code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __lowerCamelCase ( *snake_case__ ) -> List[str]: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = list(snake_case__ ) for i in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(snake_case__ ,snake_case__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __lowerCamelCase ( snake_case__ = None ,snake_case__ = 1_28 ) -> Optional[Any]: """simple docstring""" if function is None: return functools.partial(snake_case__ ,starting_batch_size=snake_case__ ) _SCREAMING_SNAKE_CASE = starting_batch_size def decorator(*snake_case__ ,**snake_case__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _SCREAMING_SNAKE_CASE = list(inspect.signature(snake_case__ ).parameters.keys() ) # Guard against user error if len(snake_case__ ) < (len(snake_case__ ) + 1): _SCREAMING_SNAKE_CASE = """, """.join([F'{arg}={value}' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(snake_case__ ,*snake_case__ ,**snake_case__ ) except Exception as e: if should_reduce_batch_size(snake_case__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Dict = r"\w+[.]\d+" snake_case : List[Any] = re.findall(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for pat in pats: snake_case : List[Any] = key.replace(_SCREAMING_SNAKE_CASE ,"""_""".join(pat.split(""".""" ) ) ) return key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[Any]: snake_case : List[Any] = pt_tuple_key[:-1] + ("scale",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case : List[str] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": snake_case : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case : int = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=42 ) -> Dict: snake_case : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case : Tuple = flax_model.init_weights(PRNGKey(_SCREAMING_SNAKE_CASE ) ) snake_case : Optional[int] = flatten_dict(_SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : str = rename_key(_SCREAMING_SNAKE_CASE ) snake_case : int = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters snake_case : int = rename_key_and_reshape_tensor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown snake_case : Optional[int] = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE )
351
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowercase ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ) -> Any: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def SCREAMING_SNAKE_CASE__ ( ) -> int: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowercase ): http_head("""https://huggingface.co""" )
176
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__: str = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[int] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Dict = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[Any] = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A__: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
'''simple docstring''' A__: Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__: Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__: Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
276
1
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __A : int = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True # deprecated SCREAMING_SNAKE_CASE = None # deprecated SCREAMING_SNAKE_CASE = 10 << 20 # 10MB SCREAMING_SNAKE_CASE = None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): SCREAMING_SNAKE_CASE = JsonConfig def SCREAMING_SNAKE_CASE__ (self : str): if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") A = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.") if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") A = dl_manager.download_and_extract(self.config.data_files) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple)): A = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = [files] A = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] A = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = [files] A = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE) for file in files] splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"files": files})) return splits def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : pa.Table): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A = self.config.features.arrow_schema.field(__SCREAMING_SNAKE_CASE).type A = pa_table.append_column(__SCREAMING_SNAKE_CASE , pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=__SCREAMING_SNAKE_CASE)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A = table_cast(__SCREAMING_SNAKE_CASE , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict): for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A = json.load(__SCREAMING_SNAKE_CASE) # We keep only the field we are interested in A = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple)): A = set().union(*[row.keys() for row in dataset]) A = {col: [row.get(__SCREAMING_SNAKE_CASE) for row in dataset] for col in keys} else: A = dataset A = pa.Table.from_pydict(__SCREAMING_SNAKE_CASE) yield file_idx, self._cast_table(__SCREAMING_SNAKE_CASE) # If the file has one json object per line else: with open(__SCREAMING_SNAKE_CASE , "rb") as f: A = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A = max(self.config.chunksize // 3_2 , 1_6 << 1_0) A = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: A = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__SCREAMING_SNAKE_CASE) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A = batch.decode(self.config.encoding , errors=__SCREAMING_SNAKE_CASE).encode("utf-8") try: while True: try: A = paj.read_json( io.BytesIO(__SCREAMING_SNAKE_CASE) , read_options=paj.ReadOptions(block_size=__SCREAMING_SNAKE_CASE)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__SCREAMING_SNAKE_CASE , pa.ArrowInvalid) and "straddling" not in str(__SCREAMING_SNAKE_CASE) or block_size > len(__SCREAMING_SNAKE_CASE) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__SCREAMING_SNAKE_CASE)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( __SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A = json.load(__SCREAMING_SNAKE_CASE) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__SCREAMING_SNAKE_CASE)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): # list is the only sequence type supported in JSON try: A = set().union(*[row.keys() for row in dataset]) A = {col: [row.get(__SCREAMING_SNAKE_CASE) for row in dataset] for col in keys} A = pa.Table.from_pydict(__SCREAMING_SNAKE_CASE) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__SCREAMING_SNAKE_CASE)}: {e}""") raise ValueError(F"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(__SCREAMING_SNAKE_CASE) break else: logger.error(F"""Failed to read file '{file}' with error {type(__SCREAMING_SNAKE_CASE)}: {e}""") raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__SCREAMING_SNAKE_CASE) batch_idx += 1
57
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Dict): A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") A = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Dict , **__SCREAMING_SNAKE_CASE : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).tokenizer def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : int): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).image_processor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Any): A = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] A = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") A = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) A = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = self.prepare_image_inputs() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np") A = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = processor(text=__SCREAMING_SNAKE_CASE) A = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
57
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) lowerCamelCase_ = { "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : Any = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["BeitFeatureExtractor"] _SCREAMING_SNAKE_CASE : str = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
0
'''simple docstring''' from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCamelCase__ = input('''Enter image url: ''').strip() print(F"""Downloading image from {url} ...""") UpperCamelCase__ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image UpperCamelCase__ = soup.find('''meta''', {'''property''': '''og:image'''})['content'] UpperCamelCase__ = requests.get(image_url).content UpperCamelCase__ = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
181
'''simple docstring''' import argparse import struct import unittest class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data # Initialize hash values _SCREAMING_SNAKE_CASE : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants _SCREAMING_SNAKE_CASE : int = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] _SCREAMING_SNAKE_CASE : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase_ ( __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = B"""\x80""" + (B"""\x00""" * (63 - (len(__snake_case ) + 8) % 64)) _SCREAMING_SNAKE_CASE : List[str] = struct.pack(""">Q""" , (len(__snake_case ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase_ ( self ): # Convert into blocks of 64 bytes _SCREAMING_SNAKE_CASE : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _SCREAMING_SNAKE_CASE : List[Any] = list(struct.unpack(""">16L""" , __snake_case ) ) # add 48 0-ed integers words += [0] * 48 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _SCREAMING_SNAKE_CASE : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _SCREAMING_SNAKE_CASE : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _SCREAMING_SNAKE_CASE : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _SCREAMING_SNAKE_CASE : Any = self.ror(__snake_case , 6 ) ^ self.ror(__snake_case , 11 ) ^ self.ror(__snake_case , 25 ) _SCREAMING_SNAKE_CASE : str = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) _SCREAMING_SNAKE_CASE : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE : Dict = self.ror(__snake_case , 2 ) ^ self.ror(__snake_case , 13 ) ^ self.ror(__snake_case , 22 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) _SCREAMING_SNAKE_CASE : Dict = (sa + maj) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _SCREAMING_SNAKE_CASE : Dict = """""".join([hex(__snake_case )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): import hashlib _SCREAMING_SNAKE_CASE : Tuple = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__snake_case ).hash , hashlib.shaaaa(__snake_case ).hexdigest() ) def snake_case_ ( ): """simple docstring""" import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _SCREAMING_SNAKE_CASE : str = f.read() else: _SCREAMING_SNAKE_CASE : List[Any] = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
200
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers a_ = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def a__ ( __lowercase , __lowercase=None ) -> Union[str, Any]: require_version(deps[pkg] , __lowercase )
163
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class snake_case : def __init__( self : Optional[int] , a__ : Tuple , a__ : str=1_00 , a__ : Dict=13 , a__ : Tuple=30 , a__ : str=2 , a__ : List[Any]=3 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=32 , a__ : Tuple=4 , a__ : Tuple=4 , a__ : Optional[int]=37 , a__ : Tuple="gelu" , a__ : Optional[int]=0.1 , a__ : int=0.1 , a__ : Optional[Any]=10 , a__ : Optional[int]=0.0_2 , a__ : Dict=3 , a__ : str=None , a__ : Any=[0, 1, 2, 3] , ) -> Tuple: '''simple docstring''' _A = parent _A = 1_00 _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = out_indices _A = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = num_patches + 1 def a_ ( self : List[str] ) -> str: '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels, pixel_labels def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def a_ ( self : Any , a__ : List[str] , a__ : Tuple , a__ : List[str] , a__ : str ) -> Any: '''simple docstring''' _A = BeitModel(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self : List[str] , a__ : Optional[Any] , a__ : Tuple , a__ : Any , a__ : Optional[Any] ) -> Tuple: '''simple docstring''' _A = BeitForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a_ ( self : Optional[Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[str] , a__ : Dict ) -> Dict: '''simple docstring''' _A = self.type_sequence_label_size _A = BeitForImageClassification(a__ ) model.to(a__ ) model.eval() _A = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A = 1 _A = BeitForImageClassification(a__ ) model.to(a__ ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self : Optional[Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Dict ) -> str: '''simple docstring''' _A = self.num_labels _A = BeitForSemanticSegmentation(a__ ) model.to(a__ ) model.eval() _A = model(a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A = model(a__ , labels=a__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def a_ ( self : List[Any] ) -> Any: '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): __UpperCamelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def a_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' _A = BeitModelTester(self ) _A = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def a_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def a_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def a_ ( self : Any ) -> int: '''simple docstring''' pass def a_ ( self : Optional[int] ) -> Dict: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def a_ ( self : Tuple ) -> List[Any]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(a__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def a_ ( self : Dict ) -> Any: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def a_ ( self : int ) -> List[Any]: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a__ ) def a_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(a__ ), BeitForMaskedImageModeling]: continue _A = model_class(a__ ) model.to(a__ ) model.train() _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = model(**a__ ).loss loss.backward() def a_ ( self : List[str] ) -> Dict: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A = False _A = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(a__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A = model_class(a__ ) model.gradient_checkpointing_enable() model.to(a__ ) model.train() _A = self._prepare_for_class(a__ , a__ , return_labels=a__ ) _A = model(**a__ ).loss loss.backward() def a_ ( self : Dict ) -> Optional[int]: '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(a__ ) for model_class in self.all_model_classes: _A = model_class(config=a__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def a_ ( self : List[str] ) -> int: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = BeitModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def a__ ( ) -> Tuple: _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case ( unittest.TestCase): @cached_property def a_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def a_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _A = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).pixel_values.to(a__ ) # prepare bool_masked_pos _A = torch.ones((1, 1_96) , dtype=torch.bool ).to(a__ ) # forward pass with torch.no_grad(): _A = model(pixel_values=a__ , bool_masked_pos=a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(a__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , a__ , atol=1E-2 ) ) @slow def a_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _A = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(a__ ) self.assertTrue(torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) ) _A = 2_81 self.assertEqual(logits.argmax(-1 ).item() , a__ ) @slow def a_ ( self : List[Any] ) -> int: '''simple docstring''' _A = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( a__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , a__ ) _A = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(a__ ) self.assertTrue(torch.allclose(logits[0, :3] , a__ , atol=1E-4 ) ) _A = 23_96 self.assertEqual(logits.argmax(-1 ).item() , a__ ) @slow def a_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _A = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _A = model.to(a__ ) _A = BeitImageProcessor(do_resize=a__ , size=6_40 , do_center_crop=a__ ) _A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _A = Image.open(ds[0]["file"] ) _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits # verify the logits _A = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , a__ ) _A = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: _A = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=a__ , ) else: _A = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=a__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a__ , atol=1E-4 ) ) @slow def a_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _A = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) _A = model.to(a__ ) _A = BeitImageProcessor(do_resize=a__ , size=6_40 , do_center_crop=a__ ) _A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) _A = Image.open(ds[0]["file"] ) _A = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): _A = model(**a__ ) _A = outputs.logits.detach().cpu() _A = image_processor.post_process_semantic_segmentation(outputs=a__ , target_sizes=[(5_00, 3_00)] ) _A = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , a__ ) _A = image_processor.post_process_semantic_segmentation(outputs=a__ ) _A = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , a__ )
163
1
'''simple docstring''' from PIL import Image def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ , __magic_name__ : List[str] = image.size __magic_name__ : List[str] = 0 __magic_name__ : int = image.load() for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): __magic_name__ : str = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase ): for i in range(lowerCAmelCase ): __magic_name__ : List[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase :Union[str, Any] = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
331
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__ ( snake_case_, snake_case_ ): @register_to_config def __init__( self , lowerCamelCase = 768 , ): super().__init__() __a = nn.Parameter(torch.zeros(1 , lowerCamelCase ) ) __a = nn.Parameter(torch.ones(1 , lowerCamelCase ) ) def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , ): __a = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __a = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def a__ ( self , lowerCamelCase ): __a = (embeds - self.mean) * 1.0 / self.std return embeds def a__ ( self , lowerCamelCase ): __a = (embeds * self.std) + self.mean return embeds
261
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ :Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[int] =PegasusTokenizer UpperCamelCase__ : List[Any] =PegasusTokenizerFast UpperCamelCase__ : List[Any] =True UpperCamelCase__ : Optional[Any] =True def __lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : Any =PegasusTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return ("This is a test", "This is a test") def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='</s>' __UpperCamelCase : List[Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(lowerCamelCase__ ) , 1103 ) def __lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase : Union[str, Any] =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase : Tuple =( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __UpperCamelCase : Tuple =rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] __UpperCamelCase : str =py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCamelCase : Union[str, Any] ='<mask_1> To ensure a <mask_2> flow of bank resolutions.' __UpperCamelCase : List[Any] =[2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase : Optional[Any] =tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __UpperCamelCase : Union[str, Any] ='To ensure a smooth flow of bank resolutions.' __UpperCamelCase : str =[413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase : Any =tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =['This is going to be way too long.' * 150, 'short example'] __UpperCamelCase : Any =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase : int =self._large_tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) __UpperCamelCase : str =self._large_tokenizer( text_target=lowerCamelCase__ , max_length=5 , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ={'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : int =PegasusTokenizer UpperCamelCase__ : Dict =PegasusTokenizerFast UpperCamelCase__ : Dict =True UpperCamelCase__ : Tuple =True def __lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : Any =PegasusTokenizer(lowerCamelCase__ , offset=0 , mask_token_sent=lowerCamelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowercase ( self ): """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return ("This is a test", "This is a test") def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase : List[str] =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase : Optional[int] =( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __UpperCamelCase : int =rust_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] __UpperCamelCase : List[str] =py_tokenizer([raw_input_str] , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ).input_ids[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @require_torch def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =['This is going to be way too long.' * 1000, 'short example'] __UpperCamelCase : Union[str, Any] =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase : List[str] =self._large_tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) __UpperCamelCase : Any =self._large_tokenizer( text_target=lowerCamelCase__ , max_length=5 , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCamelCase__ ) == 2 # input_ids, attention_mask. def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __UpperCamelCase : Optional[Any] =self._large_tokenizer(lowerCamelCase__ ).input_ids self.assertListEqual( lowerCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
360
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""xlnet""" UpperCamelCase__ : Tuple =["""mems"""] UpperCamelCase__ : Any ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : int =d_model __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : str =n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __UpperCamelCase : Optional[Any] =d_model // n_head __UpperCamelCase : List[Any] =ff_activation __UpperCamelCase : Tuple =d_inner __UpperCamelCase : List[Any] =untie_r __UpperCamelCase : List[Any] =attn_type __UpperCamelCase : Dict =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : List[str] =dropout __UpperCamelCase : int =mem_len __UpperCamelCase : List[Any] =reuse_len __UpperCamelCase : Union[str, Any] =bi_data __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : Tuple =same_length __UpperCamelCase : int =summary_type __UpperCamelCase : Dict =summary_use_proj __UpperCamelCase : Dict =summary_activation __UpperCamelCase : str =summary_last_dropout __UpperCamelCase : Dict =start_n_top __UpperCamelCase : Optional[Any] =end_n_top __UpperCamelCase : int =bos_token_id __UpperCamelCase : Union[str, Any] =pad_token_id __UpperCamelCase : Dict =eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Dict =kwargs['use_cache'] __UpperCamelCase : Optional[int] =use_mems_eval __UpperCamelCase : Any =use_mems_train super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
245
0
from statistics import mean import numpy as np def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = 0 # Number of processes finished snake_case_ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ = [0] * no_of_process # List to include calculation results snake_case_ = [0] * no_of_process # Sort by arrival time. snake_case_ = [burst_time[i] for i in np.argsort(a_)] snake_case_ = [process_name[i] for i in np.argsort(a_)] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ = arrival_time[i] snake_case_ = 0 # Index showing the location of the process being performed snake_case_ = 0 # Saves the current response ratio. snake_case_ = 0 for i in range(0 , a_): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ = temp snake_case_ = i # Calculate the turn around time snake_case_ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = [0] * no_of_process for i in range(0 , a_): snake_case_ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowercase = 5 lowercase = ["A", "B", "C", "D", "E"] lowercase = [1, 2, 3, 4, 5] lowercase = [1, 2, 3, 4, 5] lowercase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowercase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' f'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(f'average waiting time : {mean(waiting_time):.5f}') print(f'average turn around time : {mean(turn_around_time):.5f}')
178
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=64 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , ) -> str: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = vocab_size - 1 def _UpperCamelCase ( self ) -> Tuple: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self ) -> int: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.prepare_config_and_inputs() snake_case_ = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self , a , a , a ) -> Optional[int]: snake_case_ = GPTNeoXModel(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) snake_case_ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a ) -> List[str]: snake_case_ = True snake_case_ = GPTNeoXModel(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> int: snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a , a , a , a ) -> Optional[int]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForQuestionAnswering(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , a , a , a , a ) -> List[str]: snake_case_ = self.num_labels snake_case_ = GPTNeoXForSequenceClassification(a ) model.to(a ) model.eval() snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , a , a , a , a ) -> str: snake_case_ = self.num_labels snake_case_ = GPTNeoXForTokenClassification(a ) model.to(a ) model.eval() snake_case_ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , a , a , a ) -> List[Any]: snake_case_ = True snake_case_ = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass snake_case_ = model(a , attention_mask=a , use_cache=a ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ = model(a , attention_mask=a , output_hidden_states=a ) snake_case_ = output_from_no_past['hidden_states'][0] snake_case_ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> str: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _UpperCamelCase ( self ) -> str: snake_case_ = GPTNeoXModelTester(self ) snake_case_ = ConfigTester(self , config_class=a , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _UpperCamelCase ( self ) -> int: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> Dict: # This regression test was failing with PyTorch < 1.3 snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _UpperCamelCase ( self ) -> str: snake_case_ , snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def _UpperCamelCase ( self ) -> List[str]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def _UpperCamelCase ( self , a ) -> int: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10] , config.vocab_size ) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = GPTNeoXModel(a ) original_model.to(a ) original_model.eval() snake_case_ = original_model(a ).last_hidden_state snake_case_ = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case_ = {'type': scaling_type, 'factor': 10.0} snake_case_ = GPTNeoXModel(a ) scaled_model.to(a ) scaled_model.eval() snake_case_ = scaled_model(a ).last_hidden_state snake_case_ = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: snake_case_ = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: snake_case_ = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(a ) snake_case_ = tokenizer('My favorite food is' , return_tensors='pt' ).to(a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case_ = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' snake_case_ = model.generate(**a , do_sample=a , max_new_tokens=20 ) snake_case_ = tokenizer.batch_decode(a )[0] self.assertEqual(a , a )
178
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
259
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A : Any = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int ="""AutoTokenizer""" __UpperCAmelCase : Union[str, Any] =["""tokenizer"""] __UpperCAmelCase : Tuple ={ """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self , __a , __a=None ): super().__init__(__a ) __lowerCAmelCase = speaker_embeddings @classmethod def snake_case ( cls , __a , __a="speaker_embeddings_path.json" , **__a ): if speaker_embeddings_dict_path is not None: __lowerCAmelCase = get_file_from_repo( __a , __a , subfolder=kwargs.pop("subfolder" , __a ) , cache_dir=kwargs.pop("cache_dir" , __a ) , force_download=kwargs.pop("force_download" , __a ) , proxies=kwargs.pop("proxies" , __a ) , resume_download=kwargs.pop("resume_download" , __a ) , local_files_only=kwargs.pop("local_files_only" , __a ) , use_auth_token=kwargs.pop("use_auth_token" , __a ) , revision=kwargs.pop("revision" , __a ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(__a , __a )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) __lowerCAmelCase = None else: with open(__a ) as speaker_embeddings_json: __lowerCAmelCase = json.load(__a ) else: __lowerCAmelCase = None __lowerCAmelCase = AutoTokenizer.from_pretrained(__a , **__a ) return cls(tokenizer=__a , speaker_embeddings=__a ) def snake_case ( self , __a , __a="speaker_embeddings_path.json" , __a="speaker_embeddings" , __a = False , **__a , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(__a , __a , "v2" ) , exist_ok=__a ) __lowerCAmelCase = {} __lowerCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __lowerCAmelCase = self._load_voice_preset(__a ) __lowerCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , __a , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__a , ) __lowerCAmelCase = os.path.join(__a , f"{prompt_key}_{key}.npy" ) __lowerCAmelCase = tmp_dict with open(os.path.join(__a , __a ) , "w" ) as fp: json.dump(__a , __a ) super().save_pretrained(__a , __a , **__a ) def snake_case ( self , __a = None , **__a ): __lowerCAmelCase = self.speaker_embeddings[voice_preset] __lowerCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) __lowerCAmelCase = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , __a ) , cache_dir=kwargs.pop("cache_dir" , __a ) , force_download=kwargs.pop("force_download" , __a ) , proxies=kwargs.pop("proxies" , __a ) , resume_download=kwargs.pop("resume_download" , __a ) , local_files_only=kwargs.pop("local_files_only" , __a ) , use_auth_token=kwargs.pop("use_auth_token" , __a ) , revision=kwargs.pop("revision" , __a ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) __lowerCAmelCase = np.load(__a ) return voice_preset_dict def snake_case ( self , __a = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self , __a=None , __a=None , __a="pt" , __a=2_56 , __a=False , __a=True , __a=False , **__a , ): if voice_preset is not None and not isinstance(__a , __a ): if ( isinstance(__a , __a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __lowerCAmelCase = self._load_voice_preset(__a ) else: if isinstance(__a , __a ) and not voice_preset.endswith(".npz" ): __lowerCAmelCase = voice_preset + ".npz" __lowerCAmelCase = np.load(__a ) if voice_preset is not None: self._validate_voice_preset_dict(__a , **__a ) __lowerCAmelCase = BatchFeature(data=__a , tensor_type=__a ) __lowerCAmelCase = self.tokenizer( __a , return_tensors=__a , padding="max_length" , max_length=__a , return_attention_mask=__a , return_token_type_ids=__a , add_special_tokens=__a , **__a , ) if voice_preset is not None: __lowerCAmelCase = voice_preset return encoded_text
259
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: int = (KDPMaDiscreteScheduler,) __UpperCamelCase: Any = 1_0 def _A ( self : Dict , **A : Optional[Any] ): _UpperCAmelCase : Tuple = { "num_train_timesteps": 1100, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**A ) return config def _A ( self : Optional[int] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=A ) def _A ( self : Optional[Any] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A , beta_end=A ) def _A ( self : Union[str, Any] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A ) def _A ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def _A ( self : int ): _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Dict = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Optional[Any] = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Tuple = scheduler.scale_model_input(A , A ) _UpperCAmelCase : List[str] = model(A , A ) _UpperCAmelCase : Any = scheduler.step(A , A , A ) _UpperCAmelCase : Dict = output.prev_sample _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A ) ) _UpperCAmelCase : int = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def _A ( self : Any ): if torch_device == "mps": return _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Dict = sample.to(A ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Tuple = scheduler.scale_model_input(A , A ) _UpperCAmelCase : List[str] = model(A , A ) _UpperCAmelCase : Optional[int] = scheduler.step(A , A , A ) _UpperCAmelCase : Any = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A ) ) _UpperCAmelCase : List[str] = torch.mean(torch.abs(A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def _A ( self : Tuple ): if torch_device == "mps": return _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**A ) scheduler.set_timesteps(self.num_inference_steps , device=A ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter.to(A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase : Optional[int] = scheduler.scale_model_input(A , A ) _UpperCAmelCase : Dict = model(A , A ) _UpperCAmelCase : int = scheduler.step(A , A , A ) _UpperCAmelCase : Tuple = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(A ) ) if str(A ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
31
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) _UpperCAmelCase : List[Any] = MaskFormerConfig(backbone_config=_UpperCAmelCase ) _UpperCAmelCase : Tuple = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok _UpperCAmelCase : Dict = 847 _UpperCAmelCase : Any = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok _UpperCAmelCase : Any = 150 _UpperCAmelCase : Any = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok _UpperCAmelCase : Tuple = 171 _UpperCAmelCase : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO _UpperCAmelCase : Any = 133 _UpperCAmelCase : int = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 19 _UpperCAmelCase : str = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok _UpperCAmelCase : Optional[int] = 65 _UpperCAmelCase : Tuple = "mapillary-vistas-id2label.json" _UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} return config def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = dct.pop(_UpperCAmelCase ) _UpperCAmelCase : List[str] = val def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : Any = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _UpperCAmelCase : Optional[int] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[:dim, :] _UpperCAmelCase : Tuple = in_proj_bias[: dim] _UpperCAmelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : List[str] = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : Optional[Any] = in_proj_weight[ -dim :, : ] _UpperCAmelCase : Dict = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : int = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[:config.hidden_size] _UpperCAmelCase : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : int = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _UpperCAmelCase : Optional[Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase : Tuple = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[: hidden_size, :] _UpperCAmelCase : Tuple = in_proj_bias[:config.hidden_size] _UpperCAmelCase : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] _UpperCAmelCase : Dict = in_proj_bias[hidden_size : hidden_size * 2] _UpperCAmelCase : Optional[int] = in_proj_weight[-hidden_size :, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCamelCase_ ( ) -> torch.Tensor: """simple docstring""" _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = get_maskformer_config(_UpperCAmelCase ) # load original state_dict with open(_UpperCAmelCase , "rb" ) as f: _UpperCAmelCase : Optional[int] = pickle.load(_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _UpperCAmelCase : Any = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # update to torch tensors for key, value in state_dict.items(): _UpperCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase ) # load 🤗 model _UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(_UpperCAmelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCAmelCase , param.shape ) _UpperCAmelCase , _UpperCAmelCase : Any = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCAmelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _UpperCAmelCase : Optional[int] = prepare_img() if "vistas" in model_name: _UpperCAmelCase : int = 65 elif "cityscapes" in model_name: _UpperCAmelCase : Tuple = 65_535 else: _UpperCAmelCase : Any = 255 _UpperCAmelCase : Optional[Any] = True if "ade" in model_name else False _UpperCAmelCase : Optional[int] = MaskFormerImageProcessor(ignore_index=_UpperCAmelCase , reduce_labels=_UpperCAmelCase ) _UpperCAmelCase : Optional[int] = image_processor(_UpperCAmelCase , return_tensors="pt" ) _UpperCAmelCase : List[Any] = model(**_UpperCAmelCase ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _UpperCAmelCase : Tuple = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
31
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_: def __init__( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : int=1_3 , UpperCamelCase_ : List[str]=3_2 , UpperCamelCase_ : int=3 , UpperCamelCase_ : int=4 , UpperCamelCase_ : str=[1_0, 2_0, 3_0, 4_0] , UpperCamelCase_ : Optional[Any]=[2, 2, 3, 2] , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=3_7 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : Any=1_0 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase_ : Optional[Any]=[2, 3, 4] , UpperCamelCase_ : str=None , ): lowerCAmelCase : Tuple = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Any = image_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : int = num_stages lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : List[str] = depths lowerCAmelCase : List[Any] = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : int = intermediate_size lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Union[str, Any] = out_features lowerCAmelCase : List[str] = out_indices lowerCAmelCase : List[str] = scope def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : int = None if self.use_labels: lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Dict = ConvNextModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Union[str, Any] = model(UpperCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ): lowerCAmelCase : Union[str, Any] = ConvNextForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : int = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[str] = ConvNextBackbone(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Tuple = model(UpperCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , unittest.TestCase ): __UpperCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Any ): lowerCAmelCase : List[str] = ConvNextModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Union[str, Any] ): return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def lowerCamelCase__ ( self : str ): pass def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase, lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): def check_hidden_states_output(UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase : Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase, lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Any ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = ConvNextModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _snake_case ( ): lowerCAmelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Dict = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : int = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase : int = model(**UpperCamelCase_ ) # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) lowerCAmelCase : Tuple = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @require_torch class snake_case_( unittest.TestCase , a__ ): __UpperCamelCase = (ConvNextBackbone,) if is_torch_available() else () __UpperCamelCase = ConvNextConfig __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = ConvNextModelTester(self )
314
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case__ : Optional[Any] = False class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[Any]=3_2 ): set_seed(0 ) lowerCAmelCase : Tuple = UNetaDModel(sample_size=UpperCamelCase_ , in_channels=3 , out_channels=3 ) lowerCAmelCase : List[str] = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : List[str] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCAmelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) lowerCAmelCase : int = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=UpperCamelCase_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCAmelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase_ ) for _ in range(4 )] lowerCAmelCase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCAmelCase, lowerCAmelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : List[Any] = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : List[str] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : Dict = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase_ ) for i in range(4 ): optimizer.zero_grad() lowerCAmelCase : Union[str, Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ , timesteps[i] ).sample lowerCAmelCase : int = torch.nn.functional.mse_loss(UpperCamelCase_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
314
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 't5' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = self.feed_forward_proj.split('-' ) A__ = act_info[-1] A__ = act_info[0] == 'gated' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = 'gelu_new' super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A__ = 'past_encoder_sequence + sequence' A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) return common_inputs @property def snake_case__ ( self : Any )-> int: '''simple docstring''' return 1_3
7
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 't5' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Union[str, Any],lowercase_ : int=3_2_1_2_8,lowercase_ : int=5_1_2,lowercase_ : List[str]=6_4,lowercase_ : Tuple=2_0_4_8,lowercase_ : Any=6,lowercase_ : List[str]=None,lowercase_ : Union[str, Any]=8,lowercase_ : int=3_2,lowercase_ : Dict=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : List[str]=1E-6,lowercase_ : Tuple=1.0,lowercase_ : Any="relu",lowercase_ : Union[str, Any]=True,lowercase_ : Optional[Any]=True,lowercase_ : int=0,lowercase_ : str=1,**lowercase_ : str,)-> Any: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = self.feed_forward_proj.split('-' ) A__ = act_info[-1] A__ = act_info[0] == 'gated' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = 'gelu_new' super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Tuple )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: A__ = 'past_encoder_sequence + sequence' A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) return common_inputs @property def snake_case__ ( self : Any )-> int: '''simple docstring''' return 1_3
7
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __snake_case ( _UpperCAmelCase ): if "model" in orig_key: __a = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: __a = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: __a = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: __a = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: __a = orig_key.split('''.''' )[0].split('''_''' )[-1] __a = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: __a = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: __a = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: __a = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: __a = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: __a = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: __a = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: __a = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: __a = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: __a = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: __a = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: __a = '''yoso.''' + orig_key return orig_key def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(_UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: __a = val __a = orig_state_dict['''cls.predictions.decoder.bias'''] __a = torch.arange(_UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = torch.load(_UpperCAmelCase , map_location='''cpu''' )['''model_state_dict'''] __a = YosoConfig.from_json_file(_UpperCAmelCase ) __a = YosoForMaskedLM(_UpperCAmelCase ) __a = convert_checkpoint_helper(config.max_position_embeddings , _UpperCAmelCase ) print(model.load_state_dict(_UpperCAmelCase ) ) model.eval() model.save_pretrained(_UpperCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :List[Any] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
368
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
0
def A ( lowercase = 4_000_000 ) -> int: '''simple docstring''' UpperCamelCase = [0, 1] UpperCamelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCamelCase = 0 for j in range(len(lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
222
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } UpperCamelCase = Dataset.from_dict(lowercase ) return dataset class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase = make_duplicate_clusters(A_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = get_dataset() UpperCamelCase , UpperCamelCase = deduplicate_dataset(A_ ) self.assertEqual(len(A_ ) , 2 ) print(A_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , A_ )
222
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Union[str, Any] = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
"""simple docstring""" import argparse from collections import defaultdict import yaml _UpperCamelCase : int = 'docs/source/en/_toctree.yml' def snake_case (A_ :Optional[Any] ): '''simple docstring''' a : List[Any] = defaultdict(A_ ) for doc in model_doc: counts[doc["local"]] += 1 a : Optional[Any] = [key for key, value in counts.items() if value > 1] a : List[str] = [] for duplicate_key in duplicates: a : int = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(A_ ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(A_ , key=lambda A_ : s["title"].lower() ) def snake_case (A_ :List[str]=False ): '''simple docstring''' with open(A_ , encoding='utf-8' ) as f: a : Dict = yaml.safe_load(f.read() ) # Get to the API doc a : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 a : List[str] = content[api_idx]['sections'] # Then to the model doc a : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 a : Optional[Any] = api_doc[model_idx]['sections'] a : Dict = [(idx, section) for idx, section in enumerate(A_ ) if 'sections' in section] a : List[str] = False for idx, modality_doc in modalities_docs: a : str = modality_doc['sections'] a : str = clean_model_doc_toc(A_ ) if old_modality_doc != new_modality_doc: a : str = True if overwrite: a : Any = new_modality_doc if diff: if overwrite: a : Any = model_doc a : str = api_doc with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(A_ , allow_unicode=A_ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
186
0
def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) lowercase : Tuple = sum(_snake_case ) / len(_snake_case ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
308
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = CustomTokenizer pass
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
def lowerCamelCase__ ( a ) -> set: _A: Optional[Any] = set() # edges = list of graph's edges _A: Union[str, Any] = get_edges(a ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _A , _A: Optional[int] = edges.pop() chosen_vertices.add(a ) chosen_vertices.add(a ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(a ) return chosen_vertices def lowerCamelCase__ ( a ) -> set: _A: Tuple = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
121
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase__ : Union[str, Any] = TypeVar('T') class UpperCAmelCase ( Generic[T] ): '''simple docstring''' __UpperCamelCase : deque[T] # Cache store of keys __UpperCamelCase : set[T] # References of the keys in cache __UpperCamelCase : int = 10 # Maximum capacity of cache def __init__( self : List[str] , lowerCAmelCase_ : int ): """simple docstring""" _A: Tuple = deque() _A: List[Any] = set() if not n: _A: str = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _A: Dict = n def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : T ): """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _A: Optional[Any] = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase_ ) else: self.dq_store.remove(lowerCAmelCase_ ) self.dq_store.appendleft(lowerCAmelCase_ ) self.key_reference.add(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for k in self.dq_store: print(lowerCAmelCase_ ) def __repr__( self : Dict ): """simple docstring""" return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
121
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case_ ( snake_case ) -> int: lowercase__: Optional[Any] = filter(lambda snake_case : p.requires_grad , model.parameters() ) lowercase__: str = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase = logging.getLogger(__name__) def snake_case_ ( snake_case , snake_case ) -> List[str]: if metric == "rouge2": lowercase__: Tuple = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": lowercase__: List[str] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": lowercase__: Union[str, Any] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": lowercase__: List[str] = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) lowercase__: List[str] = ModelCheckpoint( dirpath=snake_case , filename=snake_case , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case_ ( snake_case , snake_case ) -> List[str]: return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=snake_case , verbose=snake_case , ) class __a ( pl.Callback ): def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Union[str, Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True ) -> None: '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) lowercase__: Any = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results lowercase__: Any = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase__: Optional[Any] = od / 'test_results.txt' lowercase__: Optional[Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase__: str = od / F'{type_path}_results/{trainer.global_step:05d}.txt' lowercase__: Optional[int] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'a+' ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue lowercase__: Dict = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): lowercase__: Any = val.item() lowercase__: List[str] = F'{key}: {val:.6f}\n' writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: lowercase__: Optional[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(lowerCAmelCase__ ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' try: lowercase__: List[str] = pl_module.model.model.num_parameters() except AttributeError: lowercase__: List[Any] = pl_module.model.num_parameters() lowercase__: str = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , 'test' ) @rank_zero_only def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
288
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = LEDTokenizer SCREAMING_SNAKE_CASE__ : Dict = LEDTokenizerFast SCREAMING_SNAKE_CASE__ : List[str] = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() UpperCAmelCase_ : List[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase_ : Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ : Union[str, Any] = {"unk_token": "<unk>"} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ : Dict = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : int = tokenizer(lowercase_ , max_length=len(lowercase_ ) , padding=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase_ : str = batch.input_ids.tolist()[0] self.assertListEqual(lowercase_ , lowercase_ ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : str = tokenizer(lowercase_ , padding=lowercase_ , return_tensors="pt" ) self.assertIn("input_ids" , lowercase_ ) self.assertIn("attention_mask" , lowercase_ ) self.assertNotIn("labels" , lowercase_ ) self.assertNotIn("decoder_attention_mask" , lowercase_ ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : List[Any] = tokenizer(text_target=lowercase_ , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Tuple = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=lowercase_ , truncation=lowercase_ , return_tensors="pt" ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = ["A long paragraph for summarization."] UpperCAmelCase_ : Optional[int] = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Optional[Any] = tokenizer(lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : List[str] = tokenizer(text_target=lowercase_ , return_tensors="pt" ) UpperCAmelCase_ : Optional[Any] = inputs["input_ids"] UpperCAmelCase_ : int = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase_ : Dict = ["Summary of the text.", "Another summary."] UpperCAmelCase_ : Optional[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase_ : Optional[Any] = tokenizer(lowercase_ , padding=lowercase_ ) UpperCAmelCase_ : Tuple = [[0] * len(lowercase_ ) for x in encoded_output["input_ids"]] UpperCAmelCase_ : Optional[Any] = tokenizer.pad(lowercase_ ) self.assertSequenceEqual(outputs["global_attention_mask"] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : str = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Union[str, Any] = "A, <mask> AllenNLP sentence." UpperCAmelCase_ : List[Any] = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) UpperCAmelCase_ : Dict = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase_ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase_ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
61
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE__ : Optional[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : int = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = 10, 0.0 UpperCAmelCase_ : Optional[int] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for t in scheduler.timesteps: UpperCAmelCase_ : Dict = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Dict = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase_ , eta=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : Optional[int] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 10, 0.0 scheduler.set_timesteps(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter UpperCAmelCase_ : Any = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : int = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : List[Any] = samplea.shape[0] UpperCAmelCase_ : int = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase_ : int = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ ) UpperCAmelCase_ : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase_ : Optional[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : str = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.full_loop() UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : Dict = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : int = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
61
1
from __future__ import annotations def A ( lowercase , lowercase = None ) -> list[list[str]]: '''simple docstring''' UpperCamelCase = word_bank or [] # create a table UpperCamelCase = len(lowercase ) + 1 UpperCamelCase = [] for _ in range(lowercase ): table.append([] ) # seed value UpperCamelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: UpperCamelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
110
from __future__ import annotations def A ( lowercase , lowercase ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , a % b ) UpperCamelCase = a // b return (y, x - k * y) def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def A ( lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) if b < 0: UpperCamelCase = (b % n + n) % n return b def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
110
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :str = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys A_ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import csv import tweepy # Twitter API credentials __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : Union[str, Any] = """""" __a : List[Any] = """""" def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = tweepy.OAuthHandler(lowercase , lowercase ) auth.set_access_token(lowercase , lowercase ) __lowercase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets __lowercase = [] # make initial request for most recent tweets (200 is the maximum allowed count) __lowercase = api.user_timeline(screen_name=lowercase , count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates __lowercase = api.user_timeline( screen_name=lowercase , count=200 , max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one __lowercase = alltweets[-1].id - 1 print(F"...{len(lowercase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv __lowercase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: __lowercase = csv.writer(lowercase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
210
0
_snake_case = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class a__ ( UpperCAmelCase__ ): lowerCamelCase : Tuple ="pegasus" lowerCamelCase : Union[str, Any] =["past_key_values"] lowerCamelCase : str ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[str] , a : str=5_02_65 , a : Union[str, Any]=10_24 , a : Tuple=12 , a : Optional[Any]=40_96 , a : Optional[int]=16 , a : Dict=12 , a : str=40_96 , a : Union[str, Any]=16 , a : str=0.0 , a : Optional[Any]=0.0 , a : int=True , a : Union[str, Any]=True , a : Union[str, Any]="gelu" , a : str=10_24 , a : Optional[int]=0.1 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : Optional[Any]=0.02 , a : Tuple=0 , a : Any=False , a : int=0 , a : Dict=1 , a : Tuple=1 , **a : Optional[Any] , ): """simple docstring""" __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return self.d_model
67
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase_ ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A__ : ClassVar[Features] = Features({'''audio''': Audio()} ) A__ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) A__ : str = "audio" A__ : str = "labels" def snake_case_ ( self : List[Any] , _snake_case : List[str] ): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _snake_case ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) __lowercase : Optional[Any] = copy.deepcopy(self ) __lowercase : Optional[int] = self.label_schema.copy() __lowercase : Tuple = features[self.label_column] __lowercase : Optional[Any] = label_schema return task_template @property def snake_case_ ( self : Optional[Any] ): return { self.audio_column: "audio", self.label_column: "labels", }
156
0
'''simple docstring''' from __future__ import annotations def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :str = len(__a ) // 2 # choose the middle 3 elements UpperCamelCase__ :str = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
219
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig __snake_case = logging.getLogger(__name__) class lowercase ( A__ ): """simple docstring""" _a = 'masked_bert' def __init__( self , UpperCamelCase_=30522 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0 , UpperCamelCase_="topK" , UpperCamelCase_="constant" , UpperCamelCase_=0.0 , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Tuple = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :Optional[int] = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :Optional[Any] = hidden_act UpperCamelCase__ :str = intermediate_size UpperCamelCase__ :List[Any] = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :List[Any] = max_position_embeddings UpperCamelCase__ :int = type_vocab_size UpperCamelCase__ :List[Any] = initializer_range UpperCamelCase__ :Any = layer_norm_eps UpperCamelCase__ :str = pruning_method UpperCamelCase__ :int = mask_init UpperCamelCase__ :Optional[Any] = mask_scale
219
1
lowercase : Dict = """Tobias Carryer""" from time import time class __snake_case : def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case=int(time() ) ): # noqa: B008 '''simple docstring''' lowercase : Optional[int] = multiplier lowercase : int = increment lowercase : Tuple = modulo lowercase : Optional[int] = seed def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowercase : Dict = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
20
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "codegen" UpperCAmelCase__ : str = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0400, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=2048, SCREAMING_SNAKE_CASE_=4096, SCREAMING_SNAKE_CASE_=28, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_new", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = n_ctx UpperCamelCase : Optional[int] = n_positions UpperCamelCase : List[str] = n_embd UpperCamelCase : Dict = n_layer UpperCamelCase : int = n_head UpperCamelCase : Union[str, Any] = n_inner UpperCamelCase : int = rotary_dim UpperCamelCase : Optional[Any] = activation_function UpperCamelCase : Optional[int] = resid_pdrop UpperCamelCase : Union[str, Any] = embd_pdrop UpperCamelCase : Optional[Any] = attn_pdrop UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : str = use_cache UpperCamelCase : Dict = bos_token_id UpperCamelCase : Union[str, Any] = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, tie_word_embeddings=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : str = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : Tuple = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs' ) UpperCamelCase : List[Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Tuple = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : List[str] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : List[Any] = seqlen + 2 UpperCamelCase : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase : str = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : List[Any] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : Optional[Any] = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__ ( unittest.TestCase , lowerCamelCase_ ): def _snake_case ( self ): """simple docstring""" lowercase_ : int = load_tool('''text-to-speech''' ) self.tool.setup() def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : Tuple = self.tool('''hey''' ) lowercase_ : str = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def _snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase_ : str = self.tool('''hey''' ) lowercase_ : Dict = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
264
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
264
1
from __future__ import annotations from collections.abc import MutableSequence class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: int , UpperCamelCase: MutableSequence[float] ) -> None: if len(_SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) snake_case__ = list(_SCREAMING_SNAKE_CASE ) snake_case__ = degree def __add__( self: Optional[int] , UpperCamelCase: Polynomial ) -> Polynomial: if self.degree > polynomial_a.degree: snake_case__ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _SCREAMING_SNAKE_CASE ) else: snake_case__ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _SCREAMING_SNAKE_CASE ) def __sub__( self: Union[str, Any] , UpperCamelCase: Polynomial ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Dict ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: Optional[Any] , UpperCamelCase: Polynomial ) -> Polynomial: snake_case__ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: int | float ) -> int | float: snake_case__ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Any ) -> str: snake_case__ = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self: int ) -> str: return self.__str__() def lowerCAmelCase_ ( self: Tuple ) -> Polynomial: snake_case__ = [0] * self.degree for i in range(self.degree ): snake_case__ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int | float = 0 ) -> Polynomial: snake_case__ = [0] * (self.degree + 2) snake_case__ = constant for i in range(self.degree + 1 ): snake_case__ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _SCREAMING_SNAKE_CASE ) def __eq__( self: List[str] , UpperCamelCase: object ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[int] , UpperCamelCase: object ) -> bool: return not self.__eq__(_SCREAMING_SNAKE_CASE )
307
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=13 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : Union[str, Any]=[1, 2, 1] , _SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 4] , _SCREAMING_SNAKE_CASE : str=2 , _SCREAMING_SNAKE_CASE : Optional[int]=2.0 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Dict=0.0 , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Tuple="gelu" , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : Any=1E-5 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Any=10 , _SCREAMING_SNAKE_CASE : Union[str, Any]=8 , )-> Dict: lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : Optional[Any] = depths lowerCAmelCase__ : Tuple = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : List[str] = mlp_ratio lowerCAmelCase__ : str = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Tuple = use_absolute_embeddings lowerCAmelCase__ : int = patch_norm lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : Any = scope lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Any = encoder_stride def UpperCAmelCase__( self : str )-> Optional[int]: lowerCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__( self : Optional[int] )-> str: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> int: lowerCAmelCase__ : Union[str, Any] = SwinvaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : List[str] = model(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase__ : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any )-> List[Any]: lowerCAmelCase__ : Optional[int] = SwinvaForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Dict = SwinvaForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Tuple = self.type_sequence_label_size lowerCAmelCase__ : Optional[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__( self : Tuple )-> str: lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( _lowercase , _lowercase , unittest.TestCase): _a : str = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _a : Tuple = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) _a : List[str] = False _a : int = False _a : Optional[int] = False _a : Optional[Any] = False def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : Tuple = SwinvaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) def UpperCAmelCase__( self : str )-> int: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__( self : Optional[int] )-> Optional[Any]: lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def UpperCAmelCase__( self : Tuple )-> Optional[int]: pass def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__( self : Any )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Union[str, Any] )-> Dict: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[str] = outputs.attentions lowerCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = config.window_size**2 lowerCAmelCase__ : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase__ : int = len(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): lowerCAmelCase__ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase__ : str = 2 self.assertEqual(out_len + added_hidden_states , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCAmelCase__( self : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] )-> Tuple: lowerCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = outputs.hidden_states lowerCAmelCase__ : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase__ : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase__ : Dict = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reshaped_hidden_states[0].shape lowerCAmelCase__ : Tuple = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__( self : Tuple )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Any = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def UpperCAmelCase__( self : Dict )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Optional[Any]: lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__( self : Optional[Any] )-> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[Any] = SwinvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Dict )-> List[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class _a ( unittest.TestCase): @cached_property def UpperCAmelCase__( self : Tuple )-> Optional[Any]: return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def UpperCAmelCase__( self : List[Any] )-> List[str]: lowerCAmelCase__ : Any = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
131
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE : str = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def lowercase ( _snake_case : List[Any] ) ->List[str]: """simple docstring""" __snake_case : Union[str, Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : str = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Any = list(s_dict.keys() ) for key in keys: __snake_case : str = key for k, v in WHISPER_MAPPING.items(): if k in key: __snake_case : Any = new_key.replace(_snake_case , _snake_case ) print(f"""{key} -> {new_key}""" ) __snake_case : str = s_dict.pop(_snake_case ) return s_dict def lowercase ( _snake_case : int ) ->str: """simple docstring""" __snake_case , __snake_case : int = emb.weight.shape __snake_case : List[str] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) __snake_case : Any = emb.weight.data return lin_layer def lowercase ( _snake_case : str , _snake_case : str ) ->bytes: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : List[str] = os.path.basename(_snake_case ) __snake_case : str = url.split('''/''' )[-2] __snake_case : Optional[int] = os.path.join(_snake_case , _snake_case ) if os.path.exists(_snake_case ) and not os.path.isfile(_snake_case ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_snake_case ): __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_snake_case ) as source, open(_snake_case , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_snake_case , unit_divisor=1_024 ) as loop: while True: __snake_case : Union[str, Any] = source.read(8_192 ) if not buffer: break output.write(_snake_case ) loop.update(len(_snake_case ) ) __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowercase ( _snake_case : Any , _snake_case : int ) ->str: """simple docstring""" if ".pt" not in checkpoint_path: __snake_case : Any = _download(_MODELS[checkpoint_path] ) else: __snake_case : Optional[Any] = torch.load(_snake_case , map_location='''cpu''' ) __snake_case : int = original_checkpoint['''dims'''] __snake_case : List[Any] = original_checkpoint['''model_state_dict'''] __snake_case : List[str] = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) __snake_case : Optional[int] = True __snake_case : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __snake_case : List[Any] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_snake_case , decoder_ffn_dim=_snake_case , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __snake_case : int = WhisperForConditionalGeneration(_snake_case ) __snake_case , __snake_case : List[Any] = model.model.load_state_dict(_snake_case , strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __snake_case : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __snake_case : List[str] = proj_out_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
24
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
1
from math import ceil def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> int: __lowercase = list(range(0 , snake_case_ ) ) __lowercase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowercase = [] for i in device_map_blocks: if device_map_blocks.count(snake_case_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case_ ) # Missing blocks __lowercase = [i for i in blocks if i not in device_map_blocks] __lowercase = [i for i in device_map_blocks if i not in blocks] if len(snake_case_ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> Dict: __lowercase = list(range(snake_case_ ) ) __lowercase = int(ceil(n_layers / len(snake_case_ ) ) ) __lowercase = [layers[i : i + n_blocks] for i in range(0 , snake_case_ , snake_case_ )] return dict(zip(snake_case_ , snake_case_ ) )
325
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : Union[str, Any]=2_81_23 ) -> str: '''simple docstring''' __lowerCAmelCase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowerCAmelCase = set() __lowerCAmelCase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(snake_case_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
229
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 1_000_000 ) ->int: """simple docstring""" a_ = 1 a_ = 1 a_ = {1: 1} for inputa in range(2 , UpperCAmelCase ): a_ = 0 a_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: a_ = (3 * number) + 1 counter += 1 if inputa not in counters: a_ = counter if counter > pre_counter: a_ = inputa a_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=2 , lowercase=8 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=16 , lowercase=5 , lowercase=2 , lowercase=36 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Tuple = batch_size _lowerCamelCase : int = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Any = use_input_mask _lowerCamelCase : Union[str, Any] = use_token_type_ids _lowerCamelCase : str = use_labels _lowerCamelCase : int = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : str = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = num_labels _lowerCamelCase : Tuple = num_choices _lowerCamelCase : Optional[Any] = scope def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Tuple = None if self.use_input_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : List[str] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[int] = None if self.use_labels: _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.get_config() _lowerCamelCase : List[str] = 300 return config def A_ ( self ): ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = self.prepare_config_and_inputs() _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = MraModel(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _lowerCamelCase : Optional[Any] = model(lowercase , token_type_ids=lowercase ) _lowerCamelCase : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): _lowerCamelCase : Dict = True _lowerCamelCase : Optional[Any] = MraModel(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) _lowerCamelCase : Tuple = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , ) _lowerCamelCase : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = MraForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Optional[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = MraForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Union[str, Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[Any] = self.num_labels _lowerCamelCase : Optional[int] = MraForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Any = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : int = self.num_labels _lowerCamelCase : Optional[Any] = MraForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : Tuple = self.num_choices _lowerCamelCase : Optional[int] = MraForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() _lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : Tuple = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Union[str, Any] = config_and_inputs _lowerCamelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A_ ( self ): _lowerCamelCase : Optional[Any] = MraModelTester(self ) _lowerCamelCase : int = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*lowercase ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A_ ( self ): _lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A_ ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Union[str, Any] = MraModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason='MRA does not output attentions' ) def A_ ( self ): return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Optional[Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) _lowerCamelCase : List[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Dict = model(lowercase )[0] _lowerCamelCase : Any = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : Optional[int] = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) _lowerCamelCase : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : Tuple = model(lowercase )[0] _lowerCamelCase : Optional[Any] = 50265 _lowerCamelCase : str = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : Tuple = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A_ ( self ): _lowerCamelCase : Dict = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) _lowerCamelCase : Any = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCamelCase : str = model(lowercase )[0] _lowerCamelCase : Tuple = 50265 _lowerCamelCase : int = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , lowercase ) _lowerCamelCase : int = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
96
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : Optional[Any] = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = 'marian' lowercase : int = ['past_key_values'] lowercase : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCamelCase=5_81_01 , __UpperCamelCase=None , __UpperCamelCase=10_24 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=12 , __UpperCamelCase=40_96 , __UpperCamelCase=16 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=10_24 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=5_81_00 , __UpperCamelCase=False , __UpperCamelCase=5_81_00 , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = vocab_size __UpperCamelCase : str = decoder_vocab_size or vocab_size __UpperCamelCase : Any = max_position_embeddings __UpperCamelCase : List[Any] = d_model __UpperCamelCase : Optional[int] = encoder_ffn_dim __UpperCamelCase : Union[str, Any] = encoder_layers __UpperCamelCase : Tuple = encoder_attention_heads __UpperCamelCase : Dict = decoder_ffn_dim __UpperCamelCase : Optional[Any] = decoder_layers __UpperCamelCase : Optional[int] = decoder_attention_heads __UpperCamelCase : Union[str, Any] = dropout __UpperCamelCase : List[str] = attention_dropout __UpperCamelCase : int = activation_dropout __UpperCamelCase : Tuple = activation_function __UpperCamelCase : List[str] = init_std __UpperCamelCase : int = encoder_layerdrop __UpperCamelCase : List[Any] = decoder_layerdrop __UpperCamelCase : Dict = use_cache __UpperCamelCase : str = encoder_layers __UpperCamelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase : List[str] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase : str = {0: "batch"} __UpperCamelCase : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __UpperCamelCase : Optional[Any] = {0: "batch", 1: "decoder_sequence"} __UpperCamelCase : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __UpperCamelCase : str = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __UpperCamelCase : Any = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : Any = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: __UpperCamelCase : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super().outputs else: __UpperCamelCase : Optional[Any] = super(__UpperCamelCase , self ).outputs if self.use_past: __UpperCamelCase : int = self.num_layers for i in range(__UpperCamelCase ): __UpperCamelCase : List[str] = {0: "batch", 2: "past_sequence + sequence"} __UpperCamelCase : str = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : str = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __UpperCamelCase : Any = seq_length if not self.use_past else 1 __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Any = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __UpperCamelCase : List[Any] = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase : Dict = common_inputs["input_ids"].shape __UpperCamelCase : Dict = common_inputs["decoder_input_ids"].shape[1] __UpperCamelCase : Any = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : List[str] = decoder_seq_length + 3 __UpperCamelCase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __UpperCamelCase : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __UpperCamelCase : List[str] = self.num_layers __UpperCamelCase : Optional[int] = min(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Optional[int] = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __UpperCamelCase : Dict = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __UpperCamelCase : Any = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : int = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __UpperCamelCase : str = common_inputs["input_ids"].shape # Not using the same length for past_key_values __UpperCamelCase : int = seqlen + 2 __UpperCamelCase : str = self.num_layers __UpperCamelCase : List[str] = self.num_attention_heads __UpperCamelCase : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __UpperCamelCase : Any = common_inputs["attention_mask"].dtype __UpperCamelCase : Optional[Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __UpperCamelCase : int = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase : Any = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __UpperCamelCase : List[Any] = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __UpperCamelCase : Tuple = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __UpperCamelCase : Tuple = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __UpperCamelCase : int = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __UpperCamelCase : List[Any] = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase : str = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @property def __lowerCamelCase ( self ) -> float: '''simple docstring''' return 1E-4
366
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ) -> Tuple: '''simple docstring''' __UpperCamelCase : Dict = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : str = seq_length __UpperCamelCase : List[Any] = is_training __UpperCamelCase : str = use_input_mask __UpperCamelCase : int = use_token_type_ids __UpperCamelCase : str = use_labels __UpperCamelCase : List[str] = vocab_size __UpperCamelCase : List[str] = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = hidden_dropout_prob __UpperCamelCase : List[Any] = attention_probs_dropout_prob __UpperCamelCase : List[str] = max_position_embeddings __UpperCamelCase : Union[str, Any] = type_vocab_size __UpperCamelCase : Optional[Any] = type_sequence_label_size __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : Union[str, Any] = num_labels __UpperCamelCase : Any = num_choices __UpperCamelCase : Optional[Any] = scope def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Optional[int] = None if self.use_token_type_ids: __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[str] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : int = None if self.use_labels: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) __UpperCamelCase : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> List[str]: '''simple docstring''' __UpperCamelCase : int = True __UpperCamelCase : Tuple = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) __UpperCamelCase : Union[str, Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) __UpperCamelCase : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Any: '''simple docstring''' __UpperCamelCase : Optional[Any] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : Any = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[str] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass __UpperCamelCase : Optional[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) __UpperCamelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] __UpperCamelCase : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice __UpperCamelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : List[str] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase : Dict = (LlamaForCausalLM,) if is_torch_available() else () lowercase : Tuple = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase : Tuple = False lowercase : List[Any] = False def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = LlamaModelTester(self ) __UpperCamelCase : List[str] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase : Tuple = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Optional[int] = 3 __UpperCamelCase : int = input_dict["input_ids"] __UpperCamelCase : Optional[Any] = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : List[str] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : List[str] = 3 __UpperCamelCase : Any = "single_label_classification" __UpperCamelCase : List[str] = input_dict["input_ids"] __UpperCamelCase : Tuple = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase : Optional[int] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : str = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Dict = 3 __UpperCamelCase : Tuple = "multi_label_classification" __UpperCamelCase : Any = input_dict["input_ids"] __UpperCamelCase : str = input_ids.ne(1 ).to(__UpperCamelCase ) __UpperCamelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase : Optional[Any] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Any = ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Union[str, Any] = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() __UpperCamelCase : int = original_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : List[Any] = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase : Dict = {"type": scaling_type, "factor": 10.0} __UpperCamelCase : Optional[Any] = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() __UpperCamelCase : Optional[int] = scaled_model(__UpperCamelCase ).last_hidden_state __UpperCamelCase : Tuple = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) __UpperCamelCase : Tuple = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase : List[str] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Tuple = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) __UpperCamelCase : str = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Any = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : List[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) __UpperCamelCase : Any = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 __UpperCamelCase : Any = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase : Union[str, Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' __UpperCamelCase : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __UpperCamelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) __UpperCamelCase : Optional[Any] = model(torch.tensor(__UpperCamelCase ) ) __UpperCamelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" __UpperCamelCase : List[str] = "Simply put, the theory of relativity states that " __UpperCamelCase : Optional[Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) __UpperCamelCase : Dict = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) __UpperCamelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs __UpperCamelCase : List[Any] = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
171
0
def A ( lowercase = 10**12 ) -> int: '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
222
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase : List[str] = """src/transformers""" lowercase : Optional[int] = """docs/source/en/tasks""" def A_ ( A__ , A__ , A__ ) -> Tuple: with open(A__ , 'r' , encoding='utf-8' , newline='\n' ) as f: a__ : Any = f.readlines() # Find the start prompt. a__ : str = 0 while not lines[start_index].startswith(A__ ): start_index += 1 start_index += 1 a__ : int = start_index while not lines[end_index].startswith(A__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) lowercase : Optional[Any] = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase : Optional[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def A_ ( A__ ) -> Optional[int]: a__ : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] a__ : int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A__ , set() ) a__ : Optional[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def A_ ( A__ , A__=False ) -> Optional[int]: a__ , a__ , a__ , a__ : Dict = _find_text_in_file( filename=os.path.join(A__ , A__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) a__ : List[Any] = get_model_list_for_task(A__ ) if current_list != new_list: if overwrite: with open(os.path.join(A__ , A__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
99
0
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowerCAmelCase ) if number < 1: snake_case = F'''Input value of [number={number}] must be > 0''' raise ValueError(__lowerCAmelCase ) snake_case = 1 for i in range(1 , __lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = 42 class a ( nn.Module ): _lowerCAmelCase = 42 _lowerCAmelCase = (1_6, 3_2, 9_6, 2_5_6) _lowerCAmelCase = jnp.floataa def __UpperCAmelCase ( self ) -> List[str]: _a = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _a = [] for i in range(len(self.block_out_channels ) - 1 ): _a = self.block_out_channels[i] _a = self.block_out_channels[i + 1] _a = nn.Conv( __magic_name__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__magic_name__ ) _a = nn.Conv( __magic_name__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__magic_name__ ) _a = blocks _a = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __magic_name__ ) -> Union[str, Any]: _a = self.conv_in(__magic_name__ ) _a = nn.silu(__magic_name__ ) for block in self.blocks: _a = block(__magic_name__ ) _a = nn.silu(__magic_name__ ) _a = self.conv_out(__magic_name__ ) return embedding @flax_register_to_config class a ( nn.Module , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 3_2 _lowerCAmelCase = 4 _lowerCAmelCase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowerCAmelCase = False _lowerCAmelCase = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _lowerCAmelCase = 2 _lowerCAmelCase = 8 _lowerCAmelCase = None _lowerCAmelCase = 1_2_8_0 _lowerCAmelCase = 0.0 _lowerCAmelCase = False _lowerCAmelCase = jnp.floataa _lowerCAmelCase = True _lowerCAmelCase = 0 _lowerCAmelCase = "rgb" _lowerCAmelCase = (1_6, 3_2, 9_6, 2_5_6) def __UpperCAmelCase ( self , __magic_name__ ) -> FrozenDict: # init input tensors _a = (1, self.in_channels, self.sample_size, self.sample_size) _a = jnp.zeros(__magic_name__ , dtype=jnp.floataa ) _a = jnp.ones((1,) , dtype=jnp.intaa ) _a = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _a = (1, 3, self.sample_size * 8, self.sample_size * 8) _a = jnp.zeros(__magic_name__ , dtype=jnp.floataa ) _a , _a = jax.random.split(__magic_name__ ) _a = {'params': params_rng, 'dropout': dropout_rng} return self.init(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )["params"] def __UpperCAmelCase ( self ) -> List[str]: _a = self.block_out_channels _a = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _a = self.num_attention_heads or self.attention_head_dim # input _a = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _a = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _a = FlaxTimestepEmbedding(__magic_name__ , dtype=self.dtype ) _a = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _a = self.only_cross_attention if isinstance(__magic_name__ , __magic_name__ ): _a = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__magic_name__ , __magic_name__ ): _a = (num_attention_heads,) * len(self.down_block_types ) # down _a = [] _a = [] _a = block_out_channels[0] _a = nn.Conv( __magic_name__ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__magic_name__ ) for i, down_block_type in enumerate(self.down_block_types ): _a = output_channel _a = block_out_channels[i] _a = i == len(__magic_name__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _a = FlaxCrossAttnDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _a = FlaxDownBlockaD( in_channels=__magic_name__ , out_channels=__magic_name__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__magic_name__ ) for _ in range(self.layers_per_block ): _a = nn.Conv( __magic_name__ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__magic_name__ ) if not is_final_block: _a = nn.Conv( __magic_name__ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__magic_name__ ) _a = down_blocks _a = controlnet_down_blocks # mid _a = block_out_channels[-1] _a = FlaxUNetMidBlockaDCrossAttn( in_channels=__magic_name__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _a = nn.Conv( __magic_name__ , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 1.0 , __magic_name__ = True , __magic_name__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: _a = self.controlnet_conditioning_channel_order if channel_order == "bgr": _a = jnp.flip(__magic_name__ , axis=1 ) # 1. time if not isinstance(__magic_name__ , jnp.ndarray ): _a = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__magic_name__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _a = timesteps.astype(dtype=jnp.floataa ) _a = jnp.expand_dims(__magic_name__ , 0 ) _a = self.time_proj(__magic_name__ ) _a = self.time_embedding(__magic_name__ ) # 2. pre-process _a = jnp.transpose(__magic_name__ , (0, 2, 3, 1) ) _a = self.conv_in(__magic_name__ ) _a = jnp.transpose(__magic_name__ , (0, 2, 3, 1) ) _a = self.controlnet_cond_embedding(__magic_name__ ) sample += controlnet_cond # 3. down _a = (sample,) for down_block in self.down_blocks: if isinstance(__magic_name__ , __magic_name__ ): _a , _a = down_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) else: _a , _a = down_block(__magic_name__ , __magic_name__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _a = self.mid_block(__magic_name__ , __magic_name__ , __magic_name__ , deterministic=not train ) # 5. contronet blocks _a = () for down_block_res_sample, controlnet_block in zip(__magic_name__ , self.controlnet_down_blocks ): _a = controlnet_block(__magic_name__ ) controlnet_down_block_res_samples += (down_block_res_sample,) _a = controlnet_down_block_res_samples _a = self.controlnet_mid_block(__magic_name__ ) # 6. scaling _a = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__magic_name__ , mid_block_res_sample=__magic_name__ )
168
'''simple docstring''' import math class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> list[list[int | float]]: for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A () -> None: '''simple docstring''' _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
168
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 10_24, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCamelCase__ ( _a ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__( self : Dict , _a : Tuple , _a : List[Any] , _a : Tuple=None , _a : Dict=None , _a : Any="<s>" , _a : Union[str, Any]="</s>" , _a : str="</s>" , _a : int="<pad>" , _a : str="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : str=8 , **_a : str , ): a__: str ={} if sp_model_kwargs is None else sp_model_kwargs a__: Optional[int] =language_codes a__: Dict =FAIRSEQ_LANGUAGE_CODES[language_codes] a__: Tuple ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__: Any =kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) a__: Optional[Any] =vocab_file a__: Tuple =load_json(_a ) a__: Any ={v: k for k, v in self.encoder.items()} a__: List[str] =spm_file a__: str =load_spm(_a , self.sp_model_kwargs ) a__: Any =len(self.encoder ) a__: Dict ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } a__: List[Any] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} a__: Dict ={v: k for k, v in self.lang_token_to_id.items()} a__: List[str] =src_lang if src_lang is not None else "en" a__: Any =tgt_lang a__: Tuple =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__: str =num_madeup_words @property def _lowerCamelCase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Tuple , _a : str ): a__: Optional[int] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : int , _a : str ): return self.sp_model.encode(_a , out_type=_a ) def _lowerCamelCase ( self : Tuple , _a : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : int , _a : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def _lowerCamelCase ( self : Dict , _a : List[str] ): a__: str =[] a__: Union[str, Any] ="" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token a__: Dict =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def _lowerCamelCase ( self : str , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) a__: Union[str, Any] =[1] * len(self.prefix_tokens ) a__: Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def _lowerCamelCase ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Dict ): a__: List[Any] ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): a__: Dict =self.__dict__.copy() a__: Union[str, Any] =None return state def __setstate__( self : Tuple , _a : Dict ): a__: str =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__: Optional[Any] ={} a__: Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Any , _a : str , _a : Optional[str] = None ): a__: Union[str, Any] =Path(_a ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__: Union[str, Any] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__: Optional[int] =save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , "wb" ) as fi: a__: str =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def _lowerCamelCase ( self : List[str] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ): a__: Tuple =src_lang a__: int =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def _lowerCamelCase ( self : List[str] , _a : Dict , _a : Optional[str] , _a : Optional[str] , **_a : Optional[Any] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__: Dict =src_lang a__: Optional[int] =self(_a , add_special_tokens=_a , **_a ) a__: Union[str, Any] =self.get_lang_id(_a ) a__: Tuple =tgt_lang_id return inputs def _lowerCamelCase ( self : List[Any] ): self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : List[Any] ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Union[str, Any] , _a : str ): a__: Tuple =self.get_lang_token(_a ) a__: Optional[int] =self.lang_token_to_id[lang_token] a__: Any =[self.cur_lang_id] a__: Optional[Any] =[self.eos_token_id] def _lowerCamelCase ( self : str , _a : str ): a__: List[str] =self.get_lang_token(_a ) a__: Optional[Any] =self.lang_token_to_id[lang_token] a__: Optional[int] =[self.cur_lang_id] a__: Dict =[self.eos_token_id] def _lowerCamelCase ( self : Any , _a : str ): return self.lang_code_to_token[lang] def _lowerCamelCase ( self : int , _a : str ): a__: int =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ): a__: Tuple =sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def __lowerCamelCase ( __magic_name__ : str ): with open(__magic_name__ , "r" ) as f: return json.load(__magic_name__ ) def __lowerCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : str ): with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
42
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """deit""" def __init__( self : List[Any] , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Optional[int]=1_2 , _lowerCAmelCase : Tuple=1_2 , _lowerCAmelCase : Any=3_0_7_2 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Tuple=1e-12 , _lowerCAmelCase : str=2_2_4 , _lowerCAmelCase : Optional[Any]=1_6 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Any=1_6 , **_lowerCAmelCase : List[Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =intermediate_size __lowercase =hidden_act __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =image_size __lowercase =patch_size __lowercase =num_channels __lowercase =qkv_bias __lowercase =encoder_stride class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = version.parse("""1.11""" ) @property def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __lowerCamelCase ( self : List[str]): '''simple docstring''' return 1e-4
166
'''simple docstring''' from datetime import datetime import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ='https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __lowercase =requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowerCAmelCase ).content if __name__ == "__main__": lowerCamelCase = input("""Enter Video/IGTV url: """).strip() lowerCamelCase = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
166
1
def UpperCAmelCase ( a__ : int = 50 ) -> List[Any]: UpperCamelCase_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
353
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BICUBIC , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_5_5 , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = size if size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} UpperCamelCase_ = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="""crop_size""" ) UpperCamelCase_ = do_resize UpperCamelCase_ = do_rescale UpperCamelCase_ = do_normalize UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase_ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase ): """simple docstring""" return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , ): """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(__UpperCamelCase , param_name="""crop_size""" , default_to_square=__UpperCamelCase ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(__UpperCamelCase ) if not is_batched(__UpperCamelCase ): UpperCamelCase_ = [images] if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] UpperCamelCase_ = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
261
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowercase_ = [[1, 2, 4], [1, 2, 3, 4]] lowercase_ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) self.assertTrue(isinstance(dc.token_ids , SCREAMING_SNAKE_CASE_ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase ( self : List[str] ) -> Optional[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowercase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(SCREAMING_SNAKE_CASE_ ): DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) # fails here def _lowercase ( self : Optional[Any] ) -> Any: lowercase_ = [[1, 2, 3], [1, 2, 4]] lowercase_ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ = dc.update(1 ) lowercase_ = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ = dc.update(2 ) lowercase_ = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ = dc.update(3 ) lowercase_ = stepped is True and completed is True and reset is False self.assertTrue(SCREAMING_SNAKE_CASE_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase ( self : Tuple ) -> int: lowercase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase_ = DisjunctiveConstraint(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase_ , lowercase_ , lowercase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase_ , lowercase_ , lowercase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase_ , lowercase_ , lowercase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase_ , lowercase_ , lowercase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
30
import sys from collections import defaultdict class a__ : """simple docstring""" def __init__( self : Union[str, Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] def _lowercase ( self : str , UpperCAmelCase__ : Optional[int] ) ->str: """simple docstring""" return self.node_position[vertex] def _lowercase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pos def _lowercase ( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) ->int: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: SCREAMING_SNAKE_CASE : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: SCREAMING_SNAKE_CASE : Tuple = 2 * start + 1 else: SCREAMING_SNAKE_CASE : str = 2 * start + 2 if heap[smallest_child] < heap[start]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = heap[smallest_child], positions[smallest_child] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = ( heap[start], positions[start], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = temp, tempa SCREAMING_SNAKE_CASE : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = position[index] while index != 0: SCREAMING_SNAKE_CASE : Optional[int] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: SCREAMING_SNAKE_CASE : str = heap[parent] SCREAMING_SNAKE_CASE : Any = position[parent] self.set_position(position[parent] , UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = val SCREAMING_SNAKE_CASE : Optional[Any] = temp self.set_position(UpperCAmelCase__ , UpperCAmelCase__ ) break SCREAMING_SNAKE_CASE : List[Any] = parent else: SCREAMING_SNAKE_CASE : List[Any] = val SCREAMING_SNAKE_CASE : List[Any] = temp self.set_position(UpperCAmelCase__ , 0 ) def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__ , -1 , -1 ): self.top_to_bottom(UpperCAmelCase__ , UpperCAmelCase__ , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = positions[0] SCREAMING_SNAKE_CASE : Optional[int] = sys.maxsize self.top_to_bottom(UpperCAmelCase__ , 0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ) return temp def __lowercase ( _A ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = Heap() SCREAMING_SNAKE_CASE : List[Any] = [0] * len(_A ) SCREAMING_SNAKE_CASE : List[str] = [-1] * len(_A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph SCREAMING_SNAKE_CASE : int = [] # Heap of Distance of vertices from their neighboring vertex SCREAMING_SNAKE_CASE : List[Any] = [] for vertex in range(len(_A ) ): distance_tv.append(sys.maxsize ) positions.append(_A ) heap.node_position.append(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(_A , _A ) for _ in range(1 , len(_A ) ): SCREAMING_SNAKE_CASE : Optional[Any] = heap.delete_minimum(_A , _A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) SCREAMING_SNAKE_CASE : int = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_A )] ): SCREAMING_SNAKE_CASE : List[Any] = distance heap.bottom_to_top( _A , heap.get_position(_A ) , _A , _A ) SCREAMING_SNAKE_CASE : Dict = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ : Union[str, Any] = int(input("""Enter number of edges: """).strip()) UpperCAmelCase__ : Union[str, Any] = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
245
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCamelCase : str = logging.get_logger(__name__) class A__ ( A__ ): def __init__( self : List[Any] , *_a : List[str] , **_a : int ) -> None: '''simple docstring''' warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , _a , ) super().__init__(*_a , **_a )
114
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase : int = logging.getLogger(__name__) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0_5_2_2, type=int) lowerCamelCase : Optional[Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCamelCase : Optional[int] = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCamelCase : Dict = Counter() for tk_ids in data: counter.update(tk_ids) lowerCamelCase : Tuple = [0] * args.vocab_size for k, v in counter.items(): lowerCamelCase : Any = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
114
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : Optional[Any] = {'configuration_timm_backbone': ['TimmBackboneConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ['TimmBackbone'] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "roberta-prelayernorm" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=5_0265 , __lowerCamelCase : str=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : List[Any]=1e-12 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = position_embedding_type SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = classifier_dropout class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
314
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class UpperCAmelCase_ ( lowerCamelCase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''ibert''' def __init__( self : Any , A : List[Any]=3_0_5_2_2 , A : int=7_6_8 , A : Any=1_2 , A : Optional[Any]=1_2 , A : str=3_0_7_2 , A : Optional[int]="gelu" , A : Optional[Any]=0.1 , A : Tuple=0.1 , A : Optional[int]=5_1_2 , A : str=2 , A : Optional[Any]=0.02 , A : List[str]=1e-12 , A : Tuple=1 , A : str=0 , A : str=2 , A : Optional[int]="absolute" , A : Union[str, Any]=False , A : Tuple="none" , **A : List[str] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = position_embedding_type _UpperCAmelCase : Any = quant_mode _UpperCAmelCase : Tuple = force_dequant class UpperCAmelCase_ ( lowerCamelCase_ ): @property def snake_case_ ( self : List[str] ): if self.task == "multiple-choice": _UpperCAmelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
371
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] while len(SCREAMING_SNAKE_CASE__ ) > 1: _UpperCAmelCase , _UpperCAmelCase : int = min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) start.append(SCREAMING_SNAKE_CASE__ ) end.append(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) collection.remove(SCREAMING_SNAKE_CASE__ ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : int = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[str] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
202
0
from collections.abc import Callable def lowerCamelCase__ ( snake_case_ : Callable[[float], float] , snake_case_ : float , snake_case_ : float ) -> float: __snake_case = a __snake_case = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: __snake_case = mid else: __snake_case = mid __snake_case = start + (end - start) / 2.0 return mid def lowerCamelCase__ ( snake_case_ : float ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = BartphoTokenizer A_ : List[str] = False A_ : Optional[Any] = True def a (self : Tuple ): """simple docstring""" super().setUp() __snake_case = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : str , **a__ : str ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a (self : str , a__ : Any ): """simple docstring""" __snake_case = '''This is a là test''' __snake_case = '''This is a<unk><unk> test''' return input_text, output_text def a (self : Dict ): """simple docstring""" __snake_case = BartphoTokenizer(a__ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case = '''This is a là test''' __snake_case = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __snake_case = tokens + [tokenizer.unk_token] __snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
24
1
'''simple docstring''' def __magic_name__( lowerCamelCase): if num <= 0: raise ValueError('''Input must be a positive integer''') __lowerCAmelCase = [True] * (num + 1) __lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, lowerCamelCase): __lowerCAmelCase = False p += 1 return [prime for prime in range(2, num + 1) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Tuple = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
9
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_snake_case , _snake_case ) ) ) def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( '''Wrong input data\'s dimensions... ''' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_snake_case ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( '''Wrong input data\'s shape... ''' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Optional[Any] = ( '''Input data have different datatype... ''' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_snake_case ) lowerCAmelCase : str = [] for value in value_array: lowerCAmelCase : int = euclidean(_snake_case , dataset[0] ) lowerCAmelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Any = euclidean(_snake_case , _snake_case ) if dist > temp_dist: lowerCAmelCase : List[Any] = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return np.dot(_snake_case , _snake_case ) / (norm(_snake_case ) * norm(_snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
60
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCamelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def _a (self , lowercase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def _a (self ): self.enable_attention_slicing(lowercase ) @torch.no_grad() def __call__(self , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , lowercase = None , **lowercase , ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = 1 elif isinstance(lowercase , lowercase ): A_ : Any = len(lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowercase )}.' ) # get prompt text embeddings A_ : Optional[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A_ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_, A_, A_ : Tuple = text_embeddings.shape A_ : Optional[Any] = text_embeddings.repeat(1 , lowercase , 1 ) A_ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : Optional[int] = [""""""] elif type(lowercase ) is not type(lowercase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase )} !=' F' {type(lowercase )}.' ) elif isinstance(lowercase , lowercase ): A_ : Dict = [negative_prompt] elif batch_size != len(lowercase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A_ : Dict = negative_prompt A_ : int = text_input_ids.shape[-1] A_ : List[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=lowercase , truncation=lowercase , return_tensors="""pt""" , ) A_ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Optional[Any] = uncond_embeddings.shape[1] A_ : str = uncond_embeddings.repeat(lowercase , lowercase , 1 ) A_ : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to(self.device ) A_ : int = torch.randn(lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to( self.device ) else: A_ : int = torch.randn( lowercase , generator=lowercase , device=self.device , dtype=lowercase ) A_ : str = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A_ : str = latents_reference.to(self.device ) A_ : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : Optional[int] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : Optional[int] = max(-dx , 0 ) A_ : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : Any = {} if accepts_eta: A_ : Optional[int] = eta for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Tuple = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual A_ : List[str] = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform guidance if do_classifier_free_guidance: A_, A_ : str = noise_pred.chunk(2 ) A_ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : List[str] = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) A_ : List[str] = 1 / 0.1_82_15 * latents A_ : List[str] = self.vae.decode(lowercase ).sample A_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowercase ) , return_tensors="""pt""" ).to( self.device ) A_, A_ : Optional[int] = self.safety_checker( images=lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : Tuple = None if output_type == "pil": A_ : Tuple = self.numpy_to_pil(lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
206
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = { 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class snake_case_ ( __lowercase ): A_ = 'gptj' A_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , _snake_case : Optional[int]=50400 , _snake_case : Union[str, Any]=2048 , _snake_case : Tuple=4096 , _snake_case : Optional[int]=28 , _snake_case : Tuple=16 , _snake_case : Optional[Any]=64 , _snake_case : Optional[int]=None , _snake_case : str="gelu_new" , _snake_case : str=0.0 , _snake_case : Optional[int]=0.0 , _snake_case : List[str]=0.0 , _snake_case : Tuple=1E-5 , _snake_case : List[str]=0.02 , _snake_case : Optional[int]=True , _snake_case : Optional[Any]=50256 , _snake_case : List[str]=50256 , _snake_case : str=False , **_snake_case : Tuple , )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Any = n_positions __lowerCAmelCase : Optional[Any] = n_embd __lowerCAmelCase : Optional[int] = n_layer __lowerCAmelCase : Optional[int] = n_head __lowerCAmelCase : List[Any] = n_inner __lowerCAmelCase : List[str] = rotary_dim __lowerCAmelCase : int = activation_function __lowerCAmelCase : str = resid_pdrop __lowerCAmelCase : Union[str, Any] = embd_pdrop __lowerCAmelCase : Dict = attn_pdrop __lowerCAmelCase : Optional[Any] = layer_norm_epsilon __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : Dict = use_cache __lowerCAmelCase : List[str] = bos_token_id __lowerCAmelCase : List[Any] = eos_token_id super().__init__( bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case ) class snake_case_ ( __lowercase ): def __init__( self : Union[str, Any] , _snake_case : PretrainedConfig , _snake_case : str = "default" , _snake_case : List[PatchingSpec] = None , _snake_case : bool = False , )->str: '''simple docstring''' super().__init__(_snake_case , task=_snake_case , patching_specs=_snake_case , use_past=_snake_case ) if not getattr(self._config , """pad_token_id""" , _snake_case ): # TODO: how to do that better? __lowerCAmelCase : Dict = 0 @property def UpperCAmelCase__ ( self : Tuple )->Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCAmelCase : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(_snake_case , direction="""inputs""" ) __lowerCAmelCase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Dict )->int: '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return self._config.n_head def UpperCAmelCase__ ( self : str , _snake_case : PreTrainedTokenizer , _snake_case : int = -1 , _snake_case : int = -1 , _snake_case : bool = False , _snake_case : Optional[TensorType] = None , )->Mapping[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = super(_snake_case , self ).generate_dummy_inputs( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowerCAmelCase , __lowerCAmelCase : List[Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowerCAmelCase : Optional[Any] = seqlen + 2 __lowerCAmelCase : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase : Tuple = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(self.num_layers ) ] __lowerCAmelCase : int = common_inputs["""attention_mask"""] if self.use_past: __lowerCAmelCase : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __lowerCAmelCase : List[str] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str )->int: '''simple docstring''' return 13
232
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _UpperCamelCase : Dict = get_logger(__name__) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=0 ): '''simple docstring''' os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with FSDP.state_dict_type( _lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : Any = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Tuple = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Dict = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : Any = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Tuple = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : int = os.path.join(_lowerCAmelCase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) logger.info(f"""Saving model to {ckpt_dir}""" ) lowercase__ : str = {'model': state_dict} dist_cp.save_state_dict( state_dict=_lowerCAmelCase , storage_writer=dist_cp.FileSystemWriter(_lowerCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_lowerCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowercase__ : Dict = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Dict = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : Dict = torch.load(_lowerCAmelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : int = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : List[Any] = torch.load(_lowerCAmelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : str = ( os.path.join(_lowerCAmelCase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) lowercase__ : int = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_lowerCAmelCase , storage_reader=dist_cp.FileSystemReader(_lowerCAmelCase ) , planner=DefaultLoadPlanner() , ) lowercase__ : List[Any] = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_lowerCAmelCase ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=0 ): '''simple docstring''' os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with FSDP.state_dict_type( _lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : List[str] = FSDP.optim_state_dict(_lowerCAmelCase , _lowerCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase__ : List[str] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Any = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: lowercase__ : List[Any] = os.path.join(_lowerCAmelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_lowerCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Any = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase__ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Optional[int] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) lowercase__ : str = torch.load(_lowerCAmelCase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: lowercase__ : Any = ( os.path.join(_lowerCAmelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) lowercase__ : Optional[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_lowerCAmelCase ) , ) lowercase__ : str = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) lowercase__ : str = FSDP.optim_state_dict_to_load(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) optimizer.load_state_dict(_lowerCAmelCase )
77
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase_ ( _a): lowerCamelCase__ : np.ndarray lowerCamelCase__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
77
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: lowerCamelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: lowerCamelCase = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self ) -> Union[str, Any]: '''simple docstring''' try: lowerCamelCase = tempfile.mktemp() with open(A , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , A ) lowerCamelCase = AlbertTokenizer.from_pretrained(A ) finally: os.remove(A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , A ) lowerCamelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class __lowercase ( unittest.TestCase ): """simple docstring""" UpperCamelCase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __A ( cls ) -> List[Any]: '''simple docstring''' lowerCamelCase = TOKEN HfFolder.save_token(A ) @classmethod def __A ( cls ) -> str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def __A ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(A , """vocab.txt""" ) with open(A , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(A ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A , repo_id="""test-tokenizer""" , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __A ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(A , """vocab.txt""" ) with open(A , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(A ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=A , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __A ( self ) -> Union[str, Any]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(A , """vocab.txt""" ) with open(A , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCamelCase = CustomTokenizer(A ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(A , """vocab.txt""" ) with open(A , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) lowerCamelCase = CustomTokenizerFast.from_pretrained(A ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) lowerCamelCase = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=A , trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = Trie() lowerCamelCase = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A , ["""AB""", """C"""] )
363
from random import randint from tempfile import TemporaryFile import numpy as np def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 if start < end: lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase , lowerCamelCase = _in_place_partition(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) count += _in_place_quick_sort(lowerCamelCase__ , lowerCamelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase__ , p + 1 , lowerCamelCase__ ) return count def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = randint(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = a[end] lowerCamelCase = a[pivot] lowerCamelCase = temp lowerCamelCase = start - 1 for index in range(lowerCamelCase__ , lowerCamelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCamelCase = new_pivot_index + 1 lowerCamelCase = a[new_pivot_index] lowerCamelCase = a[index] lowerCamelCase = temp lowerCamelCase = a[new_pivot_index + 1] lowerCamelCase = a[end] lowerCamelCase = temp return new_pivot_index + 1, count UpperCAmelCase : Dict = TemporaryFile() UpperCAmelCase : Dict = 1_00 # 1000 elements are to be sorted UpperCAmelCase, UpperCAmelCase : Optional[int] = 0, 1 # mean and standard deviation UpperCAmelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase : List[Any] = np.load(outfile) UpperCAmelCase : Optional[Any] = len(M) - 1 UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
66
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): A : Union[str, Any] = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case__ ) if number < 1: A : List[str] = F'Input value of [number={number}] must be > 0' raise ValueError(snake_case__ ) A : Optional[Any] = 1 for i in range(1 , snake_case__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """maskformer""" __UpperCamelCase = {"""hidden_size""": """mask_feature_size"""} __UpperCamelCase = ["""resnet""", """swin"""] __UpperCamelCase = ["""detr"""] def __init__( self :Dict , lowercase_ :int = 2_56 , lowercase_ :int = 2_56 , lowercase_ :float = 0.1 , lowercase_ :bool = False , lowercase_ :Optional[Dict] = None , lowercase_ :Optional[Dict] = None , lowercase_ :float = 0.02 , lowercase_ :float = 1.0 , lowercase_ :float = 1.0 , lowercase_ :float = 1.0 , lowercase_ :float = 20.0 , lowercase_ :Optional[bool] = None , **lowercase_ :List[str] , ) -> Optional[int]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = backbone_config.pop('model_type' ) UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = CONFIG_MAPPING[decoder_type] UpperCAmelCase = config_class.from_dict(lowercase_ ) UpperCAmelCase = backbone_config UpperCAmelCase = decoder_config # main feature dimension for the model UpperCAmelCase = fpn_feature_size UpperCAmelCase = mask_feature_size # initializer UpperCAmelCase = init_std UpperCAmelCase = init_xavier_std # Hungarian matcher && loss UpperCAmelCase = cross_entropy_weight UpperCAmelCase = dice_weight UpperCAmelCase = mask_weight UpperCAmelCase = use_auxiliary_loss UpperCAmelCase = no_object_weight UpperCAmelCase = output_auxiliary_logits UpperCAmelCase = self.decoder_config.encoder_attention_heads UpperCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :PretrainedConfig , lowercase_ :PretrainedConfig , **lowercase_ :int ) -> List[Any]: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase__ ( self :Tuple ) -> Dict[str, any]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.backbone_config.to_dict() UpperCAmelCase = self.decoder_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
354
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ): UpperCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowercase_ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowercase_ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowercase_ ) return parser.parse_args() def _lowerCAmelCase ( ): UpperCAmelCase = parse_args() # Import training_script as a module. UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase = script_fpath.stem UpperCAmelCase = importlib.import_module(lowercase_ ) # Patch sys.argv UpperCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
181
0
'''simple docstring''' import requests def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> None: __lowerCamelCase = {'''Content-Type''': '''application/json'''} __lowerCamelCase = requests.post(UpperCamelCase__ , json={'''text''': message_body} , headers=UpperCamelCase__ ) if response.status_code != 2_00: __lowerCamelCase = ( '''Request to slack returned an error ''' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
67
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase = split_dict._to_yaml_list() assert len(snake_case__ ) == len(snake_case__ ) lowerCAmelCase = SplitDict._from_yaml_list(snake_case__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=snake_case__ ), SplitInfo(dataset_name='''my_dataset''' )] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
338
0
UpperCAmelCase_ = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def lowerCamelCase__ ( A__ : float ): '''simple docstring''' assert type(A__ ) in (int, float) and decimal == int(A__ ) __lowerCamelCase = int(A__ ) __lowerCamelCase = """""" __lowerCamelCase = False if decimal < 0: __lowerCamelCase = True decimal *= -1 while decimal > 0: __lowerCamelCase, __lowerCamelCase = divmod(A__ , 16 ) __lowerCamelCase = values[remainder] + hexadecimal __lowerCamelCase = """0x""" + hexadecimal if negative: __lowerCamelCase = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
350
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : Tuple , lowercase_ : Dict , lowercase_ : List[str]=7 , lowercase_ : Tuple=3 , lowercase_ : List[str]=18 , lowercase_ : List[Any]=30 , lowercase_ : Tuple=4_00 , lowercase_ : Any=True , lowercase_ : List[Any]=None , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=None , ) -> Optional[Any]: lowercase__ : Union[str, Any] = size if size is not None else {"shortest_edge": 20} lowercase__ : Optional[int] = crop_size if crop_size is not None else {"height": 18, "width": 18} lowercase__ : List[str] = parent lowercase__ : int = batch_size lowercase__ : Any = num_channels lowercase__ : Optional[Any] = image_size lowercase__ : int = min_resolution lowercase__ : List[str] = max_resolution lowercase__ : List[Any] = do_resize lowercase__ : Optional[int] = size lowercase__ : Dict = do_center_crop lowercase__ : Optional[int] = crop_size def __UpperCamelCase ( self : List[Any] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[int] = MobileNetVaImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Tuple ) -> List[str]: lowercase__ : int = MobileNetVaImageProcessingTester(self ) @property def __UpperCamelCase ( self : Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> Union[str, Any]: lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , "do_resize" ) ) self.assertTrue(hasattr(lowercase_ , "size" ) ) self.assertTrue(hasattr(lowercase_ , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase_ , "crop_size" ) ) def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: pass def __UpperCamelCase ( self : Optional[Any] ) -> str: # Initialize image_processing lowercase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowercase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Dict = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase ( self : Any ) -> str: # Initialize image_processing lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : Optional[Any] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowercase__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase__ : List[str] = image_processing(lowercase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
87
def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Any = [0] * len(lowerCamelCase_) for i in range(1 ,len(lowerCamelCase_)): # use last results for better performance - dynamic programming lowerCAmelCase__ : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCAmelCase__ : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCAmelCase__ : Union[str, Any] = j return prefix_result def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' return max(prefix_function(lowerCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod()
129
0
class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : list[int] ): SCREAMING_SNAKE_CASE__ = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [0] * len_array if len_array > 0: SCREAMING_SNAKE_CASE__ = array[0] for i in range(1 , _lowerCamelCase ): SCREAMING_SNAKE_CASE__ = self.prefix_sum[i - 1] + array[i] def A_ ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A_ ( self : Union[str, Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_lowerCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
354
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : @staticmethod def A_ ( *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): pass @is_pipeline_test @require_vision class lowercase__ ( unittest.TestCase ): @require_torch def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase_ ) , [ [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}], [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'c'}, {'score': 0.333, 'label': 'b'}], ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], ] , ) @require_tf def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [{'score': 0.333, 'label': 'a'}, {'score': 0.333, 'label': 'b'}, {'score': 0.333, 'label': 'c'}] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], [ {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, {'score': 0.333, 'label': ANY(UpperCAmelCase_ )}, ], ] , ) @slow @require_torch def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ = image_classifier(UpperCAmelCase_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ] , ) SCREAMING_SNAKE_CASE__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {'score': 0.511, 'label': 'remote'}, {'score': 0.485, 'label': 'cat'}, {'score': 0.004, 'label': 'plane'}, ], ] * 5 , )
169
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline a : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : tuple , __lowerCamelCase : Path , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str]=False , ): output_path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , use_external_data_format=__lowerCamelCase , enable_onnx_checker=__lowerCamelCase , opset_version=__lowerCamelCase , ) else: export( __lowerCamelCase , __lowerCamelCase , f=output_path.as_posix() , input_names=__lowerCamelCase , output_names=__lowerCamelCase , dynamic_axes=__lowerCamelCase , do_constant_folding=__lowerCamelCase , opset_version=__lowerCamelCase , ) @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : bool = False ): __UpperCAmelCase : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCAmelCase : Optional[int] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __UpperCAmelCase : Any = """cpu""" __UpperCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained(__lowerCamelCase , torch_dtype=__lowerCamelCase ).to(__lowerCamelCase ) __UpperCAmelCase : int = Path(__lowerCamelCase ) # TEXT ENCODER __UpperCAmelCase : List[Any] = pipeline.text_encoder.config.max_position_embeddings __UpperCAmelCase : str = pipeline.text_encoder.config.hidden_size __UpperCAmelCase : Union[str, Any] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__lowerCamelCase , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=__lowerCamelCase , ) del pipeline.text_encoder # UNET __UpperCAmelCase : Optional[int] = pipeline.unet.config.in_channels __UpperCAmelCase : Dict = pipeline.unet.config.sample_size __UpperCAmelCase : str = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), torch.randn(2 ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), torch.randn(2 , __lowerCamelCase , __lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), False, ) , output_path=__lowerCamelCase , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=__lowerCamelCase , use_external_data_format=__lowerCamelCase , ) __UpperCAmelCase : Optional[int] = str(unet_path.absolute().as_posix() ) __UpperCAmelCase : Optional[Any] = os.path.dirname(__lowerCamelCase ) __UpperCAmelCase : List[str] = onnx.load(__lowerCamelCase ) # clean up existing tensor files shutil.rmtree(__lowerCamelCase ) os.mkdir(__lowerCamelCase ) # collate external tensor files into one onnx.save_model( __lowerCamelCase , __lowerCamelCase , save_as_external_data=__lowerCamelCase , all_tensors_to_one_file=__lowerCamelCase , location="""weights.pb""" , convert_attribute=__lowerCamelCase , ) del pipeline.unet # VAE ENCODER __UpperCAmelCase : str = pipeline.vae __UpperCAmelCase : Any = vae_encoder.config.in_channels __UpperCAmelCase : Union[str, Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __UpperCAmelCase : str = lambda __lowerCamelCase , __lowerCamelCase : vae_encoder.encode(__lowerCamelCase , __lowerCamelCase )[0].sample() onnx_export( __lowerCamelCase , model_args=( torch.randn(1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__lowerCamelCase , ) # VAE DECODER __UpperCAmelCase : Any = pipeline.vae __UpperCAmelCase : List[str] = vae_decoder.config.latent_channels __UpperCAmelCase : str = vae_decoder.config.out_channels # forward only through the decoder part __UpperCAmelCase : Optional[int] = vae_encoder.decode onnx_export( __lowerCamelCase , model_args=( torch.randn(1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__lowerCamelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __UpperCAmelCase : Tuple = pipeline.safety_checker __UpperCAmelCase : Dict = safety_checker.config.vision_config.num_channels __UpperCAmelCase : int = safety_checker.config.vision_config.image_size __UpperCAmelCase : str = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), torch.randn(1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=__lowerCamelCase , ) del pipeline.safety_checker __UpperCAmelCase : Union[str, Any] = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __UpperCAmelCase : Union[str, Any] = pipeline.feature_extractor else: __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None __UpperCAmelCase : Optional[int] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__lowerCamelCase ) print("""ONNX pipeline saved to""" , __lowerCamelCase ) del pipeline del onnx_pipeline __UpperCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(__lowerCamelCase , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": a : str = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") a : Any = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
114
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Union[str, Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : Any = ['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : int = 0.9 , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ) -> None: super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Tuple = crop_pct __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : List[Any] = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Tuple = rescale_factor __UpperCAmelCase : int = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Tuple , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[float] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: __UpperCAmelCase : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Tuple = int(size["""height"""] / crop_pct ) else: __UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) __UpperCAmelCase : str = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) else: if "shortest_edge" in size: __UpperCAmelCase : List[str] = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __UpperCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ) -> np.ndarray: __UpperCAmelCase : Optional[Any] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> int: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : int = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[int] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Tuple = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : str = [to_numpy_array(__lowercase ) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __UpperCAmelCase : Any = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __UpperCAmelCase : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
114
1
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =BartphoTokenizer lowerCamelCase__ =False lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() __snake_case : Tuple = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __snake_case : Tuple = dict(zip(a_ , range(len(a_ ) ) ) ) __snake_case : Optional[Any] = {'''unk_token''': '''<unk>'''} __snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) __snake_case : Optional[Any] = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = '''This is a là test''' __snake_case : Optional[Any] = '''This is a<unk><unk> test''' return input_text, output_text def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map ) __snake_case : Optional[Any] = '''This is a là test''' __snake_case : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __snake_case : Dict = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case : List[Any] = tokens + [tokenizer.unk_token] __snake_case : Any = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
24
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A = json.load(f) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' return FSMTTokenizer.from_pretrained(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase_).to(UpperCAmelCase_) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =F"""facebook/wmt19-{pair}""" lowerCamelCase__: str =self.get_tokenizer(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.get_model(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =bleu_data[pair]["src"] lowerCamelCase__: Optional[int] =bleu_data[pair]["tgt"] lowerCamelCase__: Union[str, Any] =tokenizer(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_ , padding="longest").to(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase__: Union[str, Any] =tokenizer.batch_decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_) lowerCamelCase__: str =calculate_bleu(UpperCAmelCase_ , UpperCAmelCase_) print(UpperCAmelCase_) self.assertGreaterEqual(scores["bleu"] , UpperCAmelCase_)
10
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = str(a__) return len(a__) == 9 and set(a__) == set("""123456789""") def _UpperCAmelCase ( ): '''simple docstring''' for base_num in range(9_9_9_9 , 4_9_9_9 , -1): a_ : Dict = 1_0_0_0_0_2 * base_num if is_9_pandigital(a__): return candidate for base_num in range(3_3_3 , 9_9 , -1): a_ : Tuple = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(a__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
248
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : List[str] = KandinskyVaaPipeline A : Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', ] A : int = ['''image_embeds''', '''negative_image_embeds'''] A : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A : Dict = False @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(**lowercase_ ) return model @property def UpperCamelCase_ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.dummy_unet SCREAMING_SNAKE_CASE : Dict = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=1_000, beta_schedule='linear', beta_start=0.0_00_85, beta_end=0.0_12, clip_sample=lowercase_, set_alpha_to_one=lowercase_, steps_offset=1, prediction_type='epsilon', thresholding=lowercase_, ) SCREAMING_SNAKE_CASE : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCamelCase_ ( self, A, A=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowercase_ ) ).to(lowercase_ ) SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowercase_ ) if str(lowercase_ ).startswith('mps' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowercase_ ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'cpu' SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class(**lowercase_ ) SCREAMING_SNAKE_CASE : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs(lowercase_ ) ) SCREAMING_SNAKE_CASE : Dict = output.images SCREAMING_SNAKE_CASE : List[str] = pipe( **self.get_dummy_inputs(lowercase_ ), return_dict=lowercase_, )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Dict = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) SCREAMING_SNAKE_CASE : int = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder', torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Tuple = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) SCREAMING_SNAKE_CASE : str = 'red cat, 4k photo' SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device='cuda' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = pipe_prior( lowercase_, generator=lowercase_, num_inference_steps=5, negative_prompt='', ).to_tuple() SCREAMING_SNAKE_CASE : str = torch.Generator(device='cuda' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = pipeline( image_embeds=lowercase_, negative_image_embeds=lowercase_, generator=lowercase_, num_inference_steps=100, output_type='np', ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowercase_, lowercase_ )
356
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase_ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" UpperCamelCase_ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" UpperCamelCase_ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'], reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ], ) def UpperCamelCase_ ( self, A, A, A=None, A=True, A=False ): '''simple docstring''' if rouge_types is None: SCREAMING_SNAKE_CASE : List[Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE : int = rouge_scorer.RougeScorer(rouge_types=A, use_stemmer=A ) if use_aggregator: SCREAMING_SNAKE_CASE : Tuple = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ref, pred in zip(A, A ): SCREAMING_SNAKE_CASE : Tuple = scorer.score(A, A ) if use_aggregator: aggregator.add_scores(A ) else: scores.append(A ) if use_aggregator: SCREAMING_SNAKE_CASE : Union[str, Any] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[str] = [score[key] for score in scores] return result
246
0
def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) __SCREAMING_SNAKE_CASE : Tuple = [True] * (num + 1) __SCREAMING_SNAKE_CASE : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase__ ): __SCREAMING_SNAKE_CASE : str = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
'''simple docstring''' from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( snake_case : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) if num > 171.5: raise OverflowError('math range error' ) elif num - int(snake_case ) not in (0, 0.5): raise NotImplementedError('num must be an integer or a half-integer' ) elif num == 0.5: return sqrt(snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : int = 1.0 while num: UpperCamelCase : List[str] = float(input("""Gamma of: """)) print(f'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Union[str, Any] , a : Optional[int] , a : List[str] , a : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = dataset SCREAMING_SNAKE_CASE : str = process SCREAMING_SNAKE_CASE : List[str] = params def __len__( self : int ) -> int: """simple docstring""" return len(self.dataset ) def __getitem__( self : Union[str, Any] , a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.dataset[i] SCREAMING_SNAKE_CASE : Tuple = self.process(a , **self.params ) return processed class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a : Any , a : Any , a : Union[str, Any] , a : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = loader SCREAMING_SNAKE_CASE : Union[str, Any] = infer SCREAMING_SNAKE_CASE : List[str] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[Any] = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None def __len__( self : List[Any] ) -> List[str]: """simple docstring""" return len(self.loader ) def __iter__( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = iter(self.loader ) return self def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE : str = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE : str = {} for k, element in self._loader_batch_data.items(): if isinstance(a , a ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE : Optional[Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : str = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(a , a ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE : str = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : Optional[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE : Optional[int] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE : List[Any] = self._loader_batch_data.__class__(a ) self._loader_batch_index += 1 return result def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.iterator ) SCREAMING_SNAKE_CASE : List[Any] = self.infer(a , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(a , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = processed else: SCREAMING_SNAKE_CASE : Optional[Any] = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : Optional[Any] = processed[key] if isinstance(a , a ): SCREAMING_SNAKE_CASE : List[str] = len(a ) else: SCREAMING_SNAKE_CASE : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : Union[str, Any] = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE : List[Any] = processed SCREAMING_SNAKE_CASE : Optional[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Any , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : List[str]=None ) -> Dict: """simple docstring""" super().__init__(a , a , a ) def __iter__( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = iter(self.loader ) SCREAMING_SNAKE_CASE : List[Any] = None return self def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.subiterator is None: SCREAMING_SNAKE_CASE : int = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE : Any = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.subiterator ) return processed class _UpperCamelCase ( __A ): '''simple docstring''' def __iter__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = iter(self.loader ) return self def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : Any = self.loader_batch_item() SCREAMING_SNAKE_CASE : List[str] = item.pop("is_last" ) accumulator.append(a ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE : Optional[int] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(a , torch.Tensor ): SCREAMING_SNAKE_CASE : Optional[int] = processed else: SCREAMING_SNAKE_CASE : List[Any] = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : List[Any] = processed[key] if isinstance(a , a ): SCREAMING_SNAKE_CASE : Any = len(a ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : Union[str, Any] = observed_batch_size SCREAMING_SNAKE_CASE : Optional[Any] = processed SCREAMING_SNAKE_CASE : Dict = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : Tuple = self.loader_batch_item() SCREAMING_SNAKE_CASE : Dict = item.pop("is_last" ) accumulator.append(a ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE : List[Any] = processed SCREAMING_SNAKE_CASE : Optional[Any] = item.pop("is_last" ) accumulator.append(a ) return accumulator class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , a : Dataset , a : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = dataset SCREAMING_SNAKE_CASE : List[Any] = key def __len__( self : Union[str, Any] ) -> Dict: """simple docstring""" return len(self.dataset ) def __getitem__( self : Dict , a : List[Any] ) -> List[str]: """simple docstring""" return self.dataset[i][self.key] class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : Optional[int] , a : Dataset , a : str , a : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = dataset SCREAMING_SNAKE_CASE : Dict = keya SCREAMING_SNAKE_CASE : Optional[int] = keya def __len__( self : Optional[Any] ) -> Any: """simple docstring""" return len(self.dataset ) def __getitem__( self : Tuple , a : Optional[int] ) -> List[str]: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
76
import baseaa def lowerCamelCase__ ( _a): return baseaa.aaaencode(string.encode("utf-8")) def lowerCamelCase__ ( _a): return baseaa.aaadecode(_a).decode("utf-8") if __name__ == "__main__": import doctest doctest.testmod()
76
1
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowercase: int = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase): @register_to_config def __init__( self : Union[str, Any], a_ : bool, a_ : Optional[int] = None, a_ : Optional[int] = None ): """simple docstring""" super().__init__() UpperCamelCase__ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase__ = torch.zeros(lowercase_, lowercase_ ) else: UpperCamelCase__ = None UpperCamelCase__ = torch.nn.Parameter(lowercase_ ) class UpperCAmelCase ( _lowerCamelCase): _lowerCamelCase : Optional[Any] = 42 _lowerCamelCase : Union[str, Any] = 42 _lowerCamelCase : Union[str, Any] = 42 _lowerCamelCase : List[Any] = 42 _lowerCamelCase : List[Any] = 42 _lowerCamelCase : Optional[Any] = 42 def __init__( self : int, a_ : VQModel, a_ : CLIPTextModel, a_ : CLIPTokenizer, a_ : TransformeraDModel, a_ : VQDiffusionScheduler, a_ : LearnedClassifierFreeSamplingEmbeddings, ): """simple docstring""" super().__init__() self.register_modules( vqvae=lowercase_, transformer=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) def lowercase_ ( self : Any, a_ : Any, a_ : int, a_ : Optional[Any] ): """simple docstring""" UpperCamelCase__ = len(lowercase_ ) if isinstance(lowercase_, lowercase_ ) else 1 # get prompt text embeddings UpperCamelCase__ = self.tokenizer( lowercase_, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) UpperCamelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) UpperCamelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase__ = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=lowercase_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase__ = prompt_embeds.repeat_interleave(lowercase_, dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase__ = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase__ = negative_prompt_embeds.unsqueeze(0 ).repeat(lowercase_, 1, 1 ) else: UpperCamelCase__ = [""] * batch_size UpperCamelCase__ = text_input_ids.shape[-1] UpperCamelCase__ = self.tokenizer( lowercase_, padding="max_length", max_length=lowercase_, truncation=lowercase_, return_tensors="pt", ) UpperCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase__ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=lowercase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = negative_prompt_embeds.shape[1] UpperCamelCase__ = negative_prompt_embeds.repeat(1, lowercase_, 1 ) UpperCamelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt, lowercase_, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Union[str, Any], a_ : Union[str, List[str]], a_ : int = 100, a_ : float = 5.0, a_ : float = 1.0, a_ : int = 1, a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_ : Optional[torch.FloatTensor] = None, a_ : Optional[str] = "pil", a_ : bool = True, a_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, a_ : int = 1, ): """simple docstring""" if isinstance(lowercase_, lowercase_ ): UpperCamelCase__ = 1 elif isinstance(lowercase_, lowercase_ ): UpperCamelCase__ = len(lowercase_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}' ) UpperCamelCase__ = batch_size * num_images_per_prompt UpperCamelCase__ = guidance_scale > 1.0 UpperCamelCase__ = self._encode_prompt(lowercase_, lowercase_, lowercase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_, lowercase_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(lowercase_ )}.' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase__ = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase__ = self.transformer.num_vector_embeds - 1 UpperCamelCase__ = torch.full(lowercase_, lowercase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) UpperCamelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowercase_, device=self.device ) UpperCamelCase__ = self.scheduler.timesteps.to(self.device ) UpperCamelCase__ = latents for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase__ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase__ = self.transformer(lowercase_, encoder_hidden_states=lowercase_, timestep=lowercase_ ).sample if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = model_output.chunk(2 ) UpperCamelCase__ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowercase_, dim=1, keepdim=lowercase_ ) UpperCamelCase__ = self.truncate(lowercase_, lowercase_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase__ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(lowercase_, timestep=lowercase_, sample=lowercase_, generator=lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_, lowercase_, lowercase_ ) UpperCamelCase__ = self.vqvae.config.vq_embed_dim UpperCamelCase__ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase__ = self.vqvae.quantize.get_codebook_entry(lowercase_, shape=lowercase_ ) UpperCamelCase__ = self.vqvae.decode(lowercase_, force_not_quantize=lowercase_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0, 1 ) UpperCamelCase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ ) def lowercase_ ( self : str, a_ : torch.FloatTensor, a_ : float ): """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = torch.sort(lowercase_, 1, descending=lowercase_ ) UpperCamelCase__ = torch.exp(lowercase_ ) UpperCamelCase__ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase__ = torch.full_like(keep_mask[:, 0:1, :], lowercase_ ) UpperCamelCase__ = torch.cat((all_true, keep_mask), dim=1 ) UpperCamelCase__ = keep_mask[:, :-1, :] UpperCamelCase__ = keep_mask.gather(1, indices.argsort(1 ) ) UpperCamelCase__ = log_p_x_0.clone() UpperCamelCase__ = -torch.inf # -inf = log(0) return rv
355
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.mean(1 ) # Centralize the data of class i UpperCamelCase__ = data - column_reshape(_UpperCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_UpperCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ = features.mean(1 ) UpperCamelCase__ = np.nan for i in range(_UpperCamelCase ): UpperCamelCase__ = features[:, labels == i] UpperCamelCase__ = data.shape[1] UpperCamelCase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase__ = device_data * np.dot( column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase ) , (column_reshape(_UpperCamelCase ) - column_reshape(_UpperCamelCase )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' if features.any(): UpperCamelCase__ = features.mean(1 ) # Center the dataset UpperCamelCase__ = features - np.reshape(_UpperCamelCase , (data_mean.size, 1) ) UpperCamelCase__ = np.dot(_UpperCamelCase , centered_data.T ) / features.shape[1] UpperCamelCase__ , UpperCamelCase__ = np.linalg.eigh(_UpperCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase__ = np.dot(filtered_eigenvectors.T , _UpperCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( _UpperCamelCase : np.ndarray , _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase__ , UpperCamelCase__ = eigh( covariance_between_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , covariance_within_classes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , ) UpperCamelCase__ = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = np.linalg.svd(_UpperCamelCase ) UpperCamelCase__ = svd_matrix[:, 0:dimensions] UpperCamelCase__ = np.dot(filtered_svd_matrix.T , _UpperCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_UpperCamelCase ) logging.error("Dataset empty" ) raise AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase__ = np.array([0, 0, 0, 1, 1] ) UpperCamelCase__ = 2 UpperCamelCase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = linear_discriminant_analysis( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE__( ) -> None: '''simple docstring''' UpperCamelCase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase__ = 2 UpperCamelCase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_UpperCamelCase ) as error_info: UpperCamelCase__ = principal_component_analysis(_UpperCamelCase , _UpperCamelCase ) if not np.allclose(_UpperCamelCase , _UpperCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
31
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[str] = field( default="""cifar10""" ,metadata={"""help""": """Name of a dataset from the datasets package"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """The column name of the images in the files."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field(default=lowercase__ ,metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE__ : Optional[float] = field( default=0.1_5 ,metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[int] = field( default=lowercase__ ,metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } ,) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = {} if self.train_dir is not None: UpperCAmelCase_ : Optional[int] = self.train_dir if self.validation_dir is not None: UpperCAmelCase_ : List[str] = self.validation_dir UpperCAmelCase_ : List[str] = data_files if data_files else None @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ ,metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } ,) SCREAMING_SNAKE_CASE__ : Optional[str] = field( default=lowercase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE__ : str = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) SCREAMING_SNAKE_CASE__ : str = field(default=lowercase__ ,metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) SCREAMING_SNAKE_CASE__ : float = field( default=0.7_5 ,metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : float = field( default=1e-3 ,metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def __a ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae", __lowerCamelCase, __lowerCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Any = training_args.get_process_log_level() logger.setLevel(__lowerCamelCase ) transformers.utils.logging.set_verbosity(__lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. UpperCAmelCase_ : Tuple = load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : Optional[Any] = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __lowerCamelCase ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : List[str] = ds["train"].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : Dict = split["train"] UpperCAmelCase_ : str = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Dict = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase_ : Tuple = ViTMAEConfig.from_pretrained(model_args.config_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : List[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Tuple = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase_ : List[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name, **__lowerCamelCase ) elif model_args.model_name_or_path: UpperCAmelCase_ : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **__lowerCamelCase ) else: UpperCAmelCase_ : Optional[int] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase_ : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=__lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) UpperCAmelCase_ : Dict = ViTMAEForPreTraining(__lowerCamelCase ) if training_args.do_train: UpperCAmelCase_ : Optional[int] = ds["train"].column_names else: UpperCAmelCase_ : Dict = ds["validation"].column_names if data_args.image_column_name is not None: UpperCAmelCase_ : int = data_args.image_column_name elif "image" in column_names: UpperCAmelCase_ : Optional[Any] = "image" elif "img" in column_names: UpperCAmelCase_ : Optional[int] = "img" else: UpperCAmelCase_ : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase_ : List[str] = image_processor.size["shortest_edge"] else: UpperCAmelCase_ : int = (image_processor.size["height"], image_processor.size["width"]) UpperCAmelCase_ : Tuple = Compose( [ Lambda(lambda __lowerCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(__lowerCamelCase, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(__lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = [transforms(__lowerCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: UpperCAmelCase_ : List[str] = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__lowerCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : Optional[int] = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__lowerCamelCase ) # Compute absolute learning rate UpperCAmelCase_ : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase_ : Union[str, Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCAmelCase_ : Dict = Trainer( model=__lowerCamelCase, args=__lowerCamelCase, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, tokenizer=__lowerCamelCase, data_collator=__lowerCamelCase, ) # Training if training_args.do_train: UpperCAmelCase_ : str = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = last_checkpoint UpperCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=__lowerCamelCase ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Optional[Any] = trainer.evaluate() trainer.log_metrics("eval", __lowerCamelCase ) trainer.save_metrics("eval", __lowerCamelCase ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Optional[Any] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCamelCase ) else: trainer.create_model_card(**__lowerCamelCase ) def __a ( __lowerCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a = 'src/diffusers' # Matches is_xxx_available() _a = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _a = '\n{0} = None\n' _a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = _re_backend.findall(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None return "_and_".join(__lowerCamelCase ) def __a ( ): with open(os.path.join(__lowerCamelCase, "__init__.py" ), "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = {} # Go through the end of the file while line_index < len(__lowerCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCamelCase ) and len(lines[line_index] ) > 1: UpperCAmelCase_ : Union[str, Any] = lines[line_index] UpperCAmelCase_ : Optional[Any] = _re_single_line_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : Optional[int] = objects else: line_index += 1 return backend_specific_objects def __a ( __lowerCamelCase, __lowerCamelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCamelCase, __lowerCamelCase ) else: return DUMMY_CLASS.format(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase=None ): if backend_specific_objects is None: UpperCAmelCase_ : Tuple = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ : str = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ : int = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCamelCase, __lowerCamelCase ) for o in objects] ) UpperCAmelCase_ : int = dummy_file return dummy_files def __a ( __lowerCamelCase=False ): UpperCAmelCase_ : Optional[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ : List[str] = os.path.join(__lowerCamelCase, "utils" ) UpperCAmelCase_ : Optional[int] = { backend: os.path.join(__lowerCamelCase, f"""dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.read() else: UpperCAmelCase_ : Any = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a = parser.parse_args() check_dummies(args.fix_and_overwrite)
61
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) UpperCamelCase__ : Tuple = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , SCREAMING_SNAKE_CASE ) if matches: UpperCamelCase__ : Optional[Any] = float(matches[1] ) UpperCamelCase__ : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCamelCase__ : str = 1001 UpperCamelCase__ : int = '''imagenet-1k-id2label.json''' UpperCamelCase__ : Tuple = '''huggingface/label-files''' UpperCamelCase__ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : int = {int(SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = '''background''' UpperCamelCase__ : str = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def _a ( ): """simple docstring""" UpperCamelCase__ : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[int] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict=False ): """simple docstring""" UpperCamelCase__ : str = get_mobilenet_va_config(SCREAMING_SNAKE_CASE ) # Load 🤗 model UpperCamelCase__ : int = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCamelCase__ : int = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) UpperCamelCase__ : str = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Any = model(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": UpperCamelCase__ : Optional[int] = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": UpperCamelCase__ : Optional[int] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: UpperCamelCase__ : Union[str, Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing to the hub...''' ) UpperCamelCase__ : Optional[Any] = '''google/''' + model_name image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __UpperCamelCase : List[Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
363
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __UpperCamelCase : Union[str, Any] = "bert-base-cased" __UpperCamelCase : Tuple = "google/pegasus-xsum" __UpperCamelCase : Union[str, Any] = [" Sam ate lunch today.", "Sams lunch ingredients."] __UpperCamelCase : Union[str, Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] __UpperCamelCase : Any = "patrickvonplaten/t5-tiny-random" __UpperCamelCase : List[Any] = "sshleifer/bart-tiny-random" __UpperCamelCase : Any = "sshleifer/tiny-mbart" __UpperCamelCase : Optional[Any] = "sshleifer/tiny-marian-en-de" def _a ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : list ): """simple docstring""" UpperCamelCase__ : Optional[Any] = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"{split}.source" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"{split}.target" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class __magic_name__ ( __lowerCAmelCase): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : Tuple = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) UpperCamelCase__ : List[str] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) UpperCamelCase__ : int = 4 UpperCamelCase__ : Union[str, Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. UpperCamelCase__ : List[str] = SeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=lowerCamelCase__ , max_target_length=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , ) UpperCamelCase__ : Dict = DataLoader(lowerCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCamelCase__ : Dict = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCamelCase__ : Union[str, Any] = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in ARTICLES ) UpperCamelCase__ : str = max(len(tokenizer.encode(lowerCamelCase__ ) ) for a in SUMMARIES ) UpperCamelCase__ : Union[str, Any] = 4 UpperCamelCase__ : Optional[int] = LegacySeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=20 , max_target_length=lowerCamelCase__ , ) UpperCamelCase__ : List[str] = DataLoader(lowerCamelCase__ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) UpperCamelCase__ : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCamelCase__ : int = tmp_dir.joinpath('''train.source''' ).open().readlines() UpperCamelCase__ : Tuple = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase__ , lowerCamelCase__ , 128 , lowerCamelCase__ ) UpperCamelCase__ : str = {x.name for x in tmp_dir.iterdir()} UpperCamelCase__ : Optional[int] = {x.name for x in save_dir.iterdir()} UpperCamelCase__ : Dict = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase__ ) < len(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self._get_dataset(max_len=64 ) UpperCamelCase__ : List[str] = 64 UpperCamelCase__ : Optional[int] = ds.make_dynamic_sampler(lowerCamelCase__ , required_batch_size_multiple=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = [len(lowerCamelCase__ ) for x in batch_sampler] assert len(set(lowerCamelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase__ ) == len(lowerCamelCase__ ) # no dropped or added examples UpperCamelCase__ : Any = DataLoader(lowerCamelCase__ , batch_sampler=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = [] for batch in data_loader: UpperCamelCase__ : int = batch['''input_ids'''].shape UpperCamelCase__ : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCamelCase__ : Tuple = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(lowerCamelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase__ ) assert num_src_per_batch[0] == max(lowerCamelCase__ ) if failures: raise AssertionError(F"too many tokens in {len(lowerCamelCase__ )} batches" ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = self._get_dataset(max_len=512 ) UpperCamelCase__ : Union[str, Any] = 2 UpperCamelCase__ : Optional[int] = ds.make_sortish_sampler(lowerCamelCase__ , shuffle=lowerCamelCase__ ) UpperCamelCase__ : List[Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 ) UpperCamelCase__ : str = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase__ : int , lowerCamelCase__ : List[Any]="input_ids" ): return [batch[k].eq(lowerCamelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase__ , k='''labels''' ) ) < sum(count_pad_tokens(lowerCamelCase__ , k='''labels''' ) ) assert sum(count_pad_tokens(lowerCamelCase__ ) ) < sum(count_pad_tokens(lowerCamelCase__ ) ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : List[Any]=1000 , lowerCamelCase__ : Tuple=128 ) -> str: '''simple docstring''' if os.getenv('''USE_REAL_DATA''' , lowerCamelCase__ ): UpperCamelCase__ : List[str] = '''examples/seq2seq/wmt_en_ro''' UpperCamelCase__ : int = max_len * 2 * 64 if not Path(lowerCamelCase__ ).joinpath('''train.len''' ).exists(): save_len_file(lowerCamelCase__ , lowerCamelCase__ ) else: UpperCamelCase__ : Optional[Any] = '''examples/seq2seq/test_data/wmt_en_ro''' UpperCamelCase__ : Optional[Any] = max_len * 4 save_len_file(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Any = SeqaSeqDataset( lowerCamelCase__ , data_dir=lowerCamelCase__ , type_path='''train''' , max_source_length=lowerCamelCase__ , max_target_length=lowerCamelCase__ , n_obs=lowerCamelCase__ , ) return ds, max_tokens, tokenizer def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : List[Any] = self._get_dataset() UpperCamelCase__ : Any = set(DistributedSortishSampler(lowerCamelCase__ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase__ ) ) UpperCamelCase__ : str = set(DistributedSortishSampler(lowerCamelCase__ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase__ ) ) assert idsa.intersection(lowerCamelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase__ , use_fast=lowerCamelCase__ ) if tok_name == MBART_TINY: UpperCamelCase__ : Dict = SeqaSeqDataset( lowerCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) UpperCamelCase__ : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCamelCase__ : List[Any] = SeqaSeqDataset( lowerCamelCase__ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) UpperCamelCase__ : Optional[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase__ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase__ ) == 0
51
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 2_0_0_0.0 , SCREAMING_SNAKE_CASE_ = 7_68 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 12 , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 20_48 , SCREAMING_SNAKE_CASE_ = 0.1 , ) -> Any: super().__init__() __lowerCamelCase : List[str] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE_ , d_model * 4 , bias=SCREAMING_SNAKE_CASE_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=SCREAMING_SNAKE_CASE_ ) , nn.SiLU() , ) __lowerCamelCase : List[str] = nn.Embedding(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = False __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE_ ): # FiLM conditional T5 decoder __lowerCamelCase : List[str] = DecoderLayer(d_model=SCREAMING_SNAKE_CASE_ , d_kv=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , d_ff=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ ) self.decoders.append(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = TaLayerNorm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = nn.Dropout(p=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : Dict = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Union[str, Any] = self.conditioning_emb(SCREAMING_SNAKE_CASE_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : Optional[Any] = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : Optional[Any] = self.position_encoding(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE_ ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ ) # decoder: No padding present. __lowerCamelCase : List[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Dict = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : Optional[Any] = lyr( SCREAMING_SNAKE_CASE_ , conditioning_emb=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )[0] __lowerCamelCase : Optional[Any] = self.decoder_norm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.post_dropout(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.spec_out(SCREAMING_SNAKE_CASE_ ) return spec_out class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1E-6 ) -> Dict: super().__init__() __lowerCamelCase : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE_ , d_kv=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE_ , d_kv=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE_ , d_ff=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ , layer_norm_epsilon=SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Dict: __lowerCamelCase : Optional[Any] = self.layer[0]( SCREAMING_SNAKE_CASE_ , conditioning_emb=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , ) if encoder_hidden_states is not None: __lowerCamelCase : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : str = self.layer[1]( SCREAMING_SNAKE_CASE_ , key_value_states=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : Union[str, Any] = self.layer[-1](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return (hidden_states,) class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: super().__init__() __lowerCamelCase : Optional[int] = TaLayerNorm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = Attention(query_dim=SCREAMING_SNAKE_CASE_ , heads=SCREAMING_SNAKE_CASE_ , dim_head=SCREAMING_SNAKE_CASE_ , out_bias=SCREAMING_SNAKE_CASE_ , scale_qk=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = nn.Dropout(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Tuple: # pre_self_attention_layer_norm __lowerCamelCase : Any = self.layer_norm(SCREAMING_SNAKE_CASE_ ) if conditioning_emb is not None: __lowerCamelCase : Union[str, Any] = self.FiLMLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Self-attention block __lowerCamelCase : int = self.attention(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: super().__init__() __lowerCamelCase : List[str] = Attention(query_dim=SCREAMING_SNAKE_CASE_ , heads=SCREAMING_SNAKE_CASE_ , dim_head=SCREAMING_SNAKE_CASE_ , out_bias=SCREAMING_SNAKE_CASE_ , scale_qk=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = TaLayerNorm(SCREAMING_SNAKE_CASE_ , eps=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.Dropout(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ) -> Optional[Any]: __lowerCamelCase : str = self.layer_norm(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.attention( SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : Optional[Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE_ ) return layer_output class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super().__init__() __lowerCamelCase : Tuple = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE_ , d_ff=SCREAMING_SNAKE_CASE_ , dropout_rate=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = TaLayerNorm(SCREAMING_SNAKE_CASE_ , eps=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = nn.Dropout(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Tuple: __lowerCamelCase : str = self.layer_norm(SCREAMING_SNAKE_CASE_ ) if conditioning_emb is not None: __lowerCamelCase : Tuple = self.film(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.DenseReluDense(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = hidden_states + self.dropout(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: super().__init__() __lowerCamelCase : Optional[Any] = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = nn.Dropout(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = NewGELUActivation() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : List[str] = self.act(self.wi_a(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = self.wi_a(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = hidden_gelu * hidden_linear __lowerCamelCase : Optional[Any] = self.dropout(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.wo(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1E-6 ) -> Tuple: super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Any = eps def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : List[str] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : Dict = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(SCREAMING_SNAKE_CASE_ , 3.0 )) )) class UpperCAmelCase_ (nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: super().__init__() __lowerCamelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE_ , out_features * 2 , bias=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : str = self.scale_bias(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase : Any = torch.chunk(SCREAMING_SNAKE_CASE_ , 2 , -1 ) __lowerCamelCase : Dict = x * (1 + scale) + shift return x
185
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
185
1
from __future__ import annotations from collections import deque class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_UpperCAmelCase , _UpperCAmelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> None: """simple docstring""" lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_UpperCAmelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): lowercase__ = self.adlist[state]["""fail_state"""] lowercase__ = self.find_next_state( _UpperCAmelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["""fail_state"""] lowercase__ = self.find_next_state(_UpperCAmelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
146
A : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def UpperCamelCase ( ) -> None: """simple docstring""" lowercase__ = input("""Enter message: """ ) lowercase__ = input("""Enter key [alphanumeric]: """ ) lowercase__ = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): lowercase__ = """encrypt""" lowercase__ = encrypt_message(__magic_name__ , __magic_name__ ) elif mode.lower().startswith("""d""" ): lowercase__ = """decrypt""" lowercase__ = decrypt_message(__magic_name__ , __magic_name__ ) print(f'''\n{mode.title()}ed message:''' ) print(__magic_name__ ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" return translate_message(__magic_name__ , __magic_name__ , """encrypt""" ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" return translate_message(__magic_name__ , __magic_name__ , """decrypt""" ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : str ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = 0 lowercase__ = key.upper() for symbol in message: lowercase__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__magic_name__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__magic_name__ ): lowercase__ = 0 else: translated.append(__magic_name__ ) return "".join(__magic_name__ ) if __name__ == "__main__": main()
146
1
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
155
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : str ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
155
1
"""simple docstring""" import numpy as np import datasets __snake_case = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ __snake_case = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ __snake_case = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' snake_case : Dict = np.array(UpperCamelCase__ ) snake_case : Dict = np.array(UpperCamelCase__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction snake_case : int = X - np.mean(UpperCamelCase__ ) snake_case : Tuple = np.cov(reference_distribution.T ) try: snake_case : Union[str, Any] = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: snake_case : List[str] = np.linalg.pinv(UpperCamelCase__ ) snake_case : List[str] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = np.dot(UpperCamelCase__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
365
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_text_model''' def __init__( self , UpperCamelCase__=25_0002 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-05 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=768 , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Any = vocab_size snake_case : List[Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Dict = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Dict = initializer_range snake_case : int = initializer_factor snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = position_embedding_type snake_case : Any = use_cache snake_case : str = project_dim class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_vision_model''' def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=32 , UpperCamelCase__="quick_gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Optional[int] = hidden_size snake_case : str = intermediate_size snake_case : List[str] = projection_dim snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : str = num_channels snake_case : List[str] = patch_size snake_case : List[Any] = image_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = initializer_factor snake_case : Any = attention_dropout snake_case : Dict = layer_norm_eps snake_case : List[str] = hidden_act @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) snake_case ,snake_case : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": snake_case : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''altclip''' __UpperCAmelCase : Optional[Any] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=2.6592 , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : List[str] = kwargs.pop("text_config_dict" , UpperCamelCase__ ) snake_case : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case : List[str] = {} # This is the complete result when using `text_config_dict`. snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case : Optional[Any] = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Any = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. snake_case : int = AltCLIPVisionConfig(**UpperCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case : Optional[int] = { str(UpperCamelCase__ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case : int = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Optional[Any] = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case : Optional[int] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: snake_case : Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ) snake_case : Tuple = AltCLIPVisionConfig(**UpperCamelCase__ ) snake_case : int = projection_dim snake_case : List[str] = logit_scale_init_value snake_case : int = 1.0 @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = copy.deepcopy(self.__dict__ ) snake_case : Optional[int] = self.text_config.to_dict() snake_case : str = self.vision_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
112
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[Any]: __lowerCamelCase , __lowerCamelCase : List[Any] = emb.weight.shape __lowerCamelCase : Tuple = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) __lowerCamelCase : Optional[int] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = torch.load(lowerCamelCase__ , map_location='cpu' ) __lowerCamelCase : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] __lowerCamelCase : Tuple = mam_aaa['model'] remove_ignore_keys_(lowerCamelCase__ ) __lowerCamelCase : Any = state_dict['encoder.embed_tokens.weight'].shape[0] __lowerCamelCase : List[Any] = MaMaaaConfig( vocab_size=lowerCamelCase__ , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) __lowerCamelCase : Any = state_dict['decoder.embed_tokens.weight'] __lowerCamelCase : Any = MaMaaaForConditionalGeneration(lowerCamelCase__ ) model.model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) __lowerCamelCase : List[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") a =parser.parse_args() a =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
73
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Union[str, Any]): if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding='utf-8' ,check=SCREAMING_SNAKE_CASE__ ,) assert hasattr(self ,'env') def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : int): # configuration for running training on smdistributed Model Parallel __lowerCamelCase : Any = { 'enabled': True, 'processes_per_host': 8, } __lowerCamelCase : List[Any] = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __lowerCamelCase : str = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __lowerCamelCase : List[str] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=SCREAMING_SNAKE_CASE__ ,instance_type=self.instance_type ,debugger_hook_config=SCREAMING_SNAKE_CASE__ ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_0_0, } ,metric_definitions=self.env.metric_definitions ,distribution=SCREAMING_SNAKE_CASE__ ,py_version='py36' ,) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any): TrainingJobAnalytics(SCREAMING_SNAKE_CASE__).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): # create estimator __lowerCamelCase : str = self.create_estimator(SCREAMING_SNAKE_CASE__) # run training estimator.fit() # result dataframe __lowerCamelCase : List[str] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCamelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) __lowerCamelCase : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCamelCase : str = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' ,9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" ,'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,SCREAMING_SNAKE_CASE__)
73
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> float: _SCREAMING_SNAKE_CASE = 0 while len(__A ) > 1: _SCREAMING_SNAKE_CASE = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _SCREAMING_SNAKE_CASE = files.index(min(__A ) ) temp += files[min_index] files.pop(__A ) files.append(__A ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = '''deberta-v2''' def __init__( self : str , __lowerCamelCase : Union[str, Any]=1_2_8_1_0_0 , __lowerCamelCase : Optional[int]=1_5_3_6 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Optional[int]=2_4 , __lowerCamelCase : Tuple=6_1_4_4 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=5_1_2 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : int=1e-7 , __lowerCamelCase : Any=False , __lowerCamelCase : Any=-1 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Any="gelu" , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = relative_attention _SCREAMING_SNAKE_CASE = max_relative_positions _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(__lowerCamelCase ) == str: _SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split("|" )] _SCREAMING_SNAKE_CASE = pos_att_type _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kwargs.get("pooler_hidden_size" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = pooler_dropout _SCREAMING_SNAKE_CASE = pooler_hidden_act class lowercase_ ( A ): """simple docstring""" @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return 1_2 def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : int = 4_0 , __lowerCamelCase : "PreTrainedTokenizerBase" = None , ): """simple docstring""" _SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=__lowerCamelCase , framework=__lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
111
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase__ ( snake_case_ : Dataset , snake_case_ : Dict[str, str] ) -> int: __snake_case = args.log_outputs __snake_case = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __snake_case = load_metric('''wer''' ) __snake_case = load_metric('''cer''' ) # compute metrics __snake_case = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __snake_case = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __snake_case = f"""WER: {wer_result}\nCER: {cer_result}""" print(snake_case_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __snake_case = f"""log_{dataset_id}_predictions.txt""" __snake_case = f"""log_{dataset_id}_targets.txt""" with open(snake_case_ , '''w''' ) as p, open(snake_case_ , '''w''' ) as t: # mapping function to write output def write_to_file(snake_case_ : int , snake_case_ : Optional[Any] ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(snake_case_ , with_indices=snake_case_ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: __snake_case = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __snake_case = re.sub(snake_case_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __snake_case = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __snake_case = ''' '''.join(text.split(snake_case_ ) ) return text def lowerCamelCase__ ( snake_case_ : Any ) -> str: # load dataset __snake_case = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __snake_case = AutoFeatureExtractor.from_pretrained(args.model_id ) __snake_case = feature_extractor.sampling_rate # resample audio __snake_case = dataset.cast_column('''audio''' , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: __snake_case = 0 if torch.cuda.is_available() else -1 __snake_case = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : str ): __snake_case = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __snake_case = prediction['''text'''] __snake_case = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __snake_case = dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) snake_case_ = parser.parse_args() main(args)
24
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Optional[int] , *a__ : Any , **a__ : Dict ): """simple docstring""" super().__init__(*a__ , **a__ ) requires_backends(self , '''vision''' ) self.check_model_type(a__ ) def __call__(self : Optional[int] , a__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a__ : Tuple ): """simple docstring""" return super().__call__(a__ , **a__ ) def a (self : Dict , **a__ : Any ): """simple docstring""" return {}, {}, {} def a (self : List[str] , a__ : Any ): """simple docstring""" __snake_case = load_image(a__ ) __snake_case = image.size __snake_case = self.image_processor(images=a__ , return_tensors=self.framework ) return model_inputs def a (self : int , a__ : List[Any] ): """simple docstring""" __snake_case = self.model(**a__ ) return model_outputs def a (self : int , a__ : str ): """simple docstring""" __snake_case = model_outputs.predicted_depth __snake_case = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a__ ) __snake_case = prediction.squeeze().cpu().numpy() __snake_case = (output * 255 / np.max(a__ )).astype('''uint8''' ) __snake_case = Image.fromarray(a__ ) __snake_case = {} __snake_case = predicted_depth __snake_case = depth return output_dict
24
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Any = ["input_features", "is_longer"] def __init__( self , A_=64 , A_=48_000 , A_=480 , A_=10 , A_=1_024 , A_=0.0 , A_=False , A_ = 0 , A_ = 14_000 , A_ = None , A_ = "fusion" , A_ = "repeatpad" , **A_ , ) -> Dict: """simple docstring""" super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , return_attention_mask=A_ , **A_ , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A_ , min_frequency=A_ , max_frequency=A_ , sampling_rate=A_ , norm=A_ , mel_scale='htk' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A_ , min_frequency=A_ , max_frequency=A_ , sampling_rate=A_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCamelCase ( self ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCamelCase ( self , A_ , A_ = None ) -> np.ndarray: """simple docstring""" UpperCamelCase = spectrogram( A_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0] ) UpperCamelCase = np.random.choice(ranges[1] ) UpperCamelCase = np.random.choice(ranges[2] ) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :] ) UpperCamelCase = torch.nn.functional.interpolate( A_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=A_ ) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(A_ ) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1 ) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(A_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(A_ , self.mel_filters ) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(A_ , A_ , A_ ) UpperCamelCase = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(A_ ) ) UpperCamelCase = np.stack(np.tile(A_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(A_ ) ) UpperCamelCase = np.stack(np.tile(A_ , A_ ) ) UpperCamelCase = np.pad(A_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(A_ , self.mel_filters ) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase = self._np_extract_fbank_features(A_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: """simple docstring""" UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(A_ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(A_ , max_length if max_length else self.nb_max_samples , A_ , A_ ) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(A_ ) is_longer.append(A_ ) if truncation == "fusion" and sum(A_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(A_ ) ) UpperCamelCase = True if isinstance(input_mel[0] , A_ ): UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase = BatchFeature(A_ ) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(A_ ) return input_features
110
import logging import os from .state import PartialState class lowercase ( logging.LoggerAdapter ): @staticmethod def __UpperCamelCase ( A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCamelCase ( self , A_ , A_ , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) UpperCamelCase = kwargs.pop('main_process_only' , A_ ) UpperCamelCase = kwargs.pop('in_order' , A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) elif in_order: UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) state.wait_for_everyone() def A ( lowercase , lowercase = None ) -> Dict: '''simple docstring''' if log_level is None: UpperCamelCase = os.environ.get('ACCELERATE_LOG_LEVEL' , lowercase ) UpperCamelCase = logging.getLogger(lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase , {} )
110
1
from typing import Any class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase) -> List[Any]: __UpperCamelCase :Optional[int] = data __UpperCamelCase :List[Any] = None class lowerCamelCase_ : '''simple docstring''' def __init__( self) -> Dict: __UpperCamelCase :Union[str, Any] = None def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = self.head while temp is not None: print(temp.data , end=''' ''') __UpperCamelCase :Optional[Any] = temp.next print() def UpperCamelCase__ ( self , __lowercase) -> List[str]: __UpperCamelCase :Any = Node(__lowercase) __UpperCamelCase :Dict = self.head __UpperCamelCase :Any = new_node def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Dict: if node_data_a == node_data_a: return else: __UpperCamelCase :List[Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCamelCase :Optional[Any] = node_a.next __UpperCamelCase :Union[str, Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCamelCase :Tuple = node_a.next if node_a is None or node_a is None: return __UpperCamelCase , __UpperCamelCase :Optional[int] = node_a.data, node_a.data if __name__ == "__main__": __lowercase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
43
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=9_9 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : Optional[int]=3_6 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : Dict=1_6 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=0.0_2 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Union[str, Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def A ( self : int ): """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.get_config() UpperCamelCase = 3_0_0 return config def A ( self : Tuple ): """simple docstring""" ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = MraModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCamelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , ): """simple docstring""" UpperCamelCase = True UpperCamelCase = MraModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = MraForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = MraForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MraForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = MraForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = () def A ( self : str ): """simple docstring""" UpperCamelCase = MraModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MraModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='MRA does not output attentions' ) def A ( self : List[str] ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) UpperCamelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) UpperCamelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ )[0] UpperCamelCase = 5_0_2_6_5 UpperCamelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
28
0
"""simple docstring""" import os from math import logaa def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "base_exp.txt" ): _lowercase : float = 0 _lowercase : str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): _lowercase , _lowercase : List[str] = list(map(__UpperCAmelCase , line.split(""",""" ) ) ) if x * logaa(__UpperCAmelCase ) > largest: _lowercase : Optional[Any] = x * logaa(__UpperCAmelCase ) _lowercase : int = i + 1 return result if __name__ == "__main__": print(solution())
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class UpperCAmelCase__ ( __A ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : int=4 , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : int=4 , __lowerCamelCase : str=None , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[Any]=1 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = q_groups SCREAMING_SNAKE_CASE__ = k_groups SCREAMING_SNAKE_CASE__ = v_groups SCREAMING_SNAKE_CASE__ = post_attention_groups SCREAMING_SNAKE_CASE__ = intermediate_groups SCREAMING_SNAKE_CASE__ = output_groups def lowercase_ ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Any ) -> List[str]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase_ ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = SqueezeBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = SqueezeBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ = SqueezeBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model( __lowercase , attention_mask=__lowercase , start_positions=__lowercase , end_positions=__lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = SqueezeBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = SqueezeBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowercase , attention_mask=__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.num_choices SCREAMING_SNAKE_CASE__ = SqueezeBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ = model( __lowercase , attention_mask=__lowercase , labels=__lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__),(SCREAMING_SNAKE_CASE__),(SCREAMING_SNAKE_CASE__),(SCREAMING_SNAKE_CASE__),(SCREAMING_SNAKE_CASE__),(SCREAMING_SNAKE_CASE__)) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __A , __A , unittest.TestCase ): """simple docstring""" a = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a = False a = True a = False def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowercase , dim=37 ) def lowercase_ ( self : Any ) -> int: self.config_tester.run_common_tests() def lowercase_ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__lowercase ) def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__lowercase ) def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__lowercase ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__lowercase ) def lowercase_ ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__lowercase ) def lowercase_ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__lowercase ) @slow def lowercase_ ( self : List[str] ) -> int: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = SqueezeBertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) SCREAMING_SNAKE_CASE__ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE__ = model(__lowercase )[0] SCREAMING_SNAKE_CASE__ = torch.Size((1, 3) ) self.assertEqual(output.shape , __lowercase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1e-4 ) )
314
'''simple docstring''' import argparse import os import re _UpperCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. _UpperCAmelCase : Any = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _UpperCAmelCase : List[Any] = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _UpperCAmelCase : Tuple = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def __magic_name__( lowerCamelCase): __lowerCAmelCase = _re_indent.search(lowerCamelCase) return "" if search is None else search.groups()[0] def __magic_name__( lowerCamelCase, lowerCamelCase="", lowerCamelCase=None, lowerCamelCase=None): __lowerCAmelCase = 0 __lowerCAmelCase = code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(lowerCamelCase): index += 1 __lowerCAmelCase = ['''\n'''.join(lines[:index])] else: __lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase = [lines[index]] index += 1 while index < len(lowerCamelCase) and (end_prompt is None or not lines[index].startswith(lowerCamelCase)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(lowerCamelCase) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(lowerCamelCase)) if index < len(lowerCamelCase) - 1: __lowerCAmelCase = [lines[index + 1]] index += 1 else: __lowerCAmelCase = [] else: blocks.append('''\n'''.join(lowerCamelCase)) __lowerCAmelCase = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase) > 0: blocks.append('''\n'''.join(lowerCamelCase)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase): blocks.append('''\n'''.join(lines[index:])) return blocks def __magic_name__( lowerCamelCase): def _inner(lowerCamelCase): return key(lowerCamelCase).lower().replace('''_''', '''''') return _inner def __magic_name__( lowerCamelCase, lowerCamelCase=None): # If no key is provided, we use a noop. def noop(lowerCamelCase): return x if key is None: __lowerCAmelCase = noop # Constants are all uppercase, they go first. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase)[0].isupper() and not key(lowerCamelCase).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase = [obj for obj in objects if not key(lowerCamelCase)[0].isupper()] __lowerCAmelCase = ignore_underscore(lowerCamelCase) return sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) def __magic_name__( lowerCamelCase): # This inner function sort imports between [ ]. def _replace(lowerCamelCase): __lowerCAmelCase = match.groups()[0] if "," not in imports: return F"""[{imports}]""" __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) + "]" __lowerCAmelCase = import_statement.split('''\n''') if len(lowerCamelCase) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase = 2 if lines[1].strip() == '''[''' else 1 __lowerCAmelCase = [(i, _re_strip_line.search(lowerCamelCase).groups()[0]) for i, line in enumerate(lines[idx:-idx])] __lowerCAmelCase = sort_objects(lowerCamelCase, key=lambda lowerCamelCase: x[1]) __lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lowerCamelCase) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: __lowerCAmelCase = _re_bracket_content.sub(_replace, lines[1]) else: __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] __lowerCAmelCase = get_indent(lines[1]) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) return "\n".join(lowerCamelCase) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase = _re_bracket_content.sub(_replace, lowerCamelCase) return import_statement def __magic_name__( lowerCamelCase, lowerCamelCase=True): with open(lowerCamelCase, encoding='''utf-8''') as f: __lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase = split_code_in_indented_blocks( lowerCamelCase, start_prompt='''_import_structure = {''', end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(lowerCamelCase) - 1): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase = main_blocks[block_idx] __lowerCAmelCase = block.split('''\n''') # Get to the start of the imports. __lowerCAmelCase = 0 while line_idx < len(lowerCamelCase) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase = len(lowerCamelCase) else: line_idx += 1 if line_idx >= len(lowerCamelCase): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase = '''\n'''.join(block_lines[line_idx:-1]) __lowerCAmelCase = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase = split_code_in_indented_blocks(lowerCamelCase, indent_level=lowerCamelCase) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase = [(pattern.search(lowerCamelCase).groups()[0] if pattern.search(lowerCamelCase) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase = [(i, key) for i, key in enumerate(lowerCamelCase) if key is not None] __lowerCAmelCase = [x[0] for x in sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase = 0 __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): if keys[i] is None: reorderded_blocks.append(internal_blocks[i]) else: __lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reorderded_blocks.append(lowerCamelCase) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]]) if code != "\n".join(lowerCamelCase): if check_only: return True else: print(F"""Overwriting {file}.""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write('''\n'''.join(lowerCamelCase)) def __magic_name__( lowerCamelCase=True): __lowerCAmelCase = [] for root, _, files in os.walk(lowerCamelCase): if "__init__.py" in files: __lowerCAmelCase = sort_imports(os.path.join(lowerCamelCase, '''__init__.py'''), check_only=lowerCamelCase) if result: __lowerCAmelCase = [os.path.join(lowerCamelCase, '''__init__.py''')] if len(lowerCamelCase) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase)} files, run `make style`.""") if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _UpperCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
174
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __A ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _A = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __A ( ): '''simple docstring''' assert _test_patching.open is open _A = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _lowercase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __A ( ): '''simple docstring''' _A = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _lowercase ): pass def __A ( ): '''simple docstring''' _A = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _lowercase ) is None with patch_submodule(_test_patching , '''len''' , _lowercase ): assert _test_patching.len is mock assert _test_patching.len is len def __A ( ): '''simple docstring''' _A = '''__test_patch_submodule_start_and_stop_mock__''' _A = patch_submodule(_test_patching , '''open''' , _lowercase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __A ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _A = '''__test_patch_submodule_successive_join__''' _A = '''__test_patch_submodule_successive_dirname__''' _A = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.join''' , _lowercase ): with patch_submodule(_test_patching , '''os.path.dirname''' , _lowercase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __A ( ): '''simple docstring''' _A = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _lowercase ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _lowercase ): pass
75
__A = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] __A = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] __A = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] __A = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] __A = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] __A = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] __A = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] __A = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
75
1
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = size # approximate the overall size of segment tree with given value UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase = [0 for i in range(0 , 4 * size )] UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A ( self : str , UpperCamelCase__ : int ): """simple docstring""" return idx * 2 def A ( self : Dict , UpperCamelCase__ : int ): """simple docstring""" return idx * 2 + 1 def A ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ): """simple docstring""" if left_element == right_element: UpperCamelCase = a[left_element - 1] else: UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.build(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) def A ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase = val if left_element != right_element: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = True UpperCamelCase = True return True UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.update(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) return True def A ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase = (left_element + right_element) // 2 UpperCamelCase = self.query(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = self.query(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return max(UpperCamelCase__ , UpperCamelCase__ ) def __str__( self : Dict ): """simple docstring""" return str([self.query(1 , 1 , self.size , UpperCamelCase__ , UpperCamelCase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowerCamelCase : int = 15 _lowerCamelCase : Any = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): A: List[str] = True from torch.cuda.amp import autocast A: Any = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : List[str] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCAmelCase : str = field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCAmelCase : str = field( default=lowerCamelCase__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __lowerCAmelCase : Dict = field( default=lowerCamelCase__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) __lowerCAmelCase : Tuple = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) __lowerCAmelCase : Union[str, Any] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) __lowerCAmelCase : Tuple = field( default=0.99_9995 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def _snake_case ( UpperCamelCase : ModelArguments , UpperCamelCase : TrainingArguments ): logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase : Any = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase : Any = logging.INFO logger.setLevel(UpperCamelCase ) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Any = field( default=lowerCamelCase__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowerCAmelCase : Optional[Any] = field( default=lowerCamelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowerCAmelCase : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __lowerCAmelCase : Dict = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __lowerCAmelCase : Optional[Any] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) __lowerCAmelCase : Any = field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowerCAmelCase : Any = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __lowerCAmelCase : List[Any] = field( default=lowerCamelCase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __lowerCAmelCase : Tuple = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : int = 42 __lowerCAmelCase : Any = 42 __lowerCAmelCase : Any = 'longest' __lowerCAmelCase : List[Any] = None __lowerCAmelCase : str = None def __call__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = self.feature_extractor.pad( __A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) UpperCAmelCase : int = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) UpperCAmelCase : Tuple = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) UpperCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase : Tuple = 1 UpperCAmelCase : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__A , min_masks=2 , ) return batch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1.0 , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' super().__init__(*__A , **__A ) UpperCAmelCase : Any = 0 UpperCAmelCase : Any = max_gumbel_temp UpperCAmelCase : Optional[Any] = min_gumbel_temp UpperCAmelCase : str = gumbel_temp_decay def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' model.train() UpperCAmelCase : List[Any] = self._prepare_inputs(__A ) if self.use_amp: with autocast(): UpperCAmelCase : Optional[Any] = self.compute_loss(__A , __A ) else: UpperCAmelCase : Optional[int] = self.compute_loss(__A , __A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase : str = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F"{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']" ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() configure_logger(UpperCamelCase , UpperCamelCase ) # Downloading and loading a dataset from the hub. UpperCAmelCase : int = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase : Union[str, Any] = DatasetDict() UpperCAmelCase : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) UpperCAmelCase : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase : Optional[Any] = DatasetDict() UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) UpperCAmelCase : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=UpperCamelCase ) def prepare_dataset(UpperCamelCase : Dict ): # check that all files have the correct sampling rate UpperCAmelCase : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase : str = datasets.map( UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long UpperCAmelCase : int = vectorized_datasets.filter( lambda UpperCamelCase : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(UpperCamelCase : Dict ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase : Any = vectorized_datasets.map( UpperCamelCase , batched=UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm=\'layer\'""" ) UpperCAmelCase : Any = WavaVecaForPreTraining(UpperCamelCase ) UpperCAmelCase : int = DataCollatorForWavaVecaPretraining(model=UpperCamelCase , feature_extractor=UpperCamelCase ) UpperCAmelCase : Any = WavaVecaPreTrainer( model=UpperCamelCase , data_collator=UpperCamelCase , args=UpperCamelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
360
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( UpperCamelCase : list[list[float]] ): UpperCAmelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase : Dict = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase , UpperCAmelCase : Dict = matrix[1][1], matrix[0][0] UpperCAmelCase , UpperCAmelCase : Optional[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCAmelCase : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase : Dict = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase : int = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase : Optional[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase : Any = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase : Optional[int] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase : int = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
76
0
import baseaa def __UpperCamelCase ( _lowerCAmelCase ) -> bytes: """simple docstring""" return baseaa.baaencode(string.encode("""utf-8""" ) ) def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" return baseaa.baadecode(_lowerCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Any = """Hello World!""" SCREAMING_SNAKE_CASE_:Dict = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE_:Optional[Any] = baseaa_decode(encoded) print(decoded)
116
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = (DDIMParallelScheduler,) __lowerCamelCase : int = (("eta", 0.0), ("num_inference_steps", 50)) def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**lowerCamelCase__ ) return config def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : Dict = self.scheduler_classes[0] A : str = self.get_scheduler_config(**lowerCamelCase__ ) A : Tuple = scheduler_class(**lowerCamelCase__ ) A , A : Tuple = 10, 0.0 A : Optional[int] = self.dummy_model() A : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for t in scheduler.timesteps: A : Optional[int] = model(lowerCamelCase__, lowerCamelCase__ ) A : str = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample return sample def _lowerCAmelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) A : Tuple = self.scheduler_classes[0] A : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) A : List[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowerCAmelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase__, beta_end=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase__ ) def _lowerCAmelCase ( self ): self.check_over_configs(thresholding=lowerCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase__, prediction_type=lowerCamelCase__, sample_max_value=lowerCamelCase__, ) def _lowerCAmelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase__, num_inference_steps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase__, eta=lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.scheduler_classes[0] A : List[str] = self.get_scheduler_config() A : Dict = scheduler_class(**lowerCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420, 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980, 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487, 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999, 998 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self ): A : int = self.scheduler_classes[0] A : Any = self.get_scheduler_config() A : Union[str, Any] = scheduler_class(**lowerCamelCase__ ) A , A : List[str] = 10, 0.0 scheduler.set_timesteps(lowerCamelCase__ ) A : Any = self.dummy_model() A : Dict = self.dummy_sample_deter A : Dict = self.dummy_sample_deter + 0.1 A : Tuple = self.dummy_sample_deter - 0.1 A : Tuple = samplea.shape[0] A : List[Any] = torch.stack([samplea, samplea, samplea], dim=0 ) A : str = torch.arange(lowerCamelCase__ )[0:3, None].repeat(1, lowerCamelCase__ ) A : Any = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) A : Any = scheduler.batch_step_no_noise(lowerCamelCase__, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), lowerCamelCase__ ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def _lowerCAmelCase ( self ): A : Dict = self.full_loop() A : str = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def _lowerCAmelCase ( self ): A : str = self.full_loop(prediction_type="""v_prediction""" ) A : Any = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : Any = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : Dict = torch.sum(torch.abs(lowerCamelCase__ ) ) A : str = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : int = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
116
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Tuple = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
114
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : List[str] = logging.getLogger(__name__) @dataclass class _lowercase ( _A): """simple docstring""" A__ = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."}) A__ = field(default=_A , metadata={"help": "Whether to SortishSamler or not."}) A__ = field( default=_A , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}) A__ = field(default=_A , metadata={"help": "whether to use adafactor"}) A__ = field( default=_A , metadata={"help": "Encoder layer dropout probability. Goes into model.config."}) A__ = field( default=_A , metadata={"help": "Decoder layer dropout probability. Goes into model.config."}) A__ = field(default=_A , metadata={"help": "Dropout probability. Goes into model.config."}) A__ = field( default=_A , metadata={"help": "Attention dropout probability. Goes into model.config."}) A__ = field( default="linear" , metadata={"help": F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}'''} , )
184
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=99 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=36 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : List[str]=6 , UpperCamelCase__ : Union[str, Any]=6 , UpperCamelCase__ : int=37 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Dict=None , ) -> Any: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = embedding_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_hidden_groups __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = scope def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowercase ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ = AlbertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> str: """simple docstring""" __magic_name__ = AlbertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , sentence_order_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" __magic_name__ = AlbertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = AlbertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = AlbertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] ) -> int: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = AlbertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" __magic_name__ = self.num_choices __magic_name__ = AlbertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) a__ = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) a__ = True def _lowercase ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" __magic_name__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): __magic_name__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = AlbertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : Dict ) -> Dict: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __magic_name__ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = AlbertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = AlbertModel.from_pretrained("""albert-base-v2""" ) __magic_name__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __magic_name__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __magic_name__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) __magic_name__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 ) )
88
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=7 , __lowerCamelCase=3 , __lowerCamelCase=3_0 , __lowerCamelCase=4_0_0 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=[0.5, 0.5, 0.5] , __lowerCamelCase=True , __lowerCamelCase=1 / 2_5_5 , __lowerCamelCase=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Optional[int] = batch_size _SCREAMING_SNAKE_CASE : Dict = num_channels _SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution _SCREAMING_SNAKE_CASE : str = max_resolution _SCREAMING_SNAKE_CASE : str = do_resize _SCREAMING_SNAKE_CASE : Optional[Any] = size _SCREAMING_SNAKE_CASE : List[Any] = do_normalize _SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean _SCREAMING_SNAKE_CASE : Optional[Any] = image_std _SCREAMING_SNAKE_CASE : str = do_rescale _SCREAMING_SNAKE_CASE : Any = rescale_factor _SCREAMING_SNAKE_CASE : List[Any] = do_pad def UpperCamelCase_ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=False ) -> str: if not batched: _SCREAMING_SNAKE_CASE : Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _SCREAMING_SNAKE_CASE : Any = image.size else: _SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE : int = int(self.size["shortest_edge"] * h / w ) _SCREAMING_SNAKE_CASE : str = self.size["shortest_edge"] elif w > h: _SCREAMING_SNAKE_CASE : int = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE : Optional[Any] = int(self.size["shortest_edge"] * w / h ) else: _SCREAMING_SNAKE_CASE : Any = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE : List[Any] = self.size["shortest_edge"] else: _SCREAMING_SNAKE_CASE : Optional[Any] = [] for image in image_inputs: _SCREAMING_SNAKE_CASE : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE : Optional[int] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] _SCREAMING_SNAKE_CASE : List[str] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = DetaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = DetaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: pass def UpperCamelCase_ ( self ) -> Any: # Initialize image_processing _SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Tuple: # Initialize image_processing _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE : Dict = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE : Tuple = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self ) -> List[str]: # prepare image and target _SCREAMING_SNAKE_CASE : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) _SCREAMING_SNAKE_CASE : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them _SCREAMING_SNAKE_CASE : int = DetaImageProcessor() _SCREAMING_SNAKE_CASE : List[Any] = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="pt" ) # verify pixel values _SCREAMING_SNAKE_CASE : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([5887.9600, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes _SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify orig_size _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: # prepare image, target and masks_path _SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) _SCREAMING_SNAKE_CASE : int = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} _SCREAMING_SNAKE_CASE : List[str] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _SCREAMING_SNAKE_CASE : Tuple = DetaImageProcessor(format="coco_panoptic" ) _SCREAMING_SNAKE_CASE : Tuple = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="pt" ) # verify pixel values _SCREAMING_SNAKE_CASE : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __lowerCamelCase ) ) # verify boxes _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __lowerCamelCase ) ) # verify is_crowd _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __lowerCamelCase ) ) # verify class_labels _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __lowerCamelCase ) ) # verify masks _SCREAMING_SNAKE_CASE : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __lowerCamelCase ) # verify orig_size _SCREAMING_SNAKE_CASE : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __lowerCamelCase ) ) # verify size _SCREAMING_SNAKE_CASE : int = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __lowerCamelCase ) )
367
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ (__lowerCamelCase ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( __lowerCamelCase ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__lowerCamelCase , default=__lowerCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__lowerCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=__lowerCamelCase ) def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Any = model _SCREAMING_SNAKE_CASE : Optional[int] = cache _SCREAMING_SNAKE_CASE : str = force _SCREAMING_SNAKE_CASE : str = trust_remote_code def UpperCamelCase_ ( self ) -> Optional[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
325
0
def A_ ( A__ ) -> int: assert isinstance(A__ , A__ ), F'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: a__ : Any = F'The input value of [n={number}] has to be > 0' raise ValueError(A__ ) else: a__ : Tuple = sylvester(number - 1 ) a__ : Tuple = num - 1 a__ : Union[str, Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
99
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )->List[str]: '''simple docstring''' A_ : str = parent A_ : int = batch_size A_ : List[str] = image_size A_ : Dict = num_channels A_ : Tuple = embeddings_size A_ : Union[str, Any] = hidden_sizes A_ : Dict = depths A_ : str = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = num_labels A_ : Tuple = scope A_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : str = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Dict = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Dict = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = RegNetModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )->Tuple: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _snake_case ( self )->Dict: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _snake_case ( self )->str: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _snake_case ( self )->List[Any]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : int = layer_type A_ : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.default_image_processor A_ : Any = prepare_img() A_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
186
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
'''simple docstring''' from statistics import mean import numpy as np def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Tuple = 0 # Number of processes finished __UpperCAmelCase : Optional[int] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __UpperCAmelCase : Tuple = [0] * no_of_process # List to include calculation results __UpperCAmelCase : int = [0] * no_of_process # Sort by arrival time. __UpperCAmelCase : Dict = [burst_time[i] for i in np.argsort(lowerCAmelCase__ )] __UpperCAmelCase : Union[str, Any] = [process_name[i] for i in np.argsort(lowerCAmelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: __UpperCAmelCase : Dict = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __UpperCAmelCase : Any = arrival_time[i] __UpperCAmelCase : Any = 0 # Index showing the location of the process being performed __UpperCAmelCase : Any = 0 # Saves the current response ratio. __UpperCAmelCase : List[str] = 0 for i in range(0 , lowerCAmelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __UpperCAmelCase : Dict = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __UpperCAmelCase : Tuple = temp __UpperCAmelCase : List[str] = i # Calculate the turn around time __UpperCAmelCase : Tuple = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __UpperCAmelCase : List[str] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = [0] * no_of_process for i in range(0 , lowerCAmelCase__ ): __UpperCAmelCase : List[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
16
1
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
15
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: if issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = text_path elif issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = '''train''' lowerCAmelCase = {'''train''': text_path, '''test''': text_path} lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
338
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def a__ ( lowerCAmelCase__=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class lowercase__ ( A__ ): '''simple docstring''' UpperCamelCase = None UpperCamelCase = None def lowercase__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Dict: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ = dataset_module_factory(__A , cache_dir=__A ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=__A ) UpperCAmelCase_ = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) UpperCAmelCase_ = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase_ = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = tmp_path_factory.mktemp("test_hf_gcp" ) / """test_wikipedia_simple""" UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowercase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path ) UpperCAmelCase_ = builder_cls( cache_dir=lowercase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ = None builder_instance.download_and_prepare() UpperCAmelCase_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = dataset_module_factory("wikipedia" , cache_dir=lowercase__ ) UpperCAmelCase_ = import_main_class(dataset_module.module_path , dataset=lowercase__ ) UpperCAmelCase_ = builder_cls( cache_dir=lowercase__ , config_name="20220301.frr" , hash=dataset_module.hash , ) UpperCAmelCase_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase__ , lowercase__ ) assert "train" in ds assert isinstance(ds["train"] , lowercase__ ) assert next(iter(ds["train"] ) )
351
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
241
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_:Optional[int] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Dict = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[str] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
116
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = (DDIMParallelScheduler,) __lowerCamelCase : int = (("eta", 0.0), ("num_inference_steps", 50)) def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**lowerCamelCase__ ) return config def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : Dict = self.scheduler_classes[0] A : str = self.get_scheduler_config(**lowerCamelCase__ ) A : Tuple = scheduler_class(**lowerCamelCase__ ) A , A : Tuple = 10, 0.0 A : Optional[int] = self.dummy_model() A : List[str] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for t in scheduler.timesteps: A : Optional[int] = model(lowerCamelCase__, lowerCamelCase__ ) A : str = scheduler.step(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ).prev_sample return sample def _lowerCAmelCase ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) A : Tuple = self.scheduler_classes[0] A : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) A : List[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowerCAmelCase ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase__, beta_end=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase__ ) def _lowerCAmelCase ( self ): self.check_over_configs(thresholding=lowerCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase__, prediction_type=lowerCamelCase__, sample_max_value=lowerCamelCase__, ) def _lowerCAmelCase ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase__, num_inference_steps=lowerCamelCase__ ) def _lowerCAmelCase ( self ): for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase__, eta=lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.scheduler_classes[0] A : List[str] = self.get_scheduler_config() A : Dict = scheduler_class(**lowerCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420, 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980, 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487, 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999, 998 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self ): A : int = self.scheduler_classes[0] A : Any = self.get_scheduler_config() A : Union[str, Any] = scheduler_class(**lowerCamelCase__ ) A , A : List[str] = 10, 0.0 scheduler.set_timesteps(lowerCamelCase__ ) A : Any = self.dummy_model() A : Dict = self.dummy_sample_deter A : Dict = self.dummy_sample_deter + 0.1 A : Tuple = self.dummy_sample_deter - 0.1 A : Tuple = samplea.shape[0] A : List[Any] = torch.stack([samplea, samplea, samplea], dim=0 ) A : str = torch.arange(lowerCamelCase__ )[0:3, None].repeat(1, lowerCamelCase__ ) A : Any = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) A : Any = scheduler.batch_step_no_noise(lowerCamelCase__, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), lowerCamelCase__ ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def _lowerCAmelCase ( self ): A : Dict = self.full_loop() A : str = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def _lowerCAmelCase ( self ): A : str = self.full_loop(prediction_type="""v_prediction""" ) A : Any = torch.sum(torch.abs(lowerCamelCase__ ) ) A : Optional[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : Any = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : Dict = torch.sum(torch.abs(lowerCamelCase__ ) ) A : str = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def _lowerCAmelCase ( self ): # We specify different beta, so that the first alpha is 0.99 A : int = self.full_loop(set_alpha_to_one=lowerCamelCase__, beta_start=0.01 ) A : List[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) A : List[Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
116
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Optional[int] = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' ,type=__a ,default=1 ,help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' ,type=__a ,help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) ,) # rest from the training program parser.add_argument('''training_script_args''' ,nargs=__a ) return parser.parse_args() def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Tuple = parse_args() # Import training_script as a module. _a : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _a : int = script_fpath.stem _a : List[Any] = importlib.import_module(__a ) # Patch sys.argv _a : Tuple = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
'''simple docstring''' import functools def __UpperCAmelCase ( A : Tuple , A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = len(A ) UpperCAmelCase_ : Union[str, Any] = len(A ) @functools.cache def min_distance(A : int , A : List[str] ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : str = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase : Tuple = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : Any = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : Dict = weight return state_dict def A_ ( a , a , a , a=None , a=None , a=False , a=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 5_0_2_7_7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config SCREAMING_SNAKE_CASE_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) SCREAMING_SNAKE_CASE_ : str = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download(a , a ) SCREAMING_SNAKE_CASE_ : int = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_state_dict(a ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
253
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def lowercase (SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) SCREAMING_SNAKE_CASE = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : DatasetInfo ) -> Optional[Any]: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) dataset_info.write_to_directory(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DatasetInfo.from_directory(SCREAMING_SNAKE_CASE_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , 'dataset_info.json' ) ) def lowercase () -> Optional[int]: SCREAMING_SNAKE_CASE = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=13_37 , post_processing_size=4_42 , dataset_size=12_34 , size_in_bytes=13_37 + 4_42 + 12_34 , ) SCREAMING_SNAKE_CASE = dataset_info._to_yaml_dict() assert sorted(SCREAMING_SNAKE_CASE_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) SCREAMING_SNAKE_CASE = yaml.safe_dump(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = yaml.safe_load(SCREAMING_SNAKE_CASE_ ) assert dataset_info_yaml_dict == reloaded def lowercase () -> Optional[int]: SCREAMING_SNAKE_CASE = DatasetInfo() SCREAMING_SNAKE_CASE = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=13_37 ), } ), ] , ) def lowercase (SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : DatasetInfosDict ) -> int: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ) dataset_infos_dict.write_to_directory(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = DatasetInfosDict.from_directory(SCREAMING_SNAKE_CASE_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): SCREAMING_SNAKE_CASE = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml SCREAMING_SNAKE_CASE = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , 'README.md' ) )
38
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""audio""": Audio()} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) SCREAMING_SNAKE_CASE_ : str = "audio" SCREAMING_SNAKE_CASE_ : str = "labels" def __A ( self , lowerCAmelCase__ ) -> Any: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) SCREAMING_SNAKE_CASE = copy.deepcopy(self ) SCREAMING_SNAKE_CASE = self.label_schema.copy() SCREAMING_SNAKE_CASE = features[self.label_column] SCREAMING_SNAKE_CASE = label_schema return task_template @property def __A ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
38
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : int = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } A__ : List[str] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = DistilBertTokenizer def __init__( self : List[Any], lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : str=True, lowerCamelCase : Optional[int]="[UNK]", lowerCamelCase : Optional[Any]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Any="[CLS]", lowerCamelCase : Union[str, Any]="[MASK]", lowerCamelCase : str=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
207
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase__ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowercase__ = model.state_dict() def to_tf_var_name(lowerCamelCase_ ): for patt, repl in iter(lowerCamelCase_ ): lowercase__ = name.replace(lowerCamelCase_ , lowerCamelCase_ ) return F"""bert/{name}""" def create_tf_var(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=lowerCamelCase_ , shape=tensor.shape , name=lowerCamelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCamelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(lowerCamelCase_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=lowerCamelCase_ , name=lowerCamelCase_ , session=lowerCamelCase_ ) tf.keras.backend.set_value(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = session.run(lowerCamelCase_ ) print(F"""Successfully created {tf_name}: {np.allclose(lowerCamelCase_ , lowerCamelCase_ )}""" ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def a ( lowerCamelCase_=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Directory in which to save tensorflow model''' ) lowercase__ = parser.parse_args(lowerCamelCase_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCamelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
207
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase : str = TypeVar("""T""") class UpperCamelCase__ ( Generic[T] ): """simple docstring""" def __init__( self , snake_case__ = True ): '''simple docstring''' _lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists _lowerCAmelCase : Any = directed def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) self.adj_list[destination_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) _lowerCAmelCase : Tuple = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(snake_case__ ) _lowerCAmelCase : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowerCAmelCase : Union[str, Any] = [destination_vertex] _lowerCAmelCase : List[Any] = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(snake_case__ ) _lowerCAmelCase : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowerCAmelCase : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowerCAmelCase : Tuple = [destination_vertex] _lowerCAmelCase : List[str] = [] return self def __repr__( self ): '''simple docstring''' return pformat(self.adj_list )
25
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __UpperCAmelCase : def __magic_name__ ( self : int, __A : Dict ): raise NotImplementedError() def __magic_name__ ( self : int ): raise NotImplementedError() class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : str, __A : "AutoTokenizer", __A : bool = False, **__A : str ): UpperCAmelCase : List[str] = tokenizer UpperCAmelCase : str = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Union[str, Any] = True def __magic_name__ ( self : Dict, __A : Optional[int] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Any = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] UpperCAmelCase : int = [] UpperCAmelCase : int = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Union[str, Any] = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Optional[Any] = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def __magic_name__ ( self : str ): # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : int = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : List[Any] = [] UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Dict = '''''' UpperCAmelCase : str = True self.on_finalized_text(__A, stream_end=__A ) def __magic_name__ ( self : List[str], __A : str, __A : bool = False ): print(__A, flush=__A, end='''''' if not stream_end else None ) def __magic_name__ ( self : List[Any], __A : Optional[int] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X20000 and cp <= 0X2A6DF) # or (cp >= 0X2A700 and cp <= 0X2B73F) # or (cp >= 0X2B740 and cp <= 0X2B81F) # or (cp >= 0X2B820 and cp <= 0X2CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2F800 and cp <= 0X2FA1F) # ): # return True return False class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Dict, __A : "AutoTokenizer", __A : bool = False, __A : Optional[float] = None, **__A : str ): super().__init__(__A, __A, **__A ) UpperCAmelCase : Dict = Queue() UpperCAmelCase : Any = None UpperCAmelCase : Any = timeout def __magic_name__ ( self : Dict, __A : str, __A : bool = False ): self.text_queue.put(__A, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self : int ): return self def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : List[Any] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
336
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCAmelCase : def __init__( self : List[Any], __A : List[str], __A : List[str]=1_3, __A : Any=6_4, __A : Optional[Any]=2, __A : str=3, __A : str=True, __A : str=True, __A : Optional[Any]=3_2, __A : List[str]=5, __A : int=4, __A : str=3_7, __A : str="gelu", __A : Dict=0.1, __A : List[Any]=0.1, __A : Dict=1_0, __A : int=0.0_2, __A : Any=[1, 1_6, 4, 4], __A : Optional[int]=None, ): UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : Any = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Dict = use_labels UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Any = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : str = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : int = scope UpperCAmelCase : List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : str = (self.image_size // 3_2) ** 2 UpperCAmelCase : List[str] = num_patches + 1 def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Any ): UpperCAmelCase : Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 1_6, 3_2], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__A, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=__A, ) def __magic_name__ ( self : Optional[int], __A : Optional[int], __A : int, __A : Tuple ): UpperCAmelCase : int = ViTHybridModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Tuple, __A : Dict, __A : str, __A : List[str] ): UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(__A ) model.to(__A ) model.eval() UpperCAmelCase : Dict = model(__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self : int ): UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Any = ViTHybridModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A, hidden_size=3_7 ) def __magic_name__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : int ): UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(__A ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A, nn.Linear ) ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(__A ) UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = _config_zero_init(__A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(config=__A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : Union[str, Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @slow def __magic_name__ ( self : List[str] ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] = ViTHybridModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> Tuple: UpperCAmelCase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : str ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : List[str] ): UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : int = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(images=__A, return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**__A ) # verify the logits UpperCAmelCase : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Optional[Any] = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __A, atol=1E-4 ) ) @slow @require_accelerate def __magic_name__ ( self : Dict ): UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''' ) UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''', device_map='''auto''' ) UpperCAmelCase : Tuple = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=__A, return_tensors='''pt''' ) UpperCAmelCase : Dict = model(**__A ) UpperCAmelCase : Any = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Dict = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], '''tabby, tabby cat''' )
336
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase = logging.get_logger(__name__) class _a : _lowercase : str _lowercase : str = None @staticmethod def lowerCamelCase_ ( ) -> str: """simple docstring""" raise NotImplementedError def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: int , UpperCamelCase_: str , **UpperCamelCase_: Dict ) -> List[str]: """simple docstring""" raise NotImplementedError def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[int] ) -> Any: """simple docstring""" raise NotImplementedError def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowerCamelCase_ ( cls: Tuple ) -> Any: """simple docstring""" return f'`pip install {cls.pip_package or cls.name}`' class _a ( UpperCamelCase__ ): _lowercase : Dict = '''optuna''' @staticmethod def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" return is_optuna_available() def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: int , UpperCamelCase_: str , **UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" return run_hp_search_optuna(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[Any] ) -> int: """simple docstring""" return default_hp_space_optuna(UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Any = '''ray''' _lowercase : Optional[Any] = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase_ ( ) -> Optional[int]: """simple docstring""" return is_ray_available() def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: str , **UpperCamelCase_: Optional[Any] ) -> int: """simple docstring""" return run_hp_search_ray(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" return default_hp_space_ray(UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''sigopt''' @staticmethod def lowerCamelCase_ ( ) -> Any: """simple docstring""" return is_sigopt_available() def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: str , **UpperCamelCase_: str ) -> Dict: """simple docstring""" return run_hp_search_sigopt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> Any: """simple docstring""" return default_hp_space_sigopt(UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Tuple = '''wandb''' @staticmethod def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" return is_wandb_available() def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: str , **UpperCamelCase_: Any ) -> List[Any]: """simple docstring""" return run_hp_search_wandb(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Tuple ) -> Optional[Any]: """simple docstring""" return default_hp_space_wandb(UpperCamelCase_ ) lowerCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _a ( ): """simple docstring""" lowercase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(SCREAMING_SNAKE_CASE ) > 0: lowercase__ = available_backends[0].name if len(SCREAMING_SNAKE_CASE ) > 1: logger.info( f'{len(SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
93
import logging from transformers import PretrainedConfig lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''bertabs''' def __init__( self: List[str] , UpperCamelCase_: Dict=30_522 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Optional[int]=6 , UpperCamelCase_: int=512 , UpperCamelCase_: Optional[int]=8 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Tuple=0.2 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Tuple=768 , UpperCamelCase_: List[Any]=8 , UpperCamelCase_: Union[str, Any]=2_048 , UpperCamelCase_: str=0.2 , **UpperCamelCase_: Any , ) -> List[str]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = max_pos lowercase__ = enc_layers lowercase__ = enc_hidden_size lowercase__ = enc_heads lowercase__ = enc_ff_size lowercase__ = enc_dropout lowercase__ = dec_layers lowercase__ = dec_hidden_size lowercase__ = dec_heads lowercase__ = dec_ff_size lowercase__ = dec_dropout
93
1
"""simple docstring""" import math import os import sys def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = '''''' try: with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def lowercase ( _SCREAMING_SNAKE_CASE : dict[str, str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lexicon.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = last_match_id if math.loga(_SCREAMING_SNAKE_CASE ).is_integer(): for curr_key in lexicon: _UpperCAmelCase = '''0''' + lexicon[curr_key] _UpperCAmelCase = bin(_SCREAMING_SNAKE_CASE )[2:] def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = {'''0''': '''0''', '''1''': '''1'''} _UpperCAmelCase , _UpperCAmelCase = '''''', '''''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) index += 1 _UpperCAmelCase = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _UpperCAmelCase = lexicon[curr_string] result += last_match_id return result def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = os.path.getsize(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = bin(_SCREAMING_SNAKE_CASE )[2:] _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = 8 try: with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = read_file_binary(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = compress_data(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = add_file_length(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
260
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _UpperCAmelCase = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) _UpperCAmelCase = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) _UpperCAmelCase = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) _UpperCAmelCase = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) _UpperCAmelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) _UpperCAmelCase = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) _UpperCAmelCase = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) _UpperCAmelCase = key.replace('''image_encoder.module''' , '''flava.image_model''' ) _UpperCAmelCase = key.replace('''text_encoder.module''' , '''flava.text_model''' ) _UpperCAmelCase = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) _UpperCAmelCase = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) _UpperCAmelCase = key.replace('''text_projection''' , '''flava.text_projection''' ) _UpperCAmelCase = key.replace('''image_projection''' , '''flava.image_projection''' ) _UpperCAmelCase = value.float() for key, value in codebook_state_dict.items(): _UpperCAmelCase = value return upgrade @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = FlavaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = FlavaConfig() _UpperCAmelCase = FlavaForPreTraining(_SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = convert_dalle_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , save_checkpoint=_SCREAMING_SNAKE_CASE ) if os.path.exists(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) else: _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = upgrade_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model.state_dict() _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = count_parameters(_SCREAMING_SNAKE_CASE ) + count_parameters(_SCREAMING_SNAKE_CASE ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __A : Optional[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
260
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _A = "bert-base-cased" _A = "google/pegasus-xsum" _A = [" Sam ate lunch today.", "Sams lunch ingredients."] _A = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _A = "patrickvonplaten/t5-tiny-random" _A = "sshleifer/bart-tiny-random" _A = "sshleifer/tiny-mbart" _A = "sshleifer/tiny-marian-en-de" def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" snake_case = "\n".join(A__ ) Path(A__ ).open("w" ).writelines(A__ ) def lowercase_ ( A__ ) -> List[Any]: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(A__ , F'{split}.source' ) , A__ ) _dump_articles(os.path.join(A__ , F'{split}.target' ) , A__ ) return tmp_dir class lowerCamelCase ( A_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase(self : Tuple , _A : List[str] ) -> Optional[int]: snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) snake_case = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) snake_case = 4 snake_case = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated snake_case , snake_case = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. snake_case = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , src_lang=_A , tgt_lang=_A , ) snake_case = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_A , _A ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place snake_case = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase(self : str , _A : Dict ) -> Dict: snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) snake_case = max(len(tokenizer.encode(_A ) ) for a in ARTICLES ) snake_case = max(len(tokenizer.encode(_A ) ) for a in SUMMARIES ) snake_case = 4 snake_case = LegacySeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=2_0 , max_target_length=_A , ) snake_case = DataLoader(_A , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase(self : Union[str, Any] ) -> Optional[Any]: snake_case = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) snake_case = tmp_dir.joinpath("train.source" ).open().readlines() snake_case = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_A , _A , 1_2_8 , _A ) snake_case = {x.name for x in tmp_dir.iterdir()} snake_case = {x.name for x in save_dir.iterdir()} snake_case = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_A ) < len(_A ) assert len(_A ) == 1 assert len(packed_examples[0] ) == sum(len(_A ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def UpperCAmelCase(self : Optional[int] ) -> Union[str, Any]: if not FAIRSEQ_AVAILABLE: return snake_case , snake_case , snake_case = self._get_dataset(max_len=6_4 ) snake_case = 6_4 snake_case = ds.make_dynamic_sampler(_A , required_batch_size_multiple=_A ) snake_case = [len(_A ) for x in batch_sampler] assert len(set(_A ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_A ) == len(_A ) # no dropped or added examples snake_case = DataLoader(_A , batch_sampler=_A , collate_fn=ds.collate_fn , num_workers=2 ) snake_case = [] snake_case = [] for batch in data_loader: snake_case = batch["input_ids"].shape snake_case = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple snake_case = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_A ) if num_src_tokens > (max_tokens * 1.1): failures.append(_A ) assert num_src_per_batch[0] == max(_A ) if failures: raise AssertionError(f'too many tokens in {len(_A )} batches' ) def UpperCAmelCase(self : int ) -> str: snake_case , snake_case , snake_case = self._get_dataset(max_len=5_1_2 ) snake_case = 2 snake_case = ds.make_sortish_sampler(_A , shuffle=_A ) snake_case = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 ) snake_case = DataLoader(_A , batch_size=_A , collate_fn=ds.collate_fn , num_workers=2 , sampler=_A ) snake_case = tokenizer.pad_token_id def count_pad_tokens(_A : Dict , _A : Union[str, Any]="input_ids" ): return [batch[k].eq(_A ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_A , k="labels" ) ) < sum(count_pad_tokens(_A , k="labels" ) ) assert sum(count_pad_tokens(_A ) ) < sum(count_pad_tokens(_A ) ) assert len(_A ) == len(_A ) def UpperCAmelCase(self : Union[str, Any] , _A : Union[str, Any]=1_0_0_0 , _A : Optional[int]=1_2_8 ) -> List[Any]: if os.getenv("USE_REAL_DATA" , _A ): snake_case = "examples/seq2seq/wmt_en_ro" snake_case = max_len * 2 * 6_4 if not Path(_A ).joinpath("train.len" ).exists(): save_len_file(_A , _A ) else: snake_case = "examples/seq2seq/test_data/wmt_en_ro" snake_case = max_len * 4 save_len_file(_A , _A ) snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = SeqaSeqDataset( _A , data_dir=_A , type_path="train" , max_source_length=_A , max_target_length=_A , n_obs=_A , ) return ds, max_tokens, tokenizer def UpperCAmelCase(self : List[Any] ) -> Union[str, Any]: snake_case , snake_case , snake_case = self._get_dataset() snake_case = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_A ) ) snake_case = set(DistributedSortishSampler(_A , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_A ) ) assert idsa.intersection(_A ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase(self : Any , _A : Optional[Any] ) -> Union[str, Any]: snake_case = AutoTokenizer.from_pretrained(_A , use_fast=_A ) if tok_name == MBART_TINY: snake_case = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) snake_case = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: snake_case = SeqaSeqDataset( _A , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) snake_case = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_A ) == 1 if tok_name == BART_TINY else len(_A ) == 0
361
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase_ ( A__ ) -> list[list[float]]: """simple docstring""" snake_case = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements snake_case = [[0.0, 0.0], [0.0, 0.0]] snake_case , snake_case = matrix[1][1], matrix[0][0] snake_case , snake_case = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix snake_case = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): snake_case = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
137
0