code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from ... import PretrainedConfig __snake_case = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowercase ( A__ ): """simple docstring""" _a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _a = 'nezha' def __init__( self , UpperCamelCase_=21128 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=64 , UpperCamelCase_=2 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0.1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = vocab_size UpperCamelCase__ :Dict = hidden_size UpperCamelCase__ :str = num_hidden_layers UpperCamelCase__ :Any = num_attention_heads UpperCamelCase__ :List[Any] = hidden_act UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :Optional[int] = attention_probs_dropout_prob UpperCamelCase__ :Dict = max_position_embeddings UpperCamelCase__ :int = max_relative_position UpperCamelCase__ :Optional[int] = type_vocab_size UpperCamelCase__ :List[Any] = initializer_range UpperCamelCase__ :Any = layer_norm_eps UpperCamelCase__ :Dict = classifier_dropout UpperCamelCase__ :Optional[int] = use_cache
97
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
0
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a_ = pytest.mark.integration a_ = {"comet"} a_ = importlib.util.find_spec("fairseq") is not None a_ = {"code_eval"} a_ = os.name == "nt" a_ = {"bertscore", "frugalscore", "perplexity"} a_ = importlib.util.find_spec("transformers") is not None def a__ ( __lowercase ) -> Optional[int]: @wraps(__lowercase ) def wrapper(self , __lowercase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __lowercase ) return wrapper def a__ ( __lowercase ) -> List[Any]: @wraps(__lowercase ) def wrapper(self , __lowercase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __lowercase ) return wrapper def a__ ( __lowercase ) -> List[Any]: @wraps(__lowercase ) def wrapper(self , __lowercase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __lowercase ) return wrapper def a__ ( ) -> str: _A = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names()) @for_all_test_methods( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) @local class snake_case ( parameterized.TestCase): __UpperCamelCase = {} __UpperCamelCase = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def a_ ( self : Dict , a__ : Tuple ) -> List[Any]: '''simple docstring''' _A = "[...]" _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , a__ ) ).module_path ) _A = datasets.load.import_main_class(metric_module.__name__ , dataset=a__ ) # check parameters _A = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(a__ , metric_module.__name__ ): with self.use_local_metrics(): try: _A = doctest.testmod(a__ , verbose=a__ , raise_on_error=a__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def a_ ( self : Union[str, Any] , a__ : Dict ) -> Optional[int]: '''simple docstring''' _A = "[...]" _A = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , a__ ) ).module_path ) # run doctest with self.use_local_metrics(): _A = doctest.testmod(a__ , verbose=a__ , raise_on_error=a__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def a_ ( self : Dict , a__ : Dict , a__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](a__ ): yield else: yield @contextmanager def a_ ( self : List[Any] ) -> str: '''simple docstring''' def load_local_metric(a__ : Dict , *a__ : Optional[Any] , **a__ : Optional[Any] ): return load_metric(os.path.join("metrics" , a__ ) , *a__ , **a__ ) with patch("datasets.load_metric" ) as mock_load_metric: _A = load_local_metric yield @classmethod def a_ ( cls : List[str] , a__ : List[str] ) -> str: '''simple docstring''' def wrapper(a__ : List[str] ): _A = contextmanager(a__ ) _A = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def a__ ( __lowercase ) -> int: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class snake_case ( _UpperCamelCase): def a_ ( self : List[str] , a__ : int ) -> Any: '''simple docstring''' assert len(input_dict["input_ids"] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: _A = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def a__ ( __lowercase ) -> int: import torch def bert_cos_score_idf(__lowercase , __lowercase , *__lowercase , **__lowercase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowercase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: _A = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def a__ ( __lowercase ) -> Union[str, Any]: def load_from_checkpoint(__lowercase ): class snake_case : def a_ ( self : Optional[Any] , a__ : Optional[Any] , *a__ : int , **a__ : str ) -> List[str]: '''simple docstring''' assert len(a__ ) == 2 _A = [0.1_9, 0.9_2] return scores, sum(a__ ) / len(a__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: _A = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: _A = load_from_checkpoint yield def a__ ( ) -> List[Any]: _A = load_metric(os.path.join("metrics" , "seqeval" ) ) _A = "ERROR" _A = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(__lowercase , match=re.escape(__lowercase ) ): metric.compute(predictions=[] , references=[] , scheme=__lowercase )
163
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def a__ ( __lowercase , __lowercase ) -> Optional[Any]: _A = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def a__ ( __lowercase , __lowercase , __lowercase ) -> List[str]: _A = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def a__ ( __lowercase , __lowercase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _A = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
163
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] ,reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] ,) def UpperCAmelCase ( self : str ,_snake_case : Dict ) -> Dict: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def UpperCAmelCase ( self : Dict ,_snake_case : Dict ,_snake_case : List[str] ,_snake_case : Tuple=0.9 ,_snake_case : Optional[int]=3 ,_snake_case : Union[str, Any]=0.5 ) -> List[str]: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ : int = [ meteor_score.single_meteor_score( word_tokenize(_snake_case ) ,word_tokenize(_snake_case ) ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] else: lowercase__ : Tuple = [ meteor_score.single_meteor_score(_snake_case ,_snake_case ,alpha=_snake_case ,beta=_snake_case ,gamma=_snake_case ) for ref, pred in zip(_snake_case ,_snake_case ) ] return {"meteor": np.mean(_snake_case )}
16
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __lowerCamelCase : Tuple = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def SCREAMING_SNAKE_CASE ( snake_case_ : str = "mumbai" ): snake_case__ : Tuple = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): snake_case__ : int = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() snake_case__ : List[str] = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
286
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : str , __A : Optional[Any]=1_3 , __A : Dict=7 , __A : List[str]=True , __A : Any=True , __A : str=True , __A : Optional[Any]=True , __A : List[str]=9_9 , __A : Dict=3_2 , __A : Tuple=2 , __A : Tuple=4 , __A : Dict=3_7 , __A : Tuple="gelu" , __A : Any=0.1 , __A : str=0.1 , __A : int=5_1_2 , __A : Union[str, Any]=1_6 , __A : Optional[int]=2 , __A : Union[str, Any]=0.0_2 , __A : Tuple=3 , __A : Union[str, Any]=4 , __A : Optional[int]=None , ): snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = 1_3 snake_case__ : int = 7 snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : List[str] = True snake_case__ : int = True snake_case__ : Optional[int] = 9_9 snake_case__ : Union[str, Any] = 3_8_4 snake_case__ : Optional[Any] = 2 snake_case__ : Union[str, Any] = 4 snake_case__ : Any = 3_7 snake_case__ : Any = "gelu" snake_case__ : str = 0.1 snake_case__ : Optional[Any] = 0.1 snake_case__ : Union[str, Any] = 5_1_2 snake_case__ : Optional[Any] = 1_6 snake_case__ : List[Any] = 2 snake_case__ : Optional[int] = 0.0_2 snake_case__ : Dict = 3 snake_case__ : Any = 4 snake_case__ : int = 1_2_8 snake_case__ : Dict = 2 snake_case__ : Any = 9 snake_case__ : List[str] = 1 snake_case__ : List[Any] = None def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[Any] = None snake_case__ : Any = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : int = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Dict , __A : Dict , __A : Dict , __A : Union[str, Any] , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Optional[int] = TFConvBertModel(config=__A ) snake_case__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case__ : List[str] = [input_ids, input_mask] snake_case__ : Union[str, Any] = model(__A ) snake_case__ : str = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Union[str, Any] , __A : List[Any] , __A : Any , __A : Union[str, Any] , __A : int , __A : Optional[Any] , __A : Dict , __A : Optional[int] ): snake_case__ : List[str] = TFConvBertForMaskedLM(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : Any , __A : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] ): snake_case__ : Any = self.num_labels snake_case__ : List[Any] = TFConvBertForSequenceClassification(config=__A ) snake_case__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : Optional[int] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : int , __A : List[Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[int] ): snake_case__ : Optional[Any] = self.num_choices snake_case__ : Any = TFConvBertForMultipleChoice(config=__A ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[Any] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__A , 1 ) , (1, self.num_choices, 1) ) snake_case__ : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } snake_case__ : Optional[Any] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : List[str] , __A : Tuple , __A : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any , __A : int , __A : Tuple ): snake_case__ : Dict = self.num_labels snake_case__ : str = TFConvBertForTokenClassification(config=__A ) snake_case__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : List[str] = model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[Any] ): snake_case__ : Any = TFConvBertForQuestionAnswering(config=__A ) snake_case__ : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case__ : int = model(__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : List[str] = config_and_inputs snake_case__ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False a_ = False def _lowercase ( self : int ): snake_case__ : Optional[Any] = TFConvBertModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : Dict ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Dict ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : Dict ): snake_case__, snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True snake_case__ : int = True if hasattr(__A , "use_cache" ): snake_case__ : Optional[Any] = True snake_case__ : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : List[str] = getattr(self.model_tester , "key_length" , __A ) for model_class in self.all_model_classes: snake_case__ : Tuple = self._prepare_for_class(__A , __A ) snake_case__ : List[str] = model_class(__A ) snake_case__ : List[Any] = len(model(__A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A , saved_model=__A ) snake_case__ : str = os.path.join(__A , "saved_model" , "1" ) snake_case__ : str = tf.keras.models.load_model(__A ) snake_case__ : Optional[Any] = model(__A ) if self.is_encoder_decoder: snake_case__ : Tuple = outputs["encoder_hidden_states"] snake_case__ : str = outputs["encoder_attentions"] else: snake_case__ : Dict = outputs["hidden_states"] snake_case__ : Tuple = outputs["attentions"] self.assertEqual(len(__A ) , __A ) snake_case__ : int = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : Tuple ): snake_case__ : Optional[Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__A ) def _lowercase ( self : List[str] ): snake_case__, snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[Any] = True snake_case__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) snake_case__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) snake_case__ : Any = getattr(self.model_tester , "key_length" , __A ) snake_case__ : List[Any] = getattr(self.model_tester , "key_length" , __A ) def check_decoder_attentions_output(__A : Optional[int] ): snake_case__ : Optional[Any] = len(__A ) self.assertEqual(out_len % 2 , 0 ) snake_case__ : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__A : Any ): snake_case__ : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = True snake_case__ : Any = False snake_case__ : Dict = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) snake_case__ : Dict = len(__A ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) if self.is_encoder_decoder: snake_case__ : str = model_class(__A ) snake_case__ : List[Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_decoder_attentions_output(__A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = model_class(__A ) snake_case__ : Union[str, Any] = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) # Check attention is always last and order is fine snake_case__ : Optional[int] = True snake_case__ : List[Any] = True snake_case__ : Any = model_class(__A ) snake_case__ : str = model(self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__A ) ) self.assertEqual(model.config.output_hidden_states , __A ) check_encoder_attentions_output(__A ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ): snake_case__ : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) snake_case__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str = model(__A )[0] snake_case__ : int = [1, 6, 7_6_8] self.assertEqual(output.shape , __A ) snake_case__ : List[Any] = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __A , atol=1e-4 )
286
1
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): A__ = [1] for i in range(2 , _lowercase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" A__ = [] A__ = list(range(_lowercase ) ) # Find permutation while factorials: A__ = factorials.pop() A__ = divmod(_lowercase , _lowercase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
237
import math import sys def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : str = """""" try: with open(_lowercase , """rb""") as binary_file: a__ : Any = binary_file.read() for dat in data: a__ : Dict = F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Optional[Any] = {"""0""": """0""", """1""": """1"""} a__ , a__ : Optional[int] = """""", """""" a__ : int = len(_lowercase) for i in range(len(_lowercase)): curr_string += data_bits[i] if curr_string not in lexicon: continue a__ : List[str] = lexicon[curr_string] result += last_match_id a__ : Any = last_match_id + """0""" if math.loga(_lowercase).is_integer(): a__ : Union[str, Any] = {} for curr_key in list(_lowercase): a__ : Optional[Any] = lexicon.pop(_lowercase) a__ : Union[str, Any] = new_lex a__ : str = last_match_id + """1""" index += 1 a__ : List[Any] = """""" return result def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : List[Any] = 8 try: with open(_lowercase , """wb""") as opened_file: a__ : Dict = [ to_write[i : i + byte_length] for i in range(0 , len(_lowercase) , _lowercase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("""10000000""") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowercase , 2).to_bytes(1 , byteorder="""big""")) except OSError: print("""File not accessible""") sys.exit() def lowerCAmelCase_ ( _lowercase : str) -> str: """simple docstring""" a__ : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 a__ : Optional[Any] = data_bits[counter:] a__ : Tuple = data_bits[counter + 1 :] return data_bits def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> None: """simple docstring""" a__ : Dict = read_file_binary(_lowercase) a__ : str = remove_prefix(_lowercase) a__ : List[str] = decompress_data(_lowercase) write_file_binary(_lowercase , _lowercase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
170
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict=1E-12 ): '''simple docstring''' __snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T __snake_case : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): A : CLIPConfig A : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self : str ): __snake_case : List[Any] = FlaxCLIPVisionModule(self.config.vision_config ) __snake_case : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=_lowerCAmelCase , dtype=self.dtype ) __snake_case : Optional[Any] = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __snake_case : Optional[int] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __snake_case : Union[str, Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) __snake_case : List[str] = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): __snake_case : Tuple = self.vision_model(_lowerCAmelCase )[1] __snake_case : int = self.visual_projection(_lowerCAmelCase ) __snake_case : List[Any] = jax_cosine_distance(_lowerCAmelCase , self.special_care_embeds ) __snake_case : Optional[int] = jax_cosine_distance(_lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __snake_case : List[str] = 0.0 __snake_case : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __snake_case : Tuple = jnp.round(_lowerCAmelCase , 3 ) __snake_case : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_lowerCAmelCase ) # Use a lower threshold if an image has any special care concept __snake_case : str = is_special_care * 0.01 __snake_case : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __snake_case : Any = jnp.round(_lowerCAmelCase , 3 ) __snake_case : Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Union[str, Any] = CLIPConfig A : List[str] = "clip_input" A : str = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Tuple , _lowerCAmelCase : CLIPConfig , _lowerCAmelCase : Optional[Tuple] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : jnp.dtype = jnp.floataa , _lowerCAmelCase : bool = True , **_lowerCAmelCase : List[Any] , ): if input_shape is None: __snake_case : List[str] = (1, 2_24, 2_24, 3) __snake_case : Dict = self.module_class(config=_lowerCAmelCase , dtype=_lowerCAmelCase , **_lowerCAmelCase ) super().__init__(_lowerCAmelCase , _lowerCAmelCase , input_shape=_lowerCAmelCase , seed=_lowerCAmelCase , dtype=_lowerCAmelCase , _do_init=_do_init ) def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : jax.random.KeyArray , _lowerCAmelCase : Tuple , _lowerCAmelCase : FrozenDict = None ): # init input tensor __snake_case : int = jax.random.normal(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : Dict = jax.random.split(_lowerCAmelCase ) __snake_case : Dict = {"""params""": params_rng, """dropout""": dropout_rng} __snake_case : Union[str, Any] = self.module.init(_lowerCAmelCase , _lowerCAmelCase )["""params"""] return random_params def __call__( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : dict = None , ): __snake_case : Optional[int] = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , rngs={} , )
363
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=a_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=a_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=a_ ) return parser.parse_args() def UpperCAmelCase ( ) -> Tuple: """simple docstring""" __A = parse_args() # Import training_script as a module. __A = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A = script_fpath.stem __A = importlib.import_module(a_ ) # Patch sys.argv __A = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
15
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
1
def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Dict = 1 while len(A__ ) < 1E6: constant.append(str(A__ ) ) i += 1 lowerCAmelCase_ : Tuple = """""".join(A__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
361
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Tuple=False ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase_ ( A__ : Any , A__ : Any , A__ : Tuple=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : Optional[Any] = """""" else: lowerCAmelCase_ : Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : List[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(A__ , A__ ) def UpperCamelCase_ ( A__ : List[Any] , A__ : Optional[Any] , A__ : Dict ): '''simple docstring''' lowerCAmelCase_ : Tuple = dct.pop(A__ ) lowerCAmelCase_ : Tuple = val def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[int] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ViTConfig() lowerCAmelCase_ : Any = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = int(vit_name[-12:-10] ) lowerCAmelCase_ : Optional[int] = int(vit_name[-9:-6] ) else: lowerCAmelCase_ : Optional[int] = 10_00 lowerCAmelCase_ : Tuple = """huggingface/label-files""" lowerCAmelCase_ : Any = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Union[str, Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Union[str, Any] = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] ) lowerCAmelCase_ : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): lowerCAmelCase_ : int = 1_92 lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : List[str] = 12 lowerCAmelCase_ : int = 3 elif vit_name[9:].startswith("""small""" ): lowerCAmelCase_ : Optional[Any] = 3_84 lowerCAmelCase_ : Optional[int] = 15_36 lowerCAmelCase_ : Dict = 12 lowerCAmelCase_ : str = 6 else: pass else: if vit_name[4:].startswith("""small""" ): lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Any = 23_04 lowerCAmelCase_ : List[str] = 8 lowerCAmelCase_ : List[str] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): lowerCAmelCase_ : Dict = 10_24 lowerCAmelCase_ : List[Any] = 40_96 lowerCAmelCase_ : Any = 24 lowerCAmelCase_ : List[str] = 16 elif vit_name[4:].startswith("""huge""" ): lowerCAmelCase_ : Optional[int] = 12_80 lowerCAmelCase_ : Dict = 51_20 lowerCAmelCase_ : Union[str, Any] = 32 lowerCAmelCase_ : Optional[int] = 16 # load original model from timm lowerCAmelCase_ : Union[str, Any] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : int = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) lowerCAmelCase_ : str = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase_ : int = ViTModel(A__ ).eval() else: lowerCAmelCase_ : Optional[int] = ViTForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase_ : Any = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase_ : Any = ViTImageProcessor(size=config.image_size ) lowerCAmelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : int = encoding["""pixel_values"""] lowerCAmelCase_ : int = model(A__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase_ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1E-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
89
0
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCamelCase__ ( lowerCAmelCase = 1_50_00_00 ): """simple docstring""" _lowerCAmelCase = defaultdict(lowerCAmelCase ) _lowerCAmelCase = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCAmelCase , 2 ): if gcd(lowerCAmelCase , lowerCAmelCase ) > 1: continue _lowerCAmelCase = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
70
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ): __a , __a = 9, 14 # noqa: F841 __a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __a = defaultdict(_UpperCAmelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __a = mst(_UpperCAmelCase ) __a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __a = tuple(answer[:2] ) __a = tuple(edge[::-1] ) assert edge in result or reverse in result
49
0
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase) @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = 50 , __a = "pil" , __a = True , **__a , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowercase , ) _UpperCamelCase = image.to(self.device) # set step values self.scheduler.set_timesteps(_lowercase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output _UpperCamelCase = self.unet(_lowercase , _lowercase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(_lowercase) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowercase), "This is a local test"
366
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" if len(__snake_case ) <= 1 or n <= 1: return insert_next(__snake_case, n - 1 ) rec_insertion_sort(__snake_case, n - 1 ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Dict: """simple docstring""" if index >= len(__snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCamelCase , _UpperCamelCase = ( collection[index], collection[index - 1], ) insert_next(__snake_case, index + 1 ) if __name__ == "__main__": _a = input("""Enter integers separated by spaces: """) _a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
100
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : """simple docstring""" def __init__(self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 ) -> str: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: SCREAMING_SNAKE_CASE__ : Any = [[w, v]] if not self.graph.get(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = [] def __magic_name__ (self ) -> List[Any]: """simple docstring""" return list(self.graph ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 , SCREAMING_SNAKE_CASE__=-1 ) -> Dict: """simple docstring""" if s == d: return [] SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Tuple = [] if s == -2: SCREAMING_SNAKE_CASE__ : Any = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Optional[int] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : Tuple = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-1 ) -> int: """simple docstring""" if c == -1: SCREAMING_SNAKE_CASE__ : int = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): SCREAMING_SNAKE_CASE__ : Tuple = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = deque() SCREAMING_SNAKE_CASE__ : str = [] if s == -2: SCREAMING_SNAKE_CASE__ : str = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: SCREAMING_SNAKE_CASE__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return len(self.graph[u] ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : Dict = [] if s == -2: SCREAMING_SNAKE_CASE__ : Any = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = s SCREAMING_SNAKE_CASE__ : Optional[Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : Tuple = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Optional[int] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return sorted_nodes def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : List[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = -2 SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : int = s SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ : Tuple = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ : Tuple = True if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : List[str] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = s SCREAMING_SNAKE_CASE__ : Optional[int] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = -2 SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = s SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ : Any = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ : List[Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Tuple = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : Optional[int] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = s SCREAMING_SNAKE_CASE__ : int = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 , SCREAMING_SNAKE_CASE__=-1 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = time() return end - begin def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = time() self.bfs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = time() return end - begin class lowerCAmelCase_ : """simple docstring""" def __init__(self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 ) -> int: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist SCREAMING_SNAKE_CASE__ : Any = [[w, v]] # add the other way if self.graph.get(SCREAMING_SNAKE_CASE__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist SCREAMING_SNAKE_CASE__ : Optional[Any] = [[w, u]] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(SCREAMING_SNAKE_CASE__ ) # the other way round if self.graph.get(SCREAMING_SNAKE_CASE__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 , SCREAMING_SNAKE_CASE__=-1 ) -> Optional[int]: """simple docstring""" if s == d: return [] SCREAMING_SNAKE_CASE__ : Any = [] SCREAMING_SNAKE_CASE__ : str = [] if s == -2: SCREAMING_SNAKE_CASE__ : Optional[Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(SCREAMING_SNAKE_CASE__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : List[str] = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return visited def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-1 ) -> Tuple: """simple docstring""" if c == -1: SCREAMING_SNAKE_CASE__ : Dict = floor(random() * 1_00_00 ) + 10 for i in range(SCREAMING_SNAKE_CASE__ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): SCREAMING_SNAKE_CASE__ : str = floor(random() * c ) + 1 if n != i: self.add_pair(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = deque() SCREAMING_SNAKE_CASE__ : int = [] if s == -2: SCREAMING_SNAKE_CASE__ : str = list(self.graph )[0] d.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) while d: SCREAMING_SNAKE_CASE__ : List[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return len(self.graph[u] ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : int = [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = -2 SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = s SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ : Any = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ : Union[str, Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Union[str, Any] = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : int = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = s SCREAMING_SNAKE_CASE__ : Any = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return list(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Any = list(self.graph )[0] stack.append(SCREAMING_SNAKE_CASE__ ) visited.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = -2 SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[int] = s SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: SCREAMING_SNAKE_CASE__ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): SCREAMING_SNAKE_CASE__ : str = len(SCREAMING_SNAKE_CASE__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() SCREAMING_SNAKE_CASE__ : Optional[Any] = True if len(SCREAMING_SNAKE_CASE__ ) != 0: SCREAMING_SNAKE_CASE__ : Dict = stack[len(SCREAMING_SNAKE_CASE__ ) - 1] else: SCREAMING_SNAKE_CASE__ : List[Any] = False indirect_parents.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = s SCREAMING_SNAKE_CASE__ : Tuple = ss # check if se have reached the starting point if len(SCREAMING_SNAKE_CASE__ ) == 0: return False def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return list(self.graph ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 , SCREAMING_SNAKE_CASE__=-1 ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = time() self.dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = time() return end - begin def __magic_name__ (self , SCREAMING_SNAKE_CASE__=-2 ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = time() self.bfs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = time() return end - begin
25
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase ( __a , __a , __a ): '''simple docstring''' _A : Tuple = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Union[str, Any] , __a : int , __a : int , __a : Optional[int] = None , __a : int = 50257 , __a : int = 1024 , __a : int = 768 , __a : int = 12 , __a : int = 12 , __a : Optional[int] = None , __a : str = "gelu_new" , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 1E-5 , __a : float = 0.02 , __a : bool = True , __a : bool = True , __a : bool = False , __a : bool = False , ) -> Any: """simple docstring""" super().__init__() __lowercase : Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) __lowercase : List[Any] = prefix_inner_dim __lowercase : int = prefix_hidden_dim __lowercase : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowercase : List[str] = ( nn.Linear(self.prefix_hidden_dim , __a ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowercase : Tuple = GPTaConfig( vocab_size=__a , n_positions=__a , n_embd=__a , n_layer=__a , n_head=__a , n_inner=__a , activation_function=__a , resid_pdrop=__a , embd_pdrop=__a , attn_pdrop=__a , layer_norm_epsilon=__a , initializer_range=__a , scale_attn_weights=__a , use_cache=__a , scale_attn_by_inverse_layer_idx=__a , reorder_and_upcast_attn=__a , ) __lowercase : Any = GPTaLMHeadModel(__a ) def lowerCAmelCase ( self : List[str] , __a : torch.Tensor , __a : torch.Tensor , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.transformer.transformer.wte(__a ) __lowercase : int = self.encode_prefix(__a ) __lowercase : int = self.decode_prefix(__a ) __lowercase : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __lowercase : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __lowercase : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) __lowercase : Any = self.transformer(inputs_embeds=__a , labels=__a , attention_mask=__a ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase ( self : Any , __a : int , __a : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(__a , self.prefix_length , dtype=torch.intaa , device=__a ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] ) -> str: """simple docstring""" return self.encode_prefix(__a ) @torch.no_grad() def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = torch.split(__a , 1 , dim=0 ) __lowercase : List[Any] = [] __lowercase : int = [] for feature in features: __lowercase : Optional[Any] = self.decode_prefix(feature.to(__a ) ) # back to the clip feature # Only support beam search for now __lowercase , __lowercase : int = self.generate_beam( input_embeds=__a , device=__a , eos_token_id=__a ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __lowercase : Any = torch.stack(__a ) __lowercase : Union[str, Any] = torch.stack(__a ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : List[Any]=None , __a : Any=None , __a : int = 5 , __a : int = 67 , __a : float = 1.0 , __a : Optional[int] = None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = eos_token_id __lowercase : Dict = None __lowercase : Dict = None __lowercase : int = torch.ones(__a , device=__a , dtype=torch.int ) __lowercase : List[str] = torch.zeros(__a , device=__a , dtype=torch.bool ) if input_embeds is not None: __lowercase : Optional[Any] = input_embeds else: __lowercase : List[str] = self.transformer.transformer.wte(__a ) for i in range(__a ): __lowercase : Union[str, Any] = self.transformer(inputs_embeds=__a ) __lowercase : int = outputs.logits __lowercase : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __lowercase : List[str] = logits.softmax(-1 ).log() if scores is None: __lowercase , __lowercase : int = logits.topk(__a , -1 ) __lowercase : Dict = generated.expand(__a , *generated.shape[1:] ) __lowercase , __lowercase : int = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __lowercase : List[Any] = next_tokens else: __lowercase : Union[str, Any] = tokens.expand(__a , *tokens.shape[1:] ) __lowercase : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) else: __lowercase : Any = -float(np.inf ) __lowercase : Tuple = 0 __lowercase : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __lowercase : Dict = scores_sum / seq_lengths[:, None] __lowercase , __lowercase : Optional[int] = scores_sum_average.view(-1 ).topk(__a , -1 ) __lowercase : Tuple = next_tokens // scores_sum.shape[1] __lowercase : Tuple = seq_lengths[next_tokens_source] __lowercase : str = next_tokens % scores_sum.shape[1] __lowercase : str = next_tokens.unsqueeze(1 ) __lowercase : Optional[int] = tokens[next_tokens_source] __lowercase : str = torch.cat((tokens, next_tokens) , dim=1 ) __lowercase : int = generated[next_tokens_source] __lowercase : Optional[Any] = scores_sum_average * seq_lengths __lowercase : List[str] = is_stopped[next_tokens_source] __lowercase : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __lowercase : List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) __lowercase : List[str] = is_stopped + next_tokens.eq(__a ).squeeze() if is_stopped.all(): break __lowercase : str = scores / seq_lengths __lowercase : Any = scores.argsort(descending=__a ) # tokens tensors are already padded to max_seq_length __lowercase : Any = [tokens[i] for i in order] __lowercase : Any = torch.stack(__a , dim=0 ) __lowercase : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = int(number**0.5 ) return number == sq * sq def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> tuple[int, int]: """simple docstring""" __UpperCamelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __UpperCamelCase = x_den * y_den * z_den __UpperCamelCase = gcd(_lowercase , _lowercase ) top //= hcf bottom //= hcf return top, bottom def _A ( _lowercase = 35 ) -> int: """simple docstring""" __UpperCamelCase = set() __UpperCamelCase = 42 __UpperCamelCase = Fraction(0 ) __UpperCamelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __UpperCamelCase = x_num * y_den + x_den * y_num __UpperCamelCase = x_den * y_den __UpperCamelCase = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCamelCase = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 __UpperCamelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __UpperCamelCase = x_den * x_den * y_den * y_den if is_sq(_lowercase ) and is_sq(_lowercase ): __UpperCamelCase = int(sqrt(_lowercase ) ) __UpperCamelCase = int(sqrt(_lowercase ) ) __UpperCamelCase = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCamelCase = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=-1 __UpperCamelCase = x_num * y_num __UpperCamelCase = x_den * y_num + x_num * y_den __UpperCamelCase = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCamelCase = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) # n=2 __UpperCamelCase = x_num * x_num * y_num * y_num __UpperCamelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowercase ) and is_sq(_lowercase ): __UpperCamelCase = int(sqrt(_lowercase ) ) __UpperCamelCase = int(sqrt(_lowercase ) ) __UpperCamelCase = gcd(_lowercase , _lowercase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __UpperCamelCase = add_three( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) unique_s.add(_lowercase ) for num, den in unique_s: total += Fraction(_lowercase , _lowercase ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : List[Any] = tempfile.mkdtemp() UpperCAmelCase_ : Any = BlipImageProcessor() UpperCAmelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_ : List[Any] = BlipaProcessor(lowerCamelCase_ ,lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def A__ ( self: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ).tokenizer def A__ ( self: str ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ).image_processor def A__ ( self: Union[str, Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[str] ) -> List[str]: UpperCAmelCase_ : List[str] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCamelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : int = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : Any = self.get_image_processor(do_normalize=lowerCamelCase_ ,padding_value=1.0 ) UpperCAmelCase_ : List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=lowerCamelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(lowerCamelCase_ ,return_tensors="""np""" ) UpperCAmelCase_ : Any = processor(images=lowerCamelCase_ ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def A__ ( self: List[str] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = BlipaProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """lower newer""" UpperCAmelCase_ : int = processor(text=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = tokenizer(lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def A__ ( self: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : int = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BlipaProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """lower newer""" UpperCAmelCase_ : str = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = processor(text=lowerCamelCase_ ,images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def A__ ( self: int ) -> str: UpperCAmelCase_ : List[Any] = self.get_image_processor() UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = BlipaProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : int = processor.batch_decode(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Tuple ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BlipaProcessor(tokenizer=lowerCamelCase_ ,image_processor=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """lower newer""" UpperCAmelCase_ : Optional[int] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = processor(text=lowerCamelCase_ ,images=lowerCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
59
def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' def count_of_possible_combinations(_a : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a : int , _a : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] UpperCAmelCase_ : Any = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) UpperCAmelCase_ : Dict = answer return answer UpperCAmelCase_ : Tuple = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def lowerCamelCase_ ( _a : int , _a : list[int] , _a : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = [0] * (target + 1) UpperCAmelCase_ : Tuple = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = 3 UpperCamelCase_ = 5 UpperCamelCase_ = [1, 2, 5] print(combination_sum_iv(n, array, target))
59
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a ( lowercase__ ): """simple docstring""" a : List[str] = 'MCTCTFeatureExtractor' a : str = 'AutoTokenizer' def __init__( self : Tuple , __lowercase : int , __lowercase : Dict ) -> Any: super().__init__(__lowercase , __lowercase ) __UpperCAmelCase : Optional[Any] = self.feature_extractor __UpperCAmelCase : Optional[int] = False def __call__( self : int , *__lowercase : Tuple , **__lowercase : Optional[int] ) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __UpperCAmelCase : Dict = kwargs.pop("""raw_speech""" ) else: __UpperCAmelCase : Dict = kwargs.pop("""audio""" , __lowercase ) __UpperCAmelCase : List[str] = kwargs.pop("""sampling_rate""" , __lowercase ) __UpperCAmelCase : Tuple = kwargs.pop("""text""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Tuple = args[0] __UpperCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __UpperCAmelCase : Tuple = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: __UpperCAmelCase : str = self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: __UpperCAmelCase : Dict = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self : Optional[Any] , *__lowercase : List[Any] , **__lowercase : int ) -> List[Any]: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCAmelCase ( self : Optional[int] , *__lowercase : Optional[Any] , **__lowercase : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase ) __UpperCAmelCase : Optional[int] = kwargs.pop("""input_features""" , __lowercase ) __UpperCAmelCase : Optional[Any] = kwargs.pop("""labels""" , __lowercase ) if len(__lowercase ) > 0: __UpperCAmelCase : Union[str, Any] = args[0] __UpperCAmelCase : str = args[1:] if input_features is not None: __UpperCAmelCase : Any = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) if labels is not None: __UpperCAmelCase : Union[str, Any] = self.tokenizer.pad(__lowercase , **__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: __UpperCAmelCase : Any = labels["""input_ids"""] return input_features def UpperCAmelCase ( self : Any , *__lowercase : Union[str, Any] , **__lowercase : Dict ) -> List[Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @contextmanager def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __UpperCAmelCase : Any = True __UpperCAmelCase : Optional[int] = self.tokenizer yield __UpperCAmelCase : List[Any] = self.feature_extractor __UpperCAmelCase : int = False
114
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Dict = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class a ( lowercase__ ): """simple docstring""" a : int = 't5' a : Dict = ['past_key_values'] a : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str , __lowercase : Optional[int]=32128 , __lowercase : Optional[int]=512 , __lowercase : int=64 , __lowercase : Any=2048 , __lowercase : Tuple=6 , __lowercase : Tuple=None , __lowercase : int=8 , __lowercase : List[Any]=32 , __lowercase : Dict=128 , __lowercase : Optional[int]=0.1 , __lowercase : int=1e-6 , __lowercase : List[str]=1.0 , __lowercase : List[str]="relu" , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : Tuple=0 , __lowercase : List[str]=1 , **__lowercase : Any , ) -> str: __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Union[str, Any] = d_kv __UpperCAmelCase : Union[str, Any] = d_ff __UpperCAmelCase : int = num_layers __UpperCAmelCase : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __UpperCAmelCase : Dict = num_heads __UpperCAmelCase : List[Any] = relative_attention_num_buckets __UpperCAmelCase : List[str] = relative_attention_max_distance __UpperCAmelCase : Union[str, Any] = dropout_rate __UpperCAmelCase : List[str] = layer_norm_epsilon __UpperCAmelCase : str = initializer_factor __UpperCAmelCase : Dict = feed_forward_proj __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : List[Any] = self.feed_forward_proj.split("""-""" ) __UpperCAmelCase : Tuple = act_info[-1] __UpperCAmelCase : int = act_info[0] == """gated""" if len(__lowercase ) > 1 and act_info[0] != "gated" or len(__lowercase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __UpperCAmelCase : Dict = """gelu_new""" super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , **__lowercase , ) class a ( lowercase__ ): """simple docstring""" @property def UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: __UpperCAmelCase : Union[str, Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __UpperCAmelCase : List[Any] = """past_encoder_sequence + sequence""" __UpperCAmelCase : Optional[int] = {0: """batch"""} __UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} __UpperCAmelCase : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction="""inputs""" ) return common_inputs @property def UpperCAmelCase ( self : int ) -> int: return 13
114
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a ( unittest.TestCase ): def __lowerCamelCase ( self :int ): snake_case__ : Dict = tempfile.mkdtemp() snake_case__ : List[str] = SamImageProcessor() snake_case__ : str = SamProcessor(__lowercase ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Tuple ,**__lowercase :List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowercase ).image_processor def __lowerCamelCase ( self :Any ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] snake_case__ : Optional[Any] = [Image.fromarray(np.moveaxis(__lowercase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : List[str] = self.get_image_processor(do_normalize=__lowercase ,padding_value=1.0 ) snake_case__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=__lowercase ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowercase ) def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : Tuple = SamProcessor(image_processor=__lowercase ) snake_case__ : List[str] = self.prepare_image_inputs() snake_case__ : List[Any] = image_processor(__lowercase ,return_tensors='''np''' ) snake_case__ : int = processor(images=__lowercase ,return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) @require_torch def __lowerCamelCase ( self :List[Any] ): snake_case__ : Dict = self.get_image_processor() snake_case__ : Optional[int] = SamProcessor(image_processor=__lowercase ) snake_case__ : str = [torch.ones((1, 3, 5, 5) )] snake_case__ : Union[str, Any] = [[1_7_6_4, 2_6_4_6]] snake_case__ : Tuple = [[6_8_3, 1_0_2_4]] snake_case__ : Optional[Any] = processor.post_process_masks(__lowercase ,__lowercase ,__lowercase ) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) snake_case__ : int = processor.post_process_masks( __lowercase ,torch.tensor(__lowercase ) ,torch.tensor(__lowercase ) ) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np snake_case__ : List[str] = [np.ones((1, 3, 5, 5) )] snake_case__ : int = processor.post_process_masks(__lowercase ,np.array(__lowercase ) ,np.array(__lowercase ) ) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) snake_case__ : int = [[1, 0], [0, 1]] with self.assertRaises(__lowercase ): snake_case__ : List[str] = processor.post_process_masks(__lowercase ,np.array(__lowercase ) ,np.array(__lowercase ) ) @require_vision @require_tf class a ( unittest.TestCase ): def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : int = tempfile.mkdtemp() snake_case__ : List[str] = SamImageProcessor() snake_case__ : Dict = SamProcessor(__lowercase ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Union[str, Any] ,**__lowercase :List[str] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowercase ).image_processor def __lowerCamelCase ( self :Optional[int] ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] snake_case__ : int = [Image.fromarray(np.moveaxis(__lowercase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self :List[str] ): snake_case__ : Any = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[int] = self.get_image_processor(do_normalize=__lowercase ,padding_value=1.0 ) snake_case__ : Tuple = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=__lowercase ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowercase ) def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : Tuple = SamProcessor(image_processor=__lowercase ) snake_case__ : int = self.prepare_image_inputs() snake_case__ : Optional[Any] = image_processor(__lowercase ,return_tensors='''np''' ) snake_case__ : Optional[Any] = processor(images=__lowercase ,return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) @require_tf def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Dict = self.get_image_processor() snake_case__ : Optional[Any] = SamProcessor(image_processor=__lowercase ) snake_case__ : Optional[int] = [tf.ones((1, 3, 5, 5) )] snake_case__ : List[Any] = [[1_7_6_4, 2_6_4_6]] snake_case__ : List[Any] = [[6_8_3, 1_0_2_4]] snake_case__ : int = processor.post_process_masks(__lowercase ,__lowercase ,__lowercase ,return_tensors='''tf''' ) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) snake_case__ : int = processor.post_process_masks( __lowercase ,tf.convert_to_tensor(__lowercase ) ,tf.convert_to_tensor(__lowercase ) ,return_tensors='''tf''' ,) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np snake_case__ : Tuple = [np.ones((1, 3, 5, 5) )] snake_case__ : Optional[int] = processor.post_process_masks( __lowercase ,np.array(__lowercase ) ,np.array(__lowercase ) ,return_tensors='''tf''' ) self.assertEqual(masks[0].shape ,(1, 3, 1_7_6_4, 2_6_4_6) ) snake_case__ : int = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case__ : Optional[Any] = processor.post_process_masks( __lowercase ,np.array(__lowercase ) ,np.array(__lowercase ) ,return_tensors='''tf''' ) @require_vision @require_torchvision class a ( unittest.TestCase ): def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = tempfile.mkdtemp() snake_case__ : str = SamImageProcessor() snake_case__ : List[str] = SamProcessor(__lowercase ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Any ,**__lowercase :List[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowercase ).image_processor def __lowerCamelCase ( self :Optional[Any] ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self :Any ): snake_case__ : Dict = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] snake_case__ : Dict = [Image.fromarray(np.moveaxis(__lowercase ,0 ,-1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __lowerCamelCase ( self :str ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : str = SamProcessor(image_processor=__lowercase ) snake_case__ : Union[str, Any] = np.random.randint(0 ,2 ,size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case__ : Any = [tf.convert_to_tensor(__lowercase )] snake_case__ : Tuple = [torch.tensor(__lowercase )] snake_case__ : List[Any] = [[1_7_6_4, 2_6_4_6]] snake_case__ : str = [[6_8_3, 1_0_2_4]] snake_case__ : List[Any] = processor.post_process_masks( __lowercase ,__lowercase ,__lowercase ,return_tensors='''tf''' ) snake_case__ : Optional[int] = processor.post_process_masks( __lowercase ,__lowercase ,__lowercase ,return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : str = self.get_image_processor() snake_case__ : Optional[Any] = SamProcessor(image_processor=__lowercase ) snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Union[str, Any] = image_processor(__lowercase ,return_tensors='''pt''' )['''pixel_values'''].numpy() snake_case__ : Any = processor(images=__lowercase ,return_tensors='''pt''' )['''pixel_values'''].numpy() snake_case__ : Dict = image_processor(__lowercase ,return_tensors='''tf''' )['''pixel_values'''].numpy() snake_case__ : str = processor(images=__lowercase ,return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(__lowercase ,__lowercase ) ) self.assertTrue(np.allclose(__lowercase ,__lowercase ) ) self.assertTrue(np.allclose(__lowercase ,__lowercase ) )
44
from sklearn.metrics import mean_squared_error import datasets A__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] ,) def __lowerCamelCase ( self :Tuple ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Any=None ,__lowercase :List[str]="uniform_average" ,__lowercase :List[Any]=True ): snake_case__ : Union[str, Any] = mean_squared_error( __lowercase ,__lowercase ,sample_weight=__lowercase ,multioutput=__lowercase ,squared=__lowercase ) return {"mse": mse}
44
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 600851475143 ): '''simple docstring''' try: UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase__ = 2 UpperCAmelCase__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase__ = i while n % i == 0: UpperCAmelCase__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
346
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
346
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Optional[int] = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class __snake_case ( a ): UpperCAmelCase__ : str = '''switch_transformers''' UpperCAmelCase__ : Tuple = ['''past_key_values'''] UpperCAmelCase__ : Any = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : str , _snake_case : str=32128 , _snake_case : str=768 , _snake_case : str=64 , _snake_case : Optional[Any]=2048 , _snake_case : Any=64 , _snake_case : Dict=12 , _snake_case : Optional[int]=3 , _snake_case : List[str]=12 , _snake_case : List[Any]=3 , _snake_case : Tuple=12 , _snake_case : List[Any]=8 , _snake_case : Tuple=False , _snake_case : Optional[Any]=0.0_1 , _snake_case : int="float32" , _snake_case : str=False , _snake_case : int=32 , _snake_case : List[Any]=128 , _snake_case : str=0.1 , _snake_case : Optional[Any]=1e-6 , _snake_case : Tuple=0.0_0_1 , _snake_case : Optional[int]=0.0_0_1 , _snake_case : List[Any]=1.0 , _snake_case : Tuple="relu" , _snake_case : List[str]=True , _snake_case : Dict=False , _snake_case : int=True , _snake_case : List[str]=0 , _snake_case : Any=1 , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_sparse_encoder_layers UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCAmelCase_ = self.num_layers // self.num_sparse_encoder_layers else: UpperCAmelCase_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCAmelCase_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCAmelCase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = num_experts UpperCAmelCase_ = expert_capacity UpperCAmelCase_ = router_bias UpperCAmelCase_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") UpperCAmelCase_ = router_dtype UpperCAmelCase_ = router_ignore_padding_tokens UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = add_router_probs UpperCAmelCase_ = router_z_loss_coef UpperCAmelCase_ = router_aux_loss_coef UpperCAmelCase_ = self.feed_forward_proj.split('''-''') UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == '''gated''' if len(_snake_case) > 1 and act_info[0] != "gated" or len(_snake_case) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = '''gelu_new''' super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , **_snake_case , )
7
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case_ : Union[str, Any] = logging.get_logger(__name__) class __snake_case : def __init__( self : int , _snake_case : List[Any] , _snake_case : Tuple): """simple docstring""" UpperCAmelCase_ = question_encoder UpperCAmelCase_ = generator UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Union[str, Any] , _snake_case : Optional[int]): """simple docstring""" if os.path.isfile(_snake_case): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""") os.makedirs(_snake_case , exist_ok=_snake_case) UpperCAmelCase_ = os.path.join(_snake_case , '''question_encoder_tokenizer''') UpperCAmelCase_ = os.path.join(_snake_case , '''generator_tokenizer''') self.question_encoder.save_pretrained(_snake_case) self.generator.save_pretrained(_snake_case) @classmethod def lowerCamelCase ( cls : Optional[Any] , _snake_case : Optional[Any] , **_snake_case : Optional[int]): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ = kwargs.pop('''config''' , _snake_case) if config is None: UpperCAmelCase_ = RagConfig.from_pretrained(_snake_case) UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''') UpperCAmelCase_ = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''') return cls(question_encoder=_snake_case , generator=_snake_case) def __call__( self : List[Any] , *_snake_case : List[str] , **_snake_case : List[Any]): """simple docstring""" return self.current_tokenizer(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , *_snake_case : str , **_snake_case : Union[str, Any]): """simple docstring""" return self.generator.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : str , *_snake_case : Optional[int] , **_snake_case : Any): """simple docstring""" return self.generator.decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = self.question_encoder def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = self.generator def lowerCamelCase ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[List[str]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : str = "longest" , _snake_case : str = None , _snake_case : bool = True , **_snake_case : Optional[int] , ): """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ = self.current_tokenizer.model_max_length UpperCAmelCase_ = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) UpperCAmelCase_ = labels['''input_ids'''] return model_inputs
7
1
from collections import namedtuple UpperCAmelCase_ = namedtuple('from_to', 'from_ to') UpperCAmelCase_ = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def lowerCamelCase__ ( A__ : float , A__ : str , A__ : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(A__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(A__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
12
from __future__ import annotations class _snake_case : def __init__( self , _a ): __magic_name__ : Optional[Any] = data __magic_name__ : Node | None = None __magic_name__ : Node | None = None def lowerCAmelCase_ ( _snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCAmelCase_ ( _snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCAmelCase_ ( _snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCAmelCase_ ( ) -> None: # Main function for testing. '''simple docstring''' __magic_name__ : int = Node(1 ) __magic_name__ : Union[str, Any] = Node(2 ) __magic_name__ : Tuple = Node(3 ) __magic_name__ : Optional[Any] = Node(4 ) __magic_name__ : Union[str, Any] = Node(5 ) __magic_name__ : Any = Node(6 ) __magic_name__ : int = Node(7 ) __magic_name__ : List[str] = Node(8 ) __magic_name__ : Union[str, Any] = Node(9 ) print(is_full_binary_tree(_snake_case ) ) print(depth_of_tree(_snake_case ) ) print("Tree is: " ) display(_snake_case ) if __name__ == "__main__": main()
281
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): __SCREAMING_SNAKE_CASE = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """sgugger/tiny-distilbert-classification""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , only_pretrain_model=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , torchscript=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # set architectures equal to `None` __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__SCREAMING_SNAKE_CASE , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tinier_bart""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tinier_bart""" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] ) __SCREAMING_SNAKE_CASE = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , save_to_csv=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , """train_time.csv""" ) , env_info_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , """env.csv""" ) , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """env.csv""" ) ).exists() ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(__SCREAMING_SNAKE_CASE : Optional[Any] ): self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """sequential""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """cumulative""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """current""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__SCREAMING_SNAKE_CASE , """log.txt""" ) , log_print=__SCREAMING_SNAKE_CASE , trace_memory_line_by_line=__SCREAMING_SNAKE_CASE , multi_process=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = PyTorchBenchmark(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , """log.txt""" ) ).exists() )
331
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ): '''simple docstring''' lowercase : List[Any] = {} if top_k is not None: lowercase : int = top_k return {}, {}, postprocess_params def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(snake_case ) lowercase : List[Any] = self.image_processor(images=snake_case ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : int = self.model(**snake_case ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: lowercase : Tuple = self.model.config.num_labels if self.framework == "pt": lowercase : str = model_outputs.logits.softmax(-1 )[0] lowercase , lowercase : Dict = probs.topk(snake_case ) elif self.framework == "tf": lowercase : Optional[int] = stable_softmax(model_outputs.logits ,axis=-1 )[0] lowercase : Union[str, Any] = tf.math.top_k(snake_case ,k=snake_case ) lowercase , lowercase : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) lowercase : Tuple = scores.tolist() lowercase : Dict = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case ,snake_case )]
20
0
import string def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: for key in range(len(string.ascii_uppercase ) ): __lowerCamelCase : List[str] = '' for symbol in message: if symbol in string.ascii_uppercase: __lowerCamelCase : str = string.ascii_uppercase.find(lowerCamelCase__ ) __lowerCamelCase : Dict = num - key if num < 0: __lowerCamelCase : Union[str, Any] = num + len(string.ascii_uppercase ) __lowerCamelCase : str = translated + string.ascii_uppercase[num] else: __lowerCamelCase : int = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: __lowerCamelCase : int = input('Encrypted message: ' ) __lowerCamelCase : List[Any] = message.upper() decrypt(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
113
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : str = '''vit_msn''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : int=7_6_8 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : int=1E-06 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2_2_4 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : int=3 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : Tuple = image_size __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : List[str] = qkv_bias
113
1
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__) lowerCAmelCase__ :str = '''▁''' lowerCAmelCase__ :Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ :List[str] = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCAmelCase__ :List[Any] = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCAmelCase__ :List[str] = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } lowerCAmelCase__ :Tuple = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __a ( UpperCAmelCase ): _a : str = ['input_ids'] _a : Union[str, Any] = VOCAB_FILES_NAMES _a : Tuple = PRETRAINED_INIT_CONFIGURATION _a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _a : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="utf8" , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , vocab_file=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = sentencepiece_model_ckpt _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: _UpperCAmelCase = self.load_vocab(filepath=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = {self.sp_model.id_to_piece(_SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} _UpperCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if text is None: return None _UpperCAmelCase = self.tokenize(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = '', [] for i, ch in enumerate(_SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: _UpperCAmelCase = self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = unicodedata.normalize('NFKC' , _SCREAMING_SNAKE_CASE ) if self.is_whitespace(_SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = normalized_text, [], 0 if self.do_lower_case: _UpperCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": _UpperCAmelCase = token[1:] _UpperCAmelCase = text[offset:].index(_SCREAMING_SNAKE_CASE ) + offset _UpperCAmelCase = start + len(_SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) _UpperCAmelCase = end return token_mapping @property def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> str: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in text) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=0.1 ) -> Union[str, Any]: """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: _UpperCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: _UpperCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: _UpperCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: _UpperCAmelCase = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = self.sp_model.SampleEncodeAsPieces(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] for pi, piece in enumerate(_SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(_SCREAMING_SNAKE_CASE ) continue else: continue _UpperCAmelCase = 0 for i, chunk in enumerate(_SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_SCREAMING_SNAKE_CASE ) or self.is_punct(_SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) _UpperCAmelCase = i if len(_SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip() return out_string def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return self.reverse_vocab.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(_SCREAMING_SNAKE_CASE ) + 3) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_SCREAMING_SNAKE_CASE ) == 1: _UpperCAmelCase = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = {} with io.open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = line.rstrip('\n' ) _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return token_to_idx def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _UpperCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) _UpperCAmelCase = token_index writer.write(token + '\n' ) index += 1 _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , 'sentencepiece.bpe.model' ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (vocab_file,)
329
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = ["""input_features"""] def __init__( self , lowerCAmelCase=80 , lowerCAmelCase=16_000 , lowerCAmelCase=160 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=0.0 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =n_fft _lowercase =hop_length _lowercase =chunk_length _lowercase =chunk_length * sampling_rate _lowercase =self.n_samples // hop_length _lowercase =sampling_rate _lowercase =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def A__ ( self , lowerCAmelCase ) -> np.ndarray: '''simple docstring''' _lowercase =spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) _lowercase =log_spec[:, :-1] _lowercase =np.maximum(lowerCAmelCase , log_spec.max() - 8.0 ) _lowercase =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _lowercase =np.array(lowerCAmelCase , np.intaa ) _lowercase =[] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): _lowercase =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _lowercase =padding_value normed_input_values.append(lowerCAmelCase ) else: _lowercase =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "max_length" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase =isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase =is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): _lowercase =np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase =[np.asarray([raw_speech] ).T] _lowercase =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding _lowercase =self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _lowercase =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) _lowercase =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format _lowercase =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) _lowercase =[self._np_extract_fbank_features(lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowerCAmelCase ): _lowercase =[np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: _lowercase =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _lowercase =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: _lowercase =padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' _lowercase =copy.deepcopy(self.__dict__ ) _lowercase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
205
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase__: '''simple docstring''' @property def UpperCamelCase_ ( self ) -> List[Any]: return self.get_dummy_input() @property def UpperCamelCase_ ( self ) -> Any: if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def UpperCamelCase_ ( self , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = 4 _SCREAMING_SNAKE_CASE : Optional[int] = 3_2 _SCREAMING_SNAKE_CASE : List[str] = (3_2, 3_2) _SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : int = torch.device(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = (batch_size, num_channels) + sizes _SCREAMING_SNAKE_CASE : List[str] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = {"hidden_states": hidden_states} if include_temb: _SCREAMING_SNAKE_CASE : Tuple = 1_2_8 _SCREAMING_SNAKE_CASE : Tuple = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase ) if include_res_hidden_states_tuple: _SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(1 ) _SCREAMING_SNAKE_CASE : Optional[int] = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ),) if include_encoder_hidden_states: _SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((batch_size, 3_2, 3_2) ).to(__lowerCamelCase ) if include_skip_sample: _SCREAMING_SNAKE_CASE : Dict = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase ) return dummy_input def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[Any] = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": _SCREAMING_SNAKE_CASE : str = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) _SCREAMING_SNAKE_CASE : Dict = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = self.prepare_init_args_and_inputs_for_common() _SCREAMING_SNAKE_CASE : List[str] = self.block_class(**__lowerCamelCase ) unet_block.to(__lowerCamelCase ) unet_block.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = unet_block(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = output[0] self.assertEqual(output.shape , self.output_shape ) _SCREAMING_SNAKE_CASE : Optional[Any] = output[0, -1, -3:, -3:] _SCREAMING_SNAKE_CASE : Tuple = torch.tensor(__lowerCamelCase ).to(__lowerCamelCase ) assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5E-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.prepare_init_args_and_inputs_for_common() _SCREAMING_SNAKE_CASE : Dict = self.block_class(**__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() _SCREAMING_SNAKE_CASE : str = model(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = output[0] _SCREAMING_SNAKE_CASE : Optional[Any] = torch.device(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = randn_tensor(output.shape , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) loss.backward()
325
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
1
from __future__ import annotations from typing import Any def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' create_state_space_tree(snake_case_ , [] , 0 ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if index == len(snake_case_ ): print(snake_case_ ) return create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case_ , snake_case_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowercase_ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
133
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Optional[Any] = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : int = "roberta" def __init__( self : Dict , snake_case__ : Tuple=50_265 , snake_case__ : str=768 , snake_case__ : Tuple=12 , snake_case__ : Tuple=12 , snake_case__ : Union[str, Any]=3_072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : int=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=512 , snake_case__ : List[str]=2 , snake_case__ : str=0.02 , snake_case__ : int=1e-12 , snake_case__ : List[str]=1 , snake_case__ : Any=0 , snake_case__ : int=2 , snake_case__ : List[Any]="absolute" , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=None , **snake_case__ : Dict , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase__ ): @property def UpperCamelCase ( self : List[Any] ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
133
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Namespace) -> Any: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name) lowercase : Optional[Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowerCamelCase__ ( a_): '''simple docstring''' @staticmethod def _lowerCamelCase ( a :Optional[int] ) -> Optional[Any]: __UpperCamelCase : List[Any] = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=a , required=a , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=a , required=a , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=a , required=a , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=a , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=a , default=a , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=a ) def __init__( self :int , a :Dict , a :List[str] , a :List[Any] , a :Optional[int] , a :Any , *a :Optional[int] , ) -> List[Any]: __UpperCamelCase : Optional[Any] = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'Loading model {model_type}' ) __UpperCamelCase : int = model_type __UpperCamelCase : Optional[int] = tf_checkpoint __UpperCamelCase : Optional[int] = pytorch_dump_output __UpperCamelCase : Dict = config __UpperCamelCase : str = finetuning_task_name def _lowerCamelCase ( self :Tuple ) -> Union[str, Any]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) if "ckpt" in self._tf_checkpoint.lower(): __UpperCamelCase : int = self._tf_checkpoint __UpperCamelCase : Tuple = "" else: __UpperCamelCase : List[Any] = self._tf_checkpoint __UpperCamelCase : str = "" convert_transfo_xl_checkpoint_to_pytorch( a , self._config , self._pytorch_dump_output , a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : List[Any] = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
151
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return " ".join( ''''''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
105
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowercase = '''bert-base-cased''' __lowercase = '''google/pegasus-xsum''' __lowercase = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __lowercase = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = '''sshleifer/tiny-marian-en-de''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.source""" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.target""" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :List[Any] = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Optional[int] = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :int = 4 __UpperCamelCase :Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCamelCase , __UpperCamelCase :Tuple = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __UpperCamelCase :str = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , ) __UpperCamelCase :Any = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__lowercase , __lowercase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCamelCase :Optional[int] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :int = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Dict = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :Union[str, Any] = 4 __UpperCamelCase :List[str] = LegacySeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=20 , max_target_length=__lowercase , ) __UpperCamelCase :Dict = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') __UpperCamelCase :Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __UpperCamelCase :str = tmp_dir.joinpath('''train.source''').open().readlines() __UpperCamelCase :int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__lowercase , __lowercase , 128 , __lowercase) __UpperCamelCase :Union[str, Any] = {x.name for x in tmp_dir.iterdir()} __UpperCamelCase :int = {x.name for x in save_dir.iterdir()} __UpperCamelCase :Optional[int] = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowercase) < len(__lowercase) assert len(__lowercase) == 1 assert len(packed_examples[0]) == sum(len(__lowercase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCamelCase__ ( self) -> List[Any]: if not FAIRSEQ_AVAILABLE: return __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = self._get_dataset(max_len=64) __UpperCamelCase :Union[str, Any] = 64 __UpperCamelCase :Tuple = ds.make_dynamic_sampler(__lowercase , required_batch_size_multiple=__lowercase) __UpperCamelCase :List[str] = [len(__lowercase) for x in batch_sampler] assert len(set(__lowercase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowercase) == len(__lowercase) # no dropped or added examples __UpperCamelCase :int = DataLoader(__lowercase , batch_sampler=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :List[str] = [] __UpperCamelCase :int = [] for batch in data_loader: __UpperCamelCase :List[Any] = batch['''input_ids'''].shape __UpperCamelCase :Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCamelCase :Optional[int] = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__lowercase) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowercase) assert num_src_per_batch[0] == max(__lowercase) if failures: raise AssertionError(f"""too many tokens in {len(__lowercase)} batches""") def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = self._get_dataset(max_len=512) __UpperCamelCase :Any = 2 __UpperCamelCase :List[Any] = ds.make_sortish_sampler(__lowercase , shuffle=__lowercase) __UpperCamelCase :List[Any] = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :Tuple = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowercase) __UpperCamelCase :int = tokenizer.pad_token_id def count_pad_tokens(__lowercase , __lowercase="input_ids"): return [batch[k].eq(__lowercase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowercase , k='''labels''')) < sum(count_pad_tokens(__lowercase , k='''labels''')) assert sum(count_pad_tokens(__lowercase)) < sum(count_pad_tokens(__lowercase)) assert len(__lowercase) == len(__lowercase) def UpperCamelCase__ ( self , __lowercase=1_000 , __lowercase=128) -> List[Any]: if os.getenv('''USE_REAL_DATA''' , __lowercase): __UpperCamelCase :Optional[Any] = '''examples/seq2seq/wmt_en_ro''' __UpperCamelCase :Dict = max_len * 2 * 64 if not Path(__lowercase).joinpath('''train.len''').exists(): save_len_file(__lowercase , __lowercase) else: __UpperCamelCase :Union[str, Any] = '''examples/seq2seq/test_data/wmt_en_ro''' __UpperCamelCase :Optional[int] = max_len * 4 save_len_file(__lowercase , __lowercase) __UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :List[Any] = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , n_obs=__lowercase , ) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._get_dataset() __UpperCamelCase :List[str] = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowercase)) __UpperCamelCase :Tuple = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowercase)) assert idsa.intersection(__lowercase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) if tok_name == MBART_TINY: __UpperCamelCase :Optional[Any] = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __UpperCamelCase :Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCamelCase :Tuple = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __UpperCamelCase :Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowercase) == 1 if tok_name == BART_TINY else len(__lowercase) == 0
105
1
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[Any] = order # a_{0} ... a_{k} _A: Optional[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} _A: Tuple = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _A: Any = [0.0] * self.order # y[n-1] ... y[n-k] _A: int = [0.0] * self.order def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : list[float] , lowerCAmelCase_ : list[float] ): """simple docstring""" if len(lowerCAmelCase_ ) < self.order: _A: int = [1.0, *a_coeffs] if len(lowerCAmelCase_ ) != self.order + 1: _A: Union[str, Any] = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) != self.order + 1: _A: Any = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCAmelCase_ )}""" ) raise ValueError(lowerCAmelCase_ ) _A: Tuple = a_coeffs _A: Optional[int] = b_coeffs def __magic_name__ ( self : Any , lowerCAmelCase_ : float ): """simple docstring""" _A: str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _A: Tuple = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _A: Optional[Any] = self.input_history[:-1] _A: Any = self.output_history[:-1] _A: Union[str, Any] = sample _A: Dict = result return result
121
from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: List[str] = data _A: Node | None = None _A: Node | None = None def lowerCamelCase__ ( a ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase__ ( a ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase__ ( a ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase__ ( ) -> None: # Main function for testing. _A: Optional[int] = Node(1 ) _A: int = Node(2 ) _A: str = Node(3 ) _A: Union[str, Any] = Node(4 ) _A: Dict = Node(5 ) _A: int = Node(6 ) _A: Optional[Any] = Node(7 ) _A: List[str] = Node(8 ) _A: int = Node(9 ) print(is_full_binary_tree(a ) ) print(depth_of_tree(a ) ) print('''Tree is: ''' ) display(a ) if __name__ == "__main__": main()
121
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCAmelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCAmelCase = { '''allenai/led-base-16384''': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase () -> Union[str, Any]: lowercase :Tuple = ( list(range(ord('''!''') , ord('''~''') + 1)) + list(range(ord('''¡''') , ord('''¬''') + 1)) + list(range(ord('''®''') , ord('''ÿ''') + 1)) ) lowercase :List[Any] = bs[:] lowercase :Dict = 0 for b in range(2**8): if b not in bs: bs.append(a_) cs.append(2**8 + n) n += 1 lowercase :Dict = [chr(a_) for n in cs] return dict(zip(a_ , a_)) def lowerCamelCase (a_ :Union[str, Any]) -> Dict: lowercase :int = set() lowercase :Any = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowercase :Any = char return pairs class __magic_name__ ( __UpperCAmelCase ): __A : Optional[int] = VOCAB_FILES_NAMES __A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : int , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="replace" , snake_case__ : Any="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Optional[Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : List[str]="<unk>" , snake_case__ : str="<pad>" , snake_case__ : Tuple="<mask>" , snake_case__ : Optional[Any]=False , **snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowercase :Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowercase :Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token lowercase :Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowercase :List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowercase :Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase :List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: lowercase :Union[str, Any] = json.load(snake_case__ ) lowercase :Any = {v: k for k, v in self.encoder.items()} lowercase :str = errors # how to handle errors in decoding lowercase :Dict = bytes_to_unicode() lowercase :Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding='''utf-8''' ) as merges_handle: lowercase :Dict = merges_handle.read().split('''\n''' )[1:-1] lowercase :Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase :Dict = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowercase :Any = {} lowercase :Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase :Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __snake_case ( self : Tuple ): '''simple docstring''' return len(self.encoder ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self : List[Any] , snake_case__ : Optional[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] lowercase :List[Any] = tuple(snake_case__ ) lowercase :List[str] = get_pairs(snake_case__ ) if not pairs: return token while True: lowercase :int = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase :Union[str, Any] = bigram lowercase :Union[str, Any] = [] lowercase :List[str] = 0 while i < len(snake_case__ ): try: lowercase :str = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase :List[str] = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase :Optional[int] = tuple(snake_case__ ) lowercase :Tuple = new_word if len(snake_case__ ) == 1: break else: lowercase :Tuple = get_pairs(snake_case__ ) lowercase :Optional[int] = ''' '''.join(snake_case__ ) lowercase :int = word return word def __snake_case ( self : Any , snake_case__ : int ): '''simple docstring''' lowercase :str = [] for token in re.findall(self.pat , snake_case__ ): lowercase :Union[str, Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(''' ''' ) ) return bpe_tokens def __snake_case ( self : Optional[int] , snake_case__ : List[Any] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __snake_case ( self : str , snake_case__ : str ): '''simple docstring''' return self.decoder.get(snake_case__ ) def __snake_case ( self : str , snake_case__ : Tuple ): '''simple docstring''' lowercase :Any = ''''''.join(snake_case__ ) lowercase :Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __snake_case ( self : int , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase :Tuple = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase :str = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) lowercase :Tuple = 0 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase :List[str] = token_index writer.write(''' '''.join(snake_case__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __snake_case ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :Optional[Any] = [self.cls_token_id] lowercase :Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' lowercase :List[Any] = [self.sep_token_id] lowercase :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self : int , snake_case__ : Any , snake_case__ : List[str]=False , **snake_case__ : int ): '''simple docstring''' lowercase :Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): lowercase :Any = ''' ''' + text return (text, kwargs) def __snake_case ( self : Dict , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): '''simple docstring''' lowercase :int = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: lowercase :str = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase :Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase :Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(snake_case__ ) if needs_to_be_padded: lowercase :List[str] = len(snake_case__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase :Union[str, Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase :List[str] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
361
"""simple docstring""" def lowerCamelCase (a_ :int , a_ :int) -> int: while a != 0: lowercase , lowercase :Dict = b % a, a return b def lowerCamelCase (a_ :int , a_ :int) -> int: if gcd(a_ , a_) != 1: lowercase :List[Any] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(a_) lowercase , lowercase , lowercase :List[str] = 1, 0, a lowercase , lowercase , lowercase :int = 0, 1, m while va != 0: lowercase :Union[str, Any] = ua // va lowercase , lowercase , lowercase , lowercase , lowercase , lowercase :Dict = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
0
'''simple docstring''' import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase (__A , __A , __A=0): """simple docstring""" if name is None: _a = None else: _a = '''.''' * max(0 , spaces - 2) + '''# {:''' + str(50 - spaces) + '''s}''' _a = fmt.format(_A) # Print and recurse (if needed). if isinstance(_A , _A): if msg is not None: print(_A) for k in val.keys(): recursive_print(_A , val[k] , spaces + 2) elif isinstance(_A , torch.Tensor): print(_A , ''':''' , val.size()) else: print(_A , ''':''' , _A) def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _a = (num_heads, hidden_size, num_splits) + input_shape[1:] _a = param.view(*_A) _a = param.transpose(0 , 2) _a = param.transpose(1 , 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _a = (num_heads, num_splits, hidden_size) + input_shape[1:] _a = param.view(*_A) _a = param.transpose(0 , 1).contiguous() _a = param.view(*_A) return param def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = {} # old versions did not store training args _a = input_state_dict.get('''args''' , _A) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _a = ds_args.padded_vocab_size _a = ds_args.max_position_embeddings _a = ds_args.hidden_size _a = ds_args.num_layers _a = ds_args.num_attention_heads _a = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _a = config.n_head # The hidden_size per head. _a = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _a = input_state_dict['''checkpoint_version'''] else: _a = 0.0 # The model. _a = input_state_dict['''model'''] # The language model. _a = model['''language_model'''] # The embeddings. _a = lm['''embedding'''] # The word embeddings. _a = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. _a = word_embeddings[: config.vocab_size, :] _a = word_embeddings # The position embeddings. _a = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _a = pos_embeddings.size(0) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''') # Store the position embeddings. _a = pos_embeddings # The transformer. _a = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. _a = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''') # The simple map of names for "automated" rules. _a = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. _a = layer_re.match(_A) # Stop if that's not a layer if m is None: break # The index of the layer. _a = int(m.group(1)) # The name of the operation. _a = m.group(2) # Is it a weight or a bias? _a = m.group(3) # The name of the layer. _a = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm'''): _a = '''ln_1''' if op_name.startswith('''input''') else '''ln_2''' _a = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _a = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa)).view( 1 , 1 , _A , _A) _a = causal_mask # Insert a "dummy" tensor for masked_bias. _a = torch.tensor(-1e4 , dtype=torch.floataa) _a = masked_bias _a = fix_query_key_value_ordering(_A , _A , 3 , _A , _A) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _a = out_val.transpose(0 , 1).contiguous() # Store. _a = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _a = fix_query_key_value_ordering(_A , _A , 3 , _A , _A) # Store. No change of shape. _a = out_val # Transpose the weights. elif weight_or_bias == "weight": _a = megatron_to_transformers[op_name] _a = val.transpose(0 , 1) # Copy the bias. elif weight_or_bias == "bias": _a = megatron_to_transformers[op_name] _a = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _a = transformer['''final_layernorm.weight'''] _a = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. _a = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''') parser.add_argument( '''path_to_checkpoint''' , type=_A , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=_A , help='''An optional config json file describing the pre-trained model.''' , ) _a = parser.parse_args() # Extract the basename. _a = os.path.dirname(args.path_to_checkpoint) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''') if args.path_to_checkpoint.endswith('''.zip'''): with zipfile.ZipFile(args.path_to_checkpoint , '''r''') as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''') as pytorch_dict: _a = torch.load(_A , map_location='''cpu''') else: _a = torch.load(args.path_to_checkpoint , map_location='''cpu''') _a = input_state_dict.get('''args''' , _A) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _a = '''gelu_fast''' elif ds_args.openai_gelu: _a = '''gelu_new''' else: _a = '''gelu''' else: # in the very early days this used to be "gelu_new" _a = '''gelu_new''' # Spell out all parameters in case the defaults change. _a = GPTaConfig( vocab_size=50_257 , n_positions=1_024 , n_embd=1_024 , n_layer=24 , n_head=16 , n_inner=4_096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=50_256 , eos_token_id=50_256 , ) else: _a = GPTaConfig.from_json_file(args.config_file) _a = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''') _a = convert_megatron_checkpoint(_A , _A , _A) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_A , _A) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _a = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _a = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": _a = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''') else: _a = '''gpt2''' _a = AutoTokenizer.from_pretrained(_A) _a = type(_A).__name__ _a = tokenizer_class # Store the config to file. print('''Saving config''') config.save_pretrained(_A) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''') tokenizer.save_pretrained(_A) # Store the state_dict to file. _a = os.path.join(_A , '''pytorch_model.bin''') print(F'''Saving checkpoint to \"{output_checkpoint_file}\"''') torch.save(_A , _A) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
211
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
272
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCamelCase : List[Any] = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=None ) -> Any: snake_case : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case , snake_case : int = True, True snake_case : List[Any] = dfs(lowercase ,lowercase ,lowercase ,lowercase ) return path def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = -1 for i in range(lowercase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case , snake_case : Any = check_circuit_or_path(lowercase ,lowercase ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return snake_case : str = 1 if check == 2: snake_case : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) snake_case : Dict = dfs(lowercase ,lowercase ,lowercase ) print(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case : Optional[int] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case : Tuple = { 1: [], 2: [] # all degree is zero } snake_case : Tuple = 10 check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) if __name__ == "__main__": main()
176
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'switch_transformers' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Dict,lowercase_ : Optional[int]=3_2_1_2_8,lowercase_ : List[Any]=7_6_8,lowercase_ : Union[str, Any]=6_4,lowercase_ : Union[str, Any]=2_0_4_8,lowercase_ : Dict=6_4,lowercase_ : List[Any]=1_2,lowercase_ : Optional[int]=3,lowercase_ : List[Any]=1_2,lowercase_ : Dict=3,lowercase_ : Any=1_2,lowercase_ : Optional[int]=8,lowercase_ : str=False,lowercase_ : Dict=0.01,lowercase_ : Optional[Any]="float32",lowercase_ : Any=False,lowercase_ : str=3_2,lowercase_ : List[Any]=1_2_8,lowercase_ : int=0.1,lowercase_ : Union[str, Any]=1E-6,lowercase_ : Dict=0.001,lowercase_ : List[Any]=0.001,lowercase_ : Dict=1.0,lowercase_ : Optional[int]="relu",lowercase_ : Dict=True,lowercase_ : Union[str, Any]=False,lowercase_ : Union[str, Any]=True,lowercase_ : List[str]=0,lowercase_ : int=1,**lowercase_ : Union[str, Any],)-> Tuple: '''simple docstring''' A__ = vocab_size A__ = d_model A__ = d_kv A__ = d_ff A__ = num_sparse_encoder_layers A__ = num_layers A__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A__ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: A__ = self.num_layers // self.num_sparse_encoder_layers else: A__ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: A__ = self.num_decoder_layers // self.num_sparse_decoder_layers else: A__ = self.num_decoder_layers # HACK: this will create 0 sparse layers A__ = num_heads A__ = num_experts A__ = expert_capacity A__ = router_bias A__ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) A__ = router_dtype A__ = router_ignore_padding_tokens A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = feed_forward_proj A__ = use_cache A__ = add_router_probs A__ = router_z_loss_coef A__ = router_aux_loss_coef A__ = self.feed_forward_proj.split('-' ) A__ = act_info[-1] A__ = act_info[0] == 'gated' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A__ = 'gelu_new' super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,**lowercase_,)
7
from typing import Dict from .base import GenericTensor, Pipeline class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : int,lowercase_ : Dict=None,lowercase_ : Tuple=None,lowercase_ : List[Any]=None,**lowercase_ : Any )-> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) A__ = truncation A__ = tokenize_kwargs A__ = {} if return_tensors is not None: A__ = return_tensors return preprocess_params, {}, postprocess_params def snake_case__ ( self : Dict,lowercase_ : List[Any],**lowercase_ : Tuple )-> Dict[str, GenericTensor]: '''simple docstring''' A__ = self.framework A__ = self.tokenizer(lowercase_,return_tensors=lowercase_,**lowercase_ ) return model_inputs def snake_case__ ( self : Tuple,lowercase_ : int )-> Optional[Any]: '''simple docstring''' A__ = self.model(**lowercase_ ) return model_outputs def snake_case__ ( self : Tuple,lowercase_ : Tuple,lowercase_ : List[str]=False )-> Any: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[Any],*lowercase_ : int,**lowercase_ : Optional[Any] )-> int: '''simple docstring''' return super().__call__(*lowercase_,**lowercase_ )
7
1
"""simple docstring""" def _A ( lowercase ): """simple docstring""" a =len(lowercase ) a =sum(lowercase ) a =[[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): a =True for i in range(1 , s + 1 ): a =False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): a =dp[i][j - 1] if arr[i - 1] <= j: a =dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: a =s - 2 * j break return diff
215
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __A : """simple docstring""" __lowerCAmelCase = 42 # setable values __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , __A , __A ) -> List[str]: return cls(common=__A , init_noise_sigma=__A , timesteps=__A ) @dataclass class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = 42 class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = [e.name for e in FlaxKarrasDiffusionSchedulers] __lowerCAmelCase = 42 @property def SCREAMING_SNAKE_CASE ( self ) -> str: return True @register_to_config def __init__( self , __A = 1000 , __A = 0.0_001 , __A = 0.02 , __A = "linear" , __A = None , __A = "fixed_small" , __A = True , __A = "epsilon" , __A = jnp.floataa , ) -> List[Any]: a =dtype def SCREAMING_SNAKE_CASE ( self , __A = None ) -> DDPMSchedulerState: if common is None: a =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution a =jnp.array(1.0 , dtype=self.dtype ) a =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__A , init_noise_sigma=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None ) -> jnp.ndarray: return sample def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = () ) -> DDPMSchedulerState: a =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 a =(jnp.arange(0 , __A ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__A , timesteps=__A , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=None , __A=None ) -> str: a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample a =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: a =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": a =jnp.clip(__A , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": a =jnp.log(jnp.clip(__A , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": a =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log a =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": a =variance a =state.common.betas[t] a =(predicted_variance + 1) / 2 a =frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A = None , __A = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: a =timestep if key is None: a =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: a , a =jnp.split(__A , sample.shape[1] , axis=1 ) else: a =None # 1. compute alphas, betas a =state.common.alphas_cumprod[t] a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) a =1 - alpha_prod_t a =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": a =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": a =model_output elif self.config.prediction_type == "v_prediction": a =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: a =jnp.clip(__A , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t a =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): a =jax.random.split(__A , num=1 ) a =jax.random.normal(__A , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__A , __A , predicted_variance=__A ) ** 0.5) * noise a =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) a =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__A , state=__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return add_noise_common(state.common , __A , __A , __A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , ) -> jnp.ndarray: return get_velocity_common(state.common , __A , __A , __A ) def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
215
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=A__ ): """simple docstring""" a = ["keras_nlp"] def __init__( self : str , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> int: requires_backends(self , ['''keras_nlp'''] )
314
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _SCREAMING_SNAKE_CASE : Optional[int] = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = set() SCREAMING_SNAKE_CASE__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ = char SCREAMING_SNAKE_CASE__ = set(_A ) return pairs class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , **__lowerCamelCase : Optional[int] , ) -> Union[str, Any]: super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = merges_file SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 self.add_from_file(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ = merges_handle.read().split('''\n''' )[:-1] SCREAMING_SNAKE_CASE__ = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE__ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE__ = {} def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase_ ( self : Dict ) -> str: return len(self.encoder ) def lowercase_ ( self : List[Any] ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : Any , __lowerCamelCase : Any ) -> Any: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = bigram SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE__ = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE__ = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''@@ '''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = word[:-4] SCREAMING_SNAKE_CASE__ = word return word def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = re.findall(r'''\S+\n?''' , __lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase_ ( self : str , __lowerCamelCase : Optional[int] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: return self.decoder.get(__lowerCamelCase , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file , __lowerCamelCase ) return out_vocab_file, out_merge_file def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): try: with open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return SCREAMING_SNAKE_CASE__ = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE__ = lineTmp.strip() SCREAMING_SNAKE_CASE__ = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) SCREAMING_SNAKE_CASE__ = line[:idx] SCREAMING_SNAKE_CASE__ = len(self.encoder )
314
1
from __future__ import annotations def lowerCamelCase_ ( _a ): """simple docstring""" create_state_space_tree(_a , [] , 0 , [0 for i in range(len(_a ) )] ) def lowerCamelCase_ ( _a , _a , _a , _a , ): """simple docstring""" if index == len(_a ): print(_a ) return for i in range(len(_a ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCAmelCase__ : List[Any] = True create_state_space_tree(_a , _a , index + 1 , _a ) current_sequence.pop() lowerCAmelCase__ : Tuple = False lowerCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
211
def lowerCamelCase_ ( _a = 4_000_000 ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = b, a + b return sum(_a ) if __name__ == "__main__": print(f'''{solution() = }''')
211
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase__ : Tuple = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } lowercase__ : Optional[int] = { "Salesforce/codegen-350M-mono": 2048, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = CodeGenTokenizer def __init__( self : Union[str, Any] , __lowercase : Any=None , __lowercase : Any=None , __lowercase : Union[str, Any]=None , __lowercase : Dict="<|endoftext|>" , __lowercase : Dict="<|endoftext|>" , __lowercase : Any="<|endoftext|>" , __lowercase : List[Any]=False , **__lowercase : List[Any] , ): """simple docstring""" super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) if kwargs.pop("add_bos_token" , __lowercase ): snake_case_ = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowercase ) != add_prefix_space: snake_case_ = getattr(__lowercase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**__lowercase ) snake_case_ = add_prefix_space def snake_case__ ( self : Optional[Any] , *__lowercase : Optional[int] , **__lowercase : List[Any] ): """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def snake_case__ ( self : Tuple , *__lowercase : Optional[int] , **__lowercase : Optional[int] ): """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase ) def snake_case__ ( self : Optional[int] , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" snake_case_ = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __lowercase : bool = False , __lowercase : bool = None , __lowercase : Optional[List[str]] = None , **__lowercase : Any , ): """simple docstring""" snake_case_ = super().decode( token_ids=__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) if truncate_before_pattern is not None and len(__lowercase ) > 0: snake_case_ = self.truncate(__lowercase , __lowercase ) return decoded_text def snake_case__ ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : str ): """simple docstring""" def find_re(__lowercase : Tuple , __lowercase : int , __lowercase : int ): snake_case_ = pattern.search(__lowercase , __lowercase ) return m.start() if m else -1 snake_case_ = [re.compile(__lowercase , re.MULTILINE ) for pattern in truncate_before_pattern] snake_case_ = list(re.finditer("^print" , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: snake_case_ = completion[: prints[1].start()] snake_case_ = list(re.finditer("^def" , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: snake_case_ = completion[: defs[1].start()] snake_case_ = 0 snake_case_ = [ pos for pos in [find_re(__lowercase , __lowercase , __lowercase ) for terminal in terminals] if pos != -1 ] if len(__lowercase ) > 0: return completion[: min(__lowercase )] else: return completion
187
from __future__ import annotations def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = str(_A ) return len(_A ) == 9 and set(_A ) == set("123456789" ) def lowerCamelCase__ ( ): '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): snake_case_ = 100002 * base_num if is_9_pandigital(_A ): return candidate for base_num in range(333 , 99 , -1 ): snake_case_ = 1002003 * base_num if is_9_pandigital(_A ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
187
1
def _a ( SCREAMING_SNAKE_CASE_ : int = 10_00 ): return sum(e for e in range(3 , SCREAMING_SNAKE_CASE_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
350
import math def _a ( SCREAMING_SNAKE_CASE_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( SCREAMING_SNAKE_CASE_ : float = 0.1 ): __lowerCAmelCase = 3 __lowerCAmelCase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(SCREAMING_SNAKE_CASE_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
102
0
def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
13
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[Any] = {'vocab_file': 'spiece.model'} a_ : Dict = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } a_ : Tuple = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) a_ : int = 0 a_ : Optional[int] = 1 a_ : int = 2 a_ : Union[str, Any] = 3 a_ : List[str] = 4 class _snake_case ( A__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = '''left''' def __init__( self , a , a=False , a=True , a=False , a="<s>" , a="</s>" , a="<unk>" , a="<sep>" , a="<pad>" , a="<cls>" , a="<mask>" , a=["<eop>", "<eod>"] , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.sp_model) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Tuple: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE__ ( self , a) -> Any: if self.remove_space: SCREAMING_SNAKE_CASE = ' '.join(inputs.strip().split()) else: SCREAMING_SNAKE_CASE = inputs SCREAMING_SNAKE_CASE = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: SCREAMING_SNAKE_CASE = unicodedata.normalize('NFKD' , a) SCREAMING_SNAKE_CASE = ''.join([c for c in outputs if not unicodedata.combining(a)]) if self.do_lower_case: SCREAMING_SNAKE_CASE = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = self.preprocess_text(a) SCREAMING_SNAKE_CASE = self.sp_model.encode(a , out_type=a) SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(a) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: SCREAMING_SNAKE_CASE = cur_pieces[1:] else: SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(a) else: new_pieces.append(a) return new_pieces def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: return self.sp_model.PieceToId(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: return self.sp_model.IdToPiece(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = ''.join(a).replace(a , ' ').strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , a , a = False , a = None , a = True , **a , ) -> str: SCREAMING_SNAKE_CASE = kwargs.pop('use_source_tokenizer' , a) SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(a , skip_special_tokens=a) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a)) SCREAMING_SNAKE_CASE = [] sub_texts.append(a) else: current_sub_text.append(a) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE = ''.join(a) SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE = self.clean_up_tokenization(a) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is not None: return ([0] * len(a)) + [1] + ([0] * len(a)) + [1, 1] return ([0] * len(a)) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a) elif not os.path.isfile(self.vocab_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (out_vocab_file,)
137
0
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase = TypeVar('''KEY''') UpperCamelCase = TypeVar('''VAL''') @dataclass(frozen=UpperCAmelCase_ , slots=UpperCAmelCase_ ) class lowerCAmelCase_ ( Generic[KEY, VAL] ): '''simple docstring''' UpperCamelCase_ : KEY UpperCamelCase_ : VAL class lowerCAmelCase_ ( _Item ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __bool__( self : str ) -> bool: '''simple docstring''' return False UpperCamelCase = _DeletedItem() class lowerCAmelCase_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : float = 0.75 ) -> None: '''simple docstring''' A: Union[str, Any] = initial_block_size A: list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A: int = capacity_factor A: List[Any] = 0 def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : KEY ) -> int: '''simple docstring''' return hash(SCREAMING_SNAKE_CASE_ ) % len(self._buckets ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : KEY , SCREAMING_SNAKE_CASE_ : VAL ) -> bool: '''simple docstring''' A: int = self._buckets[ind] if not stored: A: Union[str, Any] = _Item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self._len += 1 return True elif stored.key == key: A: Any = _Item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return True else: return False def _snake_case ( self : Union[str, Any] ) -> bool: '''simple docstring''' A: Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[Any] ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False A: List[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ) -> None: '''simple docstring''' A: Optional[int] = self._buckets A: Union[str, Any] = [None] * new_size A: Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _snake_case ( self : Tuple ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _snake_case ( self : Tuple ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : KEY ) -> Iterator[int]: '''simple docstring''' A: Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE_ ) for _ in range(len(self._buckets ) ): yield ind A: int = self._get_next_ind(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : KEY , SCREAMING_SNAKE_CASE_ : VAL ) -> None: '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_ ): if self._try_set(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): break def __setitem__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : KEY , SCREAMING_SNAKE_CASE_ : VAL ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __delitem__( self : Any , SCREAMING_SNAKE_CASE_ : KEY ) -> None: '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE_ ) if item is _deleted: continue if item.key == key: A: str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE_ : KEY ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE_ ) def __len__( self : List[Any] ) -> int: '''simple docstring''' return self._len def __iter__( self : Optional[Any] ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' A: Any = ''' ,'''.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
334
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
293
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = XGLMTokenizer __magic_name__ :Any = XGLMTokenizerFast __magic_name__ :Dict = True __magic_name__ :Union[str, Any] = True def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :int = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = '<pad>' lowerCAmelCase__ :int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase__ :int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase__ :Tuple = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCAmelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case ( self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def snake_case ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name ) lowerCAmelCase__ :Dict = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pickle.dumps(__UpperCAmelCase ) pickle.loads(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ :Optional[Any] = self.get_tokenizer() lowerCAmelCase__ :List[str] = self.get_rust_tokenizer() lowerCAmelCase__ :Optional[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Dict = tokenizer.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = self.get_rust_tokenizer() lowerCAmelCase__ :Dict = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'Hello World!' lowerCAmelCase__ :Tuple = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase__ :List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='facebook/xglm-564M' , padding=__UpperCAmelCase , )
293
1
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=6 ,__UpperCamelCase=17 ,__UpperCamelCase=23 ,__UpperCamelCase=11 ,__UpperCamelCase=True ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = parent lowercase_ : str = batch_size lowercase_ : Any = seq_length lowercase_ : List[str] = act_dim lowercase_ : int = state_dim lowercase_ : Dict = hidden_size lowercase_ : int = max_length lowercase_ : int = is_training def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ : List[str] = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ : Dict = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ : Tuple = ids_tensor((self.batch_size, self.seq_length) ,vocab_size=1000 ) lowercase_ : int = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size ,seq_length=self.seq_length ,act_dim=self.act_dim ,state_dim=self.state_dim ,hidden_size=self.hidden_size ,max_length=self.max_length ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : List[Any] = DecisionTransformerModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Tuple = model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) self.parent.assertEqual(result.state_preds.shape ,states.shape ) self.parent.assertEqual(result.action_preds.shape ,actions.shape ) self.parent.assertEqual(result.return_preds.shape ,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : Optional[Any] = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (DecisionTransformerModel,) if is_torch_available() else () lowercase = () lowercase = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowercase = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Dict = DecisionTransformerModelTester(self ) lowercase_ : str = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = DecisionTransformerModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(__UpperCamelCase ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Optional[Any] = [*signature.parameters.keys()] lowercase_ : Tuple = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(__UpperCamelCase )] ,__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = 2 # number of steps of autoregressive prediction we will perform lowercase_ : Any = 10 # defined by the RL environment, may be normalized lowercase_ : Union[str, Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) lowercase_ : List[str] = model.to(__UpperCamelCase ) lowercase_ : Any = model.config torch.manual_seed(0 ) lowercase_ : int = torch.randn(1 ,1 ,config.state_dim ).to(device=__UpperCamelCase ,dtype=torch.floataa ) # env.reset() lowercase_ : List[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] ,device=__UpperCamelCase ) lowercase_ : Any = torch.tensor(__UpperCamelCase ,device=__UpperCamelCase ,dtype=torch.floataa ).reshape(1 ,1 ,1 ) lowercase_ : str = state lowercase_ : Dict = torch.zeros(1 ,0 ,config.act_dim ,device=__UpperCamelCase ,dtype=torch.floataa ) lowercase_ : Any = torch.zeros(1 ,0 ,device=__UpperCamelCase ,dtype=torch.floataa ) lowercase_ : Union[str, Any] = torch.tensor(0 ,device=__UpperCamelCase ,dtype=torch.long ).reshape(1 ,1 ) for step in range(__UpperCamelCase ): lowercase_ : Union[str, Any] = torch.cat([actions, torch.zeros(1 ,1 ,config.act_dim ,device=__UpperCamelCase )] ,dim=1 ) lowercase_ : Tuple = torch.cat([rewards, torch.zeros(1 ,1 ,device=__UpperCamelCase )] ,dim=1 ) lowercase_ : List[Any] = torch.ones(1 ,states.shape[1] ).to(dtype=torch.long ,device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ : Tuple = model( states=__UpperCamelCase ,actions=__UpperCamelCase ,rewards=__UpperCamelCase ,returns_to_go=__UpperCamelCase ,timesteps=__UpperCamelCase ,attention_mask=__UpperCamelCase ,return_dict=__UpperCamelCase ,) self.assertEqual(action_pred.shape ,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] ,expected_outputs[step] ,atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[Any] = ( # env.step(action) torch.randn(1 ,1 ,config.state_dim ).to(device=__UpperCamelCase ,dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ : Optional[int] = action_pred[0, -1] lowercase_ : Optional[Any] = torch.cat([states, state] ,dim=1 ) lowercase_ : str = returns_to_go[0, -1] - reward lowercase_ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 ,1 ,1 )] ,dim=1 ) lowercase_ : int = torch.cat( [timesteps, torch.ones((1, 1) ,device=__UpperCamelCase ,dtype=torch.long ) * (step + 1)] ,dim=1 )
321
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE ="python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=None ): require_version(deps[pkg] , __SCREAMING_SNAKE_CASE )
321
1
from __future__ import annotations from collections.abc import MutableSequence class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : MutableSequence[float] ): if len(__lowerCamelCase ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) UpperCamelCase :list[float] = list(__lowerCamelCase ) UpperCamelCase :Dict = degree def __add__( self : str , __lowerCamelCase : Polynomial ): if self.degree > polynomial_a.degree: UpperCamelCase :List[str] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __lowerCamelCase ) else: UpperCamelCase :Dict = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __lowerCamelCase ) def __sub__( self : int , __lowerCamelCase : Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Any ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[str] , __lowerCamelCase : Polynomial ): UpperCamelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : int | float ): UpperCamelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : List[Any] ): UpperCamelCase :Any = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__lowerCamelCase ) return polynomial def __repr__( self : Optional[Any] ): return self.__str__() def _A ( self : Optional[int] ): UpperCamelCase :list[float] = [0] * self.degree for i in range(self.degree ): UpperCamelCase :List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : int | float = 0 ): UpperCamelCase :list[float] = [0] * (self.degree + 2) UpperCamelCase :List[Any] = constant for i in range(self.degree + 1 ): UpperCamelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __lowerCamelCase ) def __eq__( self : Any , __lowerCamelCase : object ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[Any] , __lowerCamelCase : object ): return not self.__eq__(__lowerCamelCase )
38
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
71
0
def lowerCAmelCase__ ( _a : int ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence snake_case_ : List[str] = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): snake_case_ : Dict = int(sequence[i] , 2 ) return sequence def lowerCAmelCase__ ( _a : int ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] snake_case_ : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits snake_case_ : Any = gray_code_sequence_string(bit_count - 1 ) snake_case_ : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): snake_case_ : str = "0" + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): snake_case_ : Optional[int] = "1" + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
365
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
36
0
"""simple docstring""" import os import pytest from attr import dataclass _UpperCamelCase: Optional[int] = "us-east-1" # defaults region @dataclass class a__ : _lowerCamelCase = 42 _lowerCamelCase = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _lowerCamelCase = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } _lowerCamelCase = {**hyperparameters, """max_steps""": 1_000} @property def lowercase ( self : Dict ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase ( self : Tuple ) -> str: return f'''{self.framework}-transfromers-test''' @property def lowercase ( self : Any ) -> str: return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowercase ( self : List[str] ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowercase : List[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
255
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int= logging.get_logger(__name__) _a : Optional[Any]= { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class UpperCamelCase ( lowercase ): UpperCAmelCase : List[Any] = """lilt""" def __init__(self : Dict , _A : Any=3_05_22 , _A : Union[str, Any]=7_68 , _A : Any=12 , _A : Tuple=12 , _A : Optional[int]=30_72 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : Union[str, Any]=5_12 , _A : Any=2 , _A : Tuple=0.02 , _A : List[str]=1E-12 , _A : Optional[int]=0 , _A : Optional[Any]="absolute" , _A : Any=None , _A : List[Any]=4 , _A : Optional[int]=10_24 , **_A : Union[str, Any] , ) -> Tuple: super().__init__(pad_token_id=_A , **_A) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : List[str] = intermediate_size __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Any = classifier_dropout __snake_case : Optional[int] = channel_shrink_ratio __snake_case : Tuple = max_ad_position_embeddings
172
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = checkpoint A__ = {} A__ = vae_state_dict['''encoder.conv_in.weight'''] A__ = vae_state_dict['''encoder.conv_in.bias'''] A__ = vae_state_dict['''encoder.conv_out.weight'''] A__ = vae_state_dict['''encoder.conv_out.bias'''] A__ = vae_state_dict['''encoder.norm_out.weight'''] A__ = vae_state_dict['''encoder.norm_out.bias'''] A__ = vae_state_dict['''decoder.conv_in.weight'''] A__ = vae_state_dict['''decoder.conv_in.bias'''] A__ = vae_state_dict['''decoder.conv_out.weight'''] A__ = vae_state_dict['''decoder.conv_out.bias'''] A__ = vae_state_dict['''decoder.norm_out.weight'''] A__ = vae_state_dict['''decoder.norm_out.bias'''] A__ = vae_state_dict['''quant_conv.weight'''] A__ = vae_state_dict['''quant_conv.bias'''] A__ = vae_state_dict['''post_quant_conv.weight'''] A__ = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only A__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowerCamelCase_ ) } # Retrieves the keys for the decoder up blocks only A__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowerCamelCase_ ) } for i in range(lowerCamelCase_ ): A__ = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key] if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: A__ = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.weight' ) A__ = vae_state_dict.pop( f'encoder.down.{i}.downsample.conv.bias' ) A__ = renew_vae_resnet_paths(lowerCamelCase_ ) A__ = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) A__ = [key for key in vae_state_dict if '''encoder.mid.block''' in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key] A__ = renew_vae_resnet_paths(lowerCamelCase_ ) A__ = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) A__ = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] A__ = renew_vae_attention_paths(lowerCamelCase_ ) A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) conv_attn_to_linear(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): A__ = num_up_blocks - 1 - i A__ = [ key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key ] if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: A__ = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.weight' ] A__ = vae_state_dict[ f'decoder.up.{block_id}.upsample.conv.bias' ] A__ = renew_vae_resnet_paths(lowerCamelCase_ ) A__ = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) A__ = [key for key in vae_state_dict if '''decoder.mid.block''' in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key] A__ = renew_vae_resnet_paths(lowerCamelCase_ ) A__ = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) A__ = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] A__ = renew_vae_attention_paths(lowerCamelCase_ ) A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , additional_replacements=[meta_path] , config=lowerCamelCase_ ) conv_attn_to_linear(lowerCamelCase_ ) return new_checkpoint def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , ) -> str: '''simple docstring''' A__ = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) A__ = io.BytesIO(r.content ) A__ = OmegaConf.load(lowerCamelCase_ ) A__ = 512 A__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open A__ = {} with safe_open(lowerCamelCase_ , framework='pt' , device='cpu' ) as f: for key in f.keys(): A__ = f.get_tensor(lowerCamelCase_ ) else: A__ = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_ )['''state_dict'''] # Convert the VAE model. A__ = create_vae_diffusers_config(lowerCamelCase_ , image_size=lowerCamelCase_ ) A__ = custom_convert_ldm_vae_checkpoint(lowerCamelCase_ , lowerCamelCase_ ) A__ = AutoencoderKL(**lowerCamelCase_ ) vae.load_state_dict(lowerCamelCase_ ) vae.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") lowercase_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
356
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
282
0
"""simple docstring""" def __a ( ) ->List[str]: a__: Dict = 0 for i in range(1 , 1001 ): total += i**i return str(UpperCamelCase_ )[-10:] if __name__ == "__main__": print(solution())
290
import os from math import logaa def _lowercase ( UpperCamelCase_ = "base_exp.txt" ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCamelCase_ ) , UpperCamelCase_ ) ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = list(map(UpperCamelCase_ , line.split(',' ) ) ) if x * logaa(UpperCamelCase_ ) > largest: SCREAMING_SNAKE_CASE__ = x * logaa(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = i + 1 return result if __name__ == "__main__": print(solution())
176
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> list: '''simple docstring''' lowercase : Dict = len(_UpperCAmelCase ) for i in range(1 , _UpperCAmelCase ): lowercase : Union[str, Any] = collection[i] lowercase : List[str] = 0 lowercase : Optional[int] = i - 1 while low <= high: lowercase : List[str] = (low + high) // 2 if val < collection[mid]: lowercase : List[Any] = mid - 1 else: lowercase : int = mid + 1 for j in range(_UpperCAmelCase , _UpperCAmelCase , -1 ): lowercase : List[str] = collection[j - 1] lowercase : str = val return collection if __name__ == "__main__": _UpperCamelCase: Optional[int] = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase: List[Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
53
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _UpperCamelCase: Any = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
53
1
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase__ ): """simple docstring""" __magic_name__ :Optional[Any] = (EulerDiscreteScheduler,) __magic_name__ :Optional[Any] = 10 def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__lowercase ) return config def snake_case ( self ): '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowercase ) def snake_case ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=__lowercase , beta_end=__lowercase ) def snake_case ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__lowercase ) def snake_case ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.scheduler_classes[0] lowerCAmelCase__ :int = self.get_scheduler_config() lowerCAmelCase__ :Any = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ :Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase__ :Dict = self.dummy_model() lowerCAmelCase__ :Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ :Any = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ :str = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase__ :Tuple = model(__lowercase , __lowercase ) lowerCAmelCase__ :Optional[Any] = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase__ :Optional[Any] = output.prev_sample lowerCAmelCase__ :Any = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase__ :List[Any] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.scheduler_classes[0] lowerCAmelCase__ :Tuple = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ :Optional[int] = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase__ :Any = self.dummy_model() lowerCAmelCase__ :Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ :Optional[Any] = sample.to(__lowercase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ :Union[str, Any] = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase__ :int = model(__lowercase , __lowercase ) lowerCAmelCase__ :Any = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase__ :List[str] = output.prev_sample lowerCAmelCase__ :List[str] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase__ :List[str] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 0.00_02 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.scheduler_classes[0] lowerCAmelCase__ :int = self.get_scheduler_config() lowerCAmelCase__ :Tuple = scheduler_class(**__lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowercase ) lowerCAmelCase__ :Any = torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = self.dummy_model() lowerCAmelCase__ :List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ :Optional[Any] = sample.to(__lowercase ) for t in scheduler.timesteps: lowerCAmelCase__ :str = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase__ :List[str] = model(__lowercase , __lowercase ) lowerCAmelCase__ :str = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase__ :Any = output.prev_sample lowerCAmelCase__ :List[Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase__ :Optional[int] = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 10.08_07 ) < 1E-2 assert abs(result_mean.item() - 0.01_31 ) < 1E-3 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ :Optional[int] = self.get_scheduler_config() lowerCAmelCase__ :Optional[int] = scheduler_class(**__lowercase , use_karras_sigmas=__lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=__lowercase ) lowerCAmelCase__ :Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = self.dummy_model() lowerCAmelCase__ :str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ :Dict = sample.to(__lowercase ) for t in scheduler.timesteps: lowerCAmelCase__ :int = scheduler.scale_model_input(__lowercase , __lowercase ) lowerCAmelCase__ :str = model(__lowercase , __lowercase ) lowerCAmelCase__ :Dict = scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ) lowerCAmelCase__ :Tuple = output.prev_sample lowerCAmelCase__ :List[Any] = torch.sum(torch.abs(__lowercase ) ) lowerCAmelCase__ :str = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1_24.52_29_94_99_51_17_19 ) < 1E-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63 ) < 1E-3
293
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _A , _A , _A , _A , _A=True , _A="pt" ): '''simple docstring''' snake_case_ = {"add_prefix_space": True} if isinstance(_A , _A ) and not line.startswith(" " ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=_A , padding="max_length" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def lowerCamelCase__ ( _A , _A , _A=None , ): '''simple docstring''' snake_case_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple="train" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]="" , ): """simple docstring""" super().__init__() snake_case_ = Path(__lowercase ).joinpath(type_path + ".source" ) snake_case_ = Path(__lowercase ).joinpath(type_path + ".target" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[Any] , __lowercase : Dict ): """simple docstring""" snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip("\n" ) snake_case_ = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer snake_case_ = encode_line(__lowercase , __lowercase , self.max_source_length , "right" ) snake_case_ = encode_line(__lowercase , __lowercase , self.max_target_length , "right" ) snake_case_ = source_inputs["input_ids"].squeeze() snake_case_ = target_inputs["input_ids"].squeeze() snake_case_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( __lowercase : Optional[int] ): """simple docstring""" return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def snake_case__ ( self : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = torch.stack([x["input_ids"] for x in batch] ) snake_case_ = torch.stack([x["attention_mask"] for x in batch] ) snake_case_ = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(__lowercase , __lowercase ) snake_case_ , snake_case_ = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) snake_case_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase__ : str = getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_git_info() save_json(_A , os.path.join(_A , "git_log.json" ) ) def lowerCamelCase__ ( _A , _A , _A=4 , **_A ): '''simple docstring''' with open(_A , "w" ) as f: json.dump(_A , _A , indent=_A , **_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=_A ) snake_case_ = { "repo_id": str(_A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return list(map(_A , _A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with open(_A , "wb" ) as f: return pickle.dump(_A , _A ) def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return re.sub(R"\b(a|an|the)\b" , " " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = normalize_answer(_A ).split() snake_case_ = normalize_answer(_A ).split() snake_case_ = Counter(_A ) & Counter(_A ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert len(_A ) == len(_A ) snake_case_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def lowerCamelCase__ ( _A ): '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = "dropout_rate" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_A ) ) delattr(_A , _A ) continue snake_case_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
187
0
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __A ( a_ :Tuple , a_ :Optional[int] , a_ :Dict , a_ :Union[str, Any]) -> Optional[Any]: __a : Optional[int] = multiprocessing.Manager() __a : List[Any] = manager.list() __a : Union[str, Any] = multiprocessing.Process(target=a_ , args=(check_program, result, timeout)) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append('''timed out''') return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __A ( a_ :int , a_ :Dict , a_ :Optional[int]) -> Union[str, Any]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __a : List[Any] = shutil.rmtree __a : str = os.rmdir __a : Any = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __a : List[str] = {} with swallow_io(): with time_limit(a_): exec(a_ , a_) result.append('''passed''') except TimeoutException: result.append('''timed out''') except BaseException as e: result.append(F"""failed: {e}""") # Needed for cleaning up. __a : str = rmtree __a : List[Any] = rmdir __a : int = chdir @contextlib.contextmanager def __A ( a_ :Tuple) -> Union[str, Any]: def signal_handler(a_ :Optional[int] , a_ :Tuple): raise TimeoutException('''Timed out!''') signal.setitimer(signal.ITIMER_REAL , a_) signal.signal(signal.SIGALRM , a_) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0) @contextlib.contextmanager def __A ( ) -> Optional[Any]: __a : Union[str, Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(a_): with contextlib.redirect_stderr(a_): with redirect_stdin(a_): yield @contextlib.contextmanager def __A ( ) -> List[str]: with tempfile.TemporaryDirectory() as dirname: with chdir(a_): yield dirname class __lowercase ( _UpperCamelCase ): '''simple docstring''' pass class __lowercase ( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise OSError def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise OSError def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): raise OSError def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return False class __lowercase ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCAmelCase = '''stdin''' @contextlib.contextmanager def __A ( a_ :List[str]) -> List[Any]: if root == ".": yield return __a : int = os.getcwd() os.chdir(a_) try: yield except BaseException as exc: raise exc finally: os.chdir(a_) def __A ( a_ :Optional[int]=None) -> Optional[Any]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins __a : Tuple = None __a : Optional[Any] = None import os __a : Optional[int] = '''1''' __a : str = None __a : List[Any] = None __a : Optional[Any] = None __a : Dict = None __a : Optional[int] = None __a : Union[str, Any] = None __a : int = None __a : Any = None __a : Union[str, Any] = None __a : Tuple = None __a : Dict = None __a : int = None __a : Any = None __a : List[Any] = None __a : Any = None __a : List[Any] = None __a : Any = None __a : List[str] = None __a : List[Any] = None __a : int = None __a : str = None __a : List[Any] = None __a : List[str] = None __a : Tuple = None __a : List[Any] = None __a : str = None __a : List[str] = None import shutil __a : str = None __a : str = None __a : Optional[int] = None import subprocess __a : List[str] = None # type: ignore __a : List[Any] = None import sys __a : Optional[int] = None __a : List[str] = None __a : int = None __a : Tuple = None __a : Optional[Any] = None
188
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowercase ( enum.Enum ): '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 2 @add_end_docstrings(_UpperCamelCase ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __a : List[Any] = None if self.model.config.prefix is not None: __a : Tuple = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __a : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __a , __a , __a : Optional[int] = self._sanitize_parameters(prefix=_UpperCAmelCase , **self._forward_params ) __a : Dict = {**self._preprocess_params, **preprocess_params} __a : str = {**self._forward_params, **forward_params} def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): __a : str = {} if prefix is not None: __a : Tuple = prefix if prefix: __a : str = self.tokenizer( _UpperCAmelCase , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=self.framework ) __a : List[str] = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) __a : str = handle_long_generation preprocess_params.update(_UpperCAmelCase ) __a : int = generate_kwargs __a : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __a : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __a : List[Any] = ReturnType.TENSORS if return_type is not None: __a : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: __a : Optional[int] = clean_up_tokenization_spaces if stop_sequence is not None: __a : Any = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) if len(_UpperCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __a : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_UpperCAmelCase , **_UpperCAmelCase ) def __call__( self , _UpperCAmelCase , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase="" , _UpperCAmelCase=None , **_UpperCAmelCase ): __a : Tuple = self.tokenizer( prefix + prompt_text , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=self.framework ) __a : int = prompt_text if handle_long_generation == "hole": __a : str = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __a : Tuple = generate_kwargs['''max_new_tokens'''] else: __a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __a : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __a : int = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): __a : str = model_inputs['''input_ids'''] __a : Dict = model_inputs.get('''attention_mask''' , _UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: __a : str = None __a : List[Any] = None __a : Any = 1 else: __a : List[Any] = input_ids.shape[0] __a : str = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __a : List[str] = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __a : str = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __a : Tuple = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __a : List[str] = self.model.generate(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) __a : int = generated_sequence.shape[0] if self.framework == "pt": __a : Union[str, Any] = generated_sequence.reshape(_UpperCAmelCase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __a : Dict = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=ReturnType.FULL_TEXT , _UpperCAmelCase=True ): __a : Optional[Any] = model_outputs['''generated_sequence'''][0] __a : List[str] = model_outputs['''input_ids'''] __a : Optional[Any] = model_outputs['''prompt_text'''] __a : str = generated_sequence.numpy().tolist() __a : List[Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __a : Union[str, Any] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __a : List[str] = self.tokenizer.decode( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __a : Dict = 0 else: __a : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) ) if return_type == ReturnType.FULL_TEXT: __a : Any = prompt_text + text[prompt_length:] else: __a : Any = text[prompt_length:] __a : Dict = {'''generated_text''': all_text} records.append(_UpperCAmelCase ) return records
188
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @slow def a_ ( self ): snake_case = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) snake_case = AutoTokenizer.from_pretrained('''google/mt5-small''' ) snake_case = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids snake_case = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids snake_case = shift_tokens_right(__snake_case , model.config.pad_token_id , model.config.decoder_start_token_id ) snake_case = model(__snake_case , decoder_input_ids=__snake_case ).logits snake_case = optax.softmax_cross_entropy(__snake_case , onehot(__snake_case , logits.shape[-1] ) ).mean() snake_case = -(labels.shape[-1] * loss.item()) snake_case = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
127
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'mobilenet_v2' def __init__( self , __snake_case=3 , __snake_case=2_2_4 , __snake_case=1.0 , __snake_case=8 , __snake_case=8 , __snake_case=6 , __snake_case=3_2 , __snake_case=True , __snake_case=True , __snake_case="relu6" , __snake_case=True , __snake_case=0.8 , __snake_case=0.02 , __snake_case=0.001 , __snake_case=2_5_5 , **__snake_case , ): super().__init__(**__snake_case ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) snake_case = num_channels snake_case = image_size snake_case = depth_multiplier snake_case = depth_divisible_by snake_case = min_depth snake_case = expand_ratio snake_case = output_stride snake_case = first_layer_is_expansion snake_case = finegrained_output snake_case = hidden_act snake_case = tf_padding snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = semantic_loss_ignore_index class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def a_ ( self ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def a_ ( self ): return 1E-4
127
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ = logging.getLogger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a=None ): super().__init__( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) __a = None def __UpperCAmelCase ( self , _a ): logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually __a = self._infer_socket_ifname() # avoid clash with the NCCL port __a = str(distributed_port + 1 ) __a = dist.new_group(ranks=_a , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __UpperCAmelCase ( self ): return dist.get_rank(group=self.process_group ) == 0 def __UpperCAmelCase ( self , _a , _a , _a=torch.floataa ): __a = torch.empty(_a , dtype=_a ) dist.scatter(_a , src=0 , scatter_list=_a , group=self.process_group ) return target_tensor def __UpperCAmelCase ( self ): __a = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __a = next((addr for addr in addrs if addr.startswith('''e''' )) , _a ) return ifname def __UpperCAmelCase ( self , _a , _a ): # single GPU training if not dist.is_initialized(): __a , __a = self._main_retrieve(_a , _a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a ) # distributed training __a = dist.get_world_size(group=self.process_group ) # gather logic __a = None if self._is_main(): __a = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_a )] dist.gather(torch.tensor(_a ) , dst=0 , gather_list=_a , group=self.process_group ) # scatter logic __a = question_hidden_states.shape[0] __a = [] __a = [] if self._is_main(): assert len(_a ) == world_size __a , __a = self._main_retrieve(torch.cat(_a ).numpy() , _a ) __a , __a = torch.tensor(_a ), torch.tensor(_a ) __a = self._chunk_tensor(_a , _a ) __a = self._chunk_tensor(_a , _a ) __a = self._scattered(_a , [n_queries, n_docs] , target_type=torch.intaa ) __a = self._scattered(_a , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_a )
11
"""simple docstring""" from math import factorial, radians def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 18 , lowerCAmelCase__ : int = 10 ) -> float: __a = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians __a = radians(lowerCAmelCase__ ) __a = angle_in_radians __a = 3 __a = -1 for _ in range(lowerCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase__ ) __a = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __import__("doctest").testmod()
11
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _snake_case = getLogger(__name__) _snake_case = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 8 , SCREAMING_SNAKE_CASE_ = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="summarization" , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowerCamelCase : int = Path(SCREAMING_SNAKE_CASE_ ).open("w" , encoding="utf-8" ) lowerCamelCase : Optional[int] = str(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if fpaa: lowerCamelCase : str = model.half() lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. lowerCamelCase : Tuple = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if prefix is None: lowerCamelCase : Optional[int] = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ): lowerCamelCase : str = [prefix + text for text in examples_chunk] lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="pt" , truncation=SCREAMING_SNAKE_CASE_ , padding="longest" ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase : List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() lowerCamelCase : Tuple = int(time.time() - start_time ) # seconds lowerCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowercase_( ): '''simple docstring''' return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def lowercase_( SCREAMING_SNAKE_CASE_=True ): '''simple docstring''' lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("model_name" , type=SCREAMING_SNAKE_CASE_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=SCREAMING_SNAKE_CASE_ , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=SCREAMING_SNAKE_CASE_ , help="where to save summaries" ) parser.add_argument("--reference_path" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=SCREAMING_SNAKE_CASE_ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help="batch size" ) parser.add_argument( "--n_obs" , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=SCREAMING_SNAKE_CASE_ , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCamelCase , lowerCamelCase : Optional[Any] = parser.parse_known_args() lowerCamelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_ ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) lowerCamelCase : Union[str, Any] = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCamelCase : Union[str, Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) lowerCamelCase : Dict = generate_summaries_or_translations( SCREAMING_SNAKE_CASE_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE_ , ) if args.reference_path is None: return {} # Compute scores lowerCamelCase : List[str] = calculate_bleu if "translation" in args.task else calculate_rouge lowerCamelCase : List[str] = [x.rstrip() for x in open(args.save_path ).readlines()] lowerCamelCase : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE_ )] lowerCamelCase : dict = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) scores.update(SCREAMING_SNAKE_CASE_ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE_ ) if args.info: lowerCamelCase : List[Any] = args.info if verbose: print(SCREAMING_SNAKE_CASE_ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE_ , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
283
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( UpperCamelCase , unittest.TestCase ): '''simple docstring''' __A : List[Any] = BioGptTokenizer __A : Optional[int] = False def _snake_case ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase : str = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : Dict = ["l o 123", "lo w 1456", "e r</w> 1789", ""] lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(__A ) ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Dict = "lower newer" lowerCamelCase : Union[str, Any] = "lower newer" return input_text, output_text def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCamelCase : Optional[int] = "lower" lowerCamelCase : Any = ["low", "er</w>"] lowerCamelCase : List[str] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCamelCase : Union[str, Any] = tokens + ["<unk>"] lowerCamelCase : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowerCamelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=__A ) lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__A ) lowerCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__A , __A ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
283
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class snake_case__ ( unittest.TestCase ): A__ = JukeboxTokenizer A__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def A_ ( self : Any ) -> Dict: '''simple docstring''' import torch __snake_case : List[Any] = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' ) __snake_case : Optional[Any] = tokenizer(**self.metas )['input_ids'] # fmt: off __snake_case : List[str] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A_ ( self : Union[str, Any] ) -> int: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' ) __snake_case : str = tokenizer(**self.metas )['input_ids'] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
0
'''simple docstring''' import math def a_ ( _UpperCAmelCase : int ) -> list: __snake_case : Optional[Any] = [True] * n __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): __snake_case : Optional[int] = i * 2 while index < n: __snake_case : Union[str, Any] = False __snake_case : int = index + i __snake_case : Dict = [2] for i in range(3 ,_UpperCAmelCase ,2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def a_ ( _UpperCAmelCase : int = 99_99_66_66_33_33 ) -> int: __snake_case : List[Any] = math.floor(math.sqrt(_UpperCAmelCase ) ) + 1_00 __snake_case : Tuple = prime_sieve(_UpperCAmelCase ) __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 __snake_case : Optional[int] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : Optional[int] = primes[prime_index + 1] __snake_case : Union[str, Any] = last_prime**2 __snake_case : Dict = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : Dict = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: A_ = None A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } A_ = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } A_ = '''▁''' class lowercase( __a ): '''simple docstring''' lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["input_ids", "attention_mask"] lowercase__ = BarthezTokenizer def __init__( self: Tuple, a_: Union[str, Any]=None, a_: Dict=None, a_: Tuple="<s>", a_: int="</s>", a_: Dict="</s>", a_: Dict="<s>", a_: Any="<unk>", a_: Tuple="<pad>", a_: Tuple="<mask>", **a_: Tuple, ): '''simple docstring''' _snake_case : List[Any] = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token super().__init__( a_, tokenizer_file=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, cls_token=a_, pad_token=a_, mask_token=a_, **a_, ) _snake_case : Optional[int] = vocab_file _snake_case : List[str] = False if not self.vocab_file else True def UpperCamelCase_ ( self: Optional[Any], a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Optional[int] = [self.cls_token_id] _snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self: Tuple, a_: List[int], a_: Optional[List[int]] = None ): '''simple docstring''' _snake_case : str = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self: List[Any], a_: str, a_: Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _snake_case : int = os.path.join( a_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file, a_ ) return (out_vocab_file,)
64
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
0
import argparse import collections import json import os import re import string import sys import numpy as np snake_case : Optional[Any] = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) snake_case : int = None def __lowerCamelCase ( ): """simple docstring""" a :Optional[Any] = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=UpperCAmelCase_ , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=UpperCAmelCase_ , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a :str = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" def remove_articles(UpperCAmelCase_ : Tuple ): return ARTICLES_REGEX.sub(''' ''' , UpperCAmelCase_ ) def white_space_fix(UpperCAmelCase_ : int ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ : Dict ): a :Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase_ ) ) ) ) def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ): """simple docstring""" if not s: return [] return normalize_answer(UpperCAmelCase_ ).split() def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ): """simple docstring""" return int(normalize_answer(UpperCAmelCase_ ) == normalize_answer(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): """simple docstring""" a :str = get_tokens(UpperCAmelCase_ ) a :List[Any] = get_tokens(UpperCAmelCase_ ) a :Dict = collections.Counter(UpperCAmelCase_ ) & collections.Counter(UpperCAmelCase_ ) a :Any = sum(common.values() ) if len(UpperCAmelCase_ ) == 0 or len(UpperCAmelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a :int = 1.0 * num_same / len(UpperCAmelCase_ ) a :Tuple = 1.0 * num_same / len(UpperCAmelCase_ ) a :Any = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :Tuple = {} a :Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a :Tuple = qa['''id'''] a :int = [t for t in qa['''answers''']['''text'''] if normalize_answer(UpperCAmelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a :List[Any] = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue a :str = preds[qid] # Take max over all gold answers a :Optional[int] = max(compute_exact(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) a :List[str] = max(compute_fa(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): """simple docstring""" a :List[Any] = {} for qid, s in scores.items(): a :Optional[int] = na_probs[qid] > na_prob_thresh if pred_na: a :List[str] = float(not qid_to_has_ans[qid] ) else: a :List[str] = s return new_scores def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=None ): """simple docstring""" if not qid_list: a :List[Any] = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: a :Tuple = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): """simple docstring""" for k in new_eval: a :Any = new_eval[k] def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" plt.step(UpperCAmelCase_ , UpperCAmelCase_ , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(UpperCAmelCase_ , UpperCAmelCase_ , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase_ ) plt.savefig(UpperCAmelCase_ ) plt.clf() def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None ): """simple docstring""" a :Any = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) a :Optional[int] = 0.0 a :Optional[Any] = 1.0 a :Union[str, Any] = 0.0 a :Optional[int] = [1.0] a :Optional[int] = [0.0] a :Union[str, Any] = 0.0 for i, qid in enumerate(UpperCAmelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] a :List[str] = true_pos / float(i + 1 ) a :Any = true_pos / float(UpperCAmelCase_ ) if i == len(UpperCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase_ ) recalls.append(UpperCAmelCase_ ) if out_image: plot_pr_curve(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" if out_image_dir and not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) a :str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a :List[str] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) a :Any = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) a :List[Any] = {k: float(UpperCAmelCase_ ) for k, v in qid_to_has_ans.items()} a :Optional[Any] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_exact''' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_f1''' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''pr_oracle''' ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" if not qid_list: return a :Tuple = [na_probs[k] for k in qid_list] a :Dict = np.ones_like(UpperCAmelCase_ ) / float(len(UpperCAmelCase_ ) ) plt.hist(UpperCAmelCase_ , weights=UpperCAmelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(UpperCAmelCase_ , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): """simple docstring""" a :int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a :List[str] = num_no_ans a :List[str] = cur_score a :Dict = 0.0 a :Union[str, Any] = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: a :Tuple = scores[qid] else: if preds[qid]: a :List[Any] = -1 else: a :Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a :Any = cur_score a :Dict = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase_ ), best_thresh def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :str = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a :Optional[Any] = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) a :Dict = best_exact a :Optional[int] = exact_thresh a :List[Any] = best_fa a :Optional[int] = fa_thresh def __lowerCamelCase ( ): """simple docstring""" with open(OPTS.data_file ) as f: a :Dict = json.load(UpperCAmelCase_ ) a :Optional[Any] = dataset_json['''data'''] with open(OPTS.pred_file ) as f: a :List[str] = json.load(UpperCAmelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a :Any = json.load(UpperCAmelCase_ ) else: a :Optional[Any] = {k: 0.0 for k in preds} a :Tuple = make_qid_to_has_ans(UpperCAmelCase_ ) # maps qid to True/False a :Dict = [k for k, v in qid_to_has_ans.items() if v] a :Optional[Any] = [k for k, v in qid_to_has_ans.items() if not v] a :Union[str, Any] = get_raw_scores(UpperCAmelCase_ , UpperCAmelCase_ ) a :Tuple = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) a :Optional[Any] = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) a :Any = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ ) if has_ans_qids: a :Optional[int] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''HasAns''' ) if no_ans_qids: a :Dict = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) else: print(json.dumps(UpperCAmelCase_ , indent=2 ) ) if __name__ == "__main__": snake_case : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
359
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE__ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE__ = 'text_reader' SCREAMING_SNAKE_CASE__ = SpeechTaProcessor SCREAMING_SNAKE_CASE__ = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE__ = SpeechTaHifiGan SCREAMING_SNAKE_CASE__ = ['text'] SCREAMING_SNAKE_CASE__ = ['audio'] def SCREAMING_SNAKE_CASE__ ( self ): if self.post_processor is None: a :List[Any] = '''microsoft/speecht5_hifigan''' super().setup() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=None ): a :Tuple = self.pre_processor(text=_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) a :List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) a :int = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.model.generate_speech(**_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): with torch.no_grad(): return self.post_processor(_lowerCamelCase ).cpu().detach()
281
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self , a__ ) -> Dict: '''simple docstring''' with open(a__ , encoding="utf-8" ) as input_file: snake_case_ = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) snake_case_ = input_file.read() snake_case_ = regexp.search(a__ ) return match def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' with open(a__ , encoding="utf-8" ) as input_file: snake_case_ = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) snake_case_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` snake_case_ = regexp.finditer(a__ ) snake_case_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Path("./datasets" ) snake_case_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(a__ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = Path("./datasets" ) snake_case_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(a__ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
85
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase_ = 'src/diffusers' UpperCamelCase_ = '.' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase_ = spec.loader.load_module() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" return line.startswith(UpperCAmelCase ) or len(UpperCAmelCase ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , UpperCAmelCase ) is not None def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = object_name.split("." ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(UpperCAmelCase ) and not os.path.isfile(os.path.join(UpperCAmelCase , F'''{module}.py''' ) ): i += 1 if i < len(UpperCAmelCase ): a_ = os.path.join(UpperCAmelCase , parts[i] ) if i >= len(UpperCAmelCase ): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(UpperCAmelCase , F'''{module}.py''' ) , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = "" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase ) and re.search(rF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase ): raise ValueError(F''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(UpperCAmelCase ) and _should_continue(lines[line_index] , UpperCAmelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(UpperCAmelCase ) UpperCamelCase_ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') UpperCamelCase_ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') UpperCamelCase_ = re.compile(R'<FILL\s+[^>]*>') def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = code.split("\n" ) a_ = 0 while idx < len(UpperCAmelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCamelCase ( UpperCAmelCase ) ->int: """simple docstring""" a_ = len(get_indent(UpperCAmelCase ) ) > 0 if has_indent: a_ = F'''class Bla:\n{code}''' a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=UpperCAmelCase ) a_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) a_ , a_ = style_docstrings_in_code(UpperCAmelCase ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->str: """simple docstring""" with open(UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(UpperCAmelCase ) a_ = get_indent(UpperCAmelCase ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(UpperCAmelCase ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase ): break a_ = lines[line_index] a_ = _should_continue(UpperCAmelCase , UpperCAmelCase ) and re.search(F'''^{indent}# End copy''' , UpperCAmelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = "".join(UpperCAmelCase ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCAmelCase ) is None] a_ = "\n".join(UpperCAmelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase ) > 0: a_ = replace_pattern.replace("with" , "" ).split("," ) a_ = [_re_replace_pattern.search(UpperCAmelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() , obja.lower() , UpperCAmelCase ) a_ = re.sub(obja.upper() , obja.upper() , UpperCAmelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(UpperCAmelCase ) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase ) return diffs def UpperCamelCase ( UpperCAmelCase = False ) ->int: """simple docstring""" a_ = glob.glob(os.path.join(UpperCAmelCase , "**/*.py" ) , recursive=UpperCAmelCase ) a_ = [] for filename in all_files: a_ = is_copy_consistent(UpperCAmelCase , UpperCAmelCase ) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(UpperCAmelCase ) > 0: a_ = "\n".join(UpperCAmelCase ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
243
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="pt" ) -> int: UpperCAmelCase : int = {"""add_prefix_space""": True} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not line.startswith(""" """ ) else {} UpperCAmelCase : Tuple = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE_ , padding="""max_length""" if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def _snake_case ( UpperCamelCase : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : List[str]=None , ) -> Tuple: UpperCAmelCase : Tuple = input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[int] = Path(_lowercase ).joinpath(type_path + """.source""" ) UpperCAmelCase : List[Any] = Path(_lowercase ).joinpath(type_path + """.target""" ) UpperCAmelCase : List[Any] = self.get_char_lens(self.src_file ) UpperCAmelCase : Any = max_source_length UpperCAmelCase : List[str] = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : Any = prefix if n_obs is not None: UpperCAmelCase : Union[str, Any] = self.src_lens[:n_obs] UpperCAmelCase : int = src_lang UpperCAmelCase : Tuple = tgt_lang def __len__( self ) -> Tuple: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase : List[str] = index + 1 # linecache starts at 1 UpperCAmelCase : int = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip("""\n""" ) UpperCAmelCase : Optional[int] = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip("""\n""" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) UpperCAmelCase : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer UpperCAmelCase : Optional[Any] = encode_line(_lowercase , _lowercase , self.max_source_length , """right""" ) UpperCAmelCase : Optional[Any] = encode_line(_lowercase , _lowercase , self.max_target_length , """right""" ) UpperCAmelCase : Dict = source_inputs["""input_ids"""].squeeze() UpperCAmelCase : Union[str, Any] = target_inputs["""input_ids"""].squeeze() UpperCAmelCase : Dict = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase : Dict = torch.stack([x["""input_ids"""] for x in batch] ) UpperCAmelCase : Any = torch.stack([x["""attention_mask"""] for x in batch] ) UpperCAmelCase : int = torch.stack([x["""decoder_input_ids"""] for x in batch] ) UpperCAmelCase : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) UpperCAmelCase : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) UpperCAmelCase : Optional[int] = trim_batch(_lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) UpperCAmelCase : List[Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch A: List[str] = getLogger(__name__) def _snake_case ( UpperCamelCase : Union[str, Any] ) -> Optional[Any]: return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( UpperCamelCase : int ) -> None: UpperCAmelCase : int = get_git_info() save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , """git_log.json""" ) ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=4 , **UpperCamelCase : int ) -> Tuple: with open(SCREAMING_SNAKE_CASE_ , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( UpperCamelCase : int ) -> int: with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def _snake_case ( ) -> str: UpperCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : int = { """repo_id""": str(SCREAMING_SNAKE_CASE_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> List: return list(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : Tuple ) -> int: with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( UpperCamelCase : Optional[int] ) -> Tuple: def remove_articles(UpperCamelCase : List[Any] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , SCREAMING_SNAKE_CASE_ ) def white_space_fix(UpperCamelCase : int ): return " ".join(text.split() ) def remove_punc(UpperCamelCase : Any ): UpperCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() UpperCAmelCase : str = normalize_answer(SCREAMING_SNAKE_CASE_ ).split() UpperCAmelCase : Union[str, Any] = Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : List[str] = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase : Dict = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : List[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Dict ) -> Tuple: return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Dict ) -> Dict: assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase : Union[str, Any] = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def _snake_case ( UpperCamelCase : Union[str, Any] ) -> Dict: return model_prefix.startswith("""rag""" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : List[str] ) -> Optional[int]: UpperCAmelCase : str = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase : List[str] = """dropout_rate""" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue UpperCAmelCase : Union[str, Any] = p if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return hparams, config
366
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A: int = logging.get_logger(__name__) A: Any = {"vocab_file": "vocab.txt"} A: Optional[int] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } A: Optional[int] = { "YituTech/conv-bert-base": 5_1_2, "YituTech/conv-bert-medium-small": 5_1_2, "YituTech/conv-bert-small": 5_1_2, } A: int = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = ConvBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[int] = strip_accents UpperCAmelCase : List[str] = tokenize_chinese_chars UpperCAmelCase : Dict = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = do_lower_case def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : Dict = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
76
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = KandinskyVaaControlnetPipeline A_ : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'hint'] A_ : Any = ['image_embeds', 'negative_image_embeds', 'hint'] A_ : int = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A_ : Optional[Any] = False @property def _UpperCAmelCase ( self ) -> List[Any]: return 32 @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return 32 @property def _UpperCAmelCase ( self ) -> str: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> List[str]: return 100 @property def _UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def _UpperCAmelCase ( self ) -> Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]: _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create hint _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCAmelCase ) else: _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _a = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _UpperCAmelCase ( self ) -> Any: _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCAmelCase ) _a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Any: _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _a = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 255.0 _a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) _a = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) _a = '''A robot, 4k photo''' _a = torch.Generator(device='''cuda''' ).manual_seed(0 ) _a , _a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = torch.Generator(device='''cuda''' ).manual_seed(0 ) _a = pipeline( image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Dict ): '''simple docstring''' for e in env_keys: UpperCamelCase__ : List[str] =int(os.environ.get(UpperCAmelCase , -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Any=False ): '''simple docstring''' UpperCamelCase__ : List[Any] =os.environ.get(UpperCAmelCase , str(UpperCAmelCase ) ) return strtobool(UpperCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : str="no" ): '''simple docstring''' UpperCamelCase__ : List[str] =os.environ.get(UpperCAmelCase , str(UpperCAmelCase ) ) return value
157
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a : """simple docstring""" def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : int=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=99 , lowercase_ : int=32 , lowercase_ : List[Any]=2 , lowercase_ : Optional[int]=4 , lowercase_ : Dict=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Dict=16 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.0_2 , lowercase_ : Dict=3 , lowercase_ : Optional[int]=4 , lowercase_ : Any=None , ): UpperCamelCase__ : Any =parent UpperCamelCase__ : Any =13 UpperCamelCase__ : int =7 UpperCamelCase__ : Tuple =True UpperCamelCase__ : Dict =True UpperCamelCase__ : int =True UpperCamelCase__ : Tuple =True UpperCamelCase__ : Any =99 UpperCamelCase__ : Any =32 UpperCamelCase__ : Union[str, Any] =2 UpperCamelCase__ : List[Any] =4 UpperCamelCase__ : Any =37 UpperCamelCase__ : Union[str, Any] ='''gelu''' UpperCamelCase__ : Dict =0.1 UpperCamelCase__ : int =0.1 UpperCamelCase__ : Union[str, Any] =512 UpperCamelCase__ : Dict =16 UpperCamelCase__ : List[Any] =2 UpperCamelCase__ : str =0.0_2 UpperCamelCase__ : Optional[Any] =3 UpperCamelCase__ : List[str] =4 UpperCamelCase__ : Optional[int] =None def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Any =None if self.use_input_mask: UpperCamelCase__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : List[Any] =None if self.use_token_type_ids: UpperCamelCase__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : str =None UpperCamelCase__ : Union[str, Any] =None UpperCamelCase__ : str =None if self.use_labels: UpperCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : int =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : str =TFRoFormerModel(config=lowercase_ ) UpperCamelCase__ : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Dict =[input_ids, input_mask] UpperCamelCase__ : Tuple =model(lowercase_ ) UpperCamelCase__ : str =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : List[Any] =TFRoFormerForCausalLM(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Any =model(lowercase_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCAmelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] ): UpperCamelCase__ : str =TFRoFormerForMaskedLM(config=lowercase_ ) UpperCamelCase__ : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[int] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : Tuple =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForSequenceClassification(config=lowercase_ ) UpperCamelCase__ : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =self.num_choices UpperCamelCase__ : Tuple =TFRoFormerForMultipleChoice(config=lowercase_ ) UpperCamelCase__ : Optional[int] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : List[str] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase__ : Tuple =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple ): UpperCamelCase__ : Optional[int] =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForTokenClassification(config=lowercase_ ) UpperCamelCase__ : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : int =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ): UpperCamelCase__ : Dict =TFRoFormerForQuestionAnswering(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : List[str] =model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : Tuple =config_and_inputs UpperCamelCase__ : Any ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =TFRoFormerModelTester(self ) UpperCamelCase__ : Any =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase_ ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : List[str] =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase__ : List[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ : Any =model(lowercase_ )[0] # TODO Replace vocab size UpperCamelCase__ : Union[str, Any] =5_0000 UpperCamelCase__ : Optional[Any] =[1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase__ : Optional[Any] =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : str =tf.constant([[4, 10]] ) UpperCamelCase__ : Dict =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase__ : Any =emba(input_ids.shape ) UpperCamelCase__ : Union[str, Any] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Dict =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) UpperCamelCase__ : int =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase__ : Optional[int] =emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : str ): # 2,12,16,64 UpperCamelCase__ : Optional[int] =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[int] =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase__ : Union[str, Any] =embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase__ , UpperCamelCase__ : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) UpperCamelCase__ : List[str] =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
157
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
270
from __future__ import annotations from statistics import mean def __magic_name__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int ) -> list[int]: __lowerCamelCase = [0] * no_of_processes __lowerCamelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowerCAmelCase ): __lowerCamelCase = burst_time[i] __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCamelCase = [] __lowerCamelCase = -1 for i in range(__lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __lowerCamelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCamelCase = i total_time += burst_time[target_process] completed += 1 __lowerCamelCase = 0 __lowerCamelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __magic_name__ ( __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : list[int] ) -> list[int]: __lowerCamelCase = [0] * no_of_processes for i in range(__lowerCAmelCase ): __lowerCamelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") SCREAMING_SNAKE_CASE__ : Tuple = 4 SCREAMING_SNAKE_CASE__ : Optional[int] = [2, 5, 3, 7] SCREAMING_SNAKE_CASE__ : List[str] = [0, 0, 0, 0] SCREAMING_SNAKE_CASE__ : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F'{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t' F'{waiting_time[i]}\t\t\t\t{turn_around_time[i]}' ) print(F'\nAverage waiting time = {mean(waiting_time):.5f}') print(F'Average turnaround time = {mean(turn_around_time):.5f}')
270
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> List[str]: return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Dict: A: Optional[int] = to_pil_image(__lowercase ) A , A: str = pil_image.size A: str = pytesseract.image_to_data(__lowercase , lang=__lowercase , output_type='''dict''' , config=__lowercase ) A , A , A , A , A: str = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates A: int = [idx for idx, word in enumerate(__lowercase ) if not word.strip()] A: Optional[Any] = [word for idx, word in enumerate(__lowercase ) if idx not in irrelevant_indices] A: Optional[int] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] A: int = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] A: Optional[Any] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] A: Union[str, Any] = [coord for idx, coord in enumerate(__lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format A: List[Any] = [] for x, y, w, h in zip(__lowercase , __lowercase , __lowercase , __lowercase ): A: Union[str, Any] = [x, y, x + w, y + h] actual_boxes.append(__lowercase ) # finally, normalize the bounding boxes A: List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowercase , __lowercase , __lowercase ) ) assert len(__lowercase ) == len(__lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = ["""pixel_values"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : float = 1 / 2_55 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] = None , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "" , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = size if size is not None else {'''height''': 2_24, '''width''': 2_24} A: Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = do_resize A: str = size A: Optional[Any] = resample A: List[str] = do_rescale A: List[Any] = rescale_value A: Dict = do_normalize A: Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD A: Union[str, Any] = apply_ocr A: List[str] = ocr_lang A: Optional[Any] = tesseract_config def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> np.ndarray: '''simple docstring''' A: Any = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) A: List[Any] = (size['''height'''], size['''width''']) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> np.ndarray: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] = None , SCREAMING_SNAKE_CASE_ : Union[float, Iterable[float]] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> PIL.Image.Image: '''simple docstring''' A: int = do_resize if do_resize is not None else self.do_resize A: List[str] = size if size is not None else self.size A: List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = resample if resample is not None else self.resample A: Dict = do_rescale if do_rescale is not None else self.do_rescale A: Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor A: Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A: Optional[Any] = image_mean if image_mean is not None else self.image_mean A: List[str] = image_std if image_std is not None else self.image_std A: int = apply_ocr if apply_ocr is not None else self.apply_ocr A: Any = ocr_lang if ocr_lang is not None else self.ocr_lang A: Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config A: Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. A: Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) A: Any = [] A: Optional[Any] = [] for image in images: A , A: List[Any] = apply_tesseract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) words_batch.append(SCREAMING_SNAKE_CASE_ ) boxes_batch.append(SCREAMING_SNAKE_CASE_ ) if do_resize: A: Any = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: A: Dict = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: A: int = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] A: Tuple = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] A: Any = BatchFeature(data={'''pixel_values''': images} , tensor_type=SCREAMING_SNAKE_CASE_ ) if apply_ocr: A: Optional[Any] = words_batch A: List[str] = boxes_batch return data
334
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger() @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> int: '''simple docstring''' A: List[str] = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_ ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE_ ) [x.remove() for x in self.handles] return self @property def _snake_case ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 0 UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ ) def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]: '''simple docstring''' A: Dict = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized A: Tuple = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) ) A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise Exception( f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while""" f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase = True ) -> Any: print(F"""Converting {name}...""" ) with torch.no_grad(): A: Union[str, Any] = timm.create_model(__lowercase , pretrained=__lowercase ).eval() A: List[str] = ResNetForImageClassification(__lowercase ).eval() A: int = ModuleTransfer(src=__lowercase , dest=__lowercase ) A: List[str] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) assert torch.allclose(from_model(__lowercase ) , our_model(__lowercase ).logits ), "The model logits don't match the original one." A: str = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(__lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) # we can use the convnext one A: Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> List[Any]: A: Union[str, Any] = '''imagenet-1k-id2label.json''' A: Union[str, Any] = 1_0_0_0 A: Optional[int] = (1, num_labels) A: Dict = '''huggingface/label-files''' A: Any = num_labels A: Union[str, Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Optional[int] = {int(__lowercase ): v for k, v in idalabel.items()} A: Optional[int] = idalabel A: List[str] = {v: k for k, v in idalabel.items()} A: str = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) A: Optional[Any] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__lowercase , names_to_config[model_name] , __lowercase , __lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowercase , __lowercase , __lowercase , __lowercase ) return config, expected_shape if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
1
import datasets __A = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" __A = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" __A = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"), }) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str]) ->Union[str, Any]: '''simple docstring''' return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)}
10
'''simple docstring''' class _a : def __init__( self : Any ): '''simple docstring''' UpperCAmelCase = {} # Mapping from char to TrieNode UpperCAmelCase = False def A ( self : int , lowercase : list[str] ): '''simple docstring''' for word in words: self.insert(lowercase ) def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: UpperCAmelCase = TrieNode() UpperCAmelCase = curr.nodes[char] UpperCAmelCase = True def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase = self for char in word: if char not in curr.nodes: return False UpperCAmelCase = curr.nodes[char] return curr.is_leaf def A ( self : str , lowercase : str ): '''simple docstring''' def _delete(lowercase : TrieNode , lowercase : str , lowercase : int ) -> bool: if index == len(lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCAmelCase = False return len(curr.nodes ) == 0 UpperCAmelCase = word[index] UpperCAmelCase = curr.nodes.get(lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCAmelCase = _delete(lowercase , lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowercase , 0 ) def snake_case_ (_a : TrieNode , _a : str ): if node.is_leaf: print(_a , end=''' ''' ) for key, value in node.nodes.items(): print_words(_a , word + key ) def snake_case_ (): UpperCAmelCase = '''banana bananas bandana band apple all beast'''.split() UpperCAmelCase = TrieNode() root.insert_many(_a ) # print_words(root, "") assert all(root.find(_a ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def snake_case_ (_a : str , _a : bool ): print(str(_a ) , '''works!''' if passes else '''doesn\'t work :(''' ) def snake_case_ (): assert test_trie() def snake_case_ (): print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
34
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Union[str, Any] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case__ : Tuple = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ['LayoutLMv2FeatureExtractor'] snake_case__ : Dict = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Tuple = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list , __snake_case : list , __snake_case : int ) -> list: __A : str = len(__snake_case ) __A : Tuple = [[0] * n for i in range(__snake_case )] for i in range(__snake_case ): __A : Optional[int] = y_points[i] for i in range(2 , __snake_case ): for j in range(__snake_case , __snake_case ): __A : Union[str, Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
190
'''simple docstring''' import math import qiskit def _lowerCAmelCase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __A : int = qiskit.QuantumRegister(4 , 'qr' ) __A : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __A : Union[str, Any] = [input_a, input_a, carry_in] __A : Dict = qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits __A : str = qiskit.Aer.get_backend('aer_simulator' ) __A : Any = qiskit.execute(__snake_case , __snake_case , shots=10_00 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
190
1
"""simple docstring""" a = {str(digit): digit**5 for digit in range(10)} def _snake_case ( _snake_case : int ) -> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_snake_case ) ) def _snake_case ( ) -> int: '''simple docstring''' return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_snake_case ) ) if __name__ == "__main__": print(solution())
271
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a = logging.getLogger(__name__) @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str UpperCAmelCase : List[str] UpperCAmelCase : Optional[List[str]] @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : List[int] UpperCAmelCase : List[int] UpperCAmelCase : Optional[List[int]] = None UpperCAmelCase : Optional[List[int]] = None class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = '''train''' UpperCAmelCase : Tuple = '''dev''' UpperCAmelCase : int = '''test''' class lowercase_ : '''simple docstring''' @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : str ): raise NotImplementedError @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Tuple="[SEP]" , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=0 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Any=-100 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=True , ): _A = {label: i for i, label in enumerate(_UpperCAmelCase )} _A = [] for ex_index, example in enumerate(_UpperCAmelCase ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' , _UpperCAmelCase , len(_UpperCAmelCase ) ) _A = [] _A = [] for word, label in zip(example.words , example.labels ): _A = tokenizer.tokenize(_UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_UpperCAmelCase ) > 0: tokens.extend(_UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _A = tokenizer.num_special_tokens_to_add() if len(_UpperCAmelCase ) > max_seq_length - special_tokens_count: _A = tokens[: (max_seq_length - special_tokens_count)] _A = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _A = [sequence_a_segment_id] * len(_UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _A = [cls_token] + tokens _A = [pad_token_label_id] + label_ids _A = [cls_token_segment_id] + segment_ids _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _A = [1 if mask_padding_with_zero else 0] * len(_UpperCAmelCase ) # Zero-pad up to the sequence length. _A = max_seq_length - len(_UpperCAmelCase ) if pad_on_left: _A = ([pad_token] * padding_length) + input_ids _A = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _A = ([pad_token_segment_id] * padding_length) + segment_ids _A = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length assert len(_UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(_UpperCAmelCase ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(_UpperCAmelCase ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(_UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _A = None features.append( InputFeatures( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , label_ids=_UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ): # Load data features from cache or dataset file _A = os.path.join( _UpperCAmelCase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _A = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) _A = torch.load(_UpperCAmelCase ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) _A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _A = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F'''Saving features into cached file {cached_features_file}''' ) torch.save(self.features , _UpperCAmelCase ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : int , _UpperCAmelCase : Union[str, Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase_ : '''simple docstring''' UpperCAmelCase : List[InputFeatures] UpperCAmelCase : int = -100 def __init__( self : int , _UpperCAmelCase : TokenClassificationTask , _UpperCAmelCase : str , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Split = Split.train , ): _A = token_classification_task.read_examples_from_file(_UpperCAmelCase , _UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _A = token_classification_task.convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _A = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _A = tf.data.Dataset.from_generator( _UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowerCAmelCase_ ( self : Dict ): _A = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Dict , _UpperCAmelCase : Optional[int] ): return self.features[i]
271
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None) -> int: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _A : int = None def _lowerCamelCase ( self , __lowerCamelCase) -> List[Any]: logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually _A : Any = self._infer_socket_ifname() # avoid clash with the NCCL port _A : int = str(distributed_port + 1) _A : Tuple = dist.new_group(ranks=__lowerCamelCase , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _lowerCamelCase ( self) -> Optional[Any]: return dist.get_rank(group=self.process_group) == 0 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa) -> Union[str, Any]: _A : Tuple = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group) return target_tensor def _lowerCamelCase ( self) -> List[str]: _A : Any = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _A : Optional[Any] = next((addr for addr in addrs if addr.startswith("e")) , __lowerCamelCase) return ifname def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _A , _A : int = self._main_retrieve(__lowerCamelCase , __lowerCamelCase) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase) # distributed training _A : Tuple = dist.get_world_size(group=self.process_group) # gather logic _A : Optional[Any] = None if self._is_main(): _A : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(__lowerCamelCase)] dist.gather(torch.tensor(__lowerCamelCase) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group) # scatter logic _A : List[str] = question_hidden_states.shape[0] _A : str = [] _A : int = [] if self._is_main(): assert len(__lowerCamelCase) == world_size _A , _A : Tuple = self._main_retrieve(torch.cat(__lowerCamelCase).numpy() , __lowerCamelCase) _A , _A : Tuple = torch.tensor(__lowerCamelCase), torch.tensor(__lowerCamelCase) _A : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase) _A : Any = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase) _A : int = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa) _A : List[str] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase)
11
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "vit_mae" def __init__( self , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=2_2_4 , __lowerCamelCase=1_6 , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=1_6 , __lowerCamelCase=5_1_2 , __lowerCamelCase=8 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=0.7_5 , __lowerCamelCase=False , **__lowerCamelCase , ) -> int: super().__init__(**__lowerCamelCase) _A : int = hidden_size _A : List[str] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : List[Any] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : Union[str, Any] = initializer_range _A : str = layer_norm_eps _A : Any = image_size _A : int = patch_size _A : int = num_channels _A : Dict = qkv_bias _A : Tuple = decoder_num_attention_heads _A : Tuple = decoder_hidden_size _A : List[str] = decoder_num_hidden_layers _A : Optional[Any] = decoder_intermediate_size _A : List[str] = mask_ratio _A : Union[str, Any] = norm_pix_loss
11
1
"""simple docstring""" from __future__ import annotations from typing import Any def _lowerCAmelCase ( UpperCamelCase_ ): create_state_space_tree(_A , [] , 0 ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if index == len(_A ): print(_A ) return create_state_space_tree(_A , _A , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_A , _A , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __magic_name__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
353
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : List[str] = '''xlm-prophetnet''' __lowercase : Dict = ['''past_key_values'''] __lowercase : Any = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 3_0_5_2_2 , lowerCAmelCase__ = 1_0_2_4 , lowerCAmelCase__ = 4_0_9_6 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 4_0_9_6 , lowerCAmelCase__ = 1_2 , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 5_1_2 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 1_2_8 , lowerCAmelCase__ = False , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = True , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 2 , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = num_encoder_layers __SCREAMING_SNAKE_CASE = num_encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = num_decoder_layers __SCREAMING_SNAKE_CASE = num_decoder_attention_heads __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = init_std # Normal(0, this parameter) __SCREAMING_SNAKE_CASE = activation_function # parameters for xlmprophetnet __SCREAMING_SNAKE_CASE = ngram __SCREAMING_SNAKE_CASE = num_buckets __SCREAMING_SNAKE_CASE = relative_max_distance __SCREAMING_SNAKE_CASE = disable_ngram_loss __SCREAMING_SNAKE_CASE = eps # 3 Types of Dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = use_cache super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , add_cross_attention=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) @property def snake_case_ ( self): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def snake_case_ ( self , lowerCAmelCase__): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""")
255
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = JukeboxTokenizer __snake_case = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" import torch a = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) a = tokenizer(**self.metas )['''input_ids'''] # fmt: off a = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def __lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" import torch a = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) a = tokenizer(**self.metas )['''input_ids'''] # fmt: off a = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
0
import math def _a ( a :int ) -> list: a = [True] * n a = False a = False a = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): a = i * 2 while index < n: a = False a = index + i a = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def _a ( a :int = 999_966_663_333 ) -> int: a = math.floor(math.sqrt(a ) ) + 100 a = prime_sieve(a ) a = 0 a = 0 a = primes[prime_index] while (last_prime**2) <= limit: a = primes[prime_index + 1] a = last_prime**2 a = next_prime**2 # Get numbers divisible by lps(current) a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
0
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] ="""naver-clova-ix/donut-base-finetuned-docvqa""" lowercase : Optional[int] =( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase : Dict ="""document_qa""" lowercase : List[Any] =AutoProcessor lowercase : Tuple =VisionEncoderDecoderModel lowercase : Optional[int] =["""image""", """text"""] lowercase : Any =["""text"""] def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase_ :Optional[int] = task_prompt.replace('''{user_input}''' , UpperCamelCase_ ) lowercase_ :List[Any] = self.pre_processor.tokenizer( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors='''pt''' ).input_ids lowercase_ :Dict = self.pre_processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase ( self , UpperCamelCase_ ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase_ , ).sequences def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Any = self.pre_processor.batch_decode(UpperCamelCase_ )[0] lowercase_ :Any = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) lowercase_ :int = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) lowercase_ :Dict = re.sub(R'''<.*?>''' , '''''' , UpperCamelCase_ , count=1 ).strip() # remove first task start token lowercase_ :Dict = self.pre_processor.tokenajson(UpperCamelCase_ ) return sequence["answer"]
252
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _lowerCamelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *lowercase : List[Any] , **lowercase : Optional[int] ): '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
282
from collections.abc import Sequence def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(__lowercase ) ) def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: _snake_case = 0.0 for coeff in reversed(__lowercase ): _snake_case = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : Optional[int] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
282
1
'''simple docstring''' UpperCAmelCase = {} def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on lowerCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one lowerCAmelCase = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 lowerCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter lowerCAmelCase = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , 0 ) lowerCAmelCase = state_late + state_absent + state_ontime lowerCAmelCase = prizestrings return prizestrings def _snake_case ( _SCREAMING_SNAKE_CASE : int = 30 ) -> int: """simple docstring""" return _calculate(_SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
187
'''simple docstring''' class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case( _lowerCAmelCase ): '''simple docstring''' pass class __snake_case: '''simple docstring''' def __init__( self ) -> int: lowerCAmelCase = [ [], [], [], ] def __snake_case ( self , A_ , A_ ) -> None: try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(A_ ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def __snake_case ( self ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self ) -> str: return "\n".join(f'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __snake_case: '''simple docstring''' def __init__( self ) -> Dict: lowerCAmelCase = [] def __snake_case ( self , A_ ) -> None: if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(A_ ) def __snake_case ( self ) -> int: if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(A_ ) return data def __str__( self ) -> str: return str(self.queue ) def _snake_case ( ) -> Tuple: """simple docstring""" lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
187
1
import os import string import sys SCREAMING_SNAKE_CASE : int = 1 << 8 SCREAMING_SNAKE_CASE : int = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE : Tuple = KEYMAP["up"] SCREAMING_SNAKE_CASE : Union[str, Any] = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE : Dict = ord(str(i)) def UpperCamelCase_( ) -> Optional[Any]: if os.name == "nt": import msvcrt _lowercase : Tuple = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowerCamelCase_ ) == 0: # Read the keystroke _lowercase : List[str] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _lowercase : Any = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _lowercase : Any = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(lowerCamelCase_ ) if ord(lowerCamelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _lowercase : int = chr(KEYMAP['esc'] ) except KeyError: _lowercase : Union[str, Any] = cha[1] else: _lowercase : str = ch.decode(lowerCamelCase_ ) else: _lowercase : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _lowercase : str = sys.stdin.fileno() _lowercase : List[str] = termios.tcgetattr(lowerCamelCase_ ) try: tty.setraw(lowerCamelCase_ ) _lowercase : Any = sys.stdin.read(1 ) finally: termios.tcsetattr(lowerCamelCase_ , termios.TCSADRAIN , lowerCamelCase_ ) return ch def UpperCamelCase_( ) -> Dict: _lowercase : List[Any] = get_raw_chars() if ord(lowerCamelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowerCamelCase_ ) == KEYMAP["esc"]: _lowercase : Dict = get_raw_chars() if ord(lowerCamelCase_ ) == KEYMAP["mod_int"]: _lowercase : Union[str, Any] = get_raw_chars() if ord(lowerCamelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCamelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowerCamelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
21
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : int = 32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 , __magic_name__ : str = "bert-base-cased" ) -> Dict: """simple docstring""" UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__magic_name__ ) UpperCamelCase :Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__magic_name__ : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase :List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase :List[Any] = datasets.map( __magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__magic_name__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase :Optional[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__magic_name__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__magic_name__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__magic_name__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase :List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) UpperCamelCase :List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase :Union[str, Any] = config["""lr"""] UpperCamelCase :List[str] = int(config["""num_epochs"""] ) UpperCamelCase :str = int(config["""seed"""] ) UpperCamelCase :Dict = int(config["""batch_size"""] ) UpperCamelCase :Union[str, Any] = args.model_name_or_path set_seed(__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = get_dataloaders(__magic_name__ , __magic_name__ , __magic_name__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase :List[str] = AutoModelForSequenceClassification.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) # Instantiate optimizer UpperCamelCase :Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase :Optional[Any] = optimizer_cls(params=model.parameters() , lr=__magic_name__ ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase :Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase :Any = 1 UpperCamelCase :Dict = (len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase :List[Any] = get_linear_schedule_with_warmup( optimizer=__magic_name__ , num_warmup_steps=0 , num_training_steps=__magic_name__ , ) else: UpperCamelCase :Any = DummyScheduler(__magic_name__ , total_num_steps=__magic_name__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = accelerator.prepare( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # We need to keep track of how many total steps we have iterated over UpperCamelCase :int = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase :Tuple = 0 # Now we train the model UpperCamelCase :Any = evaluate.load("""glue""" , """mrpc""" ) UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = {} for epoch in range(__magic_name__ , __magic_name__ ): model.train() for step, batch in enumerate(__magic_name__ ): UpperCamelCase :List[str] = model(**__magic_name__ ) UpperCamelCase :Dict = outputs.loss UpperCamelCase :Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__magic_name__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase :str = 0 for step, batch in enumerate(__magic_name__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase :Optional[int] = model(**__magic_name__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase , UpperCamelCase :Optional[int] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__magic_name__ ) - 1: UpperCamelCase :Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase :List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__magic_name__ , references=__magic_name__ , ) UpperCamelCase :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __magic_name__ ) UpperCamelCase :Dict = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCamelCase :str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: """simple docstring""" UpperCamelCase :List[str] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__magic_name__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__magic_name__ , ) parser.add_argument( """--output_dir""" , type=__magic_name__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=__magic_name__ , default=__magic_name__ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=__magic_name__ , default=3 , help="""Number of train epochs.""" , ) UpperCamelCase :str = parser.parse_args() UpperCamelCase :Any = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
38
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = PriorTransformer lowerCamelCase = 'hidden_states' @property def snake_case__ ( self : Optional[Any] )-> Optional[int]: '''simple docstring''' A__ = 4 A__ = 8 A__ = 7 A__ = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) A__ = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) A__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self : Tuple,lowercase_ : List[str]=0 )-> Union[str, Any]: '''simple docstring''' torch.manual_seed(lowercase_ ) A__ = 4 A__ = 8 A__ = 7 A__ = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) A__ = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) A__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' return (4, 8) @property def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' return (4, 8) def snake_case__ ( self : Any )-> int: '''simple docstring''' A__ = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } A__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self : Any )-> int: '''simple docstring''' A__ , A__ = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy',output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['missing_keys'] ),0 ) model.to(lowercase_ ) A__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ , A__ = self.prepare_init_args_and_inputs_for_common() A__ = self.model_class(**lowercase_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2],lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' A__ = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) A__ = model.to(lowercase_ ) if hasattr(lowercase_,'set_default_attn_processor' ): model.set_default_attn_processor() A__ = self.get_dummy_seed_input() with torch.no_grad(): A__ = model(**lowercase_ )[0] A__ = output[0, :5].flatten().cpu() print(lowercase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. A__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(lowercase_,lowercase_,rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=1,lowercase_ : List[str]=7_6_8,lowercase_ : List[str]=7_7,lowercase_ : List[Any]=0 )-> Any: '''simple docstring''' torch.manual_seed(lowercase_ ) A__ = batch_size A__ = embedding_dim A__ = num_embeddings A__ = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) A__ = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) A__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [3_7, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self : Optional[int],lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Dict: '''simple docstring''' A__ = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior',subfolder='prior' ) model.to(lowercase_ ) A__ = self.get_dummy_seed_input(seed=lowercase_ ) with torch.no_grad(): A__ = model(**lowercase_ )[0] assert list(sample.shape ) == [1, 7_6_8] A__ = sample[0, :8].flatten().cpu() print(lowercase_ ) A__ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_,lowercase_,atol=1E-3 )
282
import random def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : str ) -> tuple: '''simple docstring''' A__ , A__ , A__ = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE__ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE__ ) else: equal.append(SCREAMING_SNAKE_CASE__ ) return less, equal, greater def _snake_case( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if index >= len(SCREAMING_SNAKE_CASE__ ) or index < 0: return None A__ = items[random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )] A__ = 0 A__ , A__ , A__ = _partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = len(SCREAMING_SNAKE_CASE__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE__ , index - (m + count) )
282
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = """bert-generation""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=5_03_58 , SCREAMING_SNAKE_CASE__ : Optional[Any]=10_24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : Dict=16 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=5_12 , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=1e-1_2 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : str="absolute" , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache
229
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowercase__ : list , lowercase__ : int ) -> Optional[int]: '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _snake_case ( lowercase__ : list , lowercase__ : int ) -> int: '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase_ , lowerCAmelCase_ :int = ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": __UpperCAmelCase = input('Enter integers separated by spaces: ') __UpperCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
1
"""simple docstring""" import os from math import logaa def _snake_case ( lowercase__ : str = "base_exp.txt" ) -> int: '''simple docstring''' lowerCAmelCase_ :float = 0 lowerCAmelCase_ :Union[str, Any] = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) ): lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = list(map(lowercase__ , line.split(""",""" ) ) ) if x * logaa(lowercase__ ) > largest: lowerCAmelCase_ :Any = x * logaa(lowercase__ ) lowerCAmelCase_ :List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
1
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCamelCase : int = Mapping[str, np.ndarray] lowerCamelCase : Union[str, Any] = Mapping[str, Any] # Is a nested dict. lowerCamelCase : Dict = 0.0_1 @dataclasses.dataclass(frozen=A__ ) class A__ : A__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ = None # Optional remark about the protein. Included as a comment in output PDB # files A__ = None # Templates used to generate this protein (prediction-only) A__ = None # Chain corresponding to each parent A__ = None def _lowerCAmelCase ( _UpperCamelCase : str ) -> Protein: """simple docstring""" _SCREAMING_SNAKE_CASE =r'(\[[A-Z]+\]\n)' _SCREAMING_SNAKE_CASE =[tag.strip() for tag in re.split(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0] _SCREAMING_SNAKE_CASE =zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) _SCREAMING_SNAKE_CASE =["N", "CA", "C"] _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None for g in groups: if "[PRIMARY]" == g[0]: _SCREAMING_SNAKE_CASE =g[1][0].strip() for i in range(len(_UpperCamelCase ) ): if seq[i] not in residue_constants.restypes: _SCREAMING_SNAKE_CASE ='X' # FIXME: strings are immutable _SCREAMING_SNAKE_CASE =np.array( [residue_constants.restype_order.get(_UpperCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _SCREAMING_SNAKE_CASE =[] for axis in range(3 ): tertiary.append(list(map(_UpperCamelCase , g[1][axis].split() ) ) ) _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _SCREAMING_SNAKE_CASE =np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) _SCREAMING_SNAKE_CASE =np.zeros( ( len(_UpperCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_UpperCamelCase , atom_mask=_UpperCamelCase , aatype=_UpperCamelCase , residue_index=np.arange(len(_UpperCamelCase ) ) , b_factors=_UpperCamelCase , ) def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : int = 0 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =prot.parents _SCREAMING_SNAKE_CASE =prot.parents_chain_index if parents is not None and parents_chain_index is not None: _SCREAMING_SNAKE_CASE =[p for i, p in zip(_UpperCamelCase , _UpperCamelCase ) if i == chain_id] if parents is None or len(_UpperCamelCase ) == 0: _SCREAMING_SNAKE_CASE =['N/A'] pdb_headers.append(f"PARENT {' '.join(_UpperCamelCase )}" ) return pdb_headers def _lowerCAmelCase ( _UpperCamelCase : Protein , _UpperCamelCase : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =pdb_str.split('\n' ) _SCREAMING_SNAKE_CASE =prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) _SCREAMING_SNAKE_CASE =42 if prot.parents is not None and len(prot.parents ) > 0: _SCREAMING_SNAKE_CASE =[] if prot.parents_chain_index is not None: _SCREAMING_SNAKE_CASE ={} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_UpperCamelCase ) , [] ) parent_dict[str(_UpperCamelCase )].append(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =max([int(_UpperCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _SCREAMING_SNAKE_CASE =parent_dict.get(str(_UpperCamelCase ) , ['N/A'] ) parents_per_chain.append(_UpperCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _SCREAMING_SNAKE_CASE =[['N/A']] def make_parent_line(_UpperCamelCase : Sequence[str] ) -> str: return f"PARENT {' '.join(_UpperCamelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _SCREAMING_SNAKE_CASE =0 for i, l in enumerate(_UpperCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_UpperCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =parents_per_chain[chain_counter] else: _SCREAMING_SNAKE_CASE =['N/A'] out_pdb_lines.append(make_parent_line(_UpperCamelCase ) ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =residue_constants.restypes + ['X'] def res_atoa(_UpperCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) _SCREAMING_SNAKE_CASE =residue_constants.atom_types _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =prot.atom_mask _SCREAMING_SNAKE_CASE =prot.aatype _SCREAMING_SNAKE_CASE =prot.atom_positions _SCREAMING_SNAKE_CASE =prot.residue_index.astype(np.intaa ) _SCREAMING_SNAKE_CASE =prot.b_factors _SCREAMING_SNAKE_CASE =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) _SCREAMING_SNAKE_CASE =get_pdb_headers(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: pdb_lines.extend(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =aatype.shape[0] _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =string.ascii_uppercase _SCREAMING_SNAKE_CASE =None # Add all atom sites. for i in range(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_UpperCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _SCREAMING_SNAKE_CASE ='ATOM' _SCREAMING_SNAKE_CASE =atom_name if len(_UpperCamelCase ) == 4 else f" {atom_name}" _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE =1.00 _SCREAMING_SNAKE_CASE =atom_name[0] # Protein supports only C, N, O, S, this works. _SCREAMING_SNAKE_CASE ='' _SCREAMING_SNAKE_CASE ='A' if chain_index is not None: _SCREAMING_SNAKE_CASE =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _SCREAMING_SNAKE_CASE =( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 _SCREAMING_SNAKE_CASE =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =chain_index[i + 1] if should_terminate: # Close the chain. _SCREAMING_SNAKE_CASE ='TER' _SCREAMING_SNAKE_CASE =( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_UpperCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_UpperCamelCase , _UpperCamelCase ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( _UpperCamelCase : FeatureDict , _UpperCamelCase : ModelOutput , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[np.ndarray] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[Sequence[str]] = None , _UpperCamelCase : Optional[Sequence[int]] = None , ) -> Protein: """simple docstring""" return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_UpperCamelCase , remark=_UpperCamelCase , parents=_UpperCamelCase , parents_chain_index=_UpperCamelCase , )
47
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Tuple = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a_ ) __SCREAMING_SNAKE_CASE :str = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go __SCREAMING_SNAKE_CASE :int = parser.parse_args() if not hasattr(a_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
191
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : List[str] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) __lowerCamelCase = '''A painting of a squirrel eating a burger''' __lowerCamelCase = jax.device_count() __lowerCamelCase = num_samples * [prompt] __lowerCamelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = replicate(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = shard(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) __lowerCamelCase = sd_pipe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE__ )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def __A ( self : List[str] ) -> Tuple: __lowerCamelCase = '''stabilityai/stable-diffusion-2''' __lowerCamelCase , __lowerCamelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ , subfolder='''scheduler''' ) __lowerCamelCase , __lowerCamelCase = FlaxStableDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , revision='''bf16''' , dtype=jnp.bfloataa , ) __lowerCamelCase = scheduler_params __lowerCamelCase = '''A painting of a squirrel eating a burger''' __lowerCamelCase = jax.device_count() __lowerCamelCase = num_samples * [prompt] __lowerCamelCase = sd_pipe.prepare_inputs(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = replicate(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = shard(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jax.random.PRNGKey(0 ) __lowerCamelCase = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) __lowerCamelCase = sd_pipe(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_inference_steps=25 , jit=SCREAMING_SNAKE_CASE__ )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) __lowerCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
"""simple docstring""" def lowercase ( A_ , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = [False] * len(A_ ) a : int = [] queue.append(A_ ) a : int = True while queue: a : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) a : Dict = True a : Optional[int] = u return visited[t] def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : int = [-1] * (len(A_ )) a : List[Any] = 0 while bfs(A_ , A_ , A_ , A_ ): a : Tuple = float("Inf" ) a : List[str] = sink while s != source: # Find the minimum value in select path a : List[Any] = min(A_ , graph[parent[s]][s] ) a : str = parent[s] max_flow += path_flow a : Optional[Any] = sink while v != source: a : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a : str = parent[v] return max_flow __lowercase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __lowercase , __lowercase = 0, 5 print(ford_fulkerson(graph, source, sink))
40
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Dict = KandinskyVaaControlnetPipeline UpperCAmelCase : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase : Optional[Any] = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase : Optional[int] = False @property def __snake_case ( self : Optional[Any]): return 32 @property def __snake_case ( self : Dict): return 32 @property def __snake_case ( self : Dict): return self.time_input_dim @property def __snake_case ( self : Any): return self.time_input_dim * 4 @property def __snake_case ( self : str): return 100 @property def __snake_case ( self : str): torch.manual_seed(0) a : str = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } a : Dict = UNetaDConditionModel(**__UpperCAmelCase) return model @property def __snake_case ( self : str): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __snake_case ( self : Union[str, Any]): torch.manual_seed(0) a : Dict = VQModel(**self.dummy_movq_kwargs) return model def __snake_case ( self : Optional[Any]): a : Optional[Any] = self.dummy_unet a : int = self.dummy_movq a : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCAmelCase , ) a : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __snake_case ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=0): a : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) a : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __UpperCAmelCase) # create hint a : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) if str(__UpperCAmelCase).startswith("mps"): a : Union[str, Any] = torch.manual_seed(__UpperCAmelCase) else: a : List[Any] = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : str = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __snake_case ( self : Dict): a : str = "cpu" a : Tuple = self.get_dummy_components() a : Dict = self.pipeline_class(**__UpperCAmelCase) a : Optional[int] = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCAmelCase)) a : Any = output.images a : Any = pipe( **self.get_dummy_inputs(__UpperCAmelCase) , return_dict=__UpperCAmelCase , )[0] a : Union[str, Any] = image[0, -3:, -3:, -1] a : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a : Tuple = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[str]): a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy") a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") a : List[Any] = torch.from_numpy(np.array(__UpperCAmelCase)).float() / 255.0 a : str = hint.permute(2 , 0 , 1).unsqueeze(0) a : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(__UpperCAmelCase) a : List[str] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) a : int = pipeline.to(__UpperCAmelCase) pipeline.set_progress_bar_config(disable=__UpperCAmelCase) a : Tuple = "A robot, 4k photo" a : Any = torch.Generator(device="cuda").manual_seed(0) a , a : int = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() a : str = torch.Generator(device="cuda").manual_seed(0) a : Union[str, Any] = pipeline( image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , output_type="np" , ) a : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase)
40
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
import numpy as np from transformers import Pipeline def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) A__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class A ( _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : Dict,**lowercase_ : Tuple )-> Tuple: '''simple docstring''' A__ = {} if "second_text" in kwargs: A__ = kwargs['second_text'] return preprocess_kwargs, {}, {} def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Optional[int]=None )-> List[str]: '''simple docstring''' return self.tokenizer(lowercase_,text_pair=lowercase_,return_tensors=self.framework ) def snake_case__ ( self : str,lowercase_ : Dict )-> List[str]: '''simple docstring''' return self.model(**lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Optional[int] )-> Dict: '''simple docstring''' A__ = model_outputs.logits[0].numpy() A__ = softmax(lowercase_ ) A__ = np.argmax(lowercase_ ) A__ = self.model.config.idalabel[best_class] A__ = probabilities[best_class].item() A__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
282
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __a , unittest.TestCase): __a : Tuple = PegasusTokenizer __a : Tuple = PegasusTokenizerFast __a : str = True __a : List[Any] = True def __snake_case ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[Any] = PegasusTokenizer(_A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __snake_case ( self ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def __snake_case ( self , **_A ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> str: '''simple docstring''' return ("This is a test", "This is a test") def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[int] = """</s>""" _UpperCAmelCase : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_A ) , 11_03 ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _UpperCAmelCase : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] _UpperCAmelCase : int = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _UpperCAmelCase : Any = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_A ).input_ids[0] self.assertListEqual(_A , _A ) def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _UpperCAmelCase : str = """To ensure a smooth flow of bank resolutions.""" _UpperCAmelCase : List[Any] = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _UpperCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_A ).input_ids[0] self.assertListEqual(_A , _A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = ["""This is going to be way too long.""" * 1_50, """short example"""] _UpperCAmelCase : List[str] = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : Optional[Any] = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors="""pt""" ) _UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. @slow def __snake_case ( self ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : str = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __a , unittest.TestCase): __a : Tuple = PegasusTokenizer __a : Union[str, Any] = PegasusTokenizerFast __a : Tuple = True __a : List[str] = True def __snake_case ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Union[str, Any] = PegasusTokenizer(_A , offset=0 , mask_token_sent=_A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def __snake_case ( self , **_A ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_A ) def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' return ("This is a test", "This is a test") def __snake_case ( self ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _UpperCAmelCase : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] _UpperCAmelCase : List[str] = py_tokenizer([raw_input_str] , return_tensors=_A , add_special_tokens=_A ).input_ids[0] self.assertListEqual(_A , _A ) @require_torch def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 10_00, """short example"""] _UpperCAmelCase : int = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : List[str] = self._large_tokenizer(_A , padding=_A , truncation=_A , return_tensors="""pt""" ) _UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=_A , max_length=5 , padding=_A , truncation=_A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_A ) == 2 # input_ids, attention_mask. def __snake_case ( self ) -> Any: '''simple docstring''' _UpperCAmelCase : str = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _UpperCAmelCase : List[Any] = self._large_tokenizer(_A ).input_ids self.assertListEqual( _A , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
246
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __a): __a : Optional[Any] = ["""pixel_values"""] def __init__( self , _A = True , _A = None , _A = PILImageResampling.BICUBIC , _A = True , _A = None , _A = True , _A = 1 / 2_55 , _A = True , _A = IMAGENET_DEFAULT_MEAN , _A = IMAGENET_DEFAULT_STD , **_A , ) -> None: '''simple docstring''' super().__init__(**_A ) _UpperCAmelCase : List[Any] = size if size is not None else {"""shortest_edge""": 2_24} _UpperCAmelCase : Optional[Any] = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCAmelCase : List[Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Any = do_resize _UpperCAmelCase : Optional[int] = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Optional[Any] = do_center_crop _UpperCAmelCase : int = crop_size _UpperCAmelCase : Optional[int] = do_rescale _UpperCAmelCase : Optional[int] = rescale_factor _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __snake_case ( self , _A , _A , _A = PILImageResampling.BICUBIC , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_56 / 2_24) * size["""shortest_edge"""] ) _UpperCAmelCase : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) _UpperCAmelCase : Tuple = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _A , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : List[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A , _A , _A = None , **_A , ) -> np.ndarray: '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __snake_case ( self , _A , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = ChannelDimension.FIRST , **_A , ) -> BatchFeature: '''simple docstring''' _UpperCAmelCase : Optional[int] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Tuple = size if size is not None else self.size _UpperCAmelCase : int = get_size_dict(_A , default_to_square=_A ) _UpperCAmelCase : str = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Union[str, Any] = get_size_dict(_A , param_name="""crop_size""" ) _UpperCAmelCase : Optional[int] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(_A ) for image in images] if do_resize: _UpperCAmelCase : Optional[Any] = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(_A , _A ) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(_A , _A ) for image in images] if do_normalize: _UpperCAmelCase : List[Any] = [self.normalize(_A , _A , _A ) for image in images] _UpperCAmelCase : Dict = [to_channel_dimension_format(_A , _A ) for image in images] _UpperCAmelCase : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
246
1
import warnings from functools import wraps from typing import Callable def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Callable: """simple docstring""" @wraps(SCREAMING_SNAKE_CASE_ ) def _inner_fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return _inner_fn
60
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_0_0 )-> int: """simple docstring""" UpperCamelCase_ = (n * (n + 1) // 2) ** 2 UpperCamelCase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'''{solution() = }''')
60
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser SCREAMING_SNAKE_CASE :Optional[Any] = re.compile(R'\s+') def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return {"hash": hashlib.mda(re.sub(__lowerCamelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A = [len(__lowerCamelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(__lowerCamelCase ), "line_max": max(__lowerCamelCase )} def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" __A = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def UpperCAmelCase ( a_ , a_=5 ) -> str: """simple docstring""" __A = ["auto-generated", "autogenerated", "automatically generated"] __A = example["content"].splitlines() for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase ( a_ , a_=5 , a_=0.05 ) -> Dict: """simple docstring""" __A = ["unit tests", "test file", "configuration file"] __A = example["content"].splitlines() __A = 0 __A = 0 # first test for _, line in zip(range(__lowerCamelCase ) , __lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __A = example["content"].count("\n" ) __A = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = ["def ", "class ", "for ", "while "] __A = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase ( a_ , a_=4 ) -> List[Any]: """simple docstring""" __A = example["content"].splitlines() __A = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = tokenizer(example["content"] , truncation=__lowerCamelCase )["input_ids"] __A = len(example["content"] ) / len(__lowerCamelCase ) return {"ratio": ratio} def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = {} results.update(get_hash(__lowerCamelCase ) ) results.update(line_stats(__lowerCamelCase ) ) results.update(alpha_stats(__lowerCamelCase ) ) results.update(char_token_ratio(__lowerCamelCase ) ) results.update(is_autogenerated(__lowerCamelCase ) ) results.update(is_config_or_test(__lowerCamelCase ) ) results.update(has_no_keywords(__lowerCamelCase ) ) results.update(has_few_assignments(__lowerCamelCase ) ) return results def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" if not check_uniques(__lowerCamelCase , __lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(__lowerCamelCase , "rb" ) as f_in: with gzip.open(str(__lowerCamelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(__lowerCamelCase , __lowerCamelCase ) os.unlink(__lowerCamelCase ) # Settings SCREAMING_SNAKE_CASE :Union[str, Any] = HfArgumentParser(PreprocessingArguments) SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() if args.num_workers is None: SCREAMING_SNAKE_CASE :Optional[Any] = multiprocessing.cpu_count() SCREAMING_SNAKE_CASE :List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset SCREAMING_SNAKE_CASE :List[str] = time.time() SCREAMING_SNAKE_CASE :List[Any] = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing SCREAMING_SNAKE_CASE :Union[str, Any] = time.time() SCREAMING_SNAKE_CASE :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes SCREAMING_SNAKE_CASE :int = set(ds.unique('hash')) SCREAMING_SNAKE_CASE :Union[str, Any] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics SCREAMING_SNAKE_CASE :Optional[Any] = time.time() SCREAMING_SNAKE_CASE :int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: SCREAMING_SNAKE_CASE :Union[str, Any] = time.time() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file SCREAMING_SNAKE_CASE :Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) SCREAMING_SNAKE_CASE :Optional[int] = output_dir / 'data' data_dir.mkdir(exist_ok=True) SCREAMING_SNAKE_CASE :Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): SCREAMING_SNAKE_CASE :Optional[int] = str(data_dir / f'''file-{file_number+1:012}.json''') SCREAMING_SNAKE_CASE :Optional[int] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
15
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a_ ( snake_case_ ): '''simple docstring''' def snake_case_( self ) -> Tuple: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(A ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(A ): self.assertDictEqual(A , example_records[i] ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = self._create_example_records() _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) _SCREAMING_SNAKE_CASE = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def snake_case_( self ) -> Union[str, Any]: # checks what happens with missing columns _SCREAMING_SNAKE_CASE = [{"""col_1""": 1}, {"""col_2""": """x"""}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def snake_case_( self ) -> Optional[Any]: # checks if the type can be inferred from the second record _SCREAMING_SNAKE_CASE = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _SCREAMING_SNAKE_CASE = Dataset.from_list(A ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = Dataset.from_list([] ) self.assertEqual(len(A ) , 0 ) self.assertListEqual(dset.column_names , [] )
58
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _a : int = False @skip_mps class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : int =StableDiffusionAttendAndExcitePipeline a : Any =False a : Optional[Any] =TEXT_TO_IMAGE_PARAMS a : Optional[int] =TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) a : Union[str, Any] =TEXT_TO_IMAGE_IMAGE_PARAMS a : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=1,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D"""),up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D"""),cross_attention_dim=32,attention_head_dim=(2, 4),use_linear_projection=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,) torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,) torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,) __lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = __lowerCAmelCase = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**__SCREAMING_SNAKE_CASE ).images __lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 64, 64, 3) ) __lowerCAmelCase = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE,1e-3 ) def lowerCamelCase__ ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7e-4 ) def lowerCamelCase__ ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowerCamelCase__ ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def lowerCamelCase__ ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def lowerCamelCase__ ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase__ ( cls ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = torch.manual_seed(51 ) __lowerCAmelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""",safety_checker=__SCREAMING_SNAKE_CASE,torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __lowerCAmelCase = """a painting of an elephant with glasses""" __lowerCAmelCase = [5, 7] __lowerCAmelCase = pipe( prompt=__SCREAMING_SNAKE_CASE,token_indices=__SCREAMING_SNAKE_CASE,guidance_scale=7.5,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,max_iter_to_alter=5,output_type="""numpy""",).images[0] __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-1
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _a : List[Any] = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _a : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
import os import jsonlines import numpy as np from tqdm import tqdm lowercase_ = 2_0_4_8 lowercase_ = 4_0_9_6 lowercase_ = 4_2 lowercase_ = os.environ.pop('PROCESS_TRAIN', 'false') lowercase_ = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def a ( A__ : int ) -> Union[str, Any]: """simple docstring""" def choose_first(A__ : Dict , A__ : int=False ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) == 1: _lowercase =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _lowercase ={k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a _lowercase ={"""id""": example["""id"""]} _lowercase =example["""annotations"""] _lowercase =annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: _lowercase =["""yes"""] if 1 in yes_no_answer else ["""no"""] _lowercase =[] _lowercase =[] _lowercase =["""<cls>"""] else: _lowercase =["""short"""] _lowercase =choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available _lowercase =["""long"""] _lowercase =choose_first(annotation['long_answer'] , is_long_answer=_lowerCAmelCase ) _lowercase =[] answer.update(_lowerCAmelCase ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: _lowercase =True else: _lowercase =False _lowercase =["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCAmelCase ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def a ( A__ : Dict , A__ : List[Any]=False ) -> List[Any]: """simple docstring""" _lowercase =_get_single_answer(_lowerCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowercase =example["""document"""]["""tokens"""] _lowercase =[] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _lowercase =["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _lowercase =example["""document"""]["""tokens"""] _lowercase =answer["""start_token"""] _lowercase =answer["""end_token"""] _lowercase =[] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _lowercase =""" """.join(context[start_token:end_token] ) # checking above code if assertion: _lowercase =doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] _lowercase =doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] _lowercase =""" """.join([old[i] for i in range(len(_lowerCAmelCase ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , _lowerCAmelCase , end='\n' ) print('Old:' , _lowerCAmelCase , end='\n\n' ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def a ( A__ : Tuple , A__ : List[Any] , A__ : str=2048 , A__ : int=4096 , A__ : List[str]=True ) -> Optional[Any]: """simple docstring""" _lowercase =get_context_and_ans(_lowerCAmelCase , assertion=_lowerCAmelCase ) _lowercase =out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _lowercase =tokenizer(example['question']['text'] , out['context'] ).input_ids _lowercase =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _lowercase =[] _lowercase =[] _lowercase =input_ids[:q_len] _lowercase =range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: _lowercase =i + max_length - q_len _lowercase =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_lowerCAmelCase ), "end_token": [-100] * len(_lowerCAmelCase ), "category": category, }, } _lowercase =out["""context"""].split() _lowercase =splitted_context[answer["""end_token"""]] _lowercase =len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=_lowerCAmelCase , ).input_ids ) _lowercase =len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=_lowerCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _lowercase =len(tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _lowercase =input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive _lowercase =answer["""start_token"""] _lowercase =answer["""end_token"""] if assertion: _lowercase =tokenizer.decode(_lowerCAmelCase ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , _lowerCAmelCase , end='\n\n' ) if len(_lowerCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _lowercase =input_ids[:q_len] _lowercase =range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) _lowercase =[] _lowercase =[] _lowercase =[] _lowercase =[] # null, yes, no, long, short for i in doc_start_indices: _lowercase =i + max_length - q_len _lowercase =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _lowercase =start_token - i + q_len _lowercase =end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: _lowercase =-100 _lowercase =-100 answers_category.append('null' ) _lowercase =inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCAmelCase ) answers_end_token.append(_lowerCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(_lowerCAmelCase ) ) print('Old:' , tokenizer.decode(_lowerCAmelCase ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def a ( A__ : Optional[int] , A__ : Union[str, Any] , A__ : List[str]=2048 , A__ : Union[str, Any]=4096 , A__ : List[str]=False ) -> Optional[Any]: """simple docstring""" _lowercase =get_strided_contexts_and_ans( _lowerCAmelCase , _lowerCAmelCase , doc_stride=_lowerCAmelCase , max_length=_lowerCAmelCase , assertion=_lowerCAmelCase , ) return example def a ( A__ : Optional[Any] , A__ : Any ) -> Union[str, Any]: """simple docstring""" with jsonlines.open(_lowerCAmelCase , 'a' ) as writer: for example in tqdm(_lowerCAmelCase , total=len(_lowerCAmelCase ) , desc='Saving samples ... ' ): _lowercase =example["""labels"""] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer lowercase_ = load_dataset('natural_questions') lowercase_ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') lowercase_ = data['train' if PROCESS_TRAIN == 'true' else 'validation'] lowercase_ = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } lowercase_ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) lowercase_ = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) lowercase_ = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
205
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : str = get_tests_dir("fixtures/test_sentencepiece.model") lowerCamelCase : Dict = {"target_lang": "fi", "source_lang": "en"} lowerCamelCase : List[Any] = ">>zh<<" lowerCamelCase : Tuple = "Helsinki-NLP/" if is_torch_available(): lowerCamelCase : Optional[Any] = "pt" elif is_tf_available(): lowerCamelCase : List[str] = "tf" else: lowerCamelCase : Any = "jax" @require_sentencepiece class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MarianTokenizer UpperCamelCase = False UpperCamelCase = True def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" super().setUp() lowerCamelCase_ = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) ) lowerCamelCase_ = Path(self.tmpdirname ) save_json(A_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(A_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(A_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) lowerCamelCase_ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : Any , **A_ : Optional[Any] ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **A_ ) def a__ ( self : Dict , A_ : Dict ) -> Optional[int]: """simple docstring""" return ( "This is a test", "This is a test", ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = '</s>' lowerCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(A_ ) , 9 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def a__ ( self : int ) -> int: """simple docstring""" lowerCamelCase_ = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowerCamelCase_ = en_de_tokenizer(['I am a small frog'] , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) lowerCamelCase_ = [38, 121, 14, 697, 38848, 0] self.assertListEqual(A_ , batch.input_ids[0] ) lowerCamelCase_ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A_ ) lowerCamelCase_ = [x.name for x in Path(A_ ).glob('*' )] self.assertIn('source.spm' , A_ ) MarianTokenizer.from_pretrained(A_ ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=A_ , truncation=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = tok(['I am a tiny frog', 'I am a small frog'] , padding=A_ , return_tensors=A_ ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = {'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) lowerCamelCase_ = 'Tämä on testi' lowerCamelCase_ = 'This is a test' lowerCamelCase_ = [76, 7, 2047, 2] lowerCamelCase_ = [69, 12, 11, 940, 2] lowerCamelCase_ = tokenizer(A_ ).input_ids self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer(text_target=A_ ).input_ids self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.decode(A_ , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ )
208
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : List[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[Any] = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") lowerCamelCase : List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : Union[str, Any] = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : Tuple = [ ("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"), ("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"), ("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"), ("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"), ("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"), ("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"), ("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"), ("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"), ("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"), ( "zero-shot-object-detection", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForZeroShotObjectDetection", ), ("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"), ("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"), ("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"), ("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"), ( "table-question-answering", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForTableQuestionAnswering", ), ("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"), ("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"), ( "next-sentence-prediction", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES", "AutoModelForNextSentencePrediction", ), ( "audio-frame-classification", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioFrameClassification", ), ("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"), ( "document-question-answering", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForDocumentQuestionAnswering", ), ( "visual-question-answering", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForVisualQuestionAnswering", ), ("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"), ( "zero-shot-image-classification", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForZeroShotImageClassification", ), ("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"), ("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"), ("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"), ] def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , lowercase ) return [m.group(0 ) for m in matches] def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCamelCase_ = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) lowerCamelCase_ = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): lowerCamelCase_ = None if _re_tf_models.match(lowercase ) is not None: lowerCamelCase_ = tf_models lowerCamelCase_ = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: lowerCamelCase_ = flax_models lowerCamelCase_ = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: lowerCamelCase_ = pt_models lowerCamelCase_ = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: lowerCamelCase_ = True break # Try again after removing the last word in the name lowerCamelCase_ = ''.join(camel_case_split(lowercase )[:-1] ) lowerCamelCase_ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCamelCase_ = list(lowercase ) all_models.sort() lowerCamelCase_ = {'model_type': all_models} lowerCamelCase_ = [pt_models[t] for t in all_models] lowerCamelCase_ = [tf_models[t] for t in all_models] lowerCamelCase_ = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCamelCase_ = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCamelCase_ = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCamelCase_ = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCamelCase_ = 'AutoTokenizer' lowerCamelCase_ = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCamelCase_ = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] lowerCamelCase_ = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names lowerCamelCase_ = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = get_frameworks_table() lowerCamelCase_ = Dataset.from_pandas(lowercase ) lowerCamelCase_ = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=lowercase ) lowerCamelCase_ = Dataset.from_json(lowercase ) lowerCamelCase_ = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(lowercase ) ) } lowerCamelCase_ = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCamelCase_ = sorted(table.keys() ) lowerCamelCase_ = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) lowerCamelCase_ = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(lowercase , 'pipeline_tags.json' ) ) if commit_sha is not None: lowerCamelCase_ = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: lowerCamelCase_ = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=lowercase , repo_type='dataset' , token=lowercase , commit_message=lowercase , ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCamelCase_ = transformers_module.pipelines.SUPPORTED_TASKS lowerCamelCase_ = [] for key in pipeline_tasks: if key not in in_table: lowerCamelCase_ = pipeline_tasks[key]['pt'] if isinstance(lowercase , (list, tuple) ): lowerCamelCase_ = model[0] lowerCamelCase_ = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = ', '.join(lowercase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.") parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.") parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.") lowerCamelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
208
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __snake_case ( __lowerCAmelCase ): def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: List[str] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes')) self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads')) self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks')) class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 1_28] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Any: '''simple docstring''' a__: Any = parent a__: List[Any] = batch_size a__: str = image_size a__: int = num_channels a__: List[Any] = num_encoder_blocks a__: Any = sr_ratios a__: Tuple = depths a__: Dict = hidden_sizes a__: Tuple = downsampling_rates a__: Union[str, Any] = num_attention_heads a__: str = is_training a__: List[Any] = use_labels a__: Dict = hidden_act a__: Dict = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: Optional[Any] = initializer_range a__: Any = num_labels a__: Optional[Any] = scope def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__: Optional[Any] = None if self.use_labels: a__: str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__: Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self) -> str: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__: List[Any] = SegformerModel(config=lowercase) model.to(lowercase) model.eval() a__: Tuple = model(lowercase) a__: str = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__: Optional[Any] = self.num_labels a__: Union[str, Any] = SegformerForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__: int = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a__: int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__: Tuple = 1 a__: Optional[Any] = SegformerForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__: List[str] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase) a__: Union[str, Any] = model(lowercase , labels=lowercase) self.parent.assertGreater(result.loss , 0.0) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = self.prepare_config_and_inputs() a__ , a__ , a__: str = config_and_inputs a__: Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a__ = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[int] = SegformerModelTester(self) a__: Union[str, Any] = SegformerConfigTester(self , config_class=lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase) @unittest.skip('SegFormer does not use inputs_embeds') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__ , a__: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Union[str, Any] = model_class(lowercase) a__: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Union[str, Any] = [*signature.parameters.keys()] a__: List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__ , a__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__: List[Any] = True for model_class in self.all_model_classes: a__: Tuple = True a__: List[str] = False a__: Optional[Any] = True a__: Union[str, Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Dict = model(**self._prepare_for_class(lowercase , lowercase)) a__: Optional[Any] = outputs.attentions a__: Dict = sum(self.model_tester.depths) self.assertEqual(len(lowercase) , lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__: List[str] = True a__: List[str] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: str = model(**self._prepare_for_class(lowercase , lowercase)) a__: List[str] = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__: Optional[int] = (self.model_tester.image_size // 4) ** 2 a__: Any = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__: List[Any] = (self.model_tester.image_size // 32) ** 2 a__: Dict = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__: Tuple = len(lowercase) # Check attention is always last and order is fine a__: Union[str, Any] = True a__: Any = True a__: Optional[int] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: int = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__: Dict = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__: Any = (self.model_tester.image_size // 4) ** 2 a__: Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__: List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Optional[int] = model(**self._prepare_for_class(lowercase , lowercase)) a__: List[str] = outputs.hidden_states a__: Optional[int] = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase) , lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__ , a__: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__: List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return a__ , a__: Dict = self.model_tester.prepare_config_and_inputs_for_common() a__: Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowercase): continue a__: Union[str, Any] = model_class(lowercase) model.to(lowercase) model.train() a__: List[Any] = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__: List[str] = model(**lowercase).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' pass @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__: Optional[Any] = SegformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def __a ( ) ->Optional[Any]: a__: Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __snake_case ( unittest.TestCase ): @slow def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: str = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__: List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__: Optional[int] = prepare_img() a__: int = image_processor(images=lowercase , return_tensors='pt') a__: Dict = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__: List[Any] = model(lowercase) a__: Tuple = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , lowercase) a__: Optional[Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4)) @slow def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__: int = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase) a__: str = prepare_img() a__: Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__: Dict = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__: Optional[Any] = model(lowercase) a__: Tuple = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , lowercase) a__: Any = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1)) @slow def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Optional[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__: Optional[int] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__: Tuple = prepare_img() a__: Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__: Any = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__: Tuple = model(lowercase) a__: Tuple = outputs.logits.detach().cpu() a__: Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(5_00, 3_00)]) a__: str = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , lowercase) a__: Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase) a__: List[str] = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , lowercase)
290
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase__ = logging.getLogger(__name__) class __snake_case : def __init__( self) -> Optional[int]: '''simple docstring''' a__: Optional[Any] = False def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' if not self.initialized: a__: Optional[int] = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) a__: Optional[int] = True def lowerCamelCase_ ( self) -> int: '''simple docstring''' self.retriever.index.init_index() def lowerCamelCase_ ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ , a__: str = self.retriever._main_retrieve(lowercase , lowercase) return doc_ids, retrieved_doc_embeds class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None) -> int: '''simple docstring''' if index is not None and index.is_initialized() and len(lowercase) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ') super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) a__: Any = retrieval_workers if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase) for worker in self.retrieval_workers ]) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' logger.info('initializing retrieval') if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCamelCase_ ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' if len(self.retrieval_workers) > 0: # Select a random retrieval actor. a__: int = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers) - 1)] a__ , a__: List[Any] = ray.get(random_worker.retrieve.remote(lowercase , lowercase)) else: a__ , a__: Dict = self._main_retrieve(lowercase , lowercase) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase) @classmethod def lowerCamelCase_ ( cls , lowercase , lowercase=None , **lowercase) -> Tuple: '''simple docstring''' return super(lowercase , cls).get_tokenizers(lowercase , lowercase , **lowercase) @classmethod def lowerCamelCase_ ( cls , lowercase , lowercase , lowercase=None , **lowercase) -> Union[str, Any]: '''simple docstring''' a__: Optional[int] = kwargs.pop('config' , lowercase) or RagConfig.from_pretrained(lowercase , **lowercase) a__: Union[str, Any] = RagTokenizer.from_pretrained(lowercase , config=lowercase) a__: int = rag_tokenizer.question_encoder a__: Any = rag_tokenizer.generator if indexed_dataset is not None: a__: List[Any] = 'custom' a__: Optional[Any] = CustomHFIndex(config.retrieval_vector_size , lowercase) else: a__: Dict = cls._build_index(lowercase) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
290
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , **UpperCAmelCase__ : Dict) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self : str , UpperCAmelCase__ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase__ : Tuple) ->List[str]: '''simple docstring''' return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase__ : int) ->Optional[Any]: '''simple docstring''' A__ = {} if "candidate_labels" in kwargs: A__ = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: A__ = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int="This is a photo of {}.") ->Dict: '''simple docstring''' A__ = load_image(UpperCAmelCase__) A__ = self.image_processor(images=[image] , return_tensors=self.framework) A__ = candidate_labels A__ = [hypothesis_template.format(UpperCAmelCase__) for x in candidate_labels] A__ = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework , padding=UpperCAmelCase__) A__ = [text_inputs] return inputs def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Dict: '''simple docstring''' A__ = model_inputs.pop('''candidate_labels''') A__ = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , UpperCAmelCase__): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**UpperCAmelCase__ , **UpperCAmelCase__) A__ = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Any]) ->str: '''simple docstring''' A__ = model_outputs.pop('''candidate_labels''') A__ = model_outputs['''logits'''][0] if self.framework == "pt": A__ = logits.softmax(dim=-1).squeeze(-1) A__ = probs.tolist() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [scores] elif self.framework == "tf": A__ = stable_softmax(UpperCAmelCase__ , axis=-1) A__ = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""") A__ = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase__ , UpperCAmelCase__) , key=lambda UpperCAmelCase__: -x[0]) ] return result
231
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCamelCase : Optional[Any] = """facebook/wmt19-en-de""" _lowerCamelCase : Optional[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCamelCase : int = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCamelCase : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCamelCase : int = tokenizer(["""Making tiny model"""], return_tensors="""pt""") _lowerCamelCase : int = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save _lowerCamelCase : str = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
231
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : int = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } A : Union[str, Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : int = np.random.randn(3, 4 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ), x.transpose() ) ) A : Tuple = np.random.randn(3, 4, 5 ) self.assertTrue(np.allclose(transpose(lowerCamelCase__, axes=(1, 2, 0) ), x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCAmelCase ( self ): A : List[str] = np.random.randn(3, 4 ) A : str = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ), transpose(lowerCamelCase__ ).numpy() ) ) A : Optional[int] = np.random.randn(3, 4, 5 ) A : Optional[Any] = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__, axes=(1, 2, 0) ), transpose(lowerCamelCase__, axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCAmelCase ( self ): A : str = np.random.randn(3, 4 ) A : Optional[int] = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ), transpose(lowerCamelCase__ ).numpy() ) ) A : Optional[Any] = np.random.randn(3, 4, 5 ) A : List[Any] = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__, axes=(1, 2, 0) ), transpose(lowerCamelCase__, axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCAmelCase ( self ): A : Tuple = np.random.randn(3, 4 ) A : Optional[int] = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__ ), np.asarray(transpose(lowerCamelCase__ ) ) ) ) A : Optional[int] = np.random.randn(3, 4, 5 ) A : Optional[Any] = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(transpose(lowerCamelCase__, axes=(1, 2, 0) ), np.asarray(transpose(lowerCamelCase__, axes=(1, 2, 0) ) ) ) ) def _lowerCAmelCase ( self ): A : Optional[int] = np.random.randn(3, 4 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (4, 3) ), np.reshape(lowerCamelCase__, (4, 3) ) ) ) A : int = np.random.randn(3, 4, 5 ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (12, 5) ), np.reshape(lowerCamelCase__, (12, 5) ) ) ) @require_torch def _lowerCAmelCase ( self ): A : Optional[Any] = np.random.randn(3, 4 ) A : Tuple = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (4, 3) ), reshape(lowerCamelCase__, (4, 3) ).numpy() ) ) A : str = np.random.randn(3, 4, 5 ) A : Optional[Any] = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (12, 5) ), reshape(lowerCamelCase__, (12, 5) ).numpy() ) ) @require_tf def _lowerCAmelCase ( self ): A : int = np.random.randn(3, 4 ) A : str = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (4, 3) ), reshape(lowerCamelCase__, (4, 3) ).numpy() ) ) A : Tuple = np.random.randn(3, 4, 5 ) A : Any = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (12, 5) ), reshape(lowerCamelCase__, (12, 5) ).numpy() ) ) @require_flax def _lowerCAmelCase ( self ): A : Any = np.random.randn(3, 4 ) A : Optional[Any] = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (4, 3) ), np.asarray(reshape(lowerCamelCase__, (4, 3) ) ) ) ) A : Optional[int] = np.random.randn(3, 4, 5 ) A : Dict = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(reshape(lowerCamelCase__, (12, 5) ), np.asarray(reshape(lowerCamelCase__, (12, 5) ) ) ) ) def _lowerCAmelCase ( self ): A : str = np.random.randn(1, 3, 4 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ), np.squeeze(lowerCamelCase__ ) ) ) A : str = np.random.randn(1, 4, 1, 5 ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__, axis=2 ), np.squeeze(lowerCamelCase__, axis=2 ) ) ) @require_torch def _lowerCAmelCase ( self ): A : List[Any] = np.random.randn(1, 3, 4 ) A : Tuple = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ), squeeze(lowerCamelCase__ ).numpy() ) ) A : Any = np.random.randn(1, 4, 1, 5 ) A : Dict = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__, axis=2 ), squeeze(lowerCamelCase__, axis=2 ).numpy() ) ) @require_tf def _lowerCAmelCase ( self ): A : str = np.random.randn(1, 3, 4 ) A : int = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ), squeeze(lowerCamelCase__ ).numpy() ) ) A : Dict = np.random.randn(1, 4, 1, 5 ) A : Dict = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__, axis=2 ), squeeze(lowerCamelCase__, axis=2 ).numpy() ) ) @require_flax def _lowerCAmelCase ( self ): A : List[str] = np.random.randn(1, 3, 4 ) A : List[Any] = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__ ), np.asarray(squeeze(lowerCamelCase__ ) ) ) ) A : Dict = np.random.randn(1, 4, 1, 5 ) A : List[Any] = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(squeeze(lowerCamelCase__, axis=2 ), np.asarray(squeeze(lowerCamelCase__, axis=2 ) ) ) ) def _lowerCAmelCase ( self ): A : Any = np.random.randn(3, 4 ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__, axis=1 ), np.expand_dims(lowerCamelCase__, axis=1 ) ) ) @require_torch def _lowerCAmelCase ( self ): A : Optional[Any] = np.random.randn(3, 4 ) A : Optional[Any] = torch.tensor(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__, axis=1 ), expand_dims(lowerCamelCase__, axis=1 ).numpy() ) ) @require_tf def _lowerCAmelCase ( self ): A : Optional[Any] = np.random.randn(3, 4 ) A : Tuple = tf.constant(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__, axis=1 ), expand_dims(lowerCamelCase__, axis=1 ).numpy() ) ) @require_flax def _lowerCAmelCase ( self ): A : Tuple = np.random.randn(3, 4 ) A : int = jnp.array(lowerCamelCase__ ) self.assertTrue(np.allclose(expand_dims(lowerCamelCase__, axis=1 ), np.asarray(expand_dims(lowerCamelCase__, axis=1 ) ) ) )
116
'''simple docstring''' from collections.abc import Sequence def lowerCamelCase ( __lowerCamelCase : Sequence[float] , __lowerCamelCase : bool = False ) ->float: if not arr: return 0 _SCREAMING_SNAKE_CASE = 0 if allow_empty_subarrays else float("""-inf""" ) _SCREAMING_SNAKE_CASE = 0.0 for num in arr: _SCREAMING_SNAKE_CASE = max(0 if allow_empty_subarrays else num , curr_sum + num ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowercase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
58
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[str] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : int = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _lowercase : str = {"facebook/blenderbot_small-90M": 5_1_2} def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : int =set() lowerCamelCase__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : int =char lowerCamelCase__ : int =set(__lowerCamelCase ) return pairs class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] def __init__( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : Optional[int], lowerCamelCase : Union[str, Any]="__start__", lowerCamelCase : List[str]="__end__", lowerCamelCase : Optional[Any]="__unk__", lowerCamelCase : Union[str, Any]="__null__", **lowerCamelCase : Tuple, )-> int: super().__init__(unk_token=lowerCamelCase, bos_token=lowerCamelCase, eos_token=lowerCamelCase, pad_token=lowerCamelCase, **lowerCamelCase ) with open(lowerCamelCase, encoding='''utf-8''' ) as vocab_handle: lowerCamelCase__ : Tuple =json.load(lowerCamelCase ) lowerCamelCase__ : Tuple ={v: k for k, v in self.encoder.items()} with open(lowerCamelCase, encoding='''utf-8''' ) as merges_handle: lowerCamelCase__ : int =merges_handle.read().split('''\n''' )[1:-1] lowerCamelCase__ : Union[str, Any] =[tuple(merge.split() ) for merge in merges] lowerCamelCase__ : Optional[Any] =dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowerCamelCase__ : Optional[int] ={} @property def snake_case ( self : List[Any] )-> int: return len(self.encoder ) def snake_case ( self : Optional[int] )-> Dict: return dict(self.encoder, **self.added_tokens_encoder ) def snake_case ( self : Any, lowerCamelCase : str )-> str: if token in self.cache: return self.cache[token] lowerCamelCase__ : List[str] =re.sub('''([.,!?()])''', r''' \1''', lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =re.sub('''(\')''', r''' \1 ''', lowerCamelCase ) lowerCamelCase__ : Any =re.sub(r'''\s{2,}''', ''' ''', lowerCamelCase ) if "\n" in token: lowerCamelCase__ : str =token.replace('''\n''', ''' __newln__''' ) lowerCamelCase__ : List[str] =token.split(''' ''' ) lowerCamelCase__ : Any =[] for token in tokens: if not len(lowerCamelCase ): continue lowerCamelCase__ : Union[str, Any] =token.lower() lowerCamelCase__ : Optional[int] =tuple(lowerCamelCase ) lowerCamelCase__ : List[str] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCamelCase__ : str =get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: lowerCamelCase__ : Optional[int] =min(lowerCamelCase, key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : List[str] =bigram lowerCamelCase__ : int =[] lowerCamelCase__ : Optional[int] =0 while i < len(lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] =word.index(lowerCamelCase, lowerCamelCase ) new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : str =tuple(lowerCamelCase ) lowerCamelCase__ : Any =new_word if len(lowerCamelCase ) == 1: break else: lowerCamelCase__ : Optional[int] =get_pairs(lowerCamelCase ) lowerCamelCase__ : str ='''@@ '''.join(lowerCamelCase ) lowerCamelCase__ : str =word[:-4] lowerCamelCase__ : Optional[Any] =word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def snake_case ( self : Any, lowerCamelCase : str )-> List[str]: lowerCamelCase__ : Any =[] lowerCamelCase__ : Any =re.findall(r'''\S+\n?''', lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def snake_case ( self : List[str], lowerCamelCase : str )-> int: lowerCamelCase__ : Tuple =token.lower() return self.encoder.get(lowerCamelCase, self.encoder.get(self.unk_token ) ) def snake_case ( self : Tuple, lowerCamelCase : int )-> str: return self.decoder.get(lowerCamelCase, self.unk_token ) def snake_case ( self : Optional[int], lowerCamelCase : List[str] )-> str: lowerCamelCase__ : Tuple =''' '''.join(lowerCamelCase ).replace('''@@ ''', '''''' ).strip() return out_string def snake_case ( self : Tuple, lowerCamelCase : str, lowerCamelCase : Optional[str] = None )-> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : List[str] =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase__ : Optional[Any] =os.path.join( lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCamelCase, ensure_ascii=lowerCamelCase ) + '''\n''' ) lowerCamelCase__ : str =0 with open(lowerCamelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) lowerCamelCase__ : Optional[int] =token_index writer.write(''' '''.join(lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
272
"""simple docstring""" from collections import defaultdict class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : List[str] )-> Optional[int]: lowerCamelCase__ : List[Any] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCamelCase__ : Optional[Any] =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCamelCase ) ) ] lowerCamelCase__ : Any =defaultdict(lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCamelCase__ : List[Any] =(1 << len(lowerCamelCase )) - 1 def snake_case ( self : int, lowerCamelCase : str, lowerCamelCase : Any )-> Any: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCamelCase__ : Optional[int] =self.count_ways_until(lowerCamelCase, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. lowerCamelCase__ : int =total_ways_util return self.dp[mask][task_no] def snake_case ( self : Dict, lowerCamelCase : Dict )-> int: # Store the list of persons for each task for i in range(len(lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": _lowercase : Tuple = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase : Dict = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
272
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int ) -> Optional[int]: '''simple docstring''' if len(snake_case_ ) <= 1 or n <= 1: return insert_next(snake_case_ , n - 1 ) rec_insertion_sort(snake_case_ , n - 1 ) def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : int ) -> List[str]: '''simple docstring''' if index >= len(snake_case_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCAmelCase_ , UpperCAmelCase_ = ( collection[index], collection[index - 1], ) insert_next(snake_case_ , index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =input('Enter integers separated by spaces: ') SCREAMING_SNAKE_CASE_: list[int] =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.weight", f"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( f"transformer.decoder.layers.{i}.cross_attn.out_proj.bias", f"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.weight", f"decoder.layers.{i}.sa_qcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.weight", f"decoder.layers.{i}.sa_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qpos_proj.weight", f"decoder.layers.{i}.sa_qpos_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kpos_proj.weight", f"decoder.layers.{i}.sa_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.weight", f"decoder.layers.{i}.sa_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.weight", f"decoder.layers.{i}.ca_qcontent_proj.weight") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.weight", f"decoder.layers.{i}.ca_kcontent_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kpos_proj.weight", f"decoder.layers.{i}.ca_kpos_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.weight", f"decoder.layers.{i}.ca_v_proj.weight")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight", f"decoder.layers.{i}.ca_qpos_sine_proj.weight") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_qcontent_proj.bias", f"decoder.layers.{i}.sa_qcontent_proj.bias") ) rename_keys.append( (f"transformer.decoder.layers.{i}.sa_kcontent_proj.bias", f"decoder.layers.{i}.sa_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.sa_qpos_proj.bias", f"decoder.layers.{i}.sa_qpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_kpos_proj.bias", f"decoder.layers.{i}.sa_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.sa_v_proj.bias", f"decoder.layers.{i}.sa_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qcontent_proj.bias", f"decoder.layers.{i}.ca_qcontent_proj.bias") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_kcontent_proj.bias", f"decoder.layers.{i}.ca_kcontent_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.ca_kpos_proj.bias", f"decoder.layers.{i}.ca_kpos_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.ca_v_proj.bias", f"decoder.layers.{i}.ca_v_proj.bias")) rename_keys.append( (f"transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias", f"decoder.layers.{i}.ca_qpos_sine_proj.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase_ = value else: UpperCAmelCase_ = value return new_state_dict def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict=False ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = "" if is_panoptic: UpperCAmelCase_ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:2_56, :] UpperCAmelCase_ = in_proj_bias[:2_56] UpperCAmelCase_ = in_proj_weight[2_56:5_12, :] UpperCAmelCase_ = in_proj_bias[2_56:5_12] UpperCAmelCase_ = in_proj_weight[-2_56:, :] UpperCAmelCase_ = in_proj_bias[-2_56:] def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Dict ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase_ = "resnet101" if "dc5" in model_name: UpperCAmelCase_ = True UpperCAmelCase_ = "panoptic" in model_name if is_panoptic: UpperCAmelCase_ = 2_50 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "huggingface/label-files" UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase_ = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase_ = ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase_ = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case_ , pretrained=snake_case_ ).eval() UpperCAmelCase_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase_ = "conditional_detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase_ = state_dict.pop(snake_case_ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase_ = conditional_detr(snake_case_ ) UpperCAmelCase_ = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
1
1
import sys from collections import defaultdict class _snake_case : def __init__( self : List[str] ): lowercase__ = [] def A__ ( self : Optional[int], __lowercase : str ): return self.node_position[vertex] def A__ ( self : int, __lowercase : List[Any], __lowercase : Optional[int] ): lowercase__ = pos def A__ ( self : Tuple, __lowercase : Dict, __lowercase : List[str], __lowercase : int, __lowercase : Optional[int] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowercase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowercase__ = 2 * start + 1 else: lowercase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowercase__ , lowercase__ = heap[smallest_child], positions[smallest_child] lowercase__ , lowercase__ = ( heap[start], positions[start], ) lowercase__ , lowercase__ = temp, tempa lowercase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], __lowercase ) self.top_to_bottom(__lowercase, __lowercase, __lowercase, __lowercase ) def A__ ( self : int, __lowercase : Tuple, __lowercase : List[str], __lowercase : Union[str, Any], __lowercase : Any ): lowercase__ = position[index] while index != 0: lowercase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowercase__ = heap[parent] lowercase__ = position[parent] self.set_position(position[parent], __lowercase ) else: lowercase__ = val lowercase__ = temp self.set_position(__lowercase, __lowercase ) break lowercase__ = parent else: lowercase__ = val lowercase__ = temp self.set_position(__lowercase, 0 ) def A__ ( self : Dict, __lowercase : Any, __lowercase : Tuple ): lowercase__ = len(__lowercase ) // 2 - 1 for i in range(__lowercase, -1, -1 ): self.top_to_bottom(__lowercase, __lowercase, len(__lowercase ), __lowercase ) def A__ ( self : Any, __lowercase : str, __lowercase : int ): lowercase__ = positions[0] lowercase__ = sys.maxsize self.top_to_bottom(__lowercase, 0, len(__lowercase ), __lowercase ) return temp def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowercase__ = Heap() lowercase__ = [0] * len(SCREAMING_SNAKE_CASE_ ) lowercase__ = [-1] * len(SCREAMING_SNAKE_CASE_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowercase__ = [] # Heap of Distance of vertices from their neighboring vertex lowercase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE_ ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE_ ) heap.node_position.append(SCREAMING_SNAKE_CASE_ ) lowercase__ = [] lowercase__ = 1 lowercase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowercase__ = 0 lowercase__ = distance heap.heapify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowercase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE_ )] ): lowercase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE_ , heap.get_position(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
364
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
224
0
def _SCREAMING_SNAKE_CASE ( a , a , a , a , a , a ) -> Dict: if index == r: for j in range(a ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __A : List[Any] = arr[i] combination_util(a , a , a , index + 1 , a , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(a , a , a , a , a , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _SCREAMING_SNAKE_CASE ( a , a , a ) -> int: # A temporary array to store all combination one by one __A : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(a , a , a , 0 , a , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
280
def _SCREAMING_SNAKE_CASE ( a ) -> Tuple: __A , __A : Optional[Any] = [], [] while len(a ) > 1: __A , __A : Any = min(a ), max(a ) start.append(a ) end.append(a ) collection.remove(a ) collection.remove(a ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCAmelCase : int = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase : Dict = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
280
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = IFPipeline lowercase = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _lowercase( self ) -> int: return self._get_dummy_components() def _lowercase( self , A , A=0 ) -> Optional[Any]: if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[Any] = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _lowercase( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase( self ) -> Tuple: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase( self ) -> Any: self._test_save_load_local() def _lowercase( self ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Optional[Any]: # if UpperCAmelCase : List[Any] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[Any] = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A , tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) UpperCAmelCase , UpperCAmelCase : List[Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase : str = None UpperCAmelCase : Dict = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A , A , A , A ) def _lowercase( self , A , A , A , A ) -> str: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Any = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Dict = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def _lowercase( self , A , A , A , A ) -> Union[str, Any]: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Any = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Optional[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def _lowercase( self , A , A , A , A ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(A ) UpperCAmelCase : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(A ) UpperCAmelCase : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(A ) UpperCAmelCase : str = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase : int = output.images[0] assert image.shape == (256, 256, 3) UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def __lowerCamelCase ( ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
338
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
338
1
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a : Tuple = '''sshleifer/mar_enro_6_3_student''' class __UpperCamelCase ( a__ ): def __a ( self ) -> Optional[Any]: super().setUp() a : Any = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=lowerCAmelCase__ , ) a : List[Any] = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def __a ( self ) -> List[Any]: MarianMTModel.from_pretrained(lowerCAmelCase__ ) @slow @require_torch_gpu def __a ( self ) -> List[str]: a : Optional[int] = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script a : str = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() a : int = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): a : int = bash_script.replace(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) a : Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") a : List[str] = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future a : Dict = ["finetune.py"] + bash_script.split() + args with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): a : List[Any] = argparse.ArgumentParser() a : Dict = pl.Trainer.add_argparse_args(lowerCAmelCase__ ) a : List[str] = SummarizationModule.add_model_specific_args(lowerCAmelCase__ , os.getcwd() ) a : str = parser.parse_args() a : Union[str, Any] = main(lowerCAmelCase__ ) # Check metrics a : List[str] = load_json(model.metrics_save_path ) a : Optional[int] = metrics["val"][0] a : Dict = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , lowerCAmelCase__ ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict a : int = os.listdir(lowerCAmelCase__ ) a : Tuple = [x for x in contents if x.endswith(".ckpt" )][0] a : Optional[Any] = os.path.join(args.output_dir , lowerCAmelCase__ ) a : Any = torch.load(lowerCAmelCase__ , map_location="cpu" ) a : Dict = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a : Dict = {os.path.basename(lowerCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class __UpperCamelCase ( a__ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __a ( self ) -> Union[str, Any]: a : int = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" a : Optional[Any] = { "--fp16_opt_level=O1": "", "$MAX_LEN": 128, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script a : Any = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) a : Union[str, Any] = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) a : Any = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): a : Dict = bash_script.replace(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) a : int = self.get_auto_remove_tmp_dir() a : Union[str, Any] = bash_script.replace("--fp16" , "" ) a : Optional[int] = 6 a : str = ( ["distillation.py"] + bash_script.split() + [ f"""--output_dir={output_dir}""", "--gpus=1", "--learning_rate=1e-3", f"""--num_train_epochs={epochs}""", "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): a : int = argparse.ArgumentParser() a : Optional[int] = pl.Trainer.add_argparse_args(lowerCAmelCase__ ) a : Tuple = SummarizationDistiller.add_model_specific_args(lowerCAmelCase__ , os.getcwd() ) a : List[str] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu a : Optional[int] = distill_main(lowerCAmelCase__ ) # Check metrics a : Tuple = load_json(model.metrics_save_path ) a : Union[str, Any] = metrics["val"][0] a : List[Any] = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , lowerCAmelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict a : List[str] = os.listdir(lowerCAmelCase__ ) a : Optional[Any] = [x for x in contents if x.endswith(".ckpt" )][0] a : Optional[int] = os.path.join(args.output_dir , lowerCAmelCase__ ) a : Optional[Any] = torch.load(lowerCAmelCase__ , map_location="cpu" ) a : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a : Optional[int] = {os.path.basename(lowerCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
105
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : list ) ->int: '''simple docstring''' if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a : Union[str, Any] = grid[0] for row_n in range(1 , len(_lowercase ) ): a : Optional[Any] = grid[row_n] a : Tuple = fill_row(_lowercase , _lowercase ) a : List[Any] = grid[row_n] return grid[-1][-1] def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : list ) ->list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(_lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
105
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a ( SCREAMING_SNAKE_CASE_ : int=None ): """simple docstring""" if subparsers is not None: UpperCamelCase : int = subparsers.add_parser('''env''' ) else: UpperCamelCase : List[str] = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Tuple = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = is_xpu_available() UpperCamelCase : int = is_npu_available() UpperCamelCase : List[Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = load_config_from_file(args.config_file ).to_dict() UpperCamelCase : Union[str, Any] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(SCREAMING_SNAKE_CASE_ ), '''PyTorch NPU available''': str(SCREAMING_SNAKE_CASE_ ), '''System RAM''': F"""{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB""", } if pt_cuda_available: UpperCamelCase : str = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) UpperCamelCase : List[Any] = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else F"""\t{accelerate_config}""" ) print(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = accelerate_config return info def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = env_command_parser() UpperCamelCase : Optional[int] = parser.parse_args() env_command(SCREAMING_SNAKE_CASE_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
315
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = nn.functional.normalize(SCREAMING_SNAKE_CASE_ ) return torch.mm(SCREAMING_SNAKE_CASE_ , normalized_text_embeds.t() ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = CLIPConfig __UpperCamelCase : Optional[int] = ["CLIPEncoderLayer"] def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = CLIPVisionModel(config.vision_config ) UpperCamelCase : List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(17 ) , requires_grad=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : Union[str, Any] = self.visual_projection(__SCREAMING_SNAKE_CASE ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Optional[int] = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ).cpu().float().numpy() UpperCamelCase : List[Any] = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ).cpu().float().numpy() UpperCamelCase : Dict = [] UpperCamelCase : List[str] = image_embeds.shape[0] for i in range(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCamelCase : List[str] = special_cos_dist[i][concept_idx] UpperCamelCase : Optional[Any] = self.special_care_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCamelCase : Optional[int] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCamelCase : Optional[int] = cos_dist[i][concept_idx] UpperCamelCase : List[str] = self.concept_embeds_weights[concept_idx].item() UpperCamelCase : Any = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.vision_model(__SCREAMING_SNAKE_CASE )[1] # pooled_output UpperCamelCase : int = self.visual_projection(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = cosine_distance(__SCREAMING_SNAKE_CASE , self.special_care_embeds ) UpperCamelCase : str = cosine_distance(__SCREAMING_SNAKE_CASE , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCamelCase : Union[str, Any] = 0.0 UpperCamelCase : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCamelCase : Optional[Any] = torch.any(special_scores > 0 , dim=1 ) UpperCamelCase : int = special_care * 0.01 UpperCamelCase : Tuple = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCamelCase : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCamelCase : List[str] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
315
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowercase : def __init__( self , A_ , ) -> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = 13 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 99 UpperCamelCase = 32 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 37 UpperCamelCase = "gelu" UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 512 UpperCamelCase = 16 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = None def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" ( UpperCamelCase ) = self.prepare_config_and_inputs() UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = TFEsmModel(config=lowercase_ ) UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase = model(lowercase_ ) UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(lowercase_ ) UpperCamelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> str: """simple docstring""" UpperCamelCase = True UpperCamelCase = TFEsmModel(config=lowercase_ ) UpperCamelCase = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } UpperCamelCase = model(lowercase_ ) UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(lowercase_ , encoder_hidden_states=lowercase_ ) # Also check the case where encoder outputs are not passed UpperCamelCase = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = TFEsmForMaskedLM(config=lowercase_ ) UpperCamelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFEsmForTokenClassification(config=lowercase_ ) UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowercase ( lowercase__ , lowercase__ , unittest.TestCase ): __lowercase : Any = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __lowercase : Optional[Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __lowercase : int = False __lowercase : List[str] = False def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFEsmModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFEsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip('Protein models do not support embedding resizing.' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowercase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCamelCase = model.get_bias() assert isinstance(lowercase_ , lowercase_ ) for k, v in name.items(): assert isinstance(lowercase_ , tf.Variable ) else: UpperCamelCase = model.get_output_embeddings() assert x is None UpperCamelCase = model.get_bias() assert name is None @require_tf class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase = model(lowercase_ )[0] UpperCamelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase_ ) # compare the actual values for a slice. UpperCamelCase = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) UpperCamelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase = model(lowercase_ )[0] # compare the actual values for a slice. UpperCamelCase = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
222
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ): UpperCAmelCase_ : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ : Optional[int] = Dataset.from_dict(__lowerCamelCase ) return dataset class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_dataset() UpperCAmelCase_ : Any = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
61
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ : Optional[int] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' def _A (lowerCAmelCase__ :int ) -> int: '''simple docstring''' assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
104
0
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __A : str = logging.get_logger(__name__) __A : Optional[int] = "▁" __A : Any = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } __A : Any = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } __A : List[str] = { "facebook/m2m100_418M": 1024, } # fmt: off __A : Any = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class _a ( SCREAMING_SNAKE_CASE_): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = ["""input_ids""", """attention_mask"""] UpperCamelCase__ = [] UpperCamelCase__ = [] def __init__( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : Optional[Any]="</s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : Optional[int]="<pad>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : List[str]="m2m100" , __UpperCamelCase : Tuple = None , __UpperCamelCase : Optional[int]=8 , **__UpperCamelCase : Dict , )->None: _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = language_codes _UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCAmelCase = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__UpperCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__UpperCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , language_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__UpperCAmelCase , **__UpperCAmelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = load_json(__UpperCAmelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = spm_file _UpperCAmelCase = load_spm(__UpperCAmelCase , self.sp_model_kwargs ) _UpperCAmelCase = len(self.encoder ) _UpperCAmelCase = { self.get_lang_token(__UpperCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase ) } _UpperCAmelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase )} _UpperCAmelCase = {v: k for k, v in self.lang_token_to_id.items()} _UpperCAmelCase = src_lang if src_lang is not None else '''en''' _UpperCAmelCase = tgt_lang _UpperCAmelCase = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCAmelCase = num_madeup_words @property def lowercase__ ( self : Any )->int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase__ ( self : Union[str, Any] )->str: return self._src_lang @src_lang.setter def lowercase__ ( self : int , __UpperCamelCase : Optional[int] )->None: _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple )->List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] )->str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase__ ( self : str , __UpperCamelCase : Dict )->str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__UpperCAmelCase , self.unk_token ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict )->Union[str, Any]: _UpperCAmelCase = [] _UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int = None , __UpperCamelCase : Any = False )->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def lowercase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] = None )->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : int )->Dict: _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any )->Dict: _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Optional[int] , __UpperCamelCase : List[str] )->None: _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Dict = None )->Tuple[str]: _UpperCAmelCase = Path(__UpperCAmelCase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _UpperCAmelCase = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (str(__UpperCAmelCase ), str(__UpperCAmelCase )) def lowercase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple = "en" , __UpperCamelCase : int = None , __UpperCamelCase : str = "ro" , **__UpperCamelCase : List[Any] , )->BatchEncoding: _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Tuple , **__UpperCamelCase : Any )->List[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase ) _UpperCAmelCase = self.get_lang_id(__UpperCAmelCase ) _UpperCAmelCase = tgt_lang_id return inputs def lowercase__ ( self : Union[str, Any] )->Any: self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : List[Any] )->str: self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Tuple )->None: _UpperCAmelCase = self.get_lang_token(__UpperCAmelCase ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] )->None: _UpperCAmelCase = self.get_lang_token(__UpperCAmelCase ) _UpperCAmelCase = self.lang_token_to_id[lang_token] _UpperCAmelCase = [self.cur_lang_id] _UpperCAmelCase = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] )->str: return self.lang_code_to_token[lang] def lowercase__ ( self : List[Any] , __UpperCamelCase : Any )->int: _UpperCAmelCase = self.get_lang_token(__UpperCAmelCase ) return self.lang_token_to_id[lang_token] def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = sentencepiece.SentencePieceProcessor(**_SCREAMING_SNAKE_CASE ) spm.Load(str(_SCREAMING_SNAKE_CASE ) ) return spm def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=2 )
260
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase_ = 2 class snake_case : def __init__( self , *, # begin keyword-only arguments __UpperCAmelCase="<s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=None , ) ->Tuple: a_ , a_ , a_ , a_ = bos, unk, pad, eos a_ = [] a_ = [] a_ = {} a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) a_ = self.add_symbol(__UpperCAmelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__UpperCAmelCase) a_ = len(self.symbols) def __eq__( self , __UpperCAmelCase) ->Dict: return self.indices == other.indices def __getitem__( self , __UpperCAmelCase) ->Optional[Any]: if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self) ->Any: return len(self.symbols) def __contains__( self , __UpperCAmelCase) ->Dict: return sym in self.indices @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase) ->List[Any]: a_ = cls() d.add_from_file(__UpperCAmelCase) return d def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=1 , __UpperCAmelCase=False) ->List[Any]: if word in self.indices and not overwrite: a_ = self.indices[word] a_ = self.count[idx] + n return idx else: a_ = len(self.symbols) a_ = idx self.symbols.append(__UpperCAmelCase) self.count.append(__UpperCAmelCase) return idx def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple: return 0 def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): try: with open(__UpperCAmelCase , "r" , encoding="utf-8") as fd: self.add_from_file(__UpperCAmelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(__UpperCAmelCase)) return a_ = f.readlines() a_ = self._load_meta(__UpperCAmelCase) for line in lines[indices_start_line:]: try: a_ , a_ = line.rstrip().rsplit(" " , 1) if field == "#fairseq:overwrite": a_ = True a_ , a_ = line.rsplit(" " , 1) else: a_ = False a_ = int(__UpperCAmelCase) a_ = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(__UpperCAmelCase)) self.add_symbol(__UpperCAmelCase , n=__UpperCAmelCase , overwrite=__UpperCAmelCase) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'") def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = dict((re.sub(r"@@$" , "" , UpperCAmelCase ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , UpperCAmelCase ), v) for k, v in d.items() ) a_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] a_ = d[k] # restore return da def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" if not os.path.exists(UpperCAmelCase ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models a_ = os.path.join(UpperCAmelCase , "checkpoint.pt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = chkpt["cfg"]["model"] # dicts a_ = os.path.join(UpperCAmelCase , "dict.txt" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) a_ = Dictionary.load(UpperCAmelCase ) a_ = rewrite_dict_keys(src_dict.indices ) a_ = len(UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # merges_file (bpecodes) a_ = os.path.join(UpperCAmelCase , "bpecodes" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) a_ = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) # model config a_ = os.path.join(UpperCAmelCase , "config.json" ) a_ = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # tokenizer config a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) a_ = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # model a_ = chkpt["model"] # remove unneeded keys a_ = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) a_ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): a_ = model_state_dict.pop(UpperCAmelCase ) else: a_ = model_state_dict.pop(UpperCAmelCase ) a_ = BioGptConfig.from_pretrained(UpperCAmelCase ) a_ = BioGptForCausalLM(UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase ) # save a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCAmelCase , UpperCAmelCase ) print("Conversion is done!" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase_ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
243
0
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> bool: """simple docstring""" if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('check_bouncy() accepts only integer arguments' ) lowerCAmelCase_ : int = str(lowerCAmelCase__ ) lowerCAmelCase_ : int = ''.join(sorted(lowerCAmelCase__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def UpperCamelCase_ ( lowerCAmelCase__ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : Optional[int] = 1 while True: if check_bouncy(lowerCAmelCase__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(9_9)}')
289
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : int ) -> list[int]: """simple docstring""" lowerCAmelCase_ : Any = 2 lowerCAmelCase_ : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase__ ) if n > 1: factors.append(lowerCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
289
1