f.read() else: _lowercase =bytes(_lowerCamelCase , "utf-8" ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
716
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = None def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) _lowercase =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase_ ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =os.path.join(lowerCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_json_file(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =feat_extract_first.save_pretrained(lowerCAmelCase_ )[0] check_json_file_has_correct_format(lowerCAmelCase_ ) _lowercase =self.feature_extraction_class.from_pretrained(lowerCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __lowerCAmelCase ( self ): _lowercase =self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase_ )
594
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int ): """simple docstring""" if issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase = [parquet_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str=("train",) ): """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" if split: __UpperCAmelCase = {split: parquet_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __UpperCAmelCase = pf.read() assert dataset.data.table == output_table def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" __UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) __UpperCAmelCase = {'''image''': [image_path]} __UpperCAmelCase = Features({'''image''': Image()} ) __UpperCAmelCase = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) __UpperCAmelCase = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ): """simple docstring""" assert get_writer_batch_size(UpperCamelCase__ ) == expected
262
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase__ : float , UpperCamelCase__ : float ) -> bool: __UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. __UpperCAmelCase = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : Callable[[float], float] , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 ): """simple docstring""" def identity_function(UpperCamelCase__ : float ) -> float: return x __UpperCAmelCase = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" def function_to_integrate(UpperCamelCase__ : float ) -> float: return sqrt(4.0 - x * x ) __UpperCAmelCase = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
262
1
lowercase__ ={ 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def __UpperCamelCase ( lowerCAmelCase__ : float ): assert type(lowerCAmelCase__ ) in (int, float) and decimal == int(lowerCAmelCase__ ) __a : Optional[int] = int(lowerCAmelCase__ ) __a : Dict = '''''' __a : List[Any] = False if decimal < 0: __a : Dict = True decimal *= -1 while decimal > 0: __a : List[Any] = divmod(lowerCAmelCase__ , 1_6 ) __a : Dict = values[remainder] + hexadecimal __a : Union[str, Any] = '''0x''' + hexadecimal if negative: __a : List[Any] = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
711
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase__ =logging.get_logger(__name__) class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : int = ["input_features", "attention_mask"] def __init__(self : Dict , snake_case_ : Tuple=8_0 , snake_case_ : Tuple=1_6_0_0_0 , snake_case_ : Union[str, Any]=8_0 , snake_case_ : List[Any]=0.0 , snake_case_ : Optional[Any]=True , snake_case_ : Any=True , snake_case_ : int=True , **snake_case_ : Dict , ): super().__init__(feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , **snake_case_ ) __a : int = num_mel_bins __a : Dict = do_ceptral_normalize __a : Union[str, Any] = normalize_means __a : int = normalize_vars __a : Optional[Any] = True def lowerCAmelCase (self : Any , snake_case_ : np.ndarray , ): __a : Union[str, Any] = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers __a : Any = torch.from_numpy(snake_case_ ).unsqueeze(0 ) __a : List[Any] = ta_kaldi.fbank(snake_case_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCAmelCase (snake_case_ : np.ndarray , snake_case_ : int , snake_case_ : Optional[bool] = True , snake_case_ : Optional[bool] = True , snake_case_ : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __a : Optional[int] = x[:input_length].mean(axis=0 ) __a : Optional[int] = np.subtract(snake_case_ , snake_case_ ) if normalize_vars: __a : Optional[Any] = x[:input_length].std(axis=0 ) __a : Optional[Any] = np.divide(snake_case_ , snake_case_ ) if input_length < x.shape[0]: __a : Optional[int] = padding_value # make sure array is in float32 __a : Tuple = x.astype(np.floataa ) return x def lowerCAmelCase (self : List[Any] , snake_case_ : List[np.ndarray] , snake_case_ : Optional[np.ndarray] = None ): __a : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(snake_case_ , snake_case_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(snake_case_ , snake_case_ ) ] def __call__(self : List[str] , snake_case_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case_ : Union[bool, str, PaddingStrategy] = False , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[bool] = None , **snake_case_ : int , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __a : Dict = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __a : List[str] = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a : Optional[int] = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): __a : Optional[int] = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a : Dict = [raw_speech] # extract fbank features __a : Union[str, Any] = [self._extract_fbank_features(snake_case_ ) for waveform in raw_speech] # convert into correct format for padding __a : str = BatchFeature({'''input_features''': features} ) __a : Union[str, Any] = self.pad( snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) # make sure list is in array format __a : List[Any] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , snake_case_ ): __a : List[str] = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_features] __a : Tuple = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __a : Optional[int] = [np.asarray(snake_case_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __a : int = ( np.array(snake_case_ , dtype=np.intaa ) if self._get_padding_strategies(snake_case_ , max_length=snake_case_ ) is not PaddingStrategy.DO_NOT_PAD else None ) __a : List[str] = self.normalize( padded_inputs['''input_features'''] , attention_mask=snake_case_ ) if return_tensors is not None: __a : Optional[int] = padded_inputs.convert_to_tensors(snake_case_ ) return padded_inputs
326
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _snake_case ( __snake_case ): _UpperCamelCase = prime_factors(__snake_case ) if is_square_free(__snake_case ): return -1 if len(__snake_case ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case = logging.get_logger(__name__) def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Tuple: return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) ->List[Any]: lowercase_ = tesseract_config if tesseract_config is not None else """""" # apply OCR lowercase_ = to_pil_image(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = pil_image.size lowercase_ = pytesseract.image_to_data(SCREAMING_SNAKE_CASE_ , lang=SCREAMING_SNAKE_CASE_ , output_type="""dict""" , config=SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates lowercase_ = [idx for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if not word.strip()] lowercase_ = [word for idx, word in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(SCREAMING_SNAKE_CASE_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase_ = [] for x, y, w, h in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = [x, y, x + w, y + h] actual_boxes.append(SCREAMING_SNAKE_CASE_ ) # finally, normalize the bounding boxes lowercase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _a ( __a ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self : Tuple , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "" , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase_ = size if size is not None else {"""height""": 224, """width""": 224} lowercase_ = get_size_dict(lowercase_ ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = apply_ocr lowercase_ = ocr_lang lowercase_ = tesseract_config def lowerCamelCase__ ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ): '''simple docstring''' lowercase_ = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase_ = (size["""height"""], size["""width"""]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Dict , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowercase_ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) lowercase_ = [] lowercase_ = [] for image in images: lowercase_ , lowercase_ = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: lowercase_ = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase_ = [flip_channel_order(lowercase_ ) for image in images] lowercase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase_ = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowercase_ ) if apply_ocr: lowercase_ = words_batch lowercase_ = boxes_batch return data
451
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCamelCase ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCamelCase ( self ): UpperCAmelCase__ : Dict = self.dummy_uncond_unet UpperCAmelCase__ : Dict = KarrasVeScheduler() UpperCAmelCase__ : Any = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' ).images UpperCAmelCase__ : List[Any] = torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCAmelCase , output_type='''numpy''' , return_dict=_UpperCAmelCase )[0] UpperCAmelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): UpperCAmelCase__ : Optional[int] = '''google/ncsnpp-celebahq-256''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ : List[Any] = KarrasVeScheduler() UpperCAmelCase__ : int = KarrasVePipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = pipe(num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''numpy''' ).images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ : Any = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
599
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase_ = "<<<<<<< This should probably be modified because it mentions: " UpperCamelCase_ = "=======\n>>>>>>>\n" UpperCamelCase_ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] UpperCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def lowerCAmelCase__ ( a_ : Namespace ) -> str: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( _UpperCAmelCase ): UpperCAmelCase__ : Dict = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): UpperCAmelCase__ : Tuple = get_logger('''datasets-cli/converting''' ) UpperCAmelCase__ : Tuple = tfds_path UpperCAmelCase__ : Any = datasets_directory def lowerCamelCase ( self ): if os.path.isdir(self._tfds_path ): UpperCAmelCase__ : Any = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase__ : Optional[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) UpperCAmelCase__ : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : str = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase__ : List[str] = os.listdir(_UpperCAmelCase ) else: UpperCAmelCase__ : str = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) UpperCAmelCase__ : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: UpperCAmelCase__ : List[str] = f.readlines() UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Dict = [] for line in lines: UpperCAmelCase__ : List[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase__ : str = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase__ : Dict = '''''' continue elif "from absl import logging" in out_line: UpperCAmelCase__ : Dict = '''from datasets import logging\n''' elif "getLogger" in out_line: UpperCAmelCase__ : List[str] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : int = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase__ : Tuple = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase__ : Optional[Any] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) UpperCAmelCase__ : str = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase__ : Dict = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase__ : List[str] = f_name.replace('''.py''' , '''''' ) UpperCAmelCase__ : List[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCAmelCase__ : Optional[Any] = os.path.basename(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
599
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase ): def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _lowercase: Any = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowercase_ ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) _lowercase: Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowercase_ ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) _lowercase: Tuple = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) _lowercase: Optional[int] = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowercase_ ( self ) -> int: """simple docstring""" _lowercase: Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowercase: Any = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _lowercase: Any = DDPMScheduler() _lowercase: Tuple = AudioDiffusionPipeline(vqvae=A_ , unet=self.dummy_unet , mel=A_ , scheduler=A_ ) _lowercase: List[str] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Tuple = torch.Generator(device=A_ ).manual_seed(42 ) _lowercase: Dict = pipe(generator=A_ , steps=4 ) _lowercase: Any = output.audios[0] _lowercase: List[Any] = output.images[0] _lowercase: List[Any] = torch.Generator(device=A_ ).manual_seed(42 ) _lowercase: str = pipe(generator=A_ , steps=4 , return_dict=A_ ) _lowercase: Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _lowercase: Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _lowercase: Dict = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] _lowercase: Tuple = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _lowercase: List[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _lowercase: Dict = DDIMScheduler() _lowercase: Optional[Any] = self.dummy_vqvae_and_unet _lowercase: Dict = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=A_ , scheduler=A_ ) _lowercase: int = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) _lowercase: Optional[Any] = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _lowercase: Union[str, Any] = torch.Generator(device=A_ ).manual_seed(42 ) _lowercase: List[Any] = pipe(raw_audio=A_ , generator=A_ , start_step=5 , steps=10 ) _lowercase: Optional[Any] = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _lowercase: List[Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _lowercase: Optional[int] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _lowercase: Union[str, Any] = self.dummy_unet_condition _lowercase: str = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=A_ , mel=A_ , scheduler=A_ ) _lowercase: Union[str, Any] = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) np.random.seed(0 ) _lowercase: Union[str, Any] = torch.rand((1, 1, 10) ) _lowercase: Optional[Any] = pipe(generator=A_ , encoding=A_ ) _lowercase: str = output.images[0] _lowercase: Dict = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _lowercase: Any = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def lowercase_ ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _lowercase: Dict = torch_device _lowercase: List[Any] = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) _lowercase: Dict = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowercase: Tuple = torch.Generator(device=A_ ).manual_seed(42 ) _lowercase: Union[str, Any] = pipe(generator=A_ ) _lowercase: str = output.audios[0] _lowercase: Union[str, Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _lowercase: Union[str, Any] = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] _lowercase: Union[str, Any] = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
353
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" _lowercase: typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(_UpperCamelCase , max_perimeter + 1 ): _lowercase: str = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_UpperCamelCase ): _lowercase: str = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def _lowerCAmelCase ( _UpperCamelCase = 1_000 ): """simple docstring""" _lowercase: int = pythagorean_triple(_UpperCamelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
353
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __A (__magic_name__ ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = True , UpperCamelCase_ = "arrow" , **UpperCamelCase_ , ): super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : str = load_from_cache_file __UpperCAmelCase : Dict = file_format __UpperCAmelCase : Union[str, Any] = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def _snake_case ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __UpperCAmelCase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
711
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _a : Union[str, Any] = HfApi() _a : int = {} # fmt: off _a : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _a : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _a : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _a : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _a : Union[str, Any] = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _a : Any = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _a : List[Any] = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _a : Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _a : Tuple = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _a : List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _a : Optional[Any] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _a : Union[str, Any] = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _a : Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _a : Union[str, Any] = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _a : str = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _a : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _a : List[str] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): _a : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _a : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _a : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _a : str = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _a : str = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
10
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: int = """table-transformer""" SCREAMING_SNAKE_CASE_: int = ["""past_key_values"""] SCREAMING_SNAKE_CASE_: int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __a=True , __a=None , __a=3 , __a=100 , __a=6 , __a=2048 , __a=8 , __a=6 , __a=2048 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=256 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) A__ = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__a , __a ): A__ = backbone_config.get('model_type' ) A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(__a ) # set timm attributes to None A__ , A__ , A__ = None, None, None A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a ) @property def _UpperCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): """simple docstring""" return self.d_model class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Tuple = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _UpperCAmelCase ( self ): """simple docstring""" return 1E-5 @property def _UpperCAmelCase ( self ): """simple docstring""" return 12
260
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case_ : """simple docstring""" def __init__( self , __a ): """simple docstring""" if isinstance(__a , __a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A__ = deepcopy(__a ) elif os.path.exists(__a ): with io.open(__a , 'r' , encoding='utf-8' ) as f: A__ = json.load(__a ) else: try: A__ = baseaa.urlsafe_baadecode(__a ).decode('utf-8' ) A__ = json.loads(__a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) A__ = config self.set_stage_and_offload() def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_value('zero_optimization.stage' , -1 ) # offload A__ = False if self.is_zeroa() or self.is_zeroa(): A__ = set(['cpu', 'nvme'] ) A__ = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A__ = True def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split('.' ) A__ = nodes.pop() for node in nodes: A__ = config.get(__a ) if config is None: return None, ds_key return config, ds_key def _UpperCAmelCase ( self , __a , __a=None ): """simple docstring""" A__ , A__ = self.find_config_node(__a ) if config is None: return default return config.get(__a , __a ) def _UpperCAmelCase ( self , __a , __a=False ): """simple docstring""" A__ = self.config # find the config node of interest if it exists A__ = ds_key_long.split('.' ) for node in nodes: A__ = config A__ = config.get(__a ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.get_value(__a ) return False if value is None else bool(__a ) def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = self.get_value(__a ) return False if value is None else not bool(__a ) def _UpperCAmelCase ( self ): """simple docstring""" return self._stage == 2 def _UpperCAmelCase ( self ): """simple docstring""" return self._stage == 3 def _UpperCAmelCase ( self ): """simple docstring""" return self._offload class snake_case_ : """simple docstring""" def __init__( self , __a ): """simple docstring""" A__ = engine def _UpperCAmelCase ( self , __a , **__a ): """simple docstring""" self.engine.backward(__a , **__a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a ): """simple docstring""" super().__init__(__a , device_placement=__a , scaler=__a ) A__ = hasattr(self.optimizer , 'overflow' ) def _UpperCAmelCase ( self , __a=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCAmelCase ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCAmelCase ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a , __a ): """simple docstring""" super().__init__(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case_ : """simple docstring""" def __init__( self , __a , __a=0.001 , __a=0 , **__a ): """simple docstring""" A__ = params A__ = lr A__ = weight_decay A__ = kwargs class snake_case_ : """simple docstring""" def __init__( self , __a , __a=None , __a=0 , **__a ): """simple docstring""" A__ = optimizer A__ = total_num_steps A__ = warmup_num_steps A__ = kwargs
260
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase( SCREAMING_SNAKE_CASE_ ): snake_case_ : int = (UniPCMultistepScheduler,) snake_case_ : Optional[int] = (("""num_inference_steps""", 25),) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: '''simple docstring''' __snake_case = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCamelCase__ ) return config def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]=0 , **SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: '''simple docstring''' __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config(**UpperCamelCase__ ) __snake_case = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) __snake_case = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case = sample, sample for t in range(UpperCamelCase__ , time_step + scheduler.config.solver_order + 1 ): __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __snake_case = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : List[str]=0 , **SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __snake_case = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) __snake_case = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) __snake_case = dummy_past_residuals[: new_scheduler.config.solver_order] __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __snake_case = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , **SCREAMING_SNAKE_CASE : Dict ) -> str: '''simple docstring''' if scheduler is None: __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**UpperCamelCase__ ) __snake_case = scheduler_class(**UpperCamelCase__ ) __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(**UpperCamelCase__ ) __snake_case = scheduler_class(**UpperCamelCase__ ) __snake_case = 1_0 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(UpperCamelCase__ , UpperCamelCase__ ) __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: '''simple docstring''' __snake_case = dict(self.forward_default_kwargs ) __snake_case = kwargs.pop("num_inference_steps" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**UpperCamelCase__ ) __snake_case = self.dummy_sample __snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , "set_timesteps" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , "set_timesteps" ): __snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __snake_case = [residual + 0.2, residual + 0.15, residual + 0.10] __snake_case = dummy_past_residuals[: scheduler.config.solver_order] __snake_case = scheduler.timesteps[5] __snake_case = scheduler.timesteps[6] __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple: '''simple docstring''' __snake_case = UniPCMultistepScheduler(**self.get_scheduler_config() ) __snake_case = self.full_loop(scheduler=UpperCamelCase__ ) __snake_case = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 __snake_case = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __snake_case = DEISMultistepScheduler.from_config(scheduler.config ) __snake_case = DPMSolverMultistepScheduler.from_config(scheduler.config ) __snake_case = UniPCMultistepScheduler.from_config(scheduler.config ) __snake_case = self.full_loop(scheduler=UpperCamelCase__ ) __snake_case = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) __snake_case = self.full_loop( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) assert not torch.isnan(UpperCamelCase__ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(lower_order_final=UpperCamelCase__ ) self.check_over_configs(lower_order_final=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=0 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case = self.full_loop() __snake_case = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: '''simple docstring''' __snake_case = self.full_loop(prediction_type="v_prediction" ) __snake_case = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: '''simple docstring''' __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config(thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0 ) __snake_case = scheduler_class(**UpperCamelCase__ ) __snake_case = 1_0 __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __snake_case = model(UpperCamelCase__ , UpperCamelCase__ ) __snake_case = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **SCREAMING_SNAKE_CASE : List[Any] ) -> str: '''simple docstring''' for scheduler_class in self.scheduler_classes: __snake_case = self.get_scheduler_config(**UpperCamelCase__ ) __snake_case = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
711
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _lowerCAmelCase ( _lowerCAmelCase = "" ) -> dict[str, float]: '''simple docstring''' __snake_case = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" __snake_case = BeautifulSoup(requests.get(_lowerCAmelCase ).text , "html.parser" ) __snake_case = soup.find_all("td" , attrs="titleColumn" ) __snake_case = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_lowerCAmelCase , _lowerCAmelCase ) } def _lowerCAmelCase ( _lowerCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None: '''simple docstring''' __snake_case = get_imdb_top_aaa_movies() with open(_lowerCAmelCase , "w" , newline="" ) as out_file: __snake_case = csv.writer(_lowerCAmelCase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
473
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = XLMProphetNetTokenizer _UpperCAmelCase = False _UpperCAmelCase = True def UpperCamelCase ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = XLMProphetNetTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ) -> Optional[Any]: snake_case = '''[PAD]''' snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A__ ) , A__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A__ ) , A__ ) def UpperCamelCase ( self ) -> Tuple: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(A__ ) , 10_12 ) def UpperCamelCase ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 10_12 ) def UpperCamelCase ( self ) -> List[Any]: snake_case = XLMProphetNetTokenizer(A__ , keep_accents=A__ ) snake_case = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case = tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) snake_case = tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def UpperCamelCase ( self ) -> Union[str, Any]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def UpperCamelCase ( self ) -> List[Any]: snake_case = '''Hello World!''' snake_case = [3_53_89, 66_72, 49, 2] self.assertListEqual(A__ , self.big_tokenizer.encode(A__ ) ) @slow def UpperCamelCase ( self ) -> int: # fmt: off snake_case = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A__ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
342
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=24 , A__=2 , A__=6 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=None , A__=10_00 , ) -> int: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = scope snake_case = range_bbox def UpperCamelCase ( self ) -> List[Any]: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case = bbox[i, j, 3] snake_case = bbox[i, j, 1] snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case = bbox[i, j, 2] snake_case = bbox[i, j, 0] snake_case = t snake_case = None if self.use_input_mask: snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase ( self ) -> Dict: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Union[str, Any]: snake_case = LiltModel(config=A__ ) model.to(A__ ) model.eval() snake_case = model(A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ ) snake_case = model(A__ , bbox=A__ , token_type_ids=A__ ) snake_case = model(A__ , bbox=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> Optional[Any]: snake_case = self.num_labels snake_case = LiltForTokenClassification(config=A__ ) model.to(A__ ) model.eval() snake_case = model( A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) -> List[str]: snake_case = LiltForQuestionAnswering(config=A__ ) model.to(A__ ) model.eval() snake_case = model( A__ , bbox=A__ , attention_mask=A__ , token_type_ids=A__ , start_positions=A__ , end_positions=A__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> str: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _lowercase ( __a , __a , __a , unittest.TestCase ): _UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: return True def UpperCamelCase ( self ) -> int: snake_case = LiltModelTester(self ) snake_case = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) def UpperCamelCase ( self ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) @slow def UpperCamelCase ( self ) -> Dict: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = LiltModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @require_torch @slow class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> List[Any]: snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(A__ ) snake_case = torch.tensor([[1, 2]] , device=A__ ) snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A__ ) # forward pass with torch.no_grad(): snake_case = model(input_ids=A__ , bbox=A__ ) snake_case = torch.Size([1, 2, 7_68] ) snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=A__ , ) self.assertTrue(outputs.last_hidden_state.shape , A__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A__ , atol=1e-3 ) )
342
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( A ): '''simple docstring''' def __init__( self : str , _a : List[Any] , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : Optional[int]=True , _a : Dict=True , _a : str=True , _a : Optional[Any]=True , _a : Union[str, Any]=99 , _a : Tuple=32 , _a : Optional[int]=5 , _a : List[Any]=4 , _a : List[Any]=37 , _a : Dict="gelu" , _a : Tuple=0.1 , _a : Optional[Any]=0.1 , _a : List[str]=512 , _a : List[Any]=16 , _a : Union[str, Any]=2 , _a : int=0.02 , _a : Dict=False , _a : Union[str, Any]=True , _a : Dict="None" , _a : Union[str, Any]=3 , _a : int=4 , _a : Optional[int]=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def A_ ( self : Optional[int] ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Dict ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def A_ ( self : str , _a : Dict ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def A_ ( self : Optional[Any] , _a : List[Any] , _a : str , _a : Dict , _a : Tuple , _a : Tuple , _a : Dict , _a : Tuple ): UpperCamelCase__ = DebertaVaModel(config=_a ) model.to(_a ) model.eval() UpperCamelCase__ = model(_a , attention_mask=_a , token_type_ids=_a )[0] UpperCamelCase__ = model(_a , token_type_ids=_a )[0] UpperCamelCase__ = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def A_ ( self : List[Any] , _a : Tuple , _a : str , _a : List[Any] , _a : Any , _a : Union[str, Any] , _a : Optional[int] , _a : Any ): UpperCamelCase__ = DebertaVaForMaskedLM(config=_a ) model.to(_a ) model.eval() UpperCamelCase__ = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : int , _a : Union[str, Any] , _a : List[Any] , _a : Dict , _a : Dict , _a : List[Any] , _a : Optional[Any] , _a : int ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(_a ) model.to(_a ) model.eval() UpperCamelCase__ = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def A_ ( self : int , _a : Optional[int] , _a : Any , _a : int , _a : List[Any] , _a : int , _a : Optional[int] , _a : int ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=_a ) model.to(_a ) model.eval() UpperCamelCase__ = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : int , _a : Union[str, Any] , _a : Optional[Any] , _a : str , _a : Dict , _a : Optional[int] , _a : Tuple , _a : Dict ): UpperCamelCase__ = DebertaVaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() UpperCamelCase__ = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Union[str, Any] , _a : int , _a : Tuple , _a : Tuple , _a : Optional[int] , _a : Optional[Any] , _a : Optional[int] , _a : Any ): UpperCamelCase__ = DebertaVaForMultipleChoice(config=_a ) model.to(_a ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Any ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[str] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _A : str = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _A : str = True _A : int = False _A : Optional[Any] = False _A : Optional[Any] = False _A : List[str] = False def A_ ( self : Dict ): UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a , hidden_size=37 ) def A_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A_ ( self : List[str] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def A_ ( self : Union[str, Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) def A_ ( self : List[str] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_a ) @slow def A_ ( self : Union[str, Any] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def A_ ( self : List[str] ): pass @slow def A_ ( self : Union[str, Any] ): UpperCamelCase__ = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) UpperCamelCase__ = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(_a , attention_mask=_a )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
591
def lowerCamelCase_ ( UpperCamelCase__ : int = 100 ): '''simple docstring''' UpperCamelCase__ = (n * (n + 1) // 2) ** 2 UpperCamelCase__ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
591
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase__ ( *_lowercase : Optional[Any] , **_lowercase : str ): pass def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): lowerCamelCase : int = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] ): SCREAMING_SNAKE_CASE__ : List[str] = DepthEstimationPipeline(model=_lowercase , image_processor=_lowercase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : Optional[int] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowercase ) import datasets SCREAMING_SNAKE_CASE__ : List[str] = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _lowercase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''Intel/dpt-large''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipeline('''depth-estimation''' , model=_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) SCREAMING_SNAKE_CASE__ : List[str] = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : str ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
35
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( A__ ) -> Tuple: '''simple docstring''' return EnvironmentCommand() class lowercase ( _UpperCAmelCase ): @staticmethod def lowercase__ ( _lowercase : ArgumentParser ): SCREAMING_SNAKE_CASE__ : Optional[int] = parser.add_parser('''env''' ) download_parser.set_defaults(func=_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = huggingface_hub.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = '''not installed''' SCREAMING_SNAKE_CASE__ : List[Any] = '''NA''' if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : int = torch.__version__ SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ : str = '''not installed''' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE__ : Optional[Any] = transformers.__version__ SCREAMING_SNAKE_CASE__ : Any = '''not installed''' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE__ : Union[str, Any] = accelerate.__version__ SCREAMING_SNAKE_CASE__ : Tuple = '''not installed''' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE__ : Tuple = xformers.__version__ SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_lowercase ) ) return info @staticmethod def lowercase__ ( _lowercase : Dict ): return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
35
1
"""simple docstring""" from __future__ import annotations import math def __UpperCamelCase ( snake_case__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( snake_case__ ): A_ : Union[str, Any] = str(snake_case__ ) A_ : Any = [n] for i in range(1 , len(snake_case__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __UpperCamelCase ( snake_case__ ): if len(str(snake_case__ ) ) > 3: if not is_prime(int(str(snake_case__ )[-3:] ) ) or not is_prime(int(str(snake_case__ )[:3] ) ): return False return True def __UpperCamelCase ( snake_case__ = 11 ): A_ : list[int] = [] A_ : str = 13 while len(snake_case__ ) != count: if validate(snake_case__ ): A_ : List[str] = list_truncated_nums(snake_case__ ) if all(is_prime(snake_case__ ) for i in list_nums ): list_truncated_primes.append(snake_case__ ) num += 2 return list_truncated_primes def __UpperCamelCase ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
480
"""simple docstring""" import math def __UpperCamelCase ( snake_case__ , snake_case__ ): if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def __UpperCamelCase ( snake_case__ , snake_case__ ): if ( not isinstance(snake_case__ , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
480
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A__ ( UpperCAmelCase__ ): __UpperCamelCase : torch.FloatTensor class A__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self :str , SCREAMING_SNAKE_CASE :int = 6_5_5_3_6 , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 2 , SCREAMING_SNAKE_CASE :int = 0 , SCREAMING_SNAKE_CASE :str = "fourier" , SCREAMING_SNAKE_CASE :bool = True , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :float = 0.0 , SCREAMING_SNAKE_CASE :Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE :Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE :Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE :str = None , SCREAMING_SNAKE_CASE :Tuple[int] = (3_2, 3_2, 6_4) , SCREAMING_SNAKE_CASE :str = None , SCREAMING_SNAKE_CASE :int = 8 , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :bool = False , ) -> str: '''simple docstring''' super().__init__() _a : Union[str, Any] =sample_size # time if time_embedding_type == "fourier": _a : Any =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE , log=SCREAMING_SNAKE_CASE , flip_sin_to_cos=SCREAMING_SNAKE_CASE ) _a : Dict =2 * block_out_channels[0] elif time_embedding_type == "positional": _a : str =Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE , downscale_freq_shift=SCREAMING_SNAKE_CASE ) _a : int =block_out_channels[0] if use_timestep_embedding: _a : Optional[Any] =block_out_channels[0] * 4 _a : Union[str, Any] =TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE , time_embed_dim=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , out_dim=block_out_channels[0] , ) _a : Dict =nn.ModuleList([] ) _a : Dict =None _a : int =nn.ModuleList([] ) _a : Any =None # down _a : str =in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE ): _a : Tuple =output_channel _a : Dict =block_out_channels[i] if i == 0: input_channel += extra_in_channels _a : int =i == len(SCREAMING_SNAKE_CASE ) - 1 _a : Optional[Any] =get_down_block( SCREAMING_SNAKE_CASE , num_layers=SCREAMING_SNAKE_CASE , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE ) # mid _a : List[Any] =get_mid_block( SCREAMING_SNAKE_CASE , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE , add_downsample=SCREAMING_SNAKE_CASE , ) # up _a : str =list(reversed(SCREAMING_SNAKE_CASE ) ) _a : List[Any] =reversed_block_out_channels[0] if out_block_type is None: _a : List[str] =out_channels else: _a : List[str] =block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE ): _a : Dict =output_channel _a : Optional[int] =( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE ) - 1 else final_upsample_channels ) _a : Dict =i == len(SCREAMING_SNAKE_CASE ) - 1 _a : Union[str, Any] =get_up_block( SCREAMING_SNAKE_CASE , num_layers=SCREAMING_SNAKE_CASE , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE ) _a : Optional[int] =output_channel # out _a : str =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _a : Union[str, Any] =get_out_block( out_block_type=SCREAMING_SNAKE_CASE , num_groups_out=SCREAMING_SNAKE_CASE , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , fc_dim=block_out_channels[-1] // 4 , ) def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE :bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' _a : Any =timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE ): _a : str =torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: _a : Any =timesteps[None].to(sample.device ) _a : Any =self.time_proj(SCREAMING_SNAKE_CASE ) if self.config.use_timestep_embedding: _a : Dict =self.time_mlp(SCREAMING_SNAKE_CASE ) else: _a : Any =timestep_embed[..., None] _a : Dict =timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a : List[Any] =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a : Tuple =() for downsample_block in self.down_blocks: _a , _a : Optional[Any] =downsample_block(hidden_states=SCREAMING_SNAKE_CASE , temb=SCREAMING_SNAKE_CASE ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a : Optional[Any] =self.mid_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a : List[str] =down_block_res_samples[-1:] _a : Optional[int] =down_block_res_samples[:-1] _a : Optional[int] =upsample_block(SCREAMING_SNAKE_CASE , res_hidden_states_tuple=SCREAMING_SNAKE_CASE , temb=SCREAMING_SNAKE_CASE ) # 5. post-process if self.out_block: _a : List[Any] =self.out_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE )
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number | (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number & ~(1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return number ^ (1 << position) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> bool: return ((number >> position) & 1) == 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
694
1
'''simple docstring''' def _lowercase ( lowerCamelCase__ : Union[str, Any] ): if not isinstance(lowerCamelCase__, lowerCamelCase__ ): _a = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCamelCase__ ) if number < 1: _a = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCamelCase__ ) _a = 1 for i in range(1, lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : Dict=0.9_99, lowerCamelCase__ : Union[str, Any]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase__ : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase__ : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _a = [] for i in range(lowerCamelCase__ ): _a = i / num_diffusion_timesteps _a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase__ ) / alpha_bar_fn(lowerCamelCase__ ), lowerCamelCase__ ) ) return torch.tensor(lowerCamelCase__, dtype=torch.floataa ) class A ( a , a ): __UpperCAmelCase : int = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase : Optional[int] = 2 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = 0.00_085 , snake_case_ = 0.012 , snake_case_ = "linear" , snake_case_ = None , snake_case_ = "epsilon" , snake_case_ = "linspace" , snake_case_ = 0 , ) -> Optional[int]: if trained_betas is not None: _a = torch.tensor(snake_case_ , dtype=torch.floataa ) elif beta_schedule == "linear": _a = torch.linspace(snake_case_ , snake_case_ , snake_case_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , snake_case_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _a = betas_for_alpha_bar(snake_case_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _a = 1.0 - self.betas _a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Dict: if schedule_timesteps is None: _a = self.timesteps _a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _a = 1 if len(snake_case_ ) > 1 else 0 else: _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep _a = self._index_counter[timestep_int] return indices[pos].item() @property def __lowerCAmelCase ( self ) -> Dict: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __lowerCAmelCase ( self , snake_case_ , snake_case_ , ) -> torch.FloatTensor: _a = self.index_for_timestep(snake_case_ ) if self.state_in_first_order: _a = self.sigmas[step_index] else: _a = self.sigmas_interpol[step_index] _a = sample / ((sigma**2 + 1) ** 0.5) return sample def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , ) -> Union[str, Any]: _a = num_inference_steps _a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _a = np.linspace(0 , num_train_timesteps - 1 , snake_case_ , dtype=snake_case_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(0 , snake_case_ ) * step_ratio).round()[::-1].copy().astype(snake_case_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _a = (np.arange(snake_case_ , 0 , -step_ratio )).round().copy().astype(snake_case_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _a = torch.from_numpy(np.log(snake_case_ ) ).to(snake_case_ ) _a = np.interp(snake_case_ , np.arange(0 , len(snake_case_ ) ) , snake_case_ ) _a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _a = torch.from_numpy(snake_case_ ).to(device=snake_case_ ) # interpolate sigmas _a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case_ ).startswith("mps" ): # mps does not support float64 _a = torch.from_numpy(snake_case_ ).to(snake_case_ , dtype=torch.floataa ) else: _a = torch.from_numpy(snake_case_ ).to(snake_case_ ) # interpolate timesteps _a = self.sigma_to_t(snake_case_ ).to(snake_case_ , dtype=timesteps.dtype ) _a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _a = torch.cat([timesteps[:1], interleaved_timesteps] ) _a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _a = defaultdict(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[int]: # get log sigma _a = sigma.log() # get distribution _a = log_sigma - self.log_sigmas[:, None] # get sigmas range _a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _a = low_idx + 1 _a = self.log_sigmas[low_idx] _a = self.log_sigmas[high_idx] # interpolate sigmas _a = (low - log_sigma) / (low - high) _a = w.clamp(0 , 1 ) # transform interpolation to time range _a = (1 - w) * low_idx + w * high_idx _a = t.view(sigma.shape ) return t @property def __lowerCAmelCase ( self ) -> List[Any]: return self.sample is None def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ) -> Union[SchedulerOutput, Tuple]: _a = self.index_for_timestep(snake_case_ ) # advance index counter by 1 _a = timestep.cpu().item() if torch.is_tensor(snake_case_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _a = self.sigmas[step_index] _a = self.sigmas_interpol[step_index + 1] _a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _a = self.sigmas[step_index - 1] _a = self.sigmas_interpol[step_index] _a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _a = 0 _a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _a = sigma_hat if self.state_in_first_order else sigma_interpol _a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _a = sigma_interpol - sigma_hat # store for 2nd order step _a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _a = sigma_next - sigma_hat _a = self.sample _a = None _a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case_ ): # mps does not support float64 _a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _a = self.timesteps.to(original_samples.device ) _a = timesteps.to(original_samples.device ) _a = [self.index_for_timestep(snake_case_ , snake_case_ ) for t in timesteps] _a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _a = sigma.unsqueeze(-1 ) _a = original_samples + noise * sigma return noisy_samples def __len__( self ) -> str: return self.config.num_train_timesteps
691
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase_ (unittest.TestCase ): def __init__( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=18 , lowerCAmelCase_ : Any=30 , lowerCAmelCase_ : Any=400 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , ) -> Optional[int]: UpperCAmelCase_ : str = size if size is not None else {"shortest_edge": 18} UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Optional[Any] = min_resolution UpperCAmelCase_ : str = max_resolution UpperCAmelCase_ : Tuple = do_resize UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Any = do_center_crop UpperCAmelCase_ : int = crop_size UpperCAmelCase_ : List[str] = do_normalize UpperCAmelCase_ : Any = image_mean UpperCAmelCase_ : List[Any] = image_std def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = LevitImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : int = LevitImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size" ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : Optional[int] = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: # Initialize image_processing UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : List[str] = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase_ (unittest.TestCase ): def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=13 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=224 , lowerCAmelCase_ : List[Any]=30 , lowerCAmelCase_ : Any=400 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase_ : str=[0.5, 0.5, 0.5] , ) -> Dict: UpperCAmelCase_ : int = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : List[str] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : List[str] = do_normalize UpperCAmelCase_ : List[Any] = image_mean UpperCAmelCase_ : Dict = image_std def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size" ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : str = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: # Initialize image_processor UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Optional[int] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ : Optional[int] = image_processor(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
95
1
import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : int )-> float: """simple docstring""" a =x a =y for step in range(UpperCAmelCase_ ): # noqa: B007 a =a * a - b * b + x a =2 * a * b + y a =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase_ : float )-> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase_ : float )-> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase_ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase_ : int = 800 , UpperCAmelCase_ : int = 600 , UpperCAmelCase_ : float = -0.6 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 3.2 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : bool = True , )-> Image.Image: """simple docstring""" a =Image.new("""RGB""" , (image_width, image_height) ) a =img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase_ ): for image_y in range(UpperCAmelCase_ ): # determine the figure-coordinates based on the image-coordinates a =figure_width / image_width * image_height a =figure_center_x + (image_x / image_width - 0.5) * figure_width a =figure_center_y + (image_y / image_height - 0.5) * figure_height a =get_distance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: a =get_color_coded_rgb(UpperCAmelCase_ ) else: a =get_black_and_white_rgb(UpperCAmelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowerCamelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
321
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int )-> int: """simple docstring""" a =_distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any )-> Any: """simple docstring""" a =_split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] )-> int: """simple docstring""" if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: a =_number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
321
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def __UpperCAmelCase ( lowercase = 2_00_00_00 ): """simple docstring""" _UpperCAmelCase = [0] _UpperCAmelCase = 42 for idx in range(1 ,ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _UpperCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target _UpperCAmelCase = 0 # an estimate of b, using the quadratic formula _UpperCAmelCase = 42 # the largest integer less than b_estimate _UpperCAmelCase = 42 # the largest integer less than b_estimate _UpperCAmelCase = 42 # the triangle number corresponding to b_floor _UpperCAmelCase = 42 # the triangle number corresponding to b_ceil _UpperCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] ,1 ): _UpperCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _UpperCAmelCase = floor(lowercase ) _UpperCAmelCase = ceil(lowercase ) _UpperCAmelCase = triangle_numbers[b_floor] _UpperCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _UpperCAmelCase = triangle_b_first_guess * triangle_a _UpperCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _UpperCAmelCase = triangle_b_second_guess * triangle_a _UpperCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
277
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
277
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class a ( UpperCAmelCase ): _lowercase = "autoformer" _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ): '''simple docstring''' _UpperCAmelCase : Dict = prediction_length _UpperCAmelCase : Tuple = context_length if context_length is not None else prediction_length _UpperCAmelCase : List[Any] = distribution_output _UpperCAmelCase : Dict = loss _UpperCAmelCase : List[str] = input_size _UpperCAmelCase : Optional[int] = num_time_features _UpperCAmelCase : Dict = lags_sequence _UpperCAmelCase : str = scaling _UpperCAmelCase : str = num_dynamic_real_features _UpperCAmelCase : Any = num_static_real_features _UpperCAmelCase : List[str] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Any = cardinality else: _UpperCAmelCase : Union[str, Any] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Union[str, Any] = embedding_dimension else: _UpperCAmelCase : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Any = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : str = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : Any = encoder_attention_heads _UpperCAmelCase : int = decoder_attention_heads _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Optional[int] = decoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : Any = decoder_layers _UpperCAmelCase : Tuple = dropout _UpperCAmelCase : Optional[int] = attention_dropout _UpperCAmelCase : List[str] = activation_dropout _UpperCAmelCase : List[Any] = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : Optional[int] = activation_function _UpperCAmelCase : Union[str, Any] = init_std _UpperCAmelCase : int = use_cache # Autoformer _UpperCAmelCase : List[Any] = label_length _UpperCAmelCase : str = moving_average _UpperCAmelCase : str = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
717
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = 'scheduler_config.json' class a ( UpperCAmelCase ): _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 _lowercase = 5 @dataclass class a ( UpperCAmelCase ): _lowercase = 42 class a : _lowercase = SCHEDULER_CONFIG_NAME _lowercase = ["dtype"] _lowercase = [] _lowercase = True @classmethod def _UpperCAmelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCAmelCase : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCAmelCase ( self , A_ , A_ = False , **A_ ): '''simple docstring''' self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase : Optional[Any] = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase : Dict = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: jnp.ndarray , lowerCAmelCase: Tuple[int] ) -> jnp.ndarray: assert len(lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCAmelCase ) - x.ndim) ) , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple=0.999 , lowerCAmelCase: int=jnp.floataa ) -> jnp.ndarray: def alpha_bar(lowerCAmelCase: Union[str, Any] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCAmelCase : str = [] for i in range(lowerCAmelCase ): _UpperCAmelCase : Optional[int] = i / num_diffusion_timesteps _UpperCAmelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCAmelCase ) / alpha_bar(lowerCAmelCase ) , lowerCAmelCase ) ) return jnp.array(lowerCAmelCase , dtype=lowerCAmelCase ) @flax.struct.dataclass class a : _lowercase = 42 _lowercase = 42 _lowercase = 42 @classmethod def _UpperCAmelCase ( cls , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = scheduler.config if config.trained_betas is not None: _UpperCAmelCase : List[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCAmelCase : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : List[str] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) _UpperCAmelCase : Optional[int] = 1.0 - betas _UpperCAmelCase : int = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = state.alphas_cumprod _UpperCAmelCase : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase : str = sqrt_alpha_prod.flatten() _UpperCAmelCase : List[Any] = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) _UpperCAmelCase : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() _UpperCAmelCase : int = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Dict: _UpperCAmelCase , _UpperCAmelCase : int = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
467
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _snake_case , _snake_case : Any = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _snake_case : int = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _snake_case : List[Any] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _snake_case : Optional[int] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
22
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _snake_case : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _snake_case : List[str] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class A ( unittest.TestCase ): def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) _a = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _a = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=None ) -> Union[str, Any]: """simple docstring""" _a = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: _a = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result _a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) _a = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) _a = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(lowerCAmelCase_ , '''w''' , newline='''\n''' ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''r''' ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _a = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , ) # Copy consistency with a really long name _a = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('''Bert''' , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase_ ) , )
22
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: str = logging.get_logger(__name__) __a: List[Any] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "roberta" def __init__( self , __lowerCAmelCase=50265 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ) -> List[str]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowercase__ : Dict = vocab_size lowercase__ : str = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Union[str, Any] = hidden_act lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Optional[Any] = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : List[str] = position_embedding_type lowercase__ : List[Any] = use_cache lowercase__ : Dict = classifier_dropout class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' @property def _lowerCAmelCase( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
710
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ , lowercase__ : Tuple = position lowercase__ : int = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ : Tuple = [] for position in positions: lowercase__ , lowercase__ : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase ) return permissible_positions def __UpperCamelCase ( UpperCAmelCase ): return not any(elem == 0 for row in board for elem in row ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if is_complete(UpperCAmelCase ): return True for position in get_valid_pos(UpperCAmelCase , len(UpperCAmelCase ) ): lowercase__ , lowercase__ : List[Any] = position if board[y][x] == 0: lowercase__ : Optional[Any] = curr + 1 if open_knight_tour_helper(UpperCAmelCase , UpperCAmelCase , curr + 1 ): return True lowercase__ : Tuple = 0 return False def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = [[0 for i in range(UpperCAmelCase )] for j in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): lowercase__ : Optional[Any] = 1 if open_knight_tour_helper(UpperCAmelCase , (i, j) , 1 ): return board lowercase__ : Union[str, Any] = 0 lowercase__ : List[str] = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
428
0
def __lowercase ( snake_case ): """simple docstring""" return str(__UpperCamelCase ) == str(__UpperCamelCase )[::-1] def __lowercase ( snake_case ): """simple docstring""" return int(__UpperCamelCase ) + int(str(__UpperCamelCase )[::-1] ) def __lowercase ( snake_case = 1_0_0_0_0 ): """simple docstring""" __magic_name__ :Optional[int] = [] for num in range(1, __UpperCamelCase ): __magic_name__ :Union[str, Any] = 0 __magic_name__ :Optional[Any] = num while iterations < 5_0: __magic_name__ :Optional[int] = sum_reverse(__UpperCamelCase ) iterations += 1 if is_palindrome(__UpperCamelCase ): break else: lychrel_nums.append(__UpperCamelCase ) return len(__UpperCamelCase ) if __name__ == "__main__": print(f"{solution() = }")
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : List[Any] = '▁' snake_case : Tuple = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } snake_case : Optional[Any] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } snake_case : str = { 'facebook/s2t-small-librispeech-asr': 1_024, } snake_case : Optional[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] snake_case : Union[str, Any] = {'mustc': MUSTC_LANGS} class lowerCamelCase__( snake_case_ ): UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[Any] = MAX_MODEL_INPUT_SIZES UpperCamelCase : List[str] = ["input_ids", "attention_mask"] UpperCamelCase : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_upper_case=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , lang_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __lowercase = do_upper_case __lowercase = do_lower_case __lowercase = load_json(__UpperCAmelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = spm_file __lowercase = load_spm(__UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __lowercase = lang_codes __lowercase = LANGUAGES[lang_codes] __lowercase = [F'''<lang:{lang}>''' for lang in self.langs] __lowercase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} __lowercase = self.lang_tokens __lowercase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __lowercase = {} @property def __magic_name__ ( self ): """simple docstring""" return len(self.encoder ) @property def __magic_name__ ( self ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.lang_code_to_id[tgt_lang] __lowercase = [lang_code_id] def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.decoder.get(__UpperCAmelCase , self.unk_token ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = [] __lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowercase = self.sp_model.decode(__UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowercase = [] else: current_sub_tokens.append(__UpperCAmelCase ) __lowercase = self.sp_model.decode(__UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __magic_name__ ( self ): """simple docstring""" __lowercase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , __UpperCAmelCase ): """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase = {} __lowercase = load_spm(self.spm_file , self.sp_model_kwargs ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" __lowercase = Path(__UpperCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' __lowercase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __lowercase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCAmelCase , """wb""" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (str(__UpperCAmelCase ), str(__UpperCAmelCase )) def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : Dict[str, Any] ): '''simple docstring''' __lowercase = sentencepiece.SentencePieceProcessor(**__UpperCamelCase ) spm.Load(str(__UpperCamelCase ) ) return spm def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' with open(__UpperCamelCase , """r""" ) as f: return json.load(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=2 )
566
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _A = logging.get_logger(__name__) class __UpperCAmelCase : """simple docstring""" _snake_case : str _snake_case : str = None @staticmethod def A ( )-> Union[str, Any]: raise NotImplementedError def A ( self : Any , A_ : Optional[Any] , A_ : int , A_ : str , **A_ : Union[str, Any] )-> Union[str, Any]: raise NotImplementedError def A ( self : List[str] , A_ : str )-> str: raise NotImplementedError def A ( self : Any )-> Union[str, Any]: if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def A ( cls : int )-> List[Any]: return f"""`pip install {cls.pip_package or cls.name}`""" class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Tuple = 'optuna' @staticmethod def A ( )-> str: return is_optuna_available() def A ( self : int , A_ : str , A_ : int , A_ : str , **A_ : Union[str, Any] )-> List[str]: return run_hp_search_optuna(A_ , A_ , A_ , **A_ ) def A ( self : str , A_ : Any )-> Optional[Any]: return default_hp_space_optuna(A_ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : List[str] = 'ray' _snake_case : Optional[int] = '\'ray[tune]\'' @staticmethod def A ( )-> Tuple: return is_ray_available() def A ( self : Optional[int] , A_ : Tuple , A_ : int , A_ : str , **A_ : str )-> List[str]: return run_hp_search_ray(A_ , A_ , A_ , **A_ ) def A ( self : Any , A_ : Union[str, Any] )-> Tuple: return default_hp_space_ray(A_ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Tuple = 'sigopt' @staticmethod def A ( )-> int: return is_sigopt_available() def A ( self : List[Any] , A_ : Optional[int] , A_ : int , A_ : str , **A_ : Optional[int] )-> List[Any]: return run_hp_search_sigopt(A_ , A_ , A_ , **A_ ) def A ( self : Union[str, Any] , A_ : Dict )-> Union[str, Any]: return default_hp_space_sigopt(A_ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[Any] = 'wandb' @staticmethod def A ( )-> List[Any]: return is_wandb_available() def A ( self : Union[str, Any] , A_ : int , A_ : int , A_ : str , **A_ : Union[str, Any] )-> List[Any]: return run_hp_search_wandb(A_ , A_ , A_ , **A_ ) def A ( self : Tuple , A_ : Dict )-> Dict: return default_hp_space_wandb(A_ ) _A = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase () -> str: '''simple docstring''' __UpperCamelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __UpperCamelCase = available_backends[0].name if len(_snake_case ) > 1: logger.info( f"""{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
228
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] , A_ : str )-> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __UpperCamelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(A_ ) def A ( self : Tuple )-> int: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> int: __UpperCamelCase = "sgugger/tiny-distilbert-classification" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> Tuple: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` __UpperCamelCase = None __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Union[str, Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def A ( self : List[Any] )-> List[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Tuple )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Any )-> List[str]: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Tuple )-> Optional[int]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : int )-> Optional[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(A_ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(A_ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(A_ , "train_time.csv" ) , env_info_csv_file=os.path.join(A_ , "env.csv" ) , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "env.csv" ) ).exists() ) def A ( self : List[Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(A_ : List[str] ): self.assertTrue(hasattr(A_ , "sequential" ) ) self.assertTrue(hasattr(A_ , "cumulative" ) ) self.assertTrue(hasattr(A_ , "current" ) ) self.assertTrue(hasattr(A_ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , "log.txt" ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , "log.txt" ) ).exists() )
228
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowercase ( _A ): _a : List[str] = '' _a : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _a : str = None # compression type in fsspec. ex: "gzip" _a : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , a = "" , a = None , a = None , **a ): super().__init__(self , **a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ : Union[str, Any] =fsspec.open( a , mode="""rb""" , protocol=a , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ : Dict =os.path.basename(self.file.path.split("""::""" )[0] ) snake_case__ : Tuple =( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) snake_case__ : int =None @classmethod def lowercase__ ( cls , a ): # compressed file paths are always relative to the archive root return super()._strip_protocol(a ).lstrip("""/""" ) def lowercase__ ( self ): if self.dir_cache is None: snake_case__ : Any ={**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} snake_case__ : str ={f["""name"""]: f} def lowercase__ ( self , a ): return self.file.open().read() def lowercase__ ( self , a , a = "rb" , a=None , a=True , a=None , **a , ): snake_case__ : List[Any] =self._strip_protocol(a ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowercase ( _A ): _a : List[Any] = 'bz2' _a : Optional[Any] = 'bz2' _a : int = '.bz2' class _lowercase ( _A ): _a : int = 'gzip' _a : Tuple = 'gzip' _a : List[str] = '.gz' class _lowercase ( _A ): _a : Tuple = 'lz4' _a : Tuple = 'lz4' _a : Optional[Any] = '.lz4' class _lowercase ( _A ): _a : Any = 'xz' _a : str = 'xz' _a : Dict = '.xz' class _lowercase ( _A ): _a : str = 'zstd' _a : Optional[Any] = 'zstd' _a : List[str] = '.zst' def __init__( self , a , a = "rb" , a = None , a = None , a = DEFAULT_BLOCK_SIZE , **a , ): super().__init__( fo=a , mode=a , target_protocol=a , target_options=a , block_size=a , **a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ : Optional[int] =self.file.__enter__ class _lowercase : def __init__( self , a ): snake_case__ : int =file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self , *a , **a ): self._file.__exit__(*a , **a ) def __iter__( self ): return iter(self._file ) def lowercase__ ( self ): return next(self._file ) def __getattr__( self , a ): return getattr(self._file , a ) def fixed_enter(*a , **a ): return WrappedFile(_enter(*a , **a ) ) snake_case__ : List[Any] =fixed_enter
385
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def lowercase__ ( self ): snake_case__ : Union[str, Any] =TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) snake_case__ : List[str] =tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case__ : Dict =model(a )["""last_hidden_state"""] snake_case__ : Any =tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , a ) # compare the actual values for a slice. snake_case__ : str =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
385
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict=1_3 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=9_9 , UpperCAmelCase_ : List[str]=6_4 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=6_4 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : int=5_1_2 , UpperCAmelCase_ : Any=1_6 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : Tuple=None , ): """simple docstring""" a : Dict = parent a : Optional[int] = batch_size a : str = seq_length a : Optional[Any] = is_training a : Union[str, Any] = use_input_mask a : int = use_token_type_ids a : List[Any] = use_labels a : Any = vocab_size a : Tuple = hidden_size a : Tuple = num_hidden_layers a : Union[str, Any] = num_attention_heads a : str = intermediate_size a : Optional[int] = hidden_act a : Union[str, Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : Dict = max_position_embeddings a : Any = type_vocab_size a : Tuple = type_sequence_label_size a : str = initializer_range a : Optional[Any] = num_labels a : str = num_choices a : Dict = scope def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return MPNetConfig.from_pretrained('microsoft/mpnet-base') def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Dict = None if self.use_input_mask: a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) a : List[str] = None a : int = None a : List[str] = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) a : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[Any] = MPNetModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Dict = model(UpperCAmelCase_ , UpperCAmelCase_) a : int = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Optional[int] = MPNetForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : str = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]): """simple docstring""" a : List[str] = self.num_labels a : Optional[Any] = MPNetForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple): """simple docstring""" a : int = self.num_choices a : Union[str, Any] = MPNetForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Any = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Optional[int] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]): """simple docstring""" a : Tuple = self.num_labels a : Optional[Any] = MPNetForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Dict = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a) , (a) , (a)) : Dict = config_and_inputs a : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : Any = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) A : int = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) A : Tuple = False A : str = True def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Any = MPNetModelTester(self) a : Dict = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : List[str] = MPNetModel.from_pretrained('microsoft/mpnet-base') a : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) a : int = model(UpperCAmelCase_)[0] a : List[Any] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , UpperCAmelCase_) a : Dict = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4))
610
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase : """simple docstring""" A : Optional[int] = None A : Optional[jnp.ndarray] = None A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str): """simple docstring""" return cls() @dataclass class UpperCamelCase ( a_ ): """simple docstring""" A : jnp.ndarray A : jnp.ndarray A : KarrasVeSchedulerState class UpperCamelCase ( a_ , a_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" return True @register_to_config def __init__( self : Dict , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1_0_0 , UpperCAmelCase_ : float = 1.0_07 , UpperCAmelCase_ : float = 8_0 , UpperCAmelCase_ : float = 0.05 , UpperCAmelCase_ : float = 5_0 , ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return KarrasVeSchedulerState.create() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : KarrasVeSchedulerState , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple = ()): """simple docstring""" a : str = jnp.arange(0 , UpperCAmelCase_)[::-1].copy() a : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCAmelCase_ , schedule=jnp.array(UpperCAmelCase_ , dtype=jnp.floataa) , timesteps=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : KarrasVeSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: a : Tuple = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1) else: a : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) a : Optional[Any] = random.split(UpperCAmelCase_ , num=1) a : Dict = self.config.s_noise * random.normal(key=UpperCAmelCase_ , shape=sample.shape) a : List[str] = sigma + gamma * sigma a : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : KarrasVeSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : bool = True , ): """simple docstring""" a : Dict = sample_hat + sigma_hat * model_output a : Dict = (sample_hat - pred_original_sample) / sigma_hat a : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , state=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : KarrasVeSchedulerState , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : bool = True , ): """simple docstring""" a : Union[str, Any] = sample_prev + sigma_prev * model_output a : str = (sample_prev - pred_original_sample) / sigma_prev a : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , state=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCAmelCase_ : KarrasVeSchedulerState , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str): """simple docstring""" raise NotImplementedError()
610
1
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
105
import os import re import shutil import sys import tempfile import unittest import black __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) UpperCamelCase = self.transformer_dir shutil.copy( os.path.join(__magic_name__ , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any]=None ): """simple docstring""" UpperCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCamelCase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) UpperCamelCase = black.format_str(__magic_name__ , mode=__magic_name__ ) UpperCamelCase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__magic_name__ , """w""" , newline="""\n""" ) as f: f.write(__magic_name__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ ) with open(__magic_name__ , """r""" ) as f: self.assertTrue(f.read() , __magic_name__ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__magic_name__ , __magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __magic_name__ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __magic_name__ ) , ) # Copy consistency with a really long name UpperCamelCase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , __magic_name__ , __magic_name__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __magic_name__ , overwrite_result=re.sub("""Bert""" , """TestModel""" , __magic_name__ ) , ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) self.assertFalse(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__magic_name__ ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCamelCase , UpperCamelCase = check_copies.convert_to_localized_md( __magic_name__ , __magic_name__ , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__magic_name__ , __magic_name__ )
386
0
"""simple docstring""" def _lowerCAmelCase ( ): return 1 def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ = 200 ): return two_pound(UpperCamelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
706
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __magic_name__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __magic_name__ = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE = bs[:] __SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char return pairs class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""") as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE = bytes_to_unicode() __SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""") as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split("""\n""")[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split()) for merge in bpe_merges] __SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case_ ( self): return len(self.encoder) def snake_case_ ( self): return dict(self.encoder , **self.added_tokens_encoder) def snake_case_ ( self , lowerCAmelCase__): if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("""inf"""))) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCAmelCase__): try: __SCREAMING_SNAKE_CASE = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __SCREAMING_SNAKE_CASE = tuple(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = new_word if len(lowerCAmelCase__) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = word return word def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(""" """)) return bpe_tokens def snake_case_ ( self , lowerCAmelCase__): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def snake_case_ ( self , lowerCAmelCase__): return self.decoder.get(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text]).decode("""utf-8""" , errors=self.errors) return text def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(lowerCAmelCase__): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""]) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + """\n""") __SCREAMING_SNAKE_CASE = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""") as writer: writer.write("""#version: 0.2\n""") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""") __SCREAMING_SNAKE_CASE = token_index writer.write(""" """.join(lowerCAmelCase__) + """\n""") index += 1 return vocab_file, merge_file def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = kwargs.pop("""add_prefix_space""" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE = """ """ + text return (text, kwargs) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): return token_ids_a + [self.eos_token_id] def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """ """.join(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.encode(lowerCAmelCase__) if len(lowerCAmelCase__) > self.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
248
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class snake_case_ ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase=0.01 , __lowerCAmelCase=1_000 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = p_stop SCREAMING_SNAKE_CASE_ : Dict = max_length def __iter__( self ): SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Dict = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = random.random() < self.p_stop class snake_case_ ( unittest.TestCase ): def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=True ): SCREAMING_SNAKE_CASE_ : int = [ BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 ) ] SCREAMING_SNAKE_CASE_ : Tuple = [list(__lowerCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCAmelCase ) for shard in batch_sampler_shards] , [len(__lowerCAmelCase ) for e in expected] ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = [[], []] self.check_batch_sampler_shards(__lowerCAmelCase , __lowerCAmelCase , split_batches=__lowerCAmelCase , even_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [BatchSamplerShard(__lowerCAmelCase , 2 , __lowerCAmelCase , even_batches=__lowerCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=2 , __lowerCAmelCase=False ): random.seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = list(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = [ IterableDatasetShard( __lowerCAmelCase , batch_size=__lowerCAmelCase , drop_last=__lowerCAmelCase , num_processes=__lowerCAmelCase , process_index=__lowerCAmelCase , split_batches=__lowerCAmelCase , ) for i in range(__lowerCAmelCase ) ] SCREAMING_SNAKE_CASE_ : List[Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCAmelCase ) iterable_dataset_lists.append(list(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(len(__lowerCAmelCase ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE_ : Dict = [] for idx in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCAmelCase ) < len(__lowerCAmelCase ): reference += reference self.assertListEqual(__lowerCAmelCase , reference[: len(__lowerCAmelCase )] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : str = 42 SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) self.check_iterable_dataset_shards(__lowerCAmelCase , __lowerCAmelCase , batch_size=4 , drop_last=__lowerCAmelCase , split_batches=__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = SkipBatchSampler(__lowerCAmelCase , 2 ) self.assertListEqual(list(__lowerCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE_ : Tuple = skip_first_batches(__lowerCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ): Accelerator() SCREAMING_SNAKE_CASE_ : Any = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
345
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=30 , __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=10 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=None , __lowerCAmelCase=2 , ): SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Any = patch_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : Dict = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = scope SCREAMING_SNAKE_CASE_ : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_ : List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : List[str] = num_patches + 2 def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, pixel_values, labels def __A ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] = DeiTModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = DeiTForMaskedImageModeling(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(__lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = DeiTForMaskedImageModeling(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[int] = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = DeiTForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : List[str] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : str = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __lowerCamelCase : Any = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __lowerCamelCase : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : List[str] = False def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = DeiTModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __A ( self ): pass def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : int = model_class(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): SCREAMING_SNAKE_CASE_ : Any = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : str = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ : str = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = model(**__lowerCAmelCase ).loss loss.backward() def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : int = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(__lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ : Any = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = model(**__lowerCAmelCase ).loss loss.backward() def __A ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): SCREAMING_SNAKE_CASE_ : Any = problem_type['title'] SCREAMING_SNAKE_CASE_ : List[str] = problem_type['num_labels'] SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ : Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ : Any = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) SCREAMING_SNAKE_CASE_ : int = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCAmelCase ) as warning_list: SCREAMING_SNAKE_CASE_ : List[str] = model(**__lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __A ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : List[str] = DeiTModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __A ( self ): return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : int = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**__lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = self.default_image_processor SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(images=__lowerCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[str] = inputs.pixel_values.to(__lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase )
345
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( A__ , unittest.TestCase ): """simple docstring""" snake_case =DanceDiffusionPipeline snake_case =UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case =PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } snake_case =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case =False snake_case =False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) _UpperCAmelCase =UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _UpperCAmelCase =IPNDMScheduler() _UpperCAmelCase ={ "unet": unet, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case=0 ): if str(_snake_case ).startswith("mps" ): _UpperCAmelCase =torch.manual_seed(_snake_case ) else: _UpperCAmelCase =torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase ={ "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ="cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase =self.get_dummy_components() _UpperCAmelCase =DanceDiffusionPipeline(**_snake_case ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =self.get_dummy_inputs(_snake_case ) _UpperCAmelCase =pipe(**_snake_case ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase =np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE ( self ): return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =torch_device _UpperCAmelCase =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase =np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =torch_device _UpperCAmelCase =DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _UpperCAmelCase =pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase =torch.manual_seed(0 ) _UpperCAmelCase =pipe(generator=_snake_case , num_inference_steps=100 , audio_length_in_s=4.096 ) _UpperCAmelCase =output.audios _UpperCAmelCase =audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase =np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
705
from __future__ import annotations def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->bool: _UpperCAmelCase =get_failure_array(_lowerCamelCase ) # 2) Step through text searching for pattern _UpperCAmelCase , _UpperCAmelCase =0, 0 # index into text, pattern while i < len(_lowerCamelCase ): if pattern[j] == text[i]: if j == (len(_lowerCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _UpperCAmelCase =failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( _lowerCamelCase ) ->list[int]: _UpperCAmelCase =[0] _UpperCAmelCase =0 _UpperCAmelCase =1 while j < len(_lowerCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _UpperCAmelCase =failure[i - 1] continue j += 1 failure.append(_lowerCamelCase ) return failure if __name__ == "__main__": # Test 1) snake_case__ : Dict = 'abc1abc12' snake_case__ : Tuple = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case__ : int = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) snake_case__ : Tuple = 'ABABX' snake_case__ : Any = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) snake_case__ : Optional[int] = 'AAAB' snake_case__ : Optional[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) snake_case__ : int = 'abcdabcy' snake_case__ : int = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) snake_case__ : str = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
592
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase_ : """simple docstring""" _snake_case : List[Any] = BlenderbotSmallConfig _snake_case : Tuple = {} _snake_case : str = """gelu""" def __init__( self :Union[str, Any] , lowerCamelCase__ :Dict , lowerCamelCase__ :int=13 , lowerCamelCase__ :str=7 , lowerCamelCase__ :Tuple=True , lowerCamelCase__ :int=False , lowerCamelCase__ :Optional[int]=99 , lowerCamelCase__ :List[str]=32 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :Dict=4 , lowerCamelCase__ :str=37 , lowerCamelCase__ :Optional[int]=0.1 , lowerCamelCase__ :str=0.1 , lowerCamelCase__ :List[Any]=20 , lowerCamelCase__ :List[Any]=2 , lowerCamelCase__ :Tuple=1 , lowerCamelCase__ :Tuple=0 , ): UpperCamelCase__ :Optional[int] = parent UpperCamelCase__ :List[str] = batch_size UpperCamelCase__ :int = seq_length UpperCamelCase__ :Any = is_training UpperCamelCase__ :Union[str, Any] = use_labels UpperCamelCase__ :str = vocab_size UpperCamelCase__ :List[str] = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Union[str, Any] = num_attention_heads UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :Union[str, Any] = hidden_dropout_prob UpperCamelCase__ :Union[str, Any] = attention_probs_dropout_prob UpperCamelCase__ :Optional[Any] = max_position_embeddings UpperCamelCase__ :Optional[int] = eos_token_id UpperCamelCase__ :Optional[int] = pad_token_id UpperCamelCase__ :Optional[Any] = bos_token_id def __a ( self :List[str] ): UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ :Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ :Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ :Dict = prepare_blenderbot_small_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def __a ( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :Optional[int] = TFBlenderbotSmallModel(config=__lowercase ).get_decoder() UpperCamelCase__ :Tuple = inputs_dict["""input_ids"""] UpperCamelCase__ :str = input_ids[:1, :] UpperCamelCase__ :Union[str, Any] = inputs_dict["""attention_mask"""][:1, :] UpperCamelCase__ :Union[str, Any] = inputs_dict["""head_mask"""] UpperCamelCase__ :str = 1 # first forward pass UpperCamelCase__ :str = model(__lowercase , attention_mask=__lowercase , head_mask=__lowercase , use_cache=__lowercase ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ :Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase__ :int = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase__ :Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase__ :Tuple = model(__lowercase , attention_mask=__lowercase )[0] UpperCamelCase__ :Any = model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase__ :List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase__ :List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase__ :Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def A ( lowercase__ : Any , lowercase__ : List[str] , lowercase__ : int , lowercase__ : Optional[Any]=None , lowercase__ : List[str]=None , lowercase__ : List[str]=None , lowercase__ : Optional[int]=None , lowercase__ : Tuple=None , ) -> int: if attention_mask is None: UpperCamelCase__ :Dict = tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ :Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase__ :str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ :List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ :Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _snake_case : Dict = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _snake_case : Optional[int] = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _snake_case : Union[str, Any] = True _snake_case : Tuple = False _snake_case : Optional[int] = False def __a ( self :Optional[int] ): UpperCamelCase__ :str = TFBlenderbotSmallModelTester(self ) UpperCamelCase__ :List[Any] = ConfigTester(self , config_class=__lowercase ) def __a ( self :Tuple ): self.config_tester.run_common_tests() def __a ( self :List[str] ): UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i\'m going to throw up.\nand why is that?""" ] _snake_case : Union[str, Any] = """facebook/blenderbot_small-90M""" @cached_property def __a ( self :Union[str, Any] ): return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __a ( self :Tuple ): UpperCamelCase__ :int = self.tokenizer(self.src_text , return_tensors="""tf""" ) UpperCamelCase__ :List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowercase , ) UpperCamelCase__ :int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowercase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
45
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 0 while number > 0: snake_case_ = number % 10 sum_of_digits += last_digit snake_case_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase__ ( _A = 100 ): '''simple docstring''' snake_case_ = factorial(_A ) snake_case_ = split_and_add(_A ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
376
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case (UpperCamelCase ): lowerCAmelCase__ :List[str] = "vivit" def __init__( self ,UpperCAmelCase_=224 ,UpperCAmelCase_=32 ,UpperCAmelCase_=[2, 16, 16] ,UpperCAmelCase_=3 ,UpperCAmelCase_=768 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=3_072 ,UpperCAmelCase_="gelu_fast" ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-0_6 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,) -> Any: lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = num_frames lowercase__ = tubelet_size lowercase__ = num_channels lowercase__ = qkv_bias super().__init__(**UpperCAmelCase_ )
707
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case (unittest.TestCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=100 ,UpperCAmelCase_=13 ,UpperCAmelCase_=30 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,) -> List[Any]: lowercase__ = parent lowercase__ = vocab_size lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def _a ( self ) -> List[str]: lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase__ = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Optional[int]: lowercase__ = FlaxBeitModel(config=UpperCAmelCase_ ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> Tuple: lowercase__ = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase_ ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> List[str]: lowercase__ = self.type_sequence_label_size lowercase__ = FlaxBeitForImageClassification(config=UpperCAmelCase_ ) lowercase__ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FlaxBeitForImageClassification(UpperCAmelCase_ ) lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(UpperCAmelCase_ ) def _a ( self ) -> int: lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class snake_case (UpperCamelCase , unittest.TestCase ): lowerCAmelCase__ :Optional[int] = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _a ( self ) -> None: lowercase__ = FlaxBeitModelTester(self ) lowercase__ = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> Optional[Any]: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(UpperCAmelCase_ ) lowercase__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def _a ( self ) -> int: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(UpperCAmelCase_ ,UpperCAmelCase_ ) lowercase__ = model_class(UpperCAmelCase_ ) @jax.jit def model_jitted(UpperCAmelCase_ ,**UpperCAmelCase_ ): return model(pixel_values=UpperCAmelCase_ ,**UpperCAmelCase_ ) with self.subTest("JIT Enabled" ): lowercase__ = model_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowercase__ = model_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) ,len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ ,UpperCAmelCase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def _a ( self ) -> List[Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _a ( self ) -> Union[str, Any]: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def _a ( self ) -> str: lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def _a ( self ) -> Tuple: for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) lowercase__ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase ( ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class snake_case (unittest.TestCase ): @cached_property def _a ( self ) -> Optional[int]: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _a ( self ) -> Union[str, Any]: lowercase__ = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="np" ).pixel_values # prepare bool_masked_pos lowercase__ = np.ones((1, 196) ,dtype=UpperCAmelCase_ ) # forward pass lowercase__ = model(pixel_values=UpperCAmelCase_ ,bool_masked_pos=UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = (1, 196, 8_192) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,UpperCAmelCase_ ,atol=1E-2 ) ) @slow def _a ( self ) -> List[str]: lowercase__ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="np" ) # forward pass lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = (1, 1_000) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) lowercase__ = 281 self.assertEqual(logits.argmax(-1 ).item() ,UpperCAmelCase_ ) @slow def _a ( self ) -> Optional[int]: lowercase__ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=UpperCAmelCase_ ,return_tensors="np" ) # forward pass lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits # verify the logits lowercase__ = (1, 21_841) self.assertEqual(logits.shape ,UpperCAmelCase_ ) lowercase__ = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) lowercase__ = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,UpperCAmelCase_ )
539
0