code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase = { 'camembert-base': 512, } lowerCAmelCase = '▁' class _a ( UpperCamelCase__ ): _lowercase : List[Any] = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: str="<s>" , UpperCamelCase_: str="</s>" , UpperCamelCase_: Any="</s>" , UpperCamelCase_: Dict="<s>" , UpperCamelCase_: Dict="<unk>" , UpperCamelCase_: Union[str, Any]="<pad>" , UpperCamelCase_: int="<mask>" , UpperCamelCase_: Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: List[Any] , ) -> None: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) lowercase__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase__ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} lowercase__ = len(self.fairseq_tokens_to_ids ) lowercase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCamelCase_ ( self: int , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCamelCase_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[str] ) -> Dict: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = [] lowercase__ = '''''' lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(UpperCamelCase_ ) lowercase__ = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __getstate__( self: List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self: Any , UpperCamelCase_: List[str] ) -> Dict: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase__ = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
110
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowercase__ ( __lowercase : Features ) -> Optional[int]: """simple docstring""" __UpperCamelCase = np.inf def set_batch_size(__lowercase : FeatureType ) -> None: nonlocal batch_size if isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__lowercase , __lowercase ): __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__lowercase , __lowercase ) and feature.dtype == "binary": __UpperCamelCase = min(__lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__lowercase , __lowercase ) return None if batch_size is np.inf else batch_size class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[str] , __A : NestedDataStructureLike[PathLike] , __A : Optional[NamedSplit] = None , __A : Optional[Features] = None , __A : str = None , __A : bool = False , __A : bool = False , __A : Optional[int] = None , **__A : Dict , ): super().__init__( __A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) __UpperCamelCase = path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths} __UpperCamelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __UpperCamelCase = Parquet( cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , ) def _lowerCamelCase ( self : Optional[int] ): # Build iterable dataset if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset class snake_case : """simple docstring""" def __init__( self : List[str] , __A : Dataset , __A : Union[PathLike, BinaryIO] , __A : Optional[int] = None , **__A : Dict , ): __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size or get_writer_batch_size(dataset.features ) __UpperCamelCase = parquet_writer_kwargs def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __UpperCamelCase = self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs ) else: __UpperCamelCase = self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs ) return written def _lowerCamelCase ( self : List[str] , __A : BinaryIO , __A : int , **__A : List[str] ): __UpperCamelCase = 0 __UpperCamelCase = parquet_writer_kwargs.pop('path_or_buf' , __A ) __UpperCamelCase = self.dataset.features.arrow_schema __UpperCamelCase = pq.ParquetWriter(__A , schema=__A , **__A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __A ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __UpperCamelCase = query_table( table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__A ) written += batch.nbytes writer.close() return written
53
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __A ( _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _A = nn.Parameter(_lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _A = nn.Parameter(_lowercase ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = np.asarray(weights[0] ) _A = np.asarray(weights[1] ) _A = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = np.asarray(weights[0] ) _A = np.asarray(weights[1] ) _A = np.asarray(weights[2] ) _A = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_lowercase ).transpose(1 , 2 ).contiguous().view(-1 , _lowercase ) , ) set_param( torch_layer.output.dense , torch.tensor(_lowercase ).view(-1 , _lowercase ).contiguous().transpose(0 , 1 ) , ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = weights[0][0][0] _A = np.asarray(layer_norm_a[0] ) _A = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # lsh weights + output _A = weights[0][1] if len(_lowercase ) < 4: set_layer_weights_in_torch_lsh(_lowercase , torch_block.attention , _lowercase ) else: set_layer_weights_in_torch_local(_lowercase , torch_block.attention , _lowercase ) # intermediate weighs _A = weights[2][0][1][2] # Chunked Feed Forward if len(_lowercase ) == 4: _A = intermediate_weights[2] # layernorm 2 _A = np.asarray(intermediate_weights[0][0] ) _A = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # intermediate dense _A = np.asarray(intermediate_weights[1][0] ) _A = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) # intermediate out _A = np.asarray(intermediate_weights[4][0] ) _A = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = torch_model.reformer # word embeds _A = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_lowercase ) , ) if isinstance(weights[3] , _lowercase ): _A = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _A = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _A = nn.Parameter(torch.tensor(_lowercase ) ) _A = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _A = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_lowercase , _lowercase , _lowercase ) # output layer norm _A = np.asarray(weights[7][0] ) _A = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) , ) # output embeddings _A = np.asarray(weights[9][0] ) _A = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_lowercase ).transpose(0 , 1 ).contiguous() , torch.tensor(_lowercase ) , ) def __A ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = ReformerConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) _A = ReformerModelWithLMHead(_lowercase ) with open(_lowercase , '''rb''' ) as f: _A = pickle.load(_lowercase )['''weights'''] set_model_weights_in_torch(_lowercase , _lowercase , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
75
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ['OwlViTFeatureExtractor'] __A = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
75
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _a = logging.get_logger(__name__) _a = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _a = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } _a = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } _a = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __lowerCamelCase ( _lowercase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = ["input_ids", "attention_mask"] UpperCamelCase__ = DistilBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): """simple docstring""" super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(__a , normalizer_state.pop('type' ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**__a ) _UpperCAmelCase = do_lower_case def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
39
"""simple docstring""" from sklearn.metrics import recall_score import datasets lowerCAmelCase__ = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' lowerCAmelCase__ = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' lowerCAmelCase__ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def snake_case_ (self , __a , __a , __a=None , __a=1 , __a="binary" , __a=None , __a="warn" , ) -> str: UpperCamelCase = recall_score( __a , __a , labels=__a , pos_label=__a , average=__a , sample_weight=__a , zero_division=__a , ) return {"recall": float(__a ) if score.size == 1 else score}
153
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = int(number**0.5 ) return number == sq * sq def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _a : int = x_den * y_den * z_den _a : int = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) top //= hcf bottom //= hcf return top, bottom def lowerCAmelCase__ ( UpperCamelCase__ = 3_5 ): '''simple docstring''' _a : set = set() _a : int _a : Fraction = Fraction(0 ) _a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _a : Optional[Any] = x_num * y_den + x_den * y_num _a : Union[str, Any] = x_den * y_den _a : Union[str, Any] = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : Union[str, Any] = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=2 _a : Tuple = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _a : Any = x_den * x_den * y_den * y_den if is_sq(UpperCAmelCase_ ) and is_sq(UpperCAmelCase_ ): _a : List[str] = int(sqrt(UpperCAmelCase_ ) ) _a : Optional[Any] = int(sqrt(UpperCAmelCase_ ) ) _a : Tuple = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : int = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=-1 _a : int = x_num * y_num _a : Any = x_den * y_num + x_num * y_den _a : Tuple = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : Tuple = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) # n=2 _a : Dict = x_num * x_num * y_num * y_num _a : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCAmelCase_ ) and is_sq(UpperCAmelCase_ ): _a : Tuple = int(sqrt(UpperCAmelCase_ ) ) _a : Dict = int(sqrt(UpperCAmelCase_ ) ) _a : Union[str, Any] = gcd(UpperCAmelCase_ , UpperCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _a : Union[str, Any] = add_three( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) unique_s.add(UpperCAmelCase_ ) for num, den in unique_s: total += Fraction(UpperCAmelCase_ , UpperCAmelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
357
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') _snake_case = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _snake_case = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : str = CamembertTokenizer UpperCamelCase : List[Any] = CamembertTokenizerFast UpperCamelCase : Optional[int] = True UpperCamelCase : Union[str, Any] = True def _lowercase ( self : List[Any] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a : List[Any] = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Tuple: _a : Optional[Any] = """<pad>""" _a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> str: _a : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(UpperCAmelCase__ ) , 1004 ) def _lowercase ( self : List[str] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def _lowercase ( self : Union[str, Any] ) -> str: _a : Tuple = CamembertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) _a : List[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _a : Any = """I was born in 92000, and this is falsé.""" _a : Union[str, Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : List[Any] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _a : List[str] = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) _a : int = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: if not self.test_rust_tokenizer: return _a : Optional[int] = self.get_tokenizer() _a : Tuple = self.get_rust_tokenizer() _a : List[Any] = """I was born in 92000, and this is falsé.""" _a : List[str] = tokenizer.tokenize(UpperCAmelCase__ ) _a : Union[str, Any] = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) _a : Optional[int] = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = self.get_rust_tokenizer() _a : Optional[Any] = tokenizer.encode(UpperCAmelCase__ ) _a : Dict = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> List[Any]: # fmt: off _a : Dict = {"""input_ids""": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _a : Union[str, Any] = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=UpperCAmelCase__ , )
324
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase : str = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _A ( unittest.TestCase): SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) SCREAMING_SNAKE_CASE_ : Dict = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : int = text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}] ) SCREAMING_SNAKE_CASE_ : List[str] = text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}] ) # Legacy behavior SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier('This is great !' , return_all_scores=_SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}] ) SCREAMING_SNAKE_CASE_ : Tuple = text_classifier('This is great !' , return_all_scores=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [[{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}]] ) SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier(['This is great !', 'Something else'] , return_all_scores=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], [{'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_1', 'score': 0.496}], ] , ) SCREAMING_SNAKE_CASE_ : Dict = text_classifier(['This is great !', 'Something else'] , return_all_scores=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [ {'label': 'LABEL_0', 'score': 0.504}, {'label': 'LABEL_0', 'score': 0.504}, ] , ) @require_torch def UpperCAmelCase ( self ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ : str = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) SCREAMING_SNAKE_CASE_ : List[str] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @require_tf def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'LABEL_0', 'score': 0.504}] ) @slow @require_torch def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = pipeline('text-classification' ) SCREAMING_SNAKE_CASE_ : str = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Any = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'POSITIVE', 'score': 0.988}] ) @slow @require_tf def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = pipeline('text-classification' , framework='tf' ) SCREAMING_SNAKE_CASE_ : Any = text_classifier('This is great !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'POSITIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('This is bad !' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': 'POSITIVE', 'score': 0.988}] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = TextClassificationPipeline(model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 SCREAMING_SNAKE_CASE_ : List[Any] = 'HuggingFace is in' SCREAMING_SNAKE_CASE_ : List[Any] = text_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) SCREAMING_SNAKE_CASE_ : Tuple = ['HuggingFace is in ', 'Paris is in France'] SCREAMING_SNAKE_CASE_ : Dict = text_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}, {'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier(_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [[{'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}] * N, [{'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}] * N] , ) SCREAMING_SNAKE_CASE_ : Any = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} SCREAMING_SNAKE_CASE_ : Optional[Any] = text_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , {'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. SCREAMING_SNAKE_CASE_ : str = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(_SCREAMING_SNAKE_CASE ): text_classifier(_SCREAMING_SNAKE_CASE ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility SCREAMING_SNAKE_CASE_ : str = text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE ) , [{'label': ANY(_SCREAMING_SNAKE_CASE ), 'score': ANY(_SCREAMING_SNAKE_CASE )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Optional[int] = [1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 0, 0 UpperCAmelCase__ : int = ugly_nums[ia] * 2 UpperCAmelCase__ : Dict = ugly_nums[ia] * 3 UpperCAmelCase__ : Tuple = ugly_nums[ia] * 5 for _ in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : Dict = min(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ugly_nums.append(lowerCAmelCase__ ) if next_num == next_a: ia += 1 UpperCAmelCase__ : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase__ : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase__ : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_0_0) = }""")
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
"""simple docstring""" from math import sqrt def lowercase_ ( _snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( _snake_case = 10_001 ): SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : int = 1 while count != nth and number < 3: number += 1 if is_prime(_snake_case ): count += 1 while count != nth: number += 2 if is_prime(_snake_case ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
25
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A_ : UpperCAmelCase__ = MBartConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=False , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A=0.1 , _A=0.1 , _A=2_0 , _A=2 , _A=1 , _A=0 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def _lowercase ( self , _A , _A ): '''simple docstring''' UpperCAmelCase = TFMBartModel(config=_A ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = inputs_dict['''head_mask'''] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() UpperCAmelCase = past_key_values[1] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ (a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () UpperCAmelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self , _A , _A , _A , _A , _A ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFMBartModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A ) def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class A_ (unittest.TestCase ): UpperCAmelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] UpperCAmelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] UpperCAmelCase__ = '''facebook/mbart-large-en-ro''' @cached_property def _lowercase ( self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def _lowercase ( self , **_A ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , **_A , return_tensors='''tf''' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def _lowercase ( self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
273
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(__lowercase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def snake_case (__lowercase , __lowercase ) -> Tuple: '''simple docstring''' _snake_case : Any = _distribute_shards(**__lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def snake_case (__lowercase , __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' _snake_case : int = _split_gen_kwargs(__lowercase , __lowercase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def snake_case (__lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' if expected is RuntimeError: with pytest.raises(__lowercase ): _number_of_shards_in_gen_kwargs(__lowercase ) else: _snake_case : Tuple = _number_of_shards_in_gen_kwargs(__lowercase ) assert out == expected
284
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class lowercase_ ( __snake_case ): _lowerCamelCase = ['pixel_values'] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BILINEAR , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = True , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : Dict = size if size is not None else {"shortest_edge": 224} _snake_case : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) _snake_case : Any = crop_size if crop_size is not None else {"height": 256, "width": 256} _snake_case : str = get_size_dict(lowercase_ , param_name="crop_size" ) _snake_case : List[Any] = do_resize _snake_case : Tuple = size _snake_case : Union[str, Any] = resample _snake_case : str = do_rescale _snake_case : Dict = rescale_factor _snake_case : int = do_center_crop _snake_case : int = crop_size _snake_case : List[Any] = do_flip_channel_order def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = PIL.Image.BILINEAR , lowercase_ = None , **lowercase_ , ): _snake_case : Optional[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _snake_case : int = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): _snake_case : List[str] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None ): return flip_channel_order(lowercase_ , data_format=lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): _snake_case : Dict = do_resize if do_resize is not None else self.do_resize _snake_case : Union[str, Any] = resample if resample is not None else self.resample _snake_case : Dict = do_rescale if do_rescale is not None else self.do_rescale _snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _snake_case : Optional[int] = size if size is not None else self.size _snake_case : Optional[int] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) _snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size _snake_case : Union[str, Any] = get_size_dict(lowercase_ , param_name="crop_size" ) _snake_case : Tuple = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _snake_case : Tuple = [to_numpy_array(lowercase_ ) for image in images] if do_resize: _snake_case : int = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _snake_case : List[Any] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _snake_case : Optional[int] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _snake_case : int = [self.flip_channel_order(image=lowercase_ ) for image in images] _snake_case : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _snake_case : List[Any] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None ): _snake_case : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase_ ): _snake_case : Union[str, Any] = target_sizes.numpy() _snake_case : int = [] for idx in range(len(lowercase_ ) ): _snake_case : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase_ ) _snake_case : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: _snake_case : List[Any] = logits.argmax(dim=1 ) _snake_case : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
284
1
"""simple docstring""" from math import isclose, sqrt def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): """simple docstring""" lowerCamelCase__ : str =point_y / 4 / point_x lowerCamelCase__ : Any =2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase__ : Optional[Any] =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase__ : Optional[int] =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase__ : List[str] =outgoing_gradient**2 + 4 lowerCamelCase__ : Optional[Any] =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase__ : Union[str, Any] =(point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCamelCase__ : Optional[int] =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase__ : Tuple =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase__ : Union[str, Any] =x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus lowerCamelCase__ : Optional[Any] =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case__ ( __lowerCamelCase : float = 1.4 , __lowerCamelCase : float = -9.6 ): """simple docstring""" lowerCamelCase__ : int =0 lowerCamelCase__ : float =first_x_coord lowerCamelCase__ : float =first_y_coord lowerCamelCase__ : float =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] =next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'{solution() = }')
238
"""simple docstring""" from __future__ import annotations def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if b == 0: return (1, 0) ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , a % b ) lowerCamelCase__ : Optional[Any] =a // b return (y, x - k * y) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : Any =extended_euclid(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] =na * na lowerCamelCase__ : Union[str, Any] =ra * x * na + ra * y * na return (n % m + m) % m def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" ((lowerCamelCase__) , (lowerCamelCase__)) : int =extended_euclid(__lowerCamelCase , __lowerCamelCase ) if b < 0: lowerCamelCase__ : Any =(b % n + n) % n return b def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Any =invert_modulo(__lowerCamelCase , __lowerCamelCase ), invert_modulo(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple =na * na lowerCamelCase__ : Optional[Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
238
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Dict = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __UpperCAmelCase ( snake_case_ ): '''simple docstring''' __lowerCAmelCase = '''gptsan-japanese''' __lowerCAmelCase = [ '''past_key_values''', ] __lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__(self : List[str] , _lowerCAmelCase : Union[str, Any]=3_6000 , _lowerCAmelCase : List[str]=1280 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : Optional[Any]=8192 , _lowerCAmelCase : Dict=4096 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Optional[int]=10 , _lowerCAmelCase : List[Any]=0 , _lowerCAmelCase : int=16 , _lowerCAmelCase : Optional[int]=16 , _lowerCAmelCase : List[Any]=128 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Optional[Any]=1e-5 , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Any="float32" , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=0.002 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=3_5998 , _lowerCAmelCase : Optional[int]=3_5995 , _lowerCAmelCase : Optional[int]=3_5999 , **_lowerCAmelCase : Tuple , ): A = vocab_size A = max_position_embeddings A = d_model A = d_ff A = d_ext A = d_spout A = num_switch_layers A = num_ext_layers A = num_switch_layers + num_ext_layers A = num_heads A = num_experts A = expert_capacity A = dropout_rate A = layer_norm_epsilon A = router_bias A = router_jitter_noise A = router_dtype A = router_ignore_padding_tokens A = output_hidden_states A = output_attentions A = initializer_factor A = output_router_logits A = use_cache super().__init__( separator_token_id=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
356
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ["""pixel_values"""] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 255 , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name='crop_size' ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE = do_convert_rgb def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = PILImageResampling.BICUBIC , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) SCREAMING_SNAKE_CASE = get_resize_output_image_size(lowerCAmelCase__ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(lowerCAmelCase__ , size=(size['height'], size['width']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , param_name='size' , default_to_square=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE = get_size_dict(lowerCAmelCase__ , param_name='crop_size' , default_to_square=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
113
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> str: SCREAMING_SNAKE_CASE = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError('No input value was provided' ) SCREAMING_SNAKE_CASE = '-' if number.startswith('-' ) else '' SCREAMING_SNAKE_CASE = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
113
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __snake_case : '''simple docstring''' def __init__( self : Dict , A : Optional[Any] , A : int , A : int ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) __snake_case: List[str] = img __snake_case: Dict = img.shape[1] __snake_case: Dict = img.shape[0] __snake_case: Tuple = dst_width __snake_case: int = dst_height __snake_case: List[Any] = self.src_w / self.dst_w __snake_case: Dict = self.src_h / self.dst_h __snake_case: Optional[int] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def UpperCAmelCase__ ( self : Tuple ): for i in range(self.dst_h ): for j in range(self.dst_w ): __snake_case: Tuple = self.img[self.get_y(A )][self.get_x(A )] def UpperCAmelCase__ ( self : str , A : int ): return int(self.ratio_x * x ) def UpperCAmelCase__ ( self : Any , A : int ): return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCAmelCase : List[str] = 800, 600 __UpperCAmelCase : Any = imread("image_data/lena.jpg", 1) __UpperCAmelCase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
353
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase : str = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Any , A : int , A : int , A : float , **A : Optional[int] ): __snake_case: List[str] = feature_size __snake_case: Optional[int] = sampling_rate __snake_case: Any = padding_value __snake_case: Dict = kwargs.pop("""padding_side""" , """right""" ) __snake_case: Union[str, Any] = kwargs.pop("""return_attention_mask""" , A ) super().__init__(**A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __snake_case: Optional[int] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) __snake_case: List[str] = processed_features[self.model_input_names[0]] __snake_case: Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A ) == 0: if return_attention_mask: __snake_case: Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __snake_case: int = required_input[0] if isinstance(A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __snake_case: Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A ): __snake_case: Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(A ): __snake_case: str = """tf""" elif is_torch_tensor(A ): __snake_case: str = """pt""" elif isinstance(A , (int, float, list, tuple, np.ndarray) ): __snake_case: List[str] = """np""" else: raise ValueError( f'''type of {first_element} unknown: {type(A )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __snake_case: List[Any] = to_numpy(A ) else: __snake_case: Union[str, Any] = [to_numpy(A ) for v in value] # Convert padding_strategy in PaddingStrategy __snake_case: Union[str, Any] = self._get_padding_strategies(padding=A , max_length=A ) __snake_case: Any = processed_features[self.model_input_names[0]] __snake_case: int = len(A ) if not all(len(A ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __snake_case: Union[str, Any] = [] for i in range(A ): __snake_case: List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation __snake_case: Tuple = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __snake_case: Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __snake_case: List[str] = PaddingStrategy.MAX_LENGTH __snake_case: List[Any] = {} for i in range(A ): # padding __snake_case: Any = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: __snake_case: Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): __snake_case: str = value.astype(np.floataa ) batch_outputs[key].append(A ) return BatchFeature(A , tensor_type=A ) def UpperCAmelCase__ ( self : int , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ): __snake_case: List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __snake_case: List[str] = len(A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __snake_case: List[str] = np.ones(len(A ) , dtype=np.intaa ) if needs_to_be_padded: __snake_case: Any = max_length - len(A ) if self.padding_side == "right": if return_attention_mask: __snake_case: Optional[int] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __snake_case: Any = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __snake_case: Union[str, Any] = np.pad( A , A , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __snake_case: Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __snake_case: Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __snake_case: str = np.pad( A , A , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __snake_case: List[str] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Tuple = len(A ) > max_length if needs_to_be_truncated: __snake_case: List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __snake_case: int = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : int , A : int=False , A : int=None ): # Get padding strategy if padding is not False: if padding is True: __snake_case: Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A ): __snake_case: Optional[int] = PaddingStrategy(A ) elif isinstance(A , A ): __snake_case: Any = padding else: __snake_case: Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
293
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = """pixel_values""" lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : str = TimmBackboneConfig def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: requires_backends(self , "timm" ) super().__init__(UpperCamelCase__ ) lowerCamelCase : Any = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(UpperCamelCase__ , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowerCamelCase : List[Any] = getattr(UpperCamelCase__ , "use_pretrained_backbone" , UpperCamelCase__ ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowerCamelCase : str = config.out_indices if getattr(UpperCamelCase__ , "out_indices" , UpperCamelCase__ ) is not None else (-1,) lowerCamelCase : Optional[Any] = timm.create_model( config.backbone , pretrained=UpperCamelCase__ , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCamelCase__ , **UpperCamelCase__ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCamelCase : List[Any] = self._backbone.return_layers lowerCamelCase : Optional[int] = {layer["module"]: str(UpperCamelCase__ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCamelCase__ ) @classmethod def _lowercase ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowerCamelCase : Dict = kwargs.pop("config" , TimmBackboneConfig() ) lowerCamelCase : List[Any] = kwargs.pop("use_timm_backbone" , UpperCamelCase__ ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowerCamelCase : Any = kwargs.pop("num_channels" , config.num_channels ) lowerCamelCase : Tuple = kwargs.pop("features_only" , config.features_only ) lowerCamelCase : Optional[Any] = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowerCamelCase : Optional[int] = kwargs.pop("out_indices" , config.out_indices ) lowerCamelCase : Optional[Any] = TimmBackboneConfig( backbone=UpperCamelCase__ , num_channels=UpperCamelCase__ , features_only=UpperCamelCase__ , use_pretrained_backbone=UpperCamelCase__ , out_indices=UpperCamelCase__ , ) return super()._from_config(UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]: pass def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCamelCase : Any = self._all_layers lowerCamelCase : Union[str, Any] = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : int = self._return_layers lowerCamelCase : List[str] = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCamelCase : Optional[int] = self._backbone(UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[Any] = None lowerCamelCase : Optional[int] = tuple(UpperCamelCase__ ) lowerCamelCase : List[str] = tuple(UpperCamelCase__ ) if hidden_states is not None else None if not return_dict: lowerCamelCase : Dict = (feature_maps,) if output_hidden_states: lowerCamelCase : List[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCamelCase__ , hidden_states=UpperCamelCase__ , attentions=UpperCamelCase__ )
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """ctrl""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=246534 , lowercase=256 , lowercase=1280 , lowercase=8192 , lowercase=48 , lowercase=16 , lowercase=0.1 , lowercase=0.1 , lowercase=1E-6 , lowercase=0.02 , lowercase=True , **lowercase , ): _lowerCamelCase : Any = vocab_size _lowerCamelCase : Dict = n_positions _lowerCamelCase : Optional[int] = n_embd _lowerCamelCase : str = n_layer _lowerCamelCase : Union[str, Any] = n_head _lowerCamelCase : Any = dff _lowerCamelCase : int = resid_pdrop _lowerCamelCase : Dict = embd_pdrop _lowerCamelCase : Union[str, Any] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : str = use_cache super().__init__(**lowercase )
96
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 - _cos) / 2 _snake_case = 1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 + _cos) / 2 _snake_case = -1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = _sin / 2 _snake_case = 0 _snake_case = -ba _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 1 - alpha _snake_case = -2 * _cos _snake_case = 1 + alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = 1 + alpha * big_a _snake_case = -2 * _cos _snake_case = 1 - alpha * big_a _snake_case = 1 + alpha / big_a _snake_case = -2 * _cos _snake_case = 1 - alpha / big_a _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (pmc + aaa) _snake_case = 2 * big_a * mpc _snake_case = big_a * (pmc - aaa) _snake_case = ppmc + aaa _snake_case = -2 * pmpc _snake_case = ppmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" _snake_case = tau * frequency / samplerate _snake_case = sin(_UpperCamelCase ) _snake_case = cos(_UpperCamelCase ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(_UpperCamelCase ) * alpha _snake_case = big_a * (ppmc + aaa) _snake_case = -2 * big_a * pmpc _snake_case = big_a * (ppmc - aaa) _snake_case = pmc + aaa _snake_case = 2 * mpc _snake_case = pmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
278
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A = {'''allegro/herbert-base-cased''': 5_14} __A = {} class lowercase_ ( __lowercase ): UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[Any] = HerbertTokenizer def __init__( self : Tuple , A__ : str=None , A__ : Optional[Any]=None , A__ : Union[str, Any]=None , A__ : Optional[int]="<s>" , A__ : Optional[int]="<unk>" , A__ : str="<pad>" , A__ : List[Any]="<mask>" , A__ : Dict="</s>" , **A__ : Optional[int] , ) -> Optional[int]: super().__init__( A__ , A__ , tokenizer_file=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , sep_token=A__ , **A__ , ) def UpperCamelCase_ ( self : str , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ ( self : Tuple , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def UpperCamelCase_ ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
278
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger("transformers.models.encodec") _lowerCamelCase : int = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } _lowerCamelCase : Optional[int] = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } _lowerCamelCase : Optional[Any] = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } _lowerCamelCase : int = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } _lowerCamelCase : Union[str, Any] = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } _lowerCamelCase : Optional[int] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCamelCase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Union[str, Any] = [] def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): UpperCamelCase = getattr(A__ , A__ ) if weight_type is not None: UpperCamelCase = getattr(A__ , A__ ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "weight_ih_l0": UpperCamelCase = value elif weight_type == "weight_hh_l0": UpperCamelCase = value elif weight_type == "bias_ih_l0": UpperCamelCase = value elif weight_type == "bias_hh_l0": UpperCamelCase = value elif weight_type == "weight_ih_l1": UpperCamelCase = value elif weight_type == "weight_hh_l1": UpperCamelCase = value elif weight_type == "bias_ih_l1": UpperCamelCase = value elif weight_type == "bias_hh_l1": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def __lowerCamelCase ( A__ , A__ ) -> List[Any]: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase , UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCamelCase ( A__ , A__ , A__ ) -> int: """simple docstring""" UpperCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCamelCase = MAPPING_24K elif model_name == "encodec_48khz": UpperCamelCase = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(A__ , A__ ): logger.info(F"""{name} was ignored""" ) continue UpperCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCamelCase , UpperCamelCase = key.split('.*.' ) if prefix in name and suffix in name: UpperCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(A__ )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , A__ ) if "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "weight_ih_l0" in name: UpperCamelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: UpperCamelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: UpperCamelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: UpperCamelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: UpperCamelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: UpperCamelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: UpperCamelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: UpperCamelCase = 'bias_hh_l1' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__=None , A__=None , ) -> Optional[int]: """simple docstring""" if config_path is not None: UpperCamelCase = EncodecConfig.from_pretrained(A__ ) else: UpperCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCamelCase = [8, 5, 4, 4] UpperCamelCase = [2.2] UpperCamelCase = 64 UpperCamelCase = 32_000 UpperCamelCase = 2_048 UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False elif model_name == "encodec_48khz": UpperCamelCase = [8, 5, 4, 2] UpperCamelCase = [3.0, 6.0, 12.0, 24.0] UpperCamelCase = 48_000 UpperCamelCase = 2 UpperCamelCase = False UpperCamelCase = 'time_group_norm' UpperCamelCase = True UpperCamelCase = 1.0 UpperCamelCase = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) UpperCamelCase = EncodecModel(A__ ) UpperCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A__ ) UpperCamelCase = torch.load(A__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCamelCase = original_checkpoint['best_state'] recursively_load_weights(A__ , A__ , A__ ) model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _lowerCamelCase : Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
"""simple docstring""" from collections import Counter from timeit import timeit def _lowerCamelCase( a = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def _lowerCamelCase( a = "" ): if len(a ) == 0: return True __a = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __a = {} for character in lower_case_input_str: __a = character_freq_dict.get(a , 0 ) + 1 __a = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _lowerCamelCase( a = "" ): print("\nFor string = " , a , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(a ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(a ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:Tuple = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) SCREAMING_SNAKE_CASE__:Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
261
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCAmelCase :Tuple = Mapping[str, np.ndarray] __UpperCAmelCase :List[Any] = Mapping[str, Any] # Is a nested dict. __UpperCAmelCase :Optional[Any] = 0.01 @dataclasses.dataclass(frozen=_a ) class a : """simple docstring""" SCREAMING_SNAKE_CASE : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. SCREAMING_SNAKE_CASE : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. SCREAMING_SNAKE_CASE : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. SCREAMING_SNAKE_CASE : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. SCREAMING_SNAKE_CASE : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions SCREAMING_SNAKE_CASE : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files SCREAMING_SNAKE_CASE : Optional[str] = None # Templates used to generate this protein (prediction-only) SCREAMING_SNAKE_CASE : Optional[Sequence[str]] = None # Chain corresponding to each parent SCREAMING_SNAKE_CASE : Optional[Sequence[int]] = None def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = R'''(\[[A-Z]+\]\n)''' __UpperCAmelCase : List[str] = [tag.strip() for tag in re.split(_lowercase , _lowercase ) if len(_lowercase ) > 0] __UpperCAmelCase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) __UpperCAmelCase : List[str] = ["N", "CA", "C"] __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Dict = None for g in groups: if "[PRIMARY]" == g[0]: __UpperCAmelCase : Optional[Any] = g[1][0].strip() for i in range(len(_lowercase ) ): if seq[i] not in residue_constants.restypes: __UpperCAmelCase : str = '''X''' # FIXME: strings are immutable __UpperCAmelCase : Optional[Any] = np.array( [residue_constants.restype_order.get(_lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __UpperCAmelCase : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowercase , g[1][axis].split() ) ) ) __UpperCAmelCase : List[str] = np.array(_lowercase ) __UpperCAmelCase : Union[str, Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __UpperCAmelCase : Optional[int] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __UpperCAmelCase : Optional[Any] = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) __UpperCAmelCase : Optional[int] = np.zeros( ( len(_lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __UpperCAmelCase : Dict = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowercase , atom_mask=_lowercase , aatype=_lowercase , residue_index=np.arange(len(_lowercase ) ) , b_factors=_lowercase , ) def _a ( _lowercase : Protein , _lowercase : int = 0 ): '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) __UpperCAmelCase : int = prot.parents __UpperCAmelCase : str = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __UpperCAmelCase : List[Any] = [p for i, p in zip(_lowercase , _lowercase ) if i == chain_id] if parents is None or len(_lowercase ) == 0: __UpperCAmelCase : str = ['''N/A'''] pdb_headers.append(F'PARENT {" ".join(_lowercase )}' ) return pdb_headers def _a ( _lowercase : Protein , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[Any] = pdb_str.split('''\n''' ) __UpperCAmelCase : Tuple = prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) __UpperCAmelCase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __UpperCAmelCase : List[Any] = [] if prot.parents_chain_index is not None: __UpperCAmelCase : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowercase ) , [] ) parent_dict[str(_lowercase )].append(_lowercase ) __UpperCAmelCase : List[str] = max([int(_lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __UpperCAmelCase : Tuple = parent_dict.get(str(_lowercase ) , ['''N/A'''] ) parents_per_chain.append(_lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: __UpperCAmelCase : str = [['''N/A''']] def make_parent_line(_lowercase : Sequence[str] ) -> str: return F'PARENT {" ".join(_lowercase )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __UpperCAmelCase : int = 0 for i, l in enumerate(_lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowercase ): __UpperCAmelCase : List[str] = parents_per_chain[chain_counter] else: __UpperCAmelCase : Dict = ['''N/A'''] out_pdb_lines.append(make_parent_line(_lowercase ) ) return "\n".join(_lowercase ) def _a ( _lowercase : Protein ): '''simple docstring''' __UpperCAmelCase : Dict = residue_constants.restypes + ['''X'''] def res_atoa(_lowercase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) __UpperCAmelCase : Any = residue_constants.atom_types __UpperCAmelCase : List[str] = [] __UpperCAmelCase : int = prot.atom_mask __UpperCAmelCase : Union[str, Any] = prot.aatype __UpperCAmelCase : Optional[int] = prot.atom_positions __UpperCAmelCase : List[str] = prot.residue_index.astype(np.intaa ) __UpperCAmelCase : Any = prot.b_factors __UpperCAmelCase : Dict = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) __UpperCAmelCase : List[Any] = get_pdb_headers(_lowercase ) if len(_lowercase ) > 0: pdb_lines.extend(_lowercase ) __UpperCAmelCase : List[str] = aatype.shape[0] __UpperCAmelCase : int = 1 __UpperCAmelCase : Any = 0 __UpperCAmelCase : Union[str, Any] = string.ascii_uppercase __UpperCAmelCase : str = None # Add all atom sites. for i in range(_lowercase ): __UpperCAmelCase : List[Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __UpperCAmelCase : Union[str, Any] = '''ATOM''' __UpperCAmelCase : Dict = atom_name if len(_lowercase ) == 4 else F' {atom_name}' __UpperCAmelCase : Any = '''''' __UpperCAmelCase : Any = '''''' __UpperCAmelCase : int = 1.00 __UpperCAmelCase : List[str] = atom_name[0] # Protein supports only C, N, O, S, this works. __UpperCAmelCase : Tuple = '''''' __UpperCAmelCase : Any = '''A''' if chain_index is not None: __UpperCAmelCase : Optional[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __UpperCAmelCase : Dict = ( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(_lowercase ) atom_index += 1 __UpperCAmelCase : Any = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __UpperCAmelCase : List[str] = True __UpperCAmelCase : Dict = chain_index[i + 1] if should_terminate: # Close the chain. __UpperCAmelCase : List[Any] = '''TER''' __UpperCAmelCase : Optional[Any] = ( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(_lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowercase , _lowercase ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(_lowercase ) def _a ( _lowercase : Protein ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _a ( _lowercase : FeatureDict , _lowercase : ModelOutput , _lowercase : Optional[np.ndarray] = None , _lowercase : Optional[np.ndarray] = None , _lowercase : Optional[str] = None , _lowercase : Optional[Sequence[str]] = None , _lowercase : Optional[Sequence[int]] = None , ): '''simple docstring''' return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=_lowercase , remark=_lowercase , parents=_lowercase , parents_chain_index=_lowercase , )
240
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: __UpperCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(_lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
240
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _lowerCamelCase ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Dict ) -> Optional[Any]: _a = AutoConfig.from_pretrained(lowercase ) _a = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase ) _a = checkpoints.load_tax_checkpoint(lowercase ) _a = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _a = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _a = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _a = F'layers_{str(lowercase )}' # Self-Attention _a = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _a = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _a = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _a = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _a = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _a = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _a = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _a = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _a = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _a = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _a = flax_model.params["encoder"]["block"][str(lowercase )]["layer"] _a = tax_attention_key _a = tax_attention_out _a = tax_attention_query _a = tax_attention_value _a = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a = tax_global_layer_norm if split_mlp_wi: _a = tax_mlp_wi_a _a = tax_mlp_wi_a else: _a = tax_mlp_wi _a = tax_mlp_wo _a = tax_mlp_layer_norm _a = flax_model_encoder_layer_block # Only for layer 0: _a = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _a = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _a = tax_encoder_global_rel_embedding # Assigning _a = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _a = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _a = F'layers_{str(lowercase )}' # Self-Attention _a = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _a = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _a = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _a = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _a = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _a = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _a = tax_enc_dec_attention_module["key"]["kernel"] _a = tax_enc_dec_attention_module["out"]["kernel"] _a = tax_enc_dec_attention_module["query"]["kernel"] _a = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _a = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _a = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _a = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _a = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _a = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _a = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _a = flax_model.params["decoder"]["block"][str(lowercase )]["layer"] _a = tax_attention_key _a = tax_attention_out _a = tax_attention_query _a = tax_attention_value _a = tax_pre_attention_layer_norm _a = tax_enc_dec_attention_key _a = tax_enc_dec_attention_out _a = tax_enc_dec_attention_query _a = tax_enc_dec_attention_value _a = tax_cross_layer_norm if split_mlp_wi: _a = tax_mlp_wi_a _a = tax_mlp_wi_a else: _a = tax_mlp_wi _a = tax_mlp_wo _a = txa_mlp_layer_norm _a = flax_model_decoder_layer_block # Decoder Normalization _a = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _a = txa_decoder_norm # Only for layer 0: _a = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _a = tax_decoder_rel_embedding # Token Embeddings _a = tax_model["target"]["token_embedder"]["embedding"] _a = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _a = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(lowercase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
63
from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Tuple = tuple[int, int] class lowercase : def __init__( self , A_ , A_ ) -> None: """simple docstring""" UpperCamelCase = vertices UpperCamelCase = { (min(A_ ), max(A_ )): weight for edge, weight in edges.items() } def __UpperCamelCase ( self , A_ , A_ ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase = weight def __UpperCamelCase ( self ) -> Graph: """simple docstring""" UpperCamelCase = Graph({min(self.vertices )} , {} ) UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase = edge UpperCamelCase = weight subgraph.add_edge(A_ , A_ ) return subgraph def A ( lowercase = "p107_network.txt" ) -> int: '''simple docstring''' UpperCamelCase = os.path.abspath(os.path.dirname(lowercase ) ) UpperCamelCase = os.path.join(lowercase , lowercase ) UpperCamelCase = {} UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 with open(lowercase ) as f: UpperCamelCase = f.read().strip().split('\n' ) UpperCamelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase ) ): for edgea in range(lowercase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase = Graph(set(range(len(lowercase ) ) ) , lowercase ) UpperCamelCase = graph.prims_algorithm() UpperCamelCase = sum(graph.edges.values() ) UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
0
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if index == r: for j in range(__lowerCamelCase ): print(data[j], end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _SCREAMING_SNAKE_CASE : Tuple = arr[i] combination_util(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, index + 1, __lowerCamelCase, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # A temporary array to store all combination one by one _SCREAMING_SNAKE_CASE : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, 0, __lowerCamelCase, 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase__ =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
325
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("Input value must be an 'int' type" ) _lowerCAmelCase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
158
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _SCREAMING_SNAKE_CASE = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _SCREAMING_SNAKE_CASE = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _SCREAMING_SNAKE_CASE = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
158
1
"""simple docstring""" from __future__ import annotations from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ = 0 ): '''simple docstring''' __snake_case , __snake_case : str = row, column __snake_case : str = [[default_value for c in range(a_ )] for r in range(a_ )] def __str__(self ): '''simple docstring''' __snake_case : Union[str, Any] = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier __snake_case : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __snake_case : Union[str, Any] = max(a_ , len(str(a_ ) ) ) __snake_case : str = f"""%{max_element_length}s""" # Make string and return def single_line(a_ ) -> str: nonlocal string_format_identifier __snake_case : Any = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a_ ) for row_vector in self.array ) return s def __repr__(self ): '''simple docstring''' return str(self ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not (isinstance(a_ , (list, tuple) ) and len(a_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self , a_ ): '''simple docstring''' assert self.validate_indicies(a_ ) return self.array[loc[0]][loc[1]] def __setitem__(self , a_ , a_ ): '''simple docstring''' assert self.validate_indicies(a_ ) __snake_case : Dict = value def __add__(self , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) assert self.row == another.row and self.column == another.column # Add __snake_case : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[Any] = self[r, c] + another[r, c] return result def __neg__(self ): '''simple docstring''' __snake_case : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : List[str] = -self[r, c] return result def __sub__(self , a_ ): '''simple docstring''' return self + (-another) def __mul__(self , a_ ): '''simple docstring''' if isinstance(a_ , (int, float) ): # Scalar multiplication __snake_case : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __snake_case : str = self[r, c] * another return result elif isinstance(a_ , a_ ): # Matrix multiplication assert self.column == another.row __snake_case : str = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __snake_case : str = f"""Unsupported type given for another ({type(a_ )})""" raise TypeError(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __snake_case : Any = self[r, c] return result def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __snake_case : Tuple = v.transpose() __snake_case : Union[str, Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase ( ) ->None: """simple docstring""" __snake_case : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __snake_case : Union[str, Any] = 1 print(f"""a^(-1) is {ainv}""" ) # u, v __snake_case : Union[str, Any] = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 2, -3 __snake_case : Optional[Any] = Matrix(3 , 1 , 0 ) __snake_case , __snake_case , __snake_case : Dict = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_snake_case , _snake_case )}""" ) def lowercase ( ) ->None: """simple docstring""" import doctest doctest.testmod() testa()
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Any ) -> Any: """simple docstring""" __lowercase : Any = data __lowercase : Node | None = None class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ) -> str: """simple docstring""" __lowercase : Dict = None __lowercase : Dict = None def __iter__( self : int ) -> Iterator[Any]: """simple docstring""" __lowercase : Tuple = self.head while self.head: yield node.data __lowercase : Dict = node.next if node == self.head: break def __len__( self : str ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Optional[int] ) -> Any: """simple docstring""" return "->".join(str(__a ) for item in iter(self ) ) def lowerCAmelCase ( self : Optional[Any] , __a : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , __a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Any ) -> None: """simple docstring""" self.insert_nth(0 , __a ) def lowerCAmelCase ( self : Union[str, Any] , __a : int , __a : Any ) -> None: """simple docstring""" if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) __lowercase : str = Node(__a ) if self.head is None: __lowercase : Tuple = new_node # first node points itself __lowercase : List[str] = new_node elif index == 0: # insert at head __lowercase : Dict = self.head __lowercase : int = new_node else: __lowercase : Optional[Any] = self.head for _ in range(index - 1 ): __lowercase : Union[str, Any] = temp.next __lowercase : Optional[Any] = temp.next __lowercase : Union[str, Any] = new_node if index == len(self ) - 1: # insert at tail __lowercase : Dict = new_node def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.delete_nth(0 ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase ( self : int , __a : int = 0 ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) __lowercase : Tuple = self.head if self.head == self.tail: # just one node __lowercase : Optional[Any] = None elif index == 0: # delete head node __lowercase : Optional[int] = self.tail.next.next __lowercase : Union[str, Any] = self.head.next else: __lowercase : str = self.head for _ in range(index - 1 ): __lowercase : List[str] = temp.next __lowercase : Optional[Any] = temp.next __lowercase : List[str] = temp.next.next if index == len(self ) - 1: # delete at tail __lowercase : str = temp return delete_node.data def lowerCAmelCase ( self : Optional[Any] ) -> bool: """simple docstring""" return len(self ) == 0 def snake_case_ ( ): __lowercase : Optional[int] = CircularLinkedList() assert len(lowerCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(lowerCAmelCase_ ) == i circular_linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
233
from maths.prime_check import is_prime def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase_ ) if is_prime(lowerCAmelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
233
1
'''simple docstring''' import os import string import sys a_ = 1 << 8 a_ = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 2_7, 'up': 6_5 + ARROW_KEY_FLAG, 'down': 6_6 + ARROW_KEY_FLAG, 'right': 6_7 + ARROW_KEY_FLAG, 'left': 6_8 + ARROW_KEY_FLAG, 'mod_int': 9_1, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 5_0, 'delete': 5_1, 'pg_up': 5_3, 'pg_down': 5_4, } a_ = KEYMAP['up'] a_ = KEYMAP['left'] if sys.platform == "win32": a_ = [] a_ = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(1_0): a_ = ord(str(i)) def _a( ): '''simple docstring''' if os.name == "nt": import msvcrt SCREAMING_SNAKE_CASE__ : List[Any] ='''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCamelCase__ ) == 0: # Read the keystroke SCREAMING_SNAKE_CASE__ : Union[str, Any] =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): SCREAMING_SNAKE_CASE__ : str =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: SCREAMING_SNAKE_CASE__ : Union[str, Any] =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(UpperCamelCase__ ) if ord(UpperCamelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) SCREAMING_SNAKE_CASE__ : List[str] =chr(KEYMAP['''esc'''] ) except KeyError: SCREAMING_SNAKE_CASE__ : Tuple =cha[1] else: SCREAMING_SNAKE_CASE__ : List[str] =ch.decode(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ : Dict =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty SCREAMING_SNAKE_CASE__ : Dict =sys.stdin.fileno() SCREAMING_SNAKE_CASE__ : int =termios.tcgetattr(UpperCamelCase__ ) try: tty.setraw(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCamelCase__, termios.TCSADRAIN, UpperCamelCase__ ) return ch def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =get_raw_chars() if ord(UpperCamelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCamelCase__ ) == KEYMAP["esc"]: SCREAMING_SNAKE_CASE__ : Optional[int] =get_raw_chars() if ord(UpperCamelCase__ ) == KEYMAP["mod_int"]: SCREAMING_SNAKE_CASE__ : int =get_raw_chars() if ord(UpperCamelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCamelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCamelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
363
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """facebook/bart-large-mnli""" snake_case_ = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) snake_case_ = """text_classifier""" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["""text""", ["""text"""]] snake_case_ = ["""text"""] def __magic_name__ ( self : Any ) -> Any: super().setup() SCREAMING_SNAKE_CASE__ : int =self.model.config SCREAMING_SNAKE_CASE__ : int =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): SCREAMING_SNAKE_CASE__ : Any =int(__lowercase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __magic_name__ ( self : str , __lowercase : Any , __lowercase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict =labels return self.pre_processor( [text] * len(__lowercase ) , [F"This example is {label}" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __magic_name__ ( self : List[Any] , __lowercase : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =outputs.logits SCREAMING_SNAKE_CASE__ : Any =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
222
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__( unittest.TestCase ): '''simple docstring''' @property def lowercase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase_ : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Optional[int] = self.dummy_uncond_unet lowerCAmelCase_ : Optional[Any] = PNDMScheduler() lowerCAmelCase_ : int = PNDMPipeline(unet=__lowercase , scheduler=__lowercase ) pndm.to(__lowercase ) pndm.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : Any = pndm(generator=__lowercase , num_inference_steps=2_0 , output_type='''numpy''' ).images lowerCAmelCase_ : str = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = pndm(generator=__lowercase , num_inference_steps=2_0 , output_type='''numpy''' , return_dict=__lowercase )[0] lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ) -> int: lowerCAmelCase_ : Optional[Any] = '''google/ddpm-cifar10-32''' lowerCAmelCase_ : Dict = UNetaDModel.from_pretrained(__lowercase ) lowerCAmelCase_ : Dict = PNDMScheduler() lowerCAmelCase_ : Any = PNDMPipeline(unet=__lowercase , scheduler=__lowercase ) pndm.to(__lowercase ) pndm.set_progress_bar_config(disable=__lowercase ) lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = pndm(generator=__lowercase , output_type='''numpy''' ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ : int = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
262
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = None )-> None: lowerCAmelCase_ : str = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowerCAmelCase_ : int = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Tuple = src_path torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
262
1
'''simple docstring''' def a_ ( lowerCamelCase : int = 50 ): lowerCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
55
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : list[tuple[float, float]] ) -> str: lowerCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowerCAmelCase = len(UpperCAmelCase__ ) - 1 def __UpperCAmelCase ( self : str , UpperCAmelCase__ : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowerCAmelCase = self.basis_function(UpperCAmelCase__ ) lowerCAmelCase = 0.0 lowerCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : float = 0.01 ) -> Optional[int]: from matplotlib import pyplot as plt # type: ignore lowerCAmelCase = [] # x coordinates of points to plot lowerCAmelCase = [] # y coordinates of points to plot lowerCAmelCase = 0.0 while t <= 1: lowerCAmelCase = self.bezier_curve_function(UpperCAmelCase__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowerCAmelCase = [i[0] for i in self.list_of_points] lowerCAmelCase = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase__ , UpperCAmelCase__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
55
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase_ : List[Any] = 16 , lowercase_ : Optional[Any] = 88 , lowercase_ : str = None , lowercase_ : Optional[int] = 1 , lowercase_ : List[Any] = 0.0 , lowercase_ : Any = 32 , lowercase_ : List[Any] = None , lowercase_ : Optional[Any] = False , lowercase_ : Union[str, Any] = None , lowercase_ : List[str] = None , lowercase_ : Optional[int] = "geglu" , lowercase_ : Union[str, Any] = None , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : List[str] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_A , attention_head_dim=_A , in_channels=_A , num_layers=_A , dropout=_A , norm_num_groups=_A , cross_attention_dim=_A , attention_bias=_A , sample_size=_A , num_vector_embeds=_A , activation_fn=_A , num_embeds_ada_norm=_A , ) for _ in range(2) ]) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference SCREAMING_SNAKE_CASE_ : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` SCREAMING_SNAKE_CASE_ : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` SCREAMING_SNAKE_CASE_ : Dict = [1, 0] def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , lowercase_ : List[str] = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = hidden_states SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens SCREAMING_SNAKE_CASE_ : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] SCREAMING_SNAKE_CASE_ : Any = self.transformer_index_for_condition[i] SCREAMING_SNAKE_CASE_ : Dict = self.transformers[transformer_index]( _A , encoder_hidden_states=_A , timestep=_A , cross_attention_kwargs=_A , return_dict=_A , )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] SCREAMING_SNAKE_CASE_ : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) SCREAMING_SNAKE_CASE_ : List[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_A)
91
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __lowercase ( ) -> List[str]: __SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) return image def __lowercase ( a__ ) -> Dict: __SCREAMING_SNAKE_CASE = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = dct.pop(a__ ) __SCREAMING_SNAKE_CASE = val def __lowercase ( a__ , a__ ) -> Optional[int]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(a__ , requires_grad=a__ ), v_bias) ) __SCREAMING_SNAKE_CASE = qkv_bias def __lowercase ( a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = 3_64 if 'coco' in model_name else 2_24 __SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=a__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=a__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=a__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=a__ , text_config=a__ ) return config, image_size @torch.no_grad() def __lowercase ( a__ , a__=None , a__=False ) -> Any: __SCREAMING_SNAKE_CASE = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=a__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_blipa_config(a__ , eos_token_id=a__ ) __SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(a__ ).eval() __SCREAMING_SNAKE_CASE = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_name_to_original[model_name] # load original model print('Loading original model...' ) __SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = load_model_and_preprocess( name=a__ , model_type=a__ , is_eval=a__ , device=a__ ) original_model.eval() print('Done!' ) # update state dict keys __SCREAMING_SNAKE_CASE = original_model.state_dict() __SCREAMING_SNAKE_CASE = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) if key.startswith('Qformer.bert' ): __SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE = key.replace('self' , 'attention' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __SCREAMING_SNAKE_CASE = key.replace('opt' , 'language' ) if key.startswith('t5' ): __SCREAMING_SNAKE_CASE = key.replace('t5' , 'language' ) __SCREAMING_SNAKE_CASE = val # read in qv biases read_in_q_v_bias(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = hf_model.load_state_dict(a__ , strict=a__ ) assert len(a__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE = load_demo_image() __SCREAMING_SNAKE_CASE = vis_processors['eval'](a__ ).unsqueeze(0 ).to(a__ ) __SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(a__ ) # create processor __SCREAMING_SNAKE_CASE = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=a__ , image_std=a__ ) __SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=a__ , tokenizer=a__ ) __SCREAMING_SNAKE_CASE = processor(images=a__ , return_tensors='pt' ).pixel_values.to(a__ ) # make sure processor creates exact same pixel values assert torch.allclose(a__ , a__ ) original_model.to(a__ ) hf_model.to(a__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ ).logits else: __SCREAMING_SNAKE_CASE = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __SCREAMING_SNAKE_CASE = hf_model(a__ , a__ , labels=a__ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=a__ ) assert torch.allclose(logits[0, :3, :3] , a__ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=a__ ) else: # cast to same type __SCREAMING_SNAKE_CASE = logits.dtype assert torch.allclose(original_logits.to(a__ ) , a__ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = tokenizer(a__ , return_tensors='pt' ).input_ids.to(a__ ) __SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values} ) __SCREAMING_SNAKE_CASE = hf_model.generate( a__ , a__ , do_sample=a__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , a__ ) __SCREAMING_SNAKE_CASE = input_ids.shape[1] __SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=a__ ) __SCREAMING_SNAKE_CASE = [text.strip() for text in output_text] print('HF generation:' , a__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser() lowerCAmelCase__ : Union[str, Any] =[ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowerCAmelCase__ : int =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
257
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="ZinengTang/tvlt-base" lowerCamelCase_ =tempfile.mkdtemp() def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> List[str]: return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case__ ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )-> Dict: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case__ ) def _snake_case ( self )-> List[Any]: shutil.rmtree(self.tmpdirname ) def _snake_case ( self )-> int: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ =TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , snake_case__ ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) lowerCamelCase_ =np.ones([1_2000] ) lowerCamelCase_ =feature_extractor(snake_case__ , return_tensors="""np""" ) lowerCamelCase_ =processor(audio=snake_case__ , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) lowerCamelCase_ =np.ones([3, 224, 224] ) lowerCamelCase_ =image_processor(snake_case__ , return_tensors="""np""" ) lowerCamelCase_ =processor(images=snake_case__ , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) lowerCamelCase_ =np.ones([1_2000] ) lowerCamelCase_ =np.ones([3, 224, 224] ) lowerCamelCase_ =processor(audio=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.get_image_processor() lowerCamelCase_ =self.get_feature_extractor() lowerCamelCase_ =TvltProcessor(image_processor=snake_case__ , feature_extractor=snake_case__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
360
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase): def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> int: lowerCamelCase_ =jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )-> Dict: lowerCamelCase_ =None lowerCamelCase_ =20 lowerCamelCase_ =self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore lowerCamelCase_ =scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase_ =scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase_ =jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase_ =jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) lowerCamelCase_ =jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )-> Any: lowerCamelCase_ =None lowerCamelCase_ =10 lowerCamelCase_ =2 # create ramp distribution lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() lowerCamelCase_ =ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase_ =5 lowerCamelCase_ =FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() lowerCamelCase_ =top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =None lowerCamelCase_ =10 lowerCamelCase_ =2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase_ =np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) lowerCamelCase_ =np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase_ =np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase_ =np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase_ =ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept lowerCamelCase_ =FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )-> List[Any]: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 lowerCamelCase_ =ids_tensor((batch_size, 20) , vocab_size=20 ) lowerCamelCase_ =5 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =15 lowerCamelCase_ =min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score lowerCamelCase_ =ids_tensor((batch_size, 1) , vocab_size=20 ) lowerCamelCase_ =1 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase_ =3 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> int: lowerCamelCase_ =20 lowerCamelCase_ =4 lowerCamelCase_ =0 lowerCamelCase_ =5 lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase_ =ids_tensor((batch_size, 4) , vocab_size=20 ) lowerCamelCase_ =4 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase_ =3 lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )-> Dict: lowerCamelCase_ =4 lowerCamelCase_ =10 lowerCamelCase_ =15 lowerCamelCase_ =2 lowerCamelCase_ =1 lowerCamelCase_ =15 # dummy input_ids and scores lowerCamelCase_ =ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =input_ids.copy() lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scores.copy() # instantiate all dist processors lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =10 # no processor list lowerCamelCase_ =temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list lowerCamelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ =processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )-> List[str]: lowerCamelCase_ =4 lowerCamelCase_ =10 lowerCamelCase_ =15 lowerCamelCase_ =2 lowerCamelCase_ =1 lowerCamelCase_ =15 # dummy input_ids and scores lowerCamelCase_ =ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =input_ids.copy() lowerCamelCase_ =self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =scores.copy() # instantiate all dist processors lowerCamelCase_ =FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase_ =FlaxTopKLogitsWarper(3 ) lowerCamelCase_ =FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase_ =FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase_ =processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores lowerCamelCase_ =jax.jit(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jax.jit(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCamelCase_ =jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
49
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowerCamelCase_ = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format lowerCamelCase_ = PipelineDataFormat.from_str( format=lowercase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase , lowercase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , A_ : Pipeline , A_ : PipelineDataFormat ) -> str: """simple docstring""" lowerCamelCase_ = nlp lowerCamelCase_ = reader @staticmethod def a__ ( A_ : ArgumentParser ) -> Dict: """simple docstring""" lowerCamelCase_ = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=A_ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=A_ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=A_ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=A_ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=A_ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=A_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=A_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=A_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=A_ ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self._nlp, [] for entry in self._reader: lowerCamelCase_ = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ , A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: lowerCamelCase_ = self._reader.save_binary(A_ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A_ )
204
from collections.abc import Callable import numpy as np def _SCREAMING_SNAKE_CASE ( lowercase : Callable , lowercase : float , lowercase : float , lowercase : float , lowercase : float ): '''simple docstring''' lowerCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase_ = np.zeros((n + 1,) ) lowerCamelCase_ = ya lowerCamelCase_ = xa for k in range(lowercase ): lowerCamelCase_ = y[k] + step_size * ode_func(lowercase , y[k] ) lowerCamelCase_ = y[k] + ( (step_size / 2) * (ode_func(lowercase , y[k] ) + ode_func(x + step_size , lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
204
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class __lowerCAmelCase ( lowerCAmelCase_): _lowercase : Union[str, Any] = """funnel""" _lowercase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=[4, 4, 4] , lowerCAmelCase__=None , lowerCAmelCase__=2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=6_4 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=None , lowerCAmelCase__=1E-9 , lowerCAmelCase__="mean" , lowerCAmelCase__="relative_shift" , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' a__ : Union[str, Any] =vocab_size a__ : Dict =block_sizes a__ : List[str] =[1] * len(__SCREAMING_SNAKE_CASE ) if block_repeats is None else block_repeats assert len(__SCREAMING_SNAKE_CASE ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." a__ : Union[str, Any] =num_decoder_layers a__ : Dict =d_model a__ : List[Any] =n_head a__ : int =d_head a__ : Optional[int] =d_inner a__ : int =hidden_act a__ : Optional[Any] =hidden_dropout a__ : Optional[Any] =attention_dropout a__ : int =activation_dropout a__ : Dict =initializer_range a__ : Tuple =initializer_std a__ : List[Any] =layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' a__ : List[str] =pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' a__ : List[str] =attention_type a__ : int =separate_cls a__ : Tuple =truncate_seq a__ : Union[str, Any] =pool_q_only super().__init__(**__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Any: '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def _lowercase ( self ) -> List[Any]: '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
352
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase : Union[str, Any] = 1.054571817E-34 # unit of ℏ : J * s UpperCAmelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a__ : Tuple =(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a__ : Any =(240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a__ : List[str] =( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
148
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int ) -> float: '''simple docstring''' return base * power(__UpperCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") __lowerCAmelCase : int =int(input("""Enter the base: """).strip()) __lowerCAmelCase : List[Any] =int(input("""Enter the exponent: """).strip()) __lowerCAmelCase : Optional[Any] =power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase : Optional[Any] =1 / result print(F"""{base} to the power of {exponent} is {result}""")
197
'''simple docstring''' import re from filelock import FileLock try: import nltk a : Union[str, Any] = True except (ImportError, ModuleNotFoundError): a : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''', '''''', __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
56
0
'''simple docstring''' from typing import Any class __A : def __init__(self : Union[str, Any] , __a : Any ): UpperCAmelCase_ = data UpperCAmelCase_ = None class __A : def __init__(self : Any ): UpperCAmelCase_ = None def _lowercase (self : Any ): UpperCAmelCase_ = self.head while temp is not None: print(temp.data , end=" " ) UpperCAmelCase_ = temp.next print() def _lowercase (self : Union[str, Any] , __a : Any ): UpperCAmelCase_ = Node(__a ) UpperCAmelCase_ = self.head UpperCAmelCase_ = new_node def _lowercase (self : List[str] , __a : List[Any] , __a : str ): if node_data_a == node_data_a: return else: UpperCAmelCase_ = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase_ = node_a.next UpperCAmelCase_ = self.head while node_a is not None and node_a.data != node_data_a: UpperCAmelCase_ = node_a.next if node_a is None or node_a is None: return UpperCAmelCase_ , UpperCAmelCase_ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
106
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
1
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _SCREAMING_SNAKE_CASE = parser.parse_args() if args.model_type == "roberta": _SCREAMING_SNAKE_CASE = RobertaForMaskedLM.from_pretrained(args.model_name) _SCREAMING_SNAKE_CASE = """roberta""" elif args.model_type == "gpt2": _SCREAMING_SNAKE_CASE = GPTaLMHeadModel.from_pretrained(args.model_name) _SCREAMING_SNAKE_CASE = """transformer""" _SCREAMING_SNAKE_CASE = model.state_dict() _SCREAMING_SNAKE_CASE = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _SCREAMING_SNAKE_CASE = F'''{prefix}.embeddings.{w}.weight''' _SCREAMING_SNAKE_CASE = state_dict[param_name] for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = F'''{prefix}.embeddings.LayerNorm.{w}''' _SCREAMING_SNAKE_CASE = state_dict[param_name] # Transformer Blocks # _SCREAMING_SNAKE_CASE = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''lm_head.dense.{w}'''] _SCREAMING_SNAKE_CASE = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _SCREAMING_SNAKE_CASE = state_dict[F'''{prefix}.ln_f.{w}'''] _SCREAMING_SNAKE_CASE = state_dict["""lm_head.weight"""] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
def lowerCamelCase ( UpperCAmelCase__ : list ) -> list: if len(UpperCAmelCase__ ) < 2: return collection def circle_sort_util(UpperCAmelCase__ : list , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> bool: lowercase_ : str = False if low == high: return swapped lowercase_ : str = low lowercase_ : Optional[Any] = high while left < right: if collection[left] > collection[right]: lowercase_ : str = ( collection[right], collection[left], ) lowercase_ : Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase_ : List[Any] = ( collection[right + 1], collection[left], ) lowercase_ : Optional[Any] = True lowercase_ : Dict = low + int((high - low) / 2 ) lowercase_ : List[str] = circle_sort_util(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = circle_sort_util(UpperCAmelCase__ , mid + 1 , UpperCAmelCase__ ) return swapped or left_swap or right_swap lowercase_ : List[Any] = True while is_not_sorted is True: lowercase_ : Tuple = circle_sort_util(UpperCAmelCase__ , 0 , len(UpperCAmelCase__ ) - 1 ) return collection if __name__ == "__main__": _lowercase : Dict = input("Enter numbers separated by a comma:\n").strip() _lowercase : int = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """xlm-roberta-xl""" def __init__( self : List[str] , UpperCAmelCase : Dict=250880 , UpperCAmelCase : int=2560 , UpperCAmelCase : Tuple=36 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=10240 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=514 , UpperCAmelCase : Any=1 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Union[str, Any]=1e-05 , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Any=0 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[Any]="absolute" , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Any , ) -> List[str]: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : List[str] = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : int = use_cache lowerCamelCase__ : int = classifier_dropout class lowerCAmelCase ( __UpperCamelCase ): @property def A_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
50
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase__ : List[str] = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Tuple = state_dict.pop(__UpperCAmelCase ) lowercase__: Any = val def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: lowercase__: List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__: Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__: List[Any] = value else: lowercase__: List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: lowercase__: Any = '''''' if is_panoptic: lowercase__: Union[str, Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__: Dict = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__: Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: List[Any] = in_proj_weight[:2_5_6, :] lowercase__: List[str] = in_proj_bias[:2_5_6] lowercase__: Dict = in_proj_weight[2_5_6:5_1_2, :] lowercase__: Union[str, Any] = in_proj_bias[2_5_6:5_1_2] lowercase__: Dict = in_proj_weight[-2_5_6:, :] lowercase__: List[Any] = in_proj_bias[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: lowercase__: Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Optional[int] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__: str = '''resnet101''' if "dc5" in model_name: lowercase__: Dict = True lowercase__: Dict = '''panoptic''' in model_name if is_panoptic: lowercase__: Optional[int] = 2_5_0 else: lowercase__: int = 9_1 lowercase__: Union[str, Any] = '''huggingface/label-files''' lowercase__: int = '''coco-detection-id2label.json''' lowercase__: str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: Any = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: List[str] = idalabel lowercase__: Optional[int] = {v: k for k, v in idalabel.items()} # load image processor lowercase__: str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase__: Any = ConditionalDetrImageProcessor(format=__UpperCAmelCase ) # prepare image lowercase__: List[Any] = prepare_img() lowercase__: Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub lowercase__: Dict = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() lowercase__: Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__: int = '''conditional_detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[Any] = rename_backbone_keys(__UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__: Dict = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Optional[int] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase__: Any = state_dict.pop(__UpperCAmelCase ) lowercase__: List[Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Dict = val # finally, create HuggingFace model and load state dict lowercase__: List[str] = ConditionalDetrForSegmentation(__UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=__UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion lowercase__: str = conditional_detr(__UpperCAmelCase ) lowercase__: Tuple = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a (self : Optional[Any] ): """simple docstring""" __snake_case = 1 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image @property def a (self : List[str] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def a (self : List[str] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def a (self : int ): """simple docstring""" torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) return CLIPTextModel(a__ ) def a (self : Tuple ): """simple docstring""" __snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case = self.dummy_cond_unet_upscale __snake_case = DDPMScheduler() __snake_case = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) __snake_case = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case = output.images __snake_case = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case = sd_pipe( [prompt] , image=a__ , generator=a__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , return_dict=a__ , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] __snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __snake_case = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a (self : str ): """simple docstring""" __snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case = self.dummy_cond_unet_upscale __snake_case = DDPMScheduler() __snake_case = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) __snake_case = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case = output.images assert image.shape[0] == 2 __snake_case = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case = sd_pipe( [prompt] , image=a__ , generator=a__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='''np''' , ) __snake_case = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.dummy_cond_unet_upscale __snake_case = DDPMScheduler() __snake_case = DDIMScheduler(prediction_type='''v_prediction''' ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a__ ) ).convert('''RGB''' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __snake_case = unet.half() __snake_case = text_encoder.half() # make sure here that pndm scheduler skips prk __snake_case = StableDiffusionUpscalePipeline( unet=a__ , low_res_scheduler=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , max_noise_level=350 , ) __snake_case = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) __snake_case = '''A painting of a squirrel eating a burger''' __snake_case = torch.manual_seed(0 ) __snake_case = sd_pipe( [prompt] , image=a__ , generator=a__ , num_inference_steps=2 , output_type='''np''' , ).images __snake_case = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a (self : List[Any] ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat.npy''' ) __snake_case = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case = StableDiffusionUpscalePipeline.from_pretrained(a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __snake_case = '''a cat sitting on a park bench''' __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a__ , image=a__ , generator=a__ , output_type='''np''' , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def a (self : int ): """simple docstring""" __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale''' '''/upsampled_cat_fp16.npy''' ) __snake_case = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() __snake_case = '''a cat sitting on a park bench''' __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a__ , image=a__ , generator=a__ , output_type='''np''' , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a (self : str ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-upscale/low_res_cat.png''' ) __snake_case = '''stabilityai/stable-diffusion-x4-upscaler''' __snake_case = StableDiffusionUpscalePipeline.from_pretrained( a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case = '''a cat sitting on a park bench''' __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a__ , image=a__ , generator=a__ , num_inference_steps=5 , output_type='''np''' , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : Dict = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = "swin" lowercase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=32 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = embed_dim __UpperCamelCase = depths __UpperCamelCase = len(__UpperCAmelCase ) __UpperCamelCase = num_heads __UpperCamelCase = window_size __UpperCamelCase = mlp_ratio __UpperCamelCase = qkv_bias __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = drop_path_rate __UpperCamelCase = hidden_act __UpperCamelCase = use_absolute_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) __UpperCamelCase = ['stem'] + [F'stage{idx}' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] __UpperCamelCase , __UpperCamelCase = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = version.parse("1.11" ) @property def UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase ( self ): '''simple docstring''' return 1E-4
263
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : int = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "distilbert" lowercase = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = sinusoidal_pos_embds __UpperCamelCase = n_layers __UpperCamelCase = n_heads __UpperCamelCase = dim __UpperCamelCase = hidden_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation __UpperCamelCase = initializer_range __UpperCamelCase = qa_dropout __UpperCamelCase = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
263
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__: Optional[int] = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
23
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : List[Any] = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __A ( lowerCAmelCase ): lowerCAmelCase_ : str = "ctrl" lowerCAmelCase_ : Optional[Any] = ["past_key_values"] lowerCAmelCase_ : Dict = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Any , UpperCAmelCase_ : int=246534 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Any=1280 , UpperCAmelCase_ : int=8192 , UpperCAmelCase_ : int=48 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=1E-6 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=True , **UpperCAmelCase_ : int , ): lowerCAmelCase : int = vocab_size lowerCAmelCase : int = n_positions lowerCAmelCase : Optional[Any] = n_embd lowerCAmelCase : Optional[Any] = n_layer lowerCAmelCase : List[str] = n_head lowerCAmelCase : Union[str, Any] = dff lowerCAmelCase : Dict = resid_pdrop lowerCAmelCase : List[Any] = embd_pdrop lowerCAmelCase : List[Any] = layer_norm_epsilon lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Union[str, Any] = use_cache super().__init__(**UpperCAmelCase_ )
138
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
1
from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class __lowerCamelCase ( metaclass=snake_case__): """simple docstring""" UpperCamelCase__ = ["sentencepiece"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" requires_backends(self , ['sentencepiece'] )
39
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a_ : Any = logging.get_logger(__name__) a_ : Optional[Any] = {"""vocab_file""": """spiece.model"""} a_ : Tuple = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class snake_case ( lowercase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase="<s>" , UpperCamelCase="</s>" , UpperCamelCase="<unk>" , UpperCamelCase="<sep>" , UpperCamelCase="<pad>" , UpperCamelCase="<cls>" , UpperCamelCase="<mask>" , UpperCamelCase=["<eop>", "<eod>"] , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) lowerCamelCase_ = 3 lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowerCamelCase_ = jieba lowerCamelCase_ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , UpperCamelCase ): """simple docstring""" if self.remove_space: lowerCamelCase_ = " ".join(inputs.strip().split() ) else: lowerCamelCase_ = inputs lowerCamelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase_ = unicodedata.normalize("NFKD" , UpperCamelCase ) lowerCamelCase_ = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase )] ) if self.do_lower_case: lowerCamelCase_ = outputs.lower() return outputs def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.preprocess_text(UpperCamelCase ) lowerCamelCase_ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) lowerCamelCase_ = [] for piece in pieces: if len(UpperCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ = cur_pieces[1:] else: lowerCamelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase ) else: new_pieces.append(UpperCamelCase ) return new_pieces def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "".join(UpperCamelCase ).replace(UpperCamelCase , " " ).strip() return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is not None: return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1, 1] return ([0] * len(UpperCamelCase )) + [1, 1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = super()._decode(*UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
55
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _A : Any = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , ) -> List[str]: """simple docstring""" output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> int: """simple docstring""" lowerCamelCase__ : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase__ : Union[str, Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowerCamelCase__ : str = """cpu""" lowerCamelCase__ : str = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=_lowerCAmelCase ).to(_lowerCAmelCase ) lowerCamelCase__ : Union[str, Any] = Path(_lowerCAmelCase ) # TEXT ENCODER lowerCamelCase__ : Dict = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase__ : Tuple = pipeline.text_encoder.config.hidden_size lowerCamelCase__ : Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=_lowerCAmelCase , ) del pipeline.text_encoder # UNET lowerCamelCase__ : str = pipeline.unet.config.in_channels lowerCamelCase__ : Optional[int] = pipeline.unet.config.sample_size lowerCamelCase__ : Tuple = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=_lowerCAmelCase , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , ) lowerCamelCase__ : str = str(unet_path.absolute().as_posix() ) lowerCamelCase__ : Any = os.path.dirname(_lowerCAmelCase ) lowerCamelCase__ : List[Any] = onnx.load(_lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(_lowerCAmelCase ) os.mkdir(_lowerCAmelCase ) # collate external tensor files into one onnx.save_model( _lowerCAmelCase , _lowerCAmelCase , save_as_external_data=_lowerCAmelCase , all_tensors_to_one_file=_lowerCAmelCase , location='''weights.pb''' , convert_attribute=_lowerCAmelCase , ) del pipeline.unet # VAE ENCODER lowerCamelCase__ : Any = pipeline.vae lowerCamelCase__ : Union[str, Any] = vae_encoder.config.in_channels lowerCamelCase__ : Tuple = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase__ : Optional[int] = lambda UpperCAmelCase , UpperCAmelCase : vae_encoder.encode(_lowerCAmelCase , _lowerCAmelCase )[0].sample() onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_lowerCAmelCase , ) # VAE DECODER lowerCamelCase__ : Optional[Any] = pipeline.vae lowerCamelCase__ : Dict = vae_decoder.config.latent_channels lowerCamelCase__ : str = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase__ : Union[str, Any] = vae_encoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase__ : Optional[Any] = pipeline.safety_checker lowerCamelCase__ : List[Any] = safety_checker.config.vision_config.num_channels lowerCamelCase__ : Tuple = safety_checker.config.vision_config.image_size lowerCamelCase__ : Dict = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=_lowerCAmelCase , ) del pipeline.safety_checker lowerCamelCase__ : Dict = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowerCamelCase__ : Any = pipeline.feature_extractor else: lowerCamelCase__ : Any = None lowerCamelCase__ : Dict = None lowerCamelCase__ : Tuple = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_lowerCAmelCase ) print('''ONNX pipeline saved to''' , _lowerCAmelCase ) del pipeline del onnx_pipeline lowerCamelCase__ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') _A : Any = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
371
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _A : Optional[int] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _A : Any = [0, 25, 50] _A : Dict = [25, 50, 75] _A : Any = fuzz.membership.trimf(X, abca) _A : List[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _A : List[str] = np.ones(75) _A : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _A : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _A : Union[str, Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _A : List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _A : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _A : List[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _A : Optional[Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _A : Dict = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _A : List[str] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
265
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : str=None ): __UpperCAmelCase : Optional[int] = None if token is not None: __UpperCAmelCase : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : Tuple = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __UpperCAmelCase : Tuple = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __UpperCAmelCase : List[Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) __UpperCAmelCase : Any = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): __UpperCAmelCase : int = requests.get(url + f"""&page={i + 2}""" , headers=__lowerCamelCase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None ): __UpperCAmelCase : int = None if token is not None: __UpperCAmelCase : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : Optional[int] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" __UpperCAmelCase : str = requests.get(__lowerCamelCase , headers=__lowerCamelCase ).json() __UpperCAmelCase : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) __UpperCAmelCase : Union[str, Any] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowerCamelCase ): __UpperCAmelCase : Dict = requests.get(url + f"""&page={i + 2}""" , headers=__lowerCamelCase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int ): __UpperCAmelCase : Optional[int] = None if token is not None: __UpperCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} __UpperCAmelCase : str = requests.get(__lowerCamelCase , headers=__lowerCamelCase , allow_redirects=__lowerCamelCase ) __UpperCAmelCase : List[str] = result.headers["""Location"""] __UpperCAmelCase : Optional[int] = requests.get(__lowerCamelCase , allow_redirects=__lowerCamelCase ) __UpperCAmelCase : Any = os.path.join(__lowerCamelCase , f"""{artifact_name}.zip""" ) with open(__lowerCamelCase , """wb""" ) as fp: fp.write(response.content ) def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any]=None ): __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = None with zipfile.ZipFile(__lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCamelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCamelCase ) as f: for line in f: __UpperCAmelCase : Dict = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs __UpperCAmelCase : Union[str, Any] = line[: line.index(""": """ )] __UpperCAmelCase : int = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed __UpperCAmelCase : Optional[Any] = line[len("""FAILED """ ) :] failed_tests.append(__lowerCamelCase ) elif filename == "job_name.txt": __UpperCAmelCase : List[str] = line if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCamelCase )} for `errors` """ f"""and {len(__lowerCamelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) __UpperCAmelCase : Dict = None if job_name and job_links: __UpperCAmelCase : str = job_links.get(__lowerCamelCase , __lowerCamelCase ) # A list with elements of the form (line of error, error, failed test) __UpperCAmelCase : int = [x + [y] + [job_link] for x, y in zip(__lowerCamelCase , __lowerCamelCase )] return result def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Tuple=None ): __UpperCAmelCase : Any = [] __UpperCAmelCase : Dict = [os.path.join(__lowerCamelCase , __lowerCamelCase ) for p in os.listdir(__lowerCamelCase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCamelCase , job_links=__lowerCamelCase ) ) return errors def lowerCamelCase__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None ): __UpperCAmelCase : Union[str, Any] = Counter() counter.update([x[1] for x in logs] ) __UpperCAmelCase : List[Any] = counter.most_common() __UpperCAmelCase : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: __UpperCAmelCase : Union[str, Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} __UpperCAmelCase : int = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCamelCase__ ( __lowerCamelCase : Dict ): __UpperCAmelCase : List[Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): __UpperCAmelCase : Any = test.split("""/""" )[2] else: __UpperCAmelCase : Dict = None return test def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : Dict=None ): __UpperCAmelCase : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] __UpperCAmelCase : Tuple = [x for x in logs if x[2] is not None] __UpperCAmelCase : int = {x[2] for x in logs} __UpperCAmelCase : Optional[Any] = {} for test in tests: __UpperCAmelCase : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) __UpperCAmelCase : List[Any] = counter.most_common() __UpperCAmelCase : List[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} __UpperCAmelCase : Union[str, Any] = sum(error_counts.values() ) if n_errors > 0: __UpperCAmelCase : Optional[Any] = {"""count""": n_errors, """errors""": error_counts} __UpperCAmelCase : Dict = dict(sorted(r.items() , key=lambda __lowerCamelCase : item[1]["count"] , reverse=__lowerCamelCase ) ) return r def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] ): __UpperCAmelCase : Dict = """| no. | error | status |""" __UpperCAmelCase : Dict = """|-:|:-|:-|""" __UpperCAmelCase : Tuple = [header, sep] for error in reduced_by_error: __UpperCAmelCase : Tuple = reduced_by_error[error]["""count"""] __UpperCAmelCase : Dict = f"""| {count} | {error[:100]} | |""" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): __UpperCAmelCase : Optional[Any] = """| model | no. of errors | major error | count |""" __UpperCAmelCase : List[Any] = """|-:|-:|-:|-:|""" __UpperCAmelCase : Union[str, Any] = [header, sep] for model in reduced_by_model: __UpperCAmelCase : Optional[int] = reduced_by_model[model]["""count"""] __UpperCAmelCase , __UpperCAmelCase : List[str] = list(reduced_by_model[model]["""errors"""].items() )[0] __UpperCAmelCase : Any = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__lowerCamelCase ) return "\n".join(__lowerCamelCase ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") a : List[str] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : Tuple = get_job_links(args.workflow_run_id, token=args.token) a : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : Union[str, Any] = k.find(" / ") a : str = k[index + len(" / ") :] a : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : List[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : int = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : Dict = reduce_by_error(errors) a : Optional[int] = reduce_by_model(errors) a : Tuple = make_github_table(reduced_by_error) a : Tuple = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
114
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( lowercase__ ): """simple docstring""" a : int = 'segformer' def __init__( self : Dict , __lowercase : str=3 , __lowercase : Dict=4 , __lowercase : Any=[2, 2, 2, 2] , __lowercase : Optional[int]=[8, 4, 2, 1] , __lowercase : List[str]=[32, 64, 160, 256] , __lowercase : Union[str, Any]=[7, 3, 3, 3] , __lowercase : Optional[int]=[4, 2, 2, 2] , __lowercase : Any=[1, 2, 5, 8] , __lowercase : List[str]=[4, 4, 4, 4] , __lowercase : Any="gelu" , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0 , __lowercase : Optional[Any]=0.1 , __lowercase : int=0.02 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-6 , __lowercase : Tuple=256 , __lowercase : List[Any]=255 , **__lowercase : Union[str, Any] , ) -> List[Any]: super().__init__(**__lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __lowercase , ) __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = num_encoder_blocks __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Dict = sr_ratios __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[Any] = strides __UpperCAmelCase : List[str] = mlp_ratios __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Any = classifier_dropout_prob __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[Any] = drop_path_rate __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Dict = decoder_hidden_size __UpperCAmelCase : Tuple = kwargs.get("""reshape_last_stage""" , __lowercase ) __UpperCAmelCase : int = semantic_loss_ignore_index class a ( lowercase__ ): """simple docstring""" a : Union[str, Any] = version.parse('1.11' ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> float: return 1e-4 @property def UpperCAmelCase ( self : str ) -> int: return 12
114
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
337
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : int = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCamelCase : List[str] = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } _lowerCamelCase : List[str] = { 'Salesforce/codegen-350M-mono': 2048, } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = CodeGenTokenizer def __init__(self : int , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[Any]="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Dict="<|endoftext|>" , _lowerCAmelCase : Any=False , **_lowerCAmelCase : Optional[int] , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , **_lowerCAmelCase , ) if kwargs.pop("""add_bos_token""" , _lowerCAmelCase ): A = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" F"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" F"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCAmelCase ) != add_prefix_space: A = getattr(_lowerCAmelCase , pre_tok_state.pop("""type""" ) ) A = add_prefix_space A = pre_tok_class(**_lowerCAmelCase ) A = add_prefix_space def A (self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[Any] ): A = kwargs.get("""is_split_into_words""" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def A (self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): A = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def A (self : Tuple , _lowerCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[List[str]] = None , **_lowerCAmelCase : Tuple , ): A = super().decode( token_ids=_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , **_lowerCAmelCase , ) if truncate_before_pattern is not None and len(_lowerCAmelCase ) > 0: A = self.truncate(_lowerCAmelCase , _lowerCAmelCase ) return decoded_text def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): def find_re(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): A = pattern.search(_lowerCAmelCase , _lowerCAmelCase ) return m.start() if m else -1 A = [re.compile(_lowerCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] A = list(re.finditer("""^print""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: prints[1].start()] A = list(re.finditer("""^def""" , _lowerCAmelCase , re.MULTILINE ) ) if len(_lowerCAmelCase ) > 1: A = completion[: defs[1].start()] A = 0 A = [ pos for pos in [find_re(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for terminal in terminals] if pos != -1 ] if len(_lowerCAmelCase ) > 0: return completion[: min(_lowerCAmelCase )] else: return completion
337
1
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(snake_case__ ) for i in range(n - 1 ): for j in range(i + 1 , snake_case__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A ( snake_case__ ): '''simple docstring''' if len(snake_case__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE__ = len(snake_case__ ) // 2 SCREAMING_SNAKE_CASE__ = arr[0:mid] SCREAMING_SNAKE_CASE__ = arr[mid:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = count_inversions_recursive(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = count_inversions_recursive(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _count_cross_inversions(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE__ = inversion_p + inversions_q + cross_inversions return c, num_inversions def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 while i < len(snake_case__ ) and j < len(snake_case__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(snake_case__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(snake_case__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE__ = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , snake_case__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE__ = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , snake_case__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = count_inversions_bf(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = count_inversions_recursive(snake_case__ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , snake_case__ ) if __name__ == "__main__": main()
165
"""simple docstring""" def A ( snake_case__ = 50 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
165
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = old_name if "patch_embed" in old_name: A__ , A__ , A__ = old_name.split('''.''' ) if layer == "0": A__ = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": A__ = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": A__ = old_name.replace('''3''' , '''convolution2''' ) else: A__ = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''' , lowercase_ ): A__ = R'''\b\d{2}\b''' if bool(re.search(lowercase_ , lowercase_ ) ): A__ = re.search(R'''\d\.\d\d.''' , lowercase_ ).group() else: A__ = re.search(R'''\d\.\d.''' , lowercase_ ).group() if int(match[0] ) < 6: A__ = old_name.replace(lowercase_ , '''''' ) A__ = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) A__ = '''intermediate_stages.''' + trimmed_name else: A__ = old_name.replace(lowercase_ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: A__ = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: A__ = str(int(match[2] ) - num_meta4D_last_stage ) A__ = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: A__ = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: A__ = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: A__ = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: A__ = trimmed_name.replace('''fc2''' , '''linear_out''' ) A__ = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''' , lowercase_ ): A__ = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: A__ = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: A__ = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: A__ = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: A__ = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: A__ = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ = new_name.replace('''norm''' , '''layernorm''' ) A__ = '''efficientformer.''' + new_name else: A__ = '''efficientformer.encoder.''' + new_name return new_name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" for key in checkpoint.copy().keys(): A__ = checkpoint.pop(lowercase_ ) A__ = val return checkpoint def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] A__ = EfficientFormerConfig.from_json_file(lowercase_ ) A__ = EfficientFormerForImageClassificationWithTeacher(lowercase_ ) A__ = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) A__ = config.depths[-1] - config.num_metaad_blocks + 1 A__ = convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image A__ = prepare_img() A__ = 256 A__ = 224 A__ = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) A__ = processor(images=lowercase_ , return_tensors='''pt''' ).pixel_values # original processing pipeline A__ = Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) A__ = image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) A__ = model(lowercase_ ) A__ = outputs.logits A__ = (1, 1_000) if "l1" in model_name: A__ = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add model''' , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='''Add image processor''' , use_temp_dir=lowercase_ , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) _lowerCamelCase : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
231
class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' A__ = n A__ = [None] * self.n A__ = 0 # index of the first element A__ = 0 A__ = 0 def __len__( self : List[Any]) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE ( self : List[Any]) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->Any: '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''') A__ = data A__ = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''') A__ = self.array[self.front] A__ = None A__ = (self.front + 1) % self.n self.size -= 1 return temp
231
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a__ : List[str] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=18 , a=30 , a=4_00 , a=None , a=True , a=True , a=None , ): UpperCamelCase__ = size if size is not None else {"height": 20, "width": 20} UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = num_channels UpperCamelCase__ = image_size UpperCamelCase__ = min_resolution UpperCamelCase__ = max_resolution UpperCamelCase__ = size UpperCamelCase__ = do_normalize UpperCamelCase__ = do_convert_rgb UpperCamelCase__ = [5_12, 10_24, 20_48, 40_96] UpperCamelCase__ = patch_size if patch_size is not None else {"height": 16, "width": 16} def __a ( self ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self ): UpperCamelCase__ = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCamelCase__ = Image.open(requests.get(a , stream=a ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def __a ( self ): UpperCamelCase__ = PixaStructImageProcessingTester(self ) @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_convert_rgb" ) ) def __a ( self ): UpperCamelCase__ = self.image_processor_tester.prepare_dummy_image() UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) UpperCamelCase__ = 20_48 UpperCamelCase__ = image_processor(a , return_tensors="pt" , max_patches=a ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(a ): UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches UpperCamelCase__ = "Hello" UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a , header_text=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( a , return_tensors="pt" , max_patches=a , header_text=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) UpperCamelCase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowercase_ ( a__ , unittest.TestCase ): __UpperCAmelCase = PixaStructImageProcessor if is_vision_available() else None def __a ( self ): UpperCamelCase__ = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCamelCase__ = 3 @property def __a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ): UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_normalize" ) ) self.assertTrue(hasattr(a , "do_convert_rgb" ) ) def __a ( self ): # Initialize image_processor UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input UpperCamelCase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ = image_processor( a , return_tensors="pt" , max_patches=a ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
80
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=3_6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=6 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = embedding_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_hidden_groups __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForPreTraining(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , sentence_order_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForMaskedLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AlbertForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = AlbertForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = AlbertForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = AlbertForMultipleChoice(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __SCREAMING_SNAKE_CASE = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : Optional[int] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : List[Any] = True def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False): __SCREAMING_SNAKE_CASE = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class in get_values(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def snake_case_ ( self): __SCREAMING_SNAKE_CASE = AlbertModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*lowerCAmelCase__) @slow def snake_case_ ( self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = AlbertModel.from_pretrained("""albert-base-v2""") __SCREAMING_SNAKE_CASE = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4))
100
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = k_size // 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _SCREAMING_SNAKE_CASE = 1 / (2 * pi * sigma) * exp(-(square(snake_case__ ) + square(snake_case__ )) / (2 * square(snake_case__ )) ) return g def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[0], image.shape[1] # dst image height and width _SCREAMING_SNAKE_CASE = height - k_size + 1 _SCREAMING_SNAKE_CASE = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _SCREAMING_SNAKE_CASE = zeros((dst_height * dst_width, k_size * k_size) ) _SCREAMING_SNAKE_CASE = 0 for i, j in product(range(snake_case__ ) ,range(snake_case__ ) ): _SCREAMING_SNAKE_CASE = ravel(image[i : i + k_size, j : j + k_size] ) _SCREAMING_SNAKE_CASE = window row += 1 # turn the kernel into shape(k*k, 1) _SCREAMING_SNAKE_CASE = gen_gaussian_kernel(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = ravel(snake_case__ ) # reshape and get the dst image _SCREAMING_SNAKE_CASE = dot(snake_case__ ,snake_case__ ).reshape(snake_case__ ,snake_case__ ).astype(snake_case__ ) return dst if __name__ == "__main__": # read original image UpperCamelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCamelCase = gaussian_filter(gray, 3, sigma=1) UpperCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
125
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } UpperCamelCase = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } UpperCamelCase = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" if isinstance(snake_case__ ,snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.in_layers.2.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.emb_layers.1.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.0.bias'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.weight'] _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.norm.bias'] _SCREAMING_SNAKE_CASE = weight_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_q.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_k.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = weight_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = bias_v.squeeze(-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) _SCREAMING_SNAKE_CASE = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: _SCREAMING_SNAKE_CASE = checkpoint["""label_emb.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""input_blocks.0.0.bias"""] _SCREAMING_SNAKE_CASE = unet_config["""down_block_types"""] _SCREAMING_SNAKE_CASE = unet_config["""layers_per_block"""] _SCREAMING_SNAKE_CASE = unet_config["""attention_head_dim"""] _SCREAMING_SNAKE_CASE = unet_config["""block_out_channels"""] _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = channels_list[0] for i, layer_type in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE = channels_list[i] _SCREAMING_SNAKE_CASE = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(snake_case__ ): _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = True if j == 0 and downsample_block_has_skip else False _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'down_blocks.{i}.downsamplers.0' _SCREAMING_SNAKE_CASE = F'input_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 _SCREAMING_SNAKE_CASE = current_channels # hardcoded the mid-block for now _SCREAMING_SNAKE_CASE = """mid_block.resnets.0""" _SCREAMING_SNAKE_CASE = """middle_block.0""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.attentions.0""" _SCREAMING_SNAKE_CASE = """middle_block.1""" _SCREAMING_SNAKE_CASE = convert_attention(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = """mid_block.resnets.1""" _SCREAMING_SNAKE_CASE = """middle_block.2""" _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = unet_config["""up_block_types"""] for i, layer_type in enumerate(snake_case__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.1' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.resnets.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.0' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,has_skip=snake_case__ ) _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.attentions.{j}' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer}.1' _SCREAMING_SNAKE_CASE = convert_attention( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) current_layer += 1 if i != len(snake_case__ ) - 1: _SCREAMING_SNAKE_CASE = F'up_blocks.{i}.upsamplers.0' _SCREAMING_SNAKE_CASE = F'output_blocks.{current_layer-1}.2' _SCREAMING_SNAKE_CASE = convert_resnet(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = checkpoint["""out.0.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.0.bias"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.weight"""] _SCREAMING_SNAKE_CASE = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') UpperCamelCase = parser.parse_args() UpperCamelCase = strabool(args.class_cond) UpperCamelCase = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: UpperCamelCase = None UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
125
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] __snake_case = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] __snake_case = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): __snake_case = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _SCREAMING_SNAKE_CASE ): def __init__( self , __magic_name__ , __magic_name__=13 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=5 , __magic_name__=4 , __magic_name__=37 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_12 , __magic_name__=16 , __magic_name__=2 , __magic_name__=0.0_2 , __magic_name__=False , __magic_name__=True , __magic_name__="None" , __magic_name__=3 , __magic_name__=4 , __magic_name__=None , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def __UpperCAmelCase ( self ) -> List[str]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> Union[str, Any]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self ) -> Optional[Any]: _a = self.get_config() _a = 3_00 return config def __UpperCAmelCase ( self , __magic_name__ ) -> Dict: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = DebertaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ , token_type_ids=__magic_name__ )[0] _a = model(__magic_name__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = DebertaForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = self.num_labels _a = DebertaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: _a = self.num_labels _a = DebertaForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = DebertaForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() _a = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self ) -> Any: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCAmelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __UpperCAmelCase ( self ) -> List[str]: _a = DebertaModelTester(self ) _a = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def __UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__magic_name__ ) def __UpperCAmelCase ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__magic_name__ ) def __UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__magic_name__ ) @slow def __UpperCAmelCase ( self ) -> Optional[Any]: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = DebertaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self ) -> Dict: pass @slow def __UpperCAmelCase ( self ) -> int: _a = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__magic_name__ , attention_mask=__magic_name__ )[0] # compare the actual values for a slice. _a = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
104
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a_ : Optional[int] = logging.get_logger(__name__) a_ : List[Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a_ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Model type selected in the list: """ + """, """.join(_SCREAMING_SNAKE_CASE )} ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) _lowerCAmelCase = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase = field( default=1_2_8 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) _lowerCAmelCase = field( default=6_4 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) _lowerCAmelCase = field( default=3_0 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) _lowerCAmelCase = field( default=_SCREAMING_SNAKE_CASE , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) _lowerCAmelCase = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _lowerCAmelCase = field( default=2_0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) _lowerCAmelCase = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) _lowerCAmelCase = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """train""" _lowerCAmelCase = """dev""" class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = Split.train , __magic_name__ = False , __magic_name__ = None , __magic_name__ = "pt" , ) -> Any: _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__magic_name__ , __magic_name__ ): try: _a = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) _a = mode # Load data features from cache or dataset file _a = 'v2' if args.version_2_with_negative else 'v1' _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '.lock' with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not args.overwrite_cache: _a = time.time() _a = torch.load(__magic_name__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features['features'] _a = self.old_features.get('dataset' , __magic_name__ ) _a = self.old_features.get('examples' , __magic_name__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run' ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=__magic_name__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__magic_name__ , ) _a = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , __magic_name__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , __magic_name__ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
104
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: SCREAMING_SNAKE_CASE_:str = None SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_:Optional[int] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE_:Any = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } SCREAMING_SNAKE_CASE_:Tuple = """▁""" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[Any] = ["input_ids", "attention_mask"] __lowerCamelCase : Tuple = BarthezTokenizer def __init__( self, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__="<s>", lowerCamelCase__="</s>", lowerCamelCase__="</s>", lowerCamelCase__="<s>", lowerCamelCase__="<unk>", lowerCamelCase__="<pad>", lowerCamelCase__="<mask>", **lowerCamelCase__, ): # Mask token behave like a normal word, i.e. include the space before it A : Optional[int] = AddedToken(lowerCamelCase__, lstrip=lowerCamelCase__, rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__, lowerCamelCase__ ) else mask_token super().__init__( lowerCamelCase__, tokenizer_file=lowerCamelCase__, bos_token=lowerCamelCase__, eos_token=lowerCamelCase__, unk_token=lowerCamelCase__, sep_token=lowerCamelCase__, cls_token=lowerCamelCase__, pad_token=lowerCamelCase__, mask_token=lowerCamelCase__, **lowerCamelCase__, ) A : Tuple = vocab_file A : Optional[int] = False if not self.vocab_file else True def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A : int = [self.cls_token_id] A : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[str] = [self.sep_token_id] A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A : Any = os.path.join( lowerCamelCase__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file, lowerCamelCase__ ) return (out_vocab_file,)
116
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = 1.0, lowerCamelCase__ = None, ): super().__init__() A : Union[str, Any] = initial_learning_rate A : List[Any] = warmup_steps A : int = power A : Optional[int] = decay_schedule_fn A : int = name def __call__( self, lowerCamelCase__ ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A : str = tf.cast(lowerCamelCase__, tf.floataa ) A : List[Any] = tf.cast(self.warmup_steps, tf.floataa ) A : Dict = global_step_float / warmup_steps_float A : Union[str, Any] = self.initial_learning_rate * tf.math.pow(lowerCamelCase__, self.power ) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps ), name=lowerCamelCase__, ) def _lowerCAmelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 0.9 , _lowerCAmelCase = 0.999 , _lowerCAmelCase = 1e-8 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 1.0 , _lowerCAmelCase = None , ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_lowerCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_lowerCAmelCase , ) if num_warmup_steps: A : Dict = WarmUp( initial_learning_rate=_lowerCAmelCase , decay_schedule_fn=_lowerCAmelCase , warmup_steps=_lowerCAmelCase , ) if weight_decay_rate > 0.0: A : str = AdamWeightDecay( learning_rate=_lowerCAmelCase , weight_decay_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=_lowerCAmelCase , ) else: A : Optional[int] = tf.keras.optimizers.Adam( learning_rate=_lowerCAmelCase , beta_a=_lowerCAmelCase , beta_a=_lowerCAmelCase , epsilon=_lowerCAmelCase , clipnorm=_lowerCAmelCase , global_clipnorm=_lowerCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 0.001, lowerCamelCase__ = 0.9, lowerCamelCase__ = 0.999, lowerCamelCase__ = 1e-7, lowerCamelCase__ = False, lowerCamelCase__ = 0.0, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "AdamWeightDecay", **lowerCamelCase__, ): super().__init__(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) A : int = weight_decay_rate A : Any = include_in_weight_decay A : Dict = exclude_from_weight_decay @classmethod def _lowerCAmelCase ( cls, lowerCamelCase__ ): A : Tuple = {"""WarmUp""": WarmUp} return super(lowerCamelCase__, cls ).from_config(lowerCamelCase__, custom_objects=lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): super(lowerCamelCase__, self )._prepare_local(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[str] = tf.constant( self.weight_decay_rate, name="""adam_weight_decay_rate""" ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""], use_locking=self._use_locking, ) return tf.no_op() def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=None, **lowerCamelCase__ ): A , A : Dict = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__, self ).apply_gradients(zip(lowerCamelCase__, lowerCamelCase__ ), name=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A : Union[str, Any] = apply_state or {} A : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: A : Dict = self._fallback_apply_state(lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : str = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Any = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_dense(lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None ): A , A : Tuple = self._get_lr(var.device, var.dtype.base_dtype, lowerCamelCase__ ) A : Optional[Any] = self._decay_weights_op(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__, self )._resource_apply_sparse(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def _lowerCAmelCase ( self, lowerCamelCase__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__, lowerCamelCase__ ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self ): A : List[str] = [] A : List[str] = None @property def _lowerCAmelCase ( self ): if self._accum_steps is None: A : str = tf.Variable( tf.constant(0, dtype=tf.intaa ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) return self._accum_steps.value() @property def _lowerCAmelCase ( self ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self, lowerCamelCase__ ): if not self._gradients: A : int = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ), trainable=lowerCamelCase__, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(f'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}''' ) for accum_gradient, gradient in zip(self._gradients, lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def _lowerCAmelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
116
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : str = TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
371
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : str = TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : List[str] = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : int = AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: UpperCAmelCase_ : str = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : Optional[Any] = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) UpperCAmelCase_ : str = AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
253
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1: _A : int = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , __lowerCamelCase , standard_warn=__lowerCamelCase) _A : List[str] = dict(scheduler.config) _A : Union[str, Any] = 1 _A : List[Any] = FrozenDict(__lowerCamelCase) if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False: _A : Optional[int] = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , __lowerCamelCase , standard_warn=__lowerCamelCase) _A : Optional[Any] = dict(scheduler.config) _A : List[str] = True _A : Tuple = FrozenDict(__lowerCamelCase) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( segmentation_model=__lowerCamelCase , segmentation_processor=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , ) def _lowerCamelCase ( self , __lowerCamelCase = "auto") -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase) def _lowerCamelCase ( self) -> List[str]: self.enable_attention_slicing(__lowerCamelCase) def _lowerCamelCase ( self) -> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") _A : str = torch.device("cuda") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self) -> List[Any]: if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 5_1_2 , __lowerCamelCase = 5_1_2 , __lowerCamelCase = 5_0 , __lowerCamelCase = 7.5 , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , __lowerCamelCase = None , __lowerCamelCase = 1 , **__lowerCamelCase , ) -> Dict: _A : Union[str, Any] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device) _A : Optional[Any] = self.segmentation_model(**__lowerCamelCase) _A : Union[str, Any] = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() _A : int = self.numpy_to_pil(__lowerCamelCase)[0].resize(image.size) # Run inpainting pipeline with the generated mask _A : str = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , )
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def a__ ( lowercase : Union[str, Any], lowercase : Any, lowercase : Any ) -> List[Any]: """simple docstring""" _UpperCamelCase = state_dict.pop(lowercase ) _UpperCamelCase = val def a__ ( lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCamelCase = key.replace('''backbone.0.body''', '''backbone.conv_encoder.model''' ) _UpperCamelCase = value else: _UpperCamelCase = value return new_state_dict def a__ ( lowercase : List[str], lowercase : Dict=False ) -> Dict: """simple docstring""" _UpperCamelCase = '''''' if is_panoptic: _UpperCamelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:256, :] _UpperCamelCase = in_proj_bias[:256] _UpperCamelCase = in_proj_weight[256:512, :] _UpperCamelCase = in_proj_bias[256:512] _UpperCamelCase = in_proj_weight[-256:, :] _UpperCamelCase = in_proj_bias[-256:] def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(lowercase, stream=lowercase ).raw ) return im @torch.no_grad() def a__ ( lowercase : Optional[Any], lowercase : Dict ) -> Optional[int]: """simple docstring""" _UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: _UpperCamelCase = '''resnet101''' if "dc5" in model_name: _UpperCamelCase = True _UpperCamelCase = '''panoptic''' in model_name if is_panoptic: _UpperCamelCase = 250 else: _UpperCamelCase = 91 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''coco-detection-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(lowercase, lowercase, repo_type='''dataset''' ), '''r''' ) ) _UpperCamelCase = {int(lowercase ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor _UpperCamelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' _UpperCamelCase = ConditionalDetrImageProcessor(format=lowercase ) # prepare image _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowercase, return_tensors='''pt''' ) _UpperCamelCase = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub _UpperCamelCase = torch.hub.load('''DeppMeng/ConditionalDETR''', lowercase, pretrained=lowercase ).eval() _UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: _UpperCamelCase = '''conditional_detr.''' + src rename_key(lowercase, lowercase, lowercase ) _UpperCamelCase = rename_backbone_keys(lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase, is_panoptic=lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): _UpperCamelCase = state_dict.pop(lowercase ) _UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCamelCase = state_dict.pop(lowercase ) _UpperCamelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: _UpperCamelCase = state_dict.pop(lowercase ) _UpperCamelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): _UpperCamelCase = state_dict.pop(lowercase ) _UpperCamelCase = val # finally, create HuggingFace model and load state dict _UpperCamelCase = ConditionalDetrForSegmentation(lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase ) model.load_state_dict(lowercase ) model.eval() model.push_to_hub(repo_id=lowercase, organization='''DepuMeng''', commit_message='''Add model''' ) # verify our conversion _UpperCamelCase = conditional_detr(lowercase ) _UpperCamelCase = model(lowercase ) assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1e-4 ) assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase__ : List[str] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
367
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a__ ( lowercase : Tuple ) -> Dict: """simple docstring""" _UpperCamelCase = int(lowercase ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Any=300 ) -> Any: """simple docstring""" return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def a__ ( lowercase : Optional[Any] ) -> Any: """simple docstring""" _UpperCamelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCamelCase = F"""{elt:.6f}""" if isinstance(lowercase, lowercase ) else str(lowercase ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __lowerCAmelCase : """simple docstring""" _snake_case : str = 5 _snake_case : Optional[int] = 0.2 def __init__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase__ : int = 300 , ) -> int: '''simple docstring''' _UpperCamelCase = total _UpperCamelCase = '''''' if prefix is None else prefix _UpperCamelCase = leave _UpperCamelCase = parent _UpperCamelCase = width _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : str = None ) -> Dict: '''simple docstring''' _UpperCamelCase = value if comment is not None: _UpperCamelCase = comment if self.last_value is None: _UpperCamelCase = _UpperCamelCase = time.time() _UpperCamelCase = _UpperCamelCase = value _UpperCamelCase = _UpperCamelCase = None _UpperCamelCase = self.warmup _UpperCamelCase = 1 self.update_bar(lowerCAmelCase__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCamelCase = time.time() _UpperCamelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCamelCase = self.elapsed_time / (value - self.start_value) else: _UpperCamelCase = None if value >= self.total: _UpperCamelCase = self.total _UpperCamelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCamelCase = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase__ ) _UpperCamelCase = value _UpperCamelCase = current_time if self.average_time_per_item is None: _UpperCamelCase = 1 else: _UpperCamelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ''' ''' * (len(str(self.total ) ) - len(str(lowerCAmelCase__ ) )) + str(lowerCAmelCase__ ) if self.elapsed_time is None: _UpperCamelCase = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _UpperCamelCase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _UpperCamelCase = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def snake_case__ ( self : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = None if column_names is None else [column_names] _UpperCamelCase = None def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' if self.inner_table is None: _UpperCamelCase = [list(values.keys() ), list(values.values() )] else: _UpperCamelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase__ ) _UpperCamelCase = columns self.inner_table.append([values[c] for c in columns] ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=300 ) -> int: '''simple docstring''' _UpperCamelCase = NotebookProgressBar(lowerCAmelCase__ , prefix=lowerCAmelCase__ , parent=self , width=lowerCAmelCase__ ) return self.child_bar def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = None self.display() class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = False def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) _UpperCamelCase = NotebookTrainingTracker(state.max_steps , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _UpperCamelCase = False def snake_case__ ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Dict ) -> Dict: '''simple docstring''' if not has_length(lowerCAmelCase__ ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCamelCase = self.training_tracker.add_child(len(lowerCAmelCase__ ) ) else: _UpperCamelCase = NotebookProgressBar(len(lowerCAmelCase__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> Optional[int]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() _UpperCamelCase = None def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCamelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCamelCase = state.global_step self.training_tracker.write_line(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' if self.training_tracker is not None: _UpperCamelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _UpperCamelCase = log['''loss'''] break if self.first_column == "Epoch": _UpperCamelCase = int(state.epoch ) else: _UpperCamelCase = state.global_step _UpperCamelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): _UpperCamelCase = re.sub(r'''\_loss$''' , '''''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop('''total_flos''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop('''epoch''' , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_runtime""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , lowerCAmelCase__ ) _UpperCamelCase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , lowerCAmelCase__ ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": _UpperCamelCase = v else: _UpperCamelCase = k.split('''_''' ) _UpperCamelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) _UpperCamelCase = v self.training_tracker.write_line(lowerCAmelCase__ ) self.training_tracker.remove_child() _UpperCamelCase = None # Evaluation takes a long time so we should force the next update. _UpperCamelCase = True def snake_case__ ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=lowerCAmelCase__ ) _UpperCamelCase = None
287
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple=1024, lowerCAmelCase_ : Optional[Any]=1024, lowerCAmelCase_ : Tuple=False, **lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='train', **lowerCAmelCase_ ) __lowerCAmelCase = tok.pad_token_id def get_lens(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tqdm( DataLoader(lowerCAmelCase_, batch_size=512, num_workers=8, shuffle=lowerCAmelCase_, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) __lowerCAmelCase = [] for batch in dl: __lowerCAmelCase = batch['input_ids'].ne(lowerCAmelCase_ ).sum(1 ).tolist() __lowerCAmelCase = batch['labels'].ne(lowerCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCAmelCase_, lowerCAmelCase_ ): max_lens.append(max(lowerCAmelCase_, lowerCAmelCase_ ) ) else: max_lens.extend(lowerCAmelCase_ ) return max_lens __lowerCAmelCase = get_lens(lowerCAmelCase_ ) __lowerCAmelCase = SeqaSeqDataset(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, type_path='val', **lowerCAmelCase_ ) __lowerCAmelCase = get_lens(lowerCAmelCase_ ) pickle_save(lowerCAmelCase_, train_ds.len_file ) pickle_save(lowerCAmelCase_, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
284
def a_ ( lowerCAmelCase_ : int ): if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
284
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Dict = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ = "pt" elif is_tf_available(): lowercase_ = "tf" else: lowercase_ = "jax" class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ByTaTokenizer lowerCamelCase = False def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' super().setUp() A__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def snake_case__ ( self : List[Any],**lowercase_ : Tuple )-> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname,**lowercase_ ) def snake_case__ ( self : Tuple,lowercase_ : List[str],lowercase_ : List[Any]=False,lowercase_ : Optional[int]=2_0,lowercase_ : Dict=5 )-> Tuple[str, list]: '''simple docstring''' A__ = [] for i in range(len(lowercase_ ) ): try: A__ = tokenizer.decode([i],clean_up_tokenization_spaces=lowercase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) A__ = list(filter(lambda lowercase_ : re.match(r'^[ a-zA-Z]+$',t[1] ),lowercase_ ) ) A__ = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1],add_special_tokens=lowercase_ ),lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: A__ = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: A__ = toks + toks # toks_str = [t[1] for t in toks] A__ = [t[0] for t in toks] # Ensure consistency A__ = tokenizer.decode(lowercase_,clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: A__ = ( tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: A__ = ' ' + output_txt A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) return output_txt, output_ids def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) A__ = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'],batch_without_eos_added['input_ids'] ) def snake_case__ ( self : Union[str, Any] )-> Any: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = 'Unicode €.' A__ = tokenizer(lowercase_ ) A__ = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded['input_ids'],lowercase_ ) # decoding A__ = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_,'Unicode €.</s>' ) A__ = tokenizer('e è é ê ë' ) A__ = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded['input_ids'],lowercase_ ) # decoding A__ = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_,'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ),'e è é ê ë</s>' ) def snake_case__ ( self : str )-> Dict: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off A__ = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on A__ = tokenizer(lowercase_,padding=lowercase_,return_tensors=lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) if FRAMEWORK != "jax": A__ = list(batch.input_ids.numpy()[0] ) else: A__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowercase_,lowercase_ ) self.assertEqual((2, 3_7),batch.input_ids.shape ) self.assertEqual((2, 3_7),batch.attention_mask.shape ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] A__ = tokenizer(lowercase_,padding=lowercase_,return_tensors=lowercase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids',lowercase_ ) self.assertIn('attention_mask',lowercase_ ) self.assertNotIn('decoder_input_ids',lowercase_ ) self.assertNotIn('decoder_attention_mask',lowercase_ ) def snake_case__ ( self : Optional[Any] )-> List[str]: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = [ 'Summary of the text.', 'Another summary.', ] A__ = tokenizer( text_target=lowercase_,max_length=3_2,padding='max_length',truncation=lowercase_,return_tensors=lowercase_ ) self.assertEqual(3_2,targets['input_ids'].shape[1] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' A__ = self.ta_base_tokenizer A__ = ['A long paragraph for summarization. </s>'] A__ = ['Summary of the text. </s>'] # fmt: off A__ = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] A__ = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on A__ = tokenizer(lowercase_,text_target=lowercase_ ) self.assertEqual(lowercase_,batch['input_ids'][0] ) self.assertEqual(lowercase_,batch['labels'][0] ) def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length,4_2 ) # Now let's start the test A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = ' He is very happy, UNwant\u00E9d,running' A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) A__ = tokenizer.__class__.from_pretrained(lowercase_ ) A__ = after_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) shutil.rmtree(lowercase_ ) A__ = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc A__ = tempfile.mkdtemp() A__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) A__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) tokenizer.save_pretrained(lowercase_ ) A__ = tokenizer.__class__.from_pretrained(lowercase_ ) A__ = after_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) self.assertIn('new_additional_special_token',after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length,4_2 ) A__ = tokenizer.__class__.from_pretrained(lowercase_,model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length,4_3 ) shutil.rmtree(lowercase_ ) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_,'special_tokens_map.json' ),encoding='utf-8' ) as json_file: A__ = json.load(lowercase_ ) with open(os.path.join(lowercase_,'tokenizer_config.json' ),encoding='utf-8' ) as json_file: A__ = json.load(lowercase_ ) A__ = [F'<extra_id_{i}>' for i in range(1_2_5 )] A__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] A__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowercase_,'special_tokens_map.json' ),'w',encoding='utf-8' ) as outfile: json.dump(lowercase_,lowercase_ ) with open(os.path.join(lowercase_,'tokenizer_config.json' ),'w',encoding='utf-8' ) as outfile: json.dump(lowercase_,lowercase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A__ = tokenizer_class.from_pretrained( lowercase_,) self.assertIn( 'an_additional_special_token',tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'],tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ),) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token',lstrip=lowercase_ )] A__ = tokenizer_class.from_pretrained( lowercase_,additional_special_tokens=lowercase_,) self.assertIn('a_new_additional_special_token',tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'],tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ),) def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' A__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase_ ) A__ = tokenizer_class.from_pretrained(lowercase_ ) self.assertTrue(tokenizer.decode([2_5_5] ) == '' ) def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Optional[Any] )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' pass def snake_case__ ( self : Dict )-> Tuple: '''simple docstring''' pass def snake_case__ ( self : Optional[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.get_tokenizers(fast=lowercase_,do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] A__ = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(lowercase_,lowercase_ ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] A__ = 0 A__ = tokenizer.convert_ids_to_tokens( lowercase_,skip_special_tokens=lowercase_ ) for attr in attributes_list: setattr(lowercase_,attr + '_id',lowercase_ ) self.assertEqual(getattr(lowercase_,lowercase_ ),lowercase_ ) self.assertEqual(getattr(lowercase_,attr + '_id' ),lowercase_ ) setattr(lowercase_,attr + '_id',lowercase_ ) self.assertEqual(getattr(lowercase_,lowercase_ ),lowercase_ ) self.assertEqual(getattr(lowercase_,attr + '_id' ),lowercase_ ) setattr(lowercase_,'additional_special_tokens_ids',[] ) self.assertListEqual(getattr(lowercase_,'additional_special_tokens' ),[] ) self.assertListEqual(getattr(lowercase_,'additional_special_tokens_ids' ),[] ) setattr(lowercase_,'additional_special_tokens_ids',[token_id_to_test_setters] ) self.assertListEqual(getattr(lowercase_,'additional_special_tokens' ),[token_to_test_setters] ) self.assertListEqual(getattr(lowercase_,'additional_special_tokens_ids' ),[token_id_to_test_setters] )
7
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ :List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], **_snake_case : str ) ->Dict: super().__init__(**_snake_case ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Union[str, Any], _snake_case : Union[np.ndarray, bytes, str], **_snake_case : Tuple ) ->Dict: return super().__call__(_snake_case, **_snake_case ) def lowercase_ ( self : Tuple, **_snake_case : Any ) ->Union[str, Any]: snake_case__ : str = {} if "candidate_labels" in kwargs: snake_case__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case__ : str = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self : Dict, _snake_case : str, _snake_case : Optional[int]=None, _snake_case : List[str]="This is a sound of {}." ) ->int: if isinstance(_snake_case, _snake_case ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case__ : List[Any] = requests.get(_snake_case ).content else: with open(_snake_case, 'rb' ) as f: snake_case__ : Union[str, Any] = f.read() if isinstance(_snake_case, _snake_case ): snake_case__ : List[Any] = ffmpeg_read(_snake_case, self.feature_extractor.sampling_rate ) if not isinstance(_snake_case, np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) snake_case__ : Tuple = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='pt' ) snake_case__ : int = candidate_labels snake_case__ : int = [hypothesis_template.format(_snake_case ) for x in candidate_labels] snake_case__ : Optional[int] = self.tokenizer(_snake_case, return_tensors=self.framework, padding=_snake_case ) snake_case__ : List[Any] = [text_inputs] return inputs def lowercase_ ( self : Optional[int], _snake_case : Optional[Any] ) ->int: snake_case__ : Optional[int] = model_inputs.pop('candidate_labels' ) snake_case__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], _snake_case ): snake_case__ : Optional[Any] = text_inputs[0] else: # Batching case. snake_case__ : int = text_inputs[0][0] snake_case__ : Any = self.model(**_snake_case, **_snake_case ) snake_case__ : List[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def lowercase_ ( self : Union[str, Any], _snake_case : str ) ->List[str]: snake_case__ : int = model_outputs.pop('candidate_labels' ) snake_case__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": snake_case__ : Tuple = logits.softmax(dim=0 ) snake_case__ : Union[str, Any] = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) snake_case__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_snake_case, _snake_case ), key=lambda _snake_case : -x[0] ) ] return result
277
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self : str , _lowercase : Any , _lowercase : List[Any]=7 , _lowercase : Optional[Any]=3 , _lowercase : int=10 , _lowercase : Tuple=18 , _lowercase : Union[str, Any]=30 , _lowercase : Any=4_00 , _lowercase : List[str]=True , _lowercase : Union[str, Any]=None , _lowercase : str=True , _lowercase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowercase : Any=[0.5, 0.5, 0.5] , _lowercase : Dict=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = size if size is not None else {"shortest_edge": 18} SCREAMING_SNAKE_CASE__ = crop_size if crop_size is not None else {"height": 18, "width": 18} SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = min_resolution SCREAMING_SNAKE_CASE__ = max_resolution SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean SCREAMING_SNAKE_CASE__ = image_std SCREAMING_SNAKE_CASE__ = crop_size def __a ( self : int ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCAmelCase_ = VivitImageProcessor if is_vision_available() else None def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VivitImageProcessingTester(self ) @property def __a ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """size""" ) ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) SCREAMING_SNAKE_CASE__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__ = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE__ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
364
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ["input_features", "attention_mask"] def __init__( self : int , _lowercase : Dict=80 , _lowercase : Union[str, Any]=1_60_00 , _lowercase : str=0.0 , _lowercase : int=10 , _lowercase : str=25 , _lowercase : Union[str, Any]="hamming_window" , _lowercase : Dict=3_27_68.0 , _lowercase : Optional[int]=0.97 , _lowercase : Optional[int]=1.0 , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : Optional[int]=False , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ = feature_size SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = padding_value SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = win_length SCREAMING_SNAKE_CASE__ = frame_signal_scale SCREAMING_SNAKE_CASE__ = preemphasis_coeff SCREAMING_SNAKE_CASE__ = mel_floor SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = win_function SCREAMING_SNAKE_CASE__ = return_attention_mask SCREAMING_SNAKE_CASE__ = win_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = hop_length * sampling_rate // 10_00 SCREAMING_SNAKE_CASE__ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE__ = (self.n_fft // 2) + 1 def __a ( self : str , _lowercase : np.array ): """simple docstring""" if self.win_function == "hamming_window": SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowercase ) else: SCREAMING_SNAKE_CASE__ = window_function(window_length=self.sample_size , name=self.win_function ) SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) SCREAMING_SNAKE_CASE__ = spectrogram( one_waveform * self.frame_signal_scale , window=_lowercase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowercase , preemphasis=self.preemphasis_coeff , mel_filters=_lowercase , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : int ): """simple docstring""" if self.normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(_lowercase , _lowercase ) if self.normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(_lowercase , _lowercase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def __a ( self : int , _lowercase : List[np.ndarray] , _lowercase : Optional[np.ndarray] = None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowercase , _lowercase , self.padding_value ) for x, n in zip(_lowercase , _lowercase )] def __call__( self : Dict , _lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Optional[int] = None , _lowercase : bool = False , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[int] = None , **_lowercase : List[str] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) SCREAMING_SNAKE_CASE__ = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_mfsc_features(_lowercase ) for one_waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({"""input_features""": features} ) SCREAMING_SNAKE_CASE__ = self.pad( _lowercase , padding=_lowercase , max_length=_lowercase , truncation=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _lowercase ): SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(_lowercase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: SCREAMING_SNAKE_CASE__ = ( np.array(_lowercase , dtype=np.intaa ) if self._get_padding_strategies(_lowercase , max_length=_lowercase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs["""input_features"""] , attention_mask=_lowercase ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
204
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup A : str = logging.get_logger(__name__) class __A( a ): def __init__( self , **_snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' __a = [] __a = [] __a = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __a = parent.find_all(child.name , recursive=_snake_case ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_snake_case ) else next(i for i, s in enumerate(_snake_case , 1 ) if s is child ) ) __a = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = BeautifulSoup(_snake_case , '''html.parser''' ) __a = [] __a = [] __a = [] for element in html_code.descendants: if type(_snake_case ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __a = html.unescape(_snake_case ).strip() if not text_in_this_tag: continue all_doc_strings.append(_snake_case ) __a , __a = self.xpath_soup(_snake_case ) stringaxtag_seq.append(_snake_case ) stringaxsubs_seq.append(_snake_case ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(_snake_case ) != len(_snake_case ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = '''''' for tagname, subs in zip(_snake_case , _snake_case ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self , _snake_case ) -> BatchFeature: '''simple docstring''' __a = False # Check that strings has a valid type if isinstance(_snake_case , _snake_case ): __a = True elif isinstance(_snake_case , (list, tuple) ): if len(_snake_case ) == 0 or isinstance(html_strings[0] , _snake_case ): __a = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' F"""but is of type {type(_snake_case )}.""" ) __a = bool(isinstance(_snake_case , (list, tuple) ) and (isinstance(html_strings[0] , _snake_case )) ) if not is_batched: __a = [html_strings] # Get nodes + xpaths __a = [] __a = [] for html_string in html_strings: __a , __a , __a = self.get_three_from_single(_snake_case ) nodes.append(_snake_case ) __a = [] for node, tag_list, sub_list in zip(_snake_case , _snake_case , _snake_case ): __a = self.construct_xpath(_snake_case , _snake_case ) xpath_strings.append(_snake_case ) xpaths.append(_snake_case ) # return as Dict __a = {'''nodes''': nodes, '''xpaths''': xpaths} __a = BatchFeature(data=_snake_case , tensor_type=_snake_case ) return encoded_inputs
6
import os import re import shutil import sys import tempfile import unittest import black _A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _A = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> str: lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase_ = self.diffusers_dir shutil.copy( os.path.join(_UpperCamelCase , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) lowerCAmelCase_ = os.path.join(self.diffusers_dir , "new_code.py" ) with open(_UpperCamelCase , "w" , newline="\n" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Tuple: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , _UpperCamelCase ) , ) # Copy consistency with a really long name lowerCAmelCase_ = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , _UpperCamelCase , overwrite_result=re.sub("DDPM" , "Test" , _UpperCamelCase ) , )
231
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Any=False ): __lowercase : List[str] = """backbone.""" if is_semantic else """""" __lowercase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Tuple=False ): for i in range(config.num_hidden_layers ): __lowercase : Optional[Any] = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : List[str] = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Optional[int] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[Any] = in_proj_weight[ : config.hidden_size, : ] __lowercase : int = q_bias __lowercase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Tuple = in_proj_weight[ -config.hidden_size :, : ] __lowercase : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : Union[str, Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : Dict = gamma_a __lowercase : Any = gamma_a def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Optional[int] = dct.pop(lowerCAmelCase_ ) __lowercase : Optional[int] = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=False ): __lowercase : int = False if """rvlcdip""" in checkpoint_url else True __lowercase : Optional[Any] = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Tuple = 1024 __lowercase : str = 4096 __lowercase : List[Any] = 24 __lowercase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : int = 16 __lowercase : Dict = """huggingface/label-files""" __lowercase : List[str] = """rvlcdip-id2label.json""" __lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Tuple = idalabel __lowercase : Optional[int] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Tuple = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : List[Any] = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : int = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : Optional[int] = prepare_img() __lowercase : str = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[Any] = encoding["""pixel_values"""] __lowercase : int = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : List[str] = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[int] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : str = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=sys.maxsize ) -> Any: '''simple docstring''' a__ : Any ='bilinear' a__ : Optional[int] =max_size a__ : Union[str, Any] =short_edge_length def __call__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : List[str] =[] for img in imgs: a__ : Union[str, Any] =img.shape[:2] # later: provide list and randomly choose index for resize a__ : Dict =np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img a__ : Any =size * 1.0 / min(_snake_case , _snake_case ) if h < w: a__ : str =size, scale * w else: a__ : Optional[int] =scale * h, size if max(_snake_case , _snake_case ) > self.max_size: a__ : Union[str, Any] =self.max_size * 1.0 / max(_snake_case , _snake_case ) a__ : Optional[int] =newh * scale a__ : Dict =neww * scale a__ : List[str] =int(neww + 0.5 ) a__ : Dict =int(newh + 0.5 ) if img.dtype == np.uinta: a__ : str =Image.fromarray(_snake_case ) a__ : List[Any] =pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) a__ : List[Any] =np.asarray(_snake_case ) else: a__ : Dict =img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw a__ : int =nn.functional.interpolate( _snake_case , (newh, neww) , mode=self.interp_method , align_corners=_snake_case ).squeeze(0 ) img_augs.append(_snake_case ) return img_augs class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) a__ : Optional[Any] =cfg.INPUT.FORMAT a__ : Optional[Any] =cfg.SIZE_DIVISIBILITY a__ : int =cfg.PAD_VALUE a__ : Optional[int] =cfg.INPUT.MAX_SIZE_TEST a__ : Optional[int] =cfg.MODEL.DEVICE a__ : List[str] =torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a__ : Dict =torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) a__ : Any =lambda lowerCAmelCase__ : (x - self.pixel_mean) / self.pixel_std def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : str =tuple(max(_snake_case ) for s in zip(*[img.shape for img in images] ) ) a__ : Any =[im.shape[-2:] for im in images] a__ : Any =[ nn.functional.pad( _snake_case , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_snake_case , _snake_case ) ] return torch.stack(_snake_case ), torch.tensor(_snake_case ) def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: '''simple docstring''' with torch.no_grad(): if not isinstance(_snake_case , _snake_case ): a__ : Optional[Any] =[images] if single_image: assert len(_snake_case ) == 1 for i in range(len(_snake_case ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_snake_case , images.pop(_snake_case ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _snake_case , torch.as_tensor(img_tensorize(images.pop(_snake_case ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge a__ : Union[str, Any] =torch.tensor([im.shape[:2] for im in images] ) a__ : str =self.aug(_snake_case ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic a__ : str =[self.normalizer(_snake_case ) for x in images] # now pad them to do the following operations a__ : List[str] =self.pad(_snake_case ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad a__ : Tuple =torch.true_divide(_snake_case , _snake_case ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(SCREAMING_SNAKE_CASE ).all(), "Box tensor contains infinite or NaN!" a__ : Dict =box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE )
95
def lowercase_ (A : Union[str, Any] , A : List[str] , A : int , A : Optional[int] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case__ : Union[str, Any] = mf_knapsack(i - 1 , A , A , A ) else: snake_case__ : Any = max( mf_knapsack(i - 1 , A , A , A ) , mf_knapsack(i - 1 , A , A , j - wt[i - 1] ) + val[i - 1] , ) snake_case__ : Optional[int] = val return f[i][j] def lowercase_ (A : Optional[int] , A : Union[str, Any] , A : str , A : Dict ): snake_case__ : int = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case__ : Union[str, Any] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case__ : str = dp[i - 1][w_] return dp[n][w_], dp def lowercase_ (A : int , A : list , A : list ): if not (isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case__ : Dict = len(A ) if num_items != len(A ): snake_case__ : str = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(A )} values''' ) raise ValueError(A ) for i in range(A ): if not isinstance(wt[i] , A ): snake_case__ : Optional[int] = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(A ) snake_case__ , snake_case__ : Optional[int] = knapsack(A , A , A , A ) snake_case__ : set = set() _construct_solution(A , A , A , A , A ) return optimal_val, example_optional_set def lowercase_ (A : list , A : list , A : int , A : int , A : set ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(A , A , i - 1 , A , A ) else: optimal_set.add(A ) _construct_solution(A , A , i - 1 , j - wt[i - 1] , A ) if __name__ == "__main__": a_ :Any = [3, 2, 4, 4] a_ :List[Any] = [4, 3, 2, 3] a_ :Union[str, Any] = 4 a_ :List[str] = 6 a_ :Union[str, Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] a_ , a_ :List[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 a_ , a_ :Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
277
0
from collections import defaultdict from math import ceil, sqrt def SCREAMING_SNAKE_CASE ( lowercase_ = 1_000_000 , lowercase_ = 10 ) -> int: """simple docstring""" A__ = defaultdict(lowercase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: A__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: A__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowercase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'''{solution() = }''')
363
def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
231
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) a_ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __SCREAMING_SNAKE_CASE ( snake_case_ ): snake_case_ = """deformable_detr""" snake_case_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , __lowercase : Any=True , __lowercase : str=None , __lowercase : int=3 , __lowercase : str=3_00 , __lowercase : Tuple=10_24 , __lowercase : str=6 , __lowercase : Optional[int]=10_24 , __lowercase : Tuple=8 , __lowercase : List[Any]=6 , __lowercase : int=10_24 , __lowercase : str=8 , __lowercase : Optional[Any]=0.0 , __lowercase : List[str]=True , __lowercase : str="relu" , __lowercase : Dict=2_56 , __lowercase : Tuple=0.1 , __lowercase : int=0.0 , __lowercase : Union[str, Any]=0.0 , __lowercase : Optional[Any]=0.02 , __lowercase : Optional[Any]=1.0 , __lowercase : Dict=True , __lowercase : Optional[int]=False , __lowercase : str="sine" , __lowercase : List[Any]="resnet50" , __lowercase : str=True , __lowercase : List[str]=False , __lowercase : str=4 , __lowercase : int=4 , __lowercase : List[Any]=4 , __lowercase : int=False , __lowercase : Dict=3_00 , __lowercase : str=False , __lowercase : Optional[Any]=1 , __lowercase : int=5 , __lowercase : List[str]=2 , __lowercase : Optional[int]=1 , __lowercase : Union[str, Any]=1 , __lowercase : Any=5 , __lowercase : str=2 , __lowercase : Optional[int]=0.1 , __lowercase : Union[str, Any]=0.25 , __lowercase : List[Any]=False , **__lowercase : Tuple , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE__ : Dict =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] =backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : List[Any] =config_class.from_dict(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_timm_backbone SCREAMING_SNAKE_CASE__ : Any =backbone_config SCREAMING_SNAKE_CASE__ : str =num_channels SCREAMING_SNAKE_CASE__ : Optional[Any] =num_queries SCREAMING_SNAKE_CASE__ : List[str] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =d_model SCREAMING_SNAKE_CASE__ : Any =encoder_ffn_dim SCREAMING_SNAKE_CASE__ : Any =encoder_layers SCREAMING_SNAKE_CASE__ : int =encoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] =decoder_ffn_dim SCREAMING_SNAKE_CASE__ : int =decoder_layers SCREAMING_SNAKE_CASE__ : int =decoder_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =dropout SCREAMING_SNAKE_CASE__ : Tuple =attention_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] =activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] =activation_function SCREAMING_SNAKE_CASE__ : Optional[int] =init_std SCREAMING_SNAKE_CASE__ : Any =init_xavier_std SCREAMING_SNAKE_CASE__ : Any =encoder_layerdrop SCREAMING_SNAKE_CASE__ : Any =auxiliary_loss SCREAMING_SNAKE_CASE__ : Tuple =position_embedding_type SCREAMING_SNAKE_CASE__ : int =backbone SCREAMING_SNAKE_CASE__ : int =use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Union[str, Any] =dilation # deformable attributes SCREAMING_SNAKE_CASE__ : Optional[int] =num_feature_levels SCREAMING_SNAKE_CASE__ : List[str] =encoder_n_points SCREAMING_SNAKE_CASE__ : Dict =decoder_n_points SCREAMING_SNAKE_CASE__ : Tuple =two_stage SCREAMING_SNAKE_CASE__ : Tuple =two_stage_num_proposals SCREAMING_SNAKE_CASE__ : Optional[Any] =with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher SCREAMING_SNAKE_CASE__ : str =class_cost SCREAMING_SNAKE_CASE__ : Union[str, Any] =bbox_cost SCREAMING_SNAKE_CASE__ : Optional[int] =giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Any =mask_loss_coefficient SCREAMING_SNAKE_CASE__ : int =dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Tuple =bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Union[str, Any] =giou_loss_coefficient SCREAMING_SNAKE_CASE__ : List[Any] =eos_coefficient SCREAMING_SNAKE_CASE__ : Any =focal_alpha SCREAMING_SNAKE_CASE__ : Any =disable_custom_kernels super().__init__(is_encoder_decoder=__lowercase , **__lowercase ) @property def __magic_name__ ( self : List[str] ) -> int: return self.encoder_attention_heads @property def __magic_name__ ( self : Dict ) -> int: return self.d_model def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Any =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE__ : int =self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Optional[Any] =self.__class__.model_type return output
152
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A =pytest.mark.integration @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: import faiss lowerCamelCase_ = self._create_dummy_dataset() lowerCamelCase_ = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowercase , keep_in_memory=lowercase ) lowerCamelCase_ = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(lowercase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: from elasticsearch import Elasticsearch lowerCamelCase_ = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCamelCase_ = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=lowercase ) lowerCamelCase_ , lowerCamelCase_ = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertRaises(lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase_ = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) self.assertRaises(lowercase , index.search_batch , queries[0] ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Any: import faiss lowerCamelCase_ = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase_ = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowercase ): lowerCamelCase_ = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: import faiss lowerCamelCase_ = faiss.IndexFlat(5 ) lowerCamelCase_ = FaissIndex(custom_index=lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowercase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase_ ( lowerCamelCase__ ): import faiss lowerCamelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase_ = "index.faiss" lowerCamelCase_ = F'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) lowerCamelCase_ = np.zeros(5 , dtype=np.floataa ) lowerCamelCase_ = 1 lowerCamelCase_ , lowerCamelCase_ = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _SCREAMING_SNAKE_CASE ( snake_case_ ): def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCamelCase_ = Elasticsearch() lowerCamelCase_ = {"acknowledged": True} lowerCamelCase_ = ElasticSearchIndex(es_client=lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase_ = "foo" lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCamelCase_ , lowerCamelCase_ = index.search(lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase ) # batched queries with timeout lowerCamelCase_ = ["foo", "bar", "foobar"] lowerCamelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCamelCase_ , lowerCamelCase_ = index.search_batch(lowercase , request_timeout=30 ) lowerCamelCase_ = [scores[0] for scores in total_scores] lowerCamelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , lowercase )
19
0
"""simple docstring""" from math import factorial, radians def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = 18 , __UpperCAmelCase = 10 ): _lowercase : int = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians _lowercase : List[Any] = radians(__UpperCAmelCase ) _lowercase : List[Any] = angle_in_radians _lowercase : Union[str, Any] = 3 _lowercase : Union[str, Any] = -1 for _ in range(__UpperCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__UpperCAmelCase ) _lowercase : Tuple = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": __import__("""doctest""").testmod()
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Tuple = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : int = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""pixel_values"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 0.9 , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = crop_pct _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _snake_case = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: _snake_case = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: _snake_case = int(size['height'] / crop_pct ) else: _snake_case = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(lowerCAmelCase_ ) ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) else: if "shortest_edge" in size: _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: _snake_case = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(lowerCAmelCase_ ) ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = crop_pct if crop_pct is not None else self.crop_pct _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , crop_pct=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
160
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = inspect.getfile(accelerate.test_utils ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) @require_multi_gpu def lowerCamelCase ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) _snake_case = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase : Tuple = Accelerator() lowercase : Optional[int] = (accelerator.state.process_index + 2, 10) lowercase : Any = torch.randint(0, 10, shape).to(accelerator.device) lowercase : Union[str, Any] = "" lowercase : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase : int = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase : Any = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
160
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class lowerCamelCase_ ( _snake_case ): '''simple docstring''' a__ : Tuple = """roc_bert""" def __init__( self , __lowercase=30_522 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=1E-1_2 , __lowercase=True , __lowercase=0 , __lowercase="absolute" , __lowercase=None , __lowercase=True , __lowercase=True , __lowercase=768 , __lowercase=910 , __lowercase=512 , __lowercase=24_858 , __lowercase=True , **__lowercase , ) -> Tuple: __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :Dict = max_position_embeddings __UpperCamelCase :List[str] = hidden_size __UpperCamelCase :List[str] = num_hidden_layers __UpperCamelCase :List[str] = num_attention_heads __UpperCamelCase :str = intermediate_size __UpperCamelCase :Union[str, Any] = hidden_act __UpperCamelCase :Dict = hidden_dropout_prob __UpperCamelCase :str = attention_probs_dropout_prob __UpperCamelCase :int = initializer_range __UpperCamelCase :str = type_vocab_size __UpperCamelCase :Dict = layer_norm_eps __UpperCamelCase :Optional[int] = use_cache __UpperCamelCase :Optional[Any] = enable_pronunciation __UpperCamelCase :Dict = enable_shape __UpperCamelCase :int = pronunciation_embed_dim __UpperCamelCase :str = pronunciation_vocab_size __UpperCamelCase :List[Any] = shape_embed_dim __UpperCamelCase :int = shape_vocab_size __UpperCamelCase :List[str] = concat_input __UpperCamelCase :str = position_embedding_type __UpperCamelCase :Optional[Any] = classifier_dropout super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__)
43
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = self.vocab_size - 1 def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = OpenAIGPTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , head_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = OpenAIGPTLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> int: '''simple docstring''' A_ = OpenAIGPTDoubleHeadsModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = OpenAIGPTForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowercase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowercase = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' A_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = inputs_dict["""labels"""] A_ = inputs_dict["""labels"""] A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase__ , ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = OpenAIGPTModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = OpenAIGPTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(UpperCamelCase__ ) A_ = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase__ ) # the president is A_ = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist() , UpperCamelCase__ )
162
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : Dict=99 , UpperCamelCase : Dict=13 , UpperCamelCase : List[str]=7 , UpperCamelCase : List[str]=9 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : int=False , UpperCamelCase : Dict=32 , UpperCamelCase : Dict=5 , UpperCamelCase : Optional[Any]=4 , UpperCamelCase : int=37 , UpperCamelCase : Any=8 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : int=0.002 , UpperCamelCase : List[Any]=1 , UpperCamelCase : List[str]=0 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' __UpperCAmelCase : Dict = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = encoder_seq_length __UpperCAmelCase : Dict = decoder_seq_length # For common tests __UpperCAmelCase : Union[str, Any] = self.decoder_seq_length __UpperCAmelCase : Any = is_training __UpperCAmelCase : Optional[int] = use_attention_mask __UpperCAmelCase : str = use_labels __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : List[str] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[Any] = d_ff __UpperCAmelCase : Tuple = relative_attention_num_buckets __UpperCAmelCase : Optional[Any] = dropout_rate __UpperCAmelCase : Optional[Any] = initializer_factor __UpperCAmelCase : List[Any] = eos_token_id __UpperCAmelCase : Dict = pad_token_id __UpperCAmelCase : str = decoder_start_token_id __UpperCAmelCase : str = None __UpperCAmelCase : List[Any] = decoder_layers def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""" ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Any=None , ): '''simple docstring''' if attention_mask is None: __UpperCAmelCase : Tuple = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCAmelCase : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCAmelCase : Union[str, Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: __UpperCAmelCase : Tuple = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: __UpperCAmelCase : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCAmelCase : Dict = input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCAmelCase : List[Any] = self.get_config() __UpperCAmelCase : str = config.num_attention_heads __UpperCAmelCase : str = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , ): '''simple docstring''' __UpperCAmelCase : str = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) __UpperCAmelCase : List[str] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) __UpperCAmelCase : Optional[int] = result.last_hidden_state __UpperCAmelCase : Tuple = result.past_key_values __UpperCAmelCase : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCamelCase__ ( self : Any , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , ): '''simple docstring''' __UpperCAmelCase : Dict = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass __UpperCAmelCase : Tuple = model(UpperCamelCase , use_cache=UpperCamelCase ) __UpperCAmelCase : List[str] = model(UpperCamelCase ) __UpperCAmelCase : List[Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) __UpperCAmelCase ,__UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase )["""last_hidden_state"""] __UpperCAmelCase : Dict = model(UpperCamelCase , past_key_values=UpperCamelCase )["""last_hidden_state"""] # select random slice __UpperCAmelCase : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : List[str] = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() __UpperCAmelCase : Dict = model(**UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class lowerCamelCase__ ( A , A , A , unittest.TestCase ): """simple docstring""" __a = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __a = (UMTaForConditionalGeneration,) if is_torch_available() else () __a = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) __a = True __a = False __a = False __a = True __a = True # The small UMT5 model needs higher percentages for CPU/MP tests __a = [0.8, 0.9] def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : List[str] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() __UpperCAmelCase : Tuple = config_and_inputs[0] __UpperCAmelCase : str = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) __UpperCAmelCase : List[str] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): __UpperCAmelCase : Any = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __UpperCAmelCase : int = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) __UpperCAmelCase : Tuple = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step __UpperCAmelCase : str = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=UpperCamelCase ).to(UpperCamelCase ) __UpperCAmelCase : Any = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=UpperCamelCase , legacy=UpperCamelCase ) __UpperCAmelCase : Dict = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] __UpperCAmelCase : int = tokenizer(UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase ).input_ids # fmt: off __UpperCAmelCase : List[Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Dict = model.generate(input_ids.to(UpperCamelCase ) ) __UpperCAmelCase : Optional[Any] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] __UpperCAmelCase : Tuple = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
320
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
320
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]=7 , _lowerCamelCase : str=3 , _lowerCamelCase : Any=18 , _lowerCamelCase : Any=30 , _lowerCamelCase : Dict=400 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : str=None , _lowerCamelCase : Union[str, Any]=True , ): _snake_case = size if size is not None else {'''height''': 18, '''width''': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = apply_ocr def lowercase ( self : Optional[Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase__ ( A_ , unittest.TestCase ): __a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowercase ( self : int ): _snake_case = LayoutLMvaImageProcessingTester(self ) @property def lowercase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Optional[Any] ): _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''apply_ocr''' ) ) def lowercase ( self : Union[str, Any] ): _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def lowercase ( self : Any ): pass def lowercase ( self : Optional[Any] ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , _lowerCamelCase ) self.assertIsInstance(encoding.boxes , _lowerCamelCase ) # Test batched _snake_case = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase ( self : str ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _snake_case = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase ( self : Any ): # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _snake_case = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def lowercase ( self : List[Any] ): # with apply_OCR = True _snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset _snake_case = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) _snake_case = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) _snake_case = image_processing(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _snake_case = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 _snake_case = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCamelCase ) self.assertListEqual(encoding.boxes , _lowerCamelCase ) # with apply_OCR = False _snake_case = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) _snake_case = image_processing(_lowerCamelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
288
"""simple docstring""" from math import pow def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count _snake_case = int(pow(__lowerCamelCase , __lowerCamelCase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. _snake_case , _snake_case = backtrack( __lowerCamelCase , __lowerCamelCase , current_number + 1 , __lowerCamelCase , __lowerCamelCase ) return current_sum, solutions_count def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) -> int: if not (1 <= needed_sum <= 10_00 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(__lowerCamelCase , __lowerCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
288
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __lowerCamelCase = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] __lowerCamelCase = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def UpperCAmelCase ( ): """simple docstring""" A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def UpperCAmelCase ( ): """simple docstring""" A__ = 'rougeLsum' A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k] )[k] A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def UpperCAmelCase ( ): """simple docstring""" A__ = ['rouge1', 'rouge2', 'rougeL'] A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase ) A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase ) assert score_sep == score_no_sep def UpperCAmelCase ( ): """simple docstring""" A__ = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] A__ = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase ) == calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase ) def UpperCAmelCase ( ): """simple docstring""" A__ = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] A__ = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'] , newline_sep=_UpperCAmelCase )['rougeLsum'] A__ = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def UpperCAmelCase ( ): """simple docstring""" A__ = Path('examples/seq2seq/test_data/wmt_en_ro' ) A__ = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) A__ = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase )
359
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = 'AutoTokenizer' lowerCAmelCase__ : int = ['tokenizer'] lowerCAmelCase__ : int = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> List[str]: super().__init__(__UpperCAmelCase ) A__ = speaker_embeddings @classmethod def snake_case__ ( cls ,__UpperCAmelCase ,__UpperCAmelCase="speaker_embeddings_path.json" ,**__UpperCAmelCase ) -> List[Any]: if speaker_embeddings_dict_path is not None: A__ = get_file_from_repo( __UpperCAmelCase ,__UpperCAmelCase ,subfolder=kwargs.pop('subfolder' ,__UpperCAmelCase ) ,cache_dir=kwargs.pop('cache_dir' ,__UpperCAmelCase ) ,force_download=kwargs.pop('force_download' ,__UpperCAmelCase ) ,proxies=kwargs.pop('proxies' ,__UpperCAmelCase ) ,resume_download=kwargs.pop('resume_download' ,__UpperCAmelCase ) ,local_files_only=kwargs.pop('local_files_only' ,__UpperCAmelCase ) ,use_auth_token=kwargs.pop('use_auth_token' ,__UpperCAmelCase ) ,revision=kwargs.pop('revision' ,__UpperCAmelCase ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(__UpperCAmelCase ,__UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) A__ = None else: with open(__UpperCAmelCase ) as speaker_embeddings_json: A__ = json.load(__UpperCAmelCase ) else: A__ = None A__ = AutoTokenizer.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) return cls(tokenizer=__UpperCAmelCase ,speaker_embeddings=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="speaker_embeddings_path.json" ,__UpperCAmelCase="speaker_embeddings" ,__UpperCAmelCase = False ,**__UpperCAmelCase ,) -> Tuple: if self.speaker_embeddings is not None: os.makedirs(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ,'v2' ) ,exist_ok=__UpperCAmelCase ) A__ = {} A__ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ = self._load_voice_preset(__UpperCAmelCase ) A__ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,__UpperCAmelCase ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=__UpperCAmelCase ,) A__ = os.path.join(__UpperCAmelCase ,f'''{prompt_key}_{key}.npy''' ) A__ = tmp_dict with open(os.path.join(__UpperCAmelCase ,__UpperCAmelCase ) ,'w' ) as fp: json.dump(__UpperCAmelCase ,__UpperCAmelCase ) super().save_pretrained(__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase = None ,**__UpperCAmelCase ) -> List[Any]: A__ = self.speaker_embeddings[voice_preset] A__ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) A__ = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,__UpperCAmelCase ) ,cache_dir=kwargs.pop('cache_dir' ,__UpperCAmelCase ) ,force_download=kwargs.pop('force_download' ,__UpperCAmelCase ) ,proxies=kwargs.pop('proxies' ,__UpperCAmelCase ) ,resume_download=kwargs.pop('resume_download' ,__UpperCAmelCase ) ,local_files_only=kwargs.pop('local_files_only' ,__UpperCAmelCase ) ,use_auth_token=kwargs.pop('use_auth_token' ,__UpperCAmelCase ) ,revision=kwargs.pop('revision' ,__UpperCAmelCase ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) A__ = np.load(__UpperCAmelCase ) return voice_preset_dict def snake_case__ ( self ,__UpperCAmelCase = None ) -> Dict: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="pt" ,__UpperCAmelCase=2_56 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> Tuple: if voice_preset is not None and not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): if ( isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ = self._load_voice_preset(__UpperCAmelCase ) else: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and not voice_preset.endswith('.npz' ): A__ = voice_preset + '.npz' A__ = np.load(__UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__UpperCAmelCase ,**__UpperCAmelCase ) A__ = BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase ) A__ = self.tokenizer( __UpperCAmelCase ,return_tensors=__UpperCAmelCase ,padding='max_length' ,max_length=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,**__UpperCAmelCase ,) if voice_preset is not None: A__ = voice_preset return encoded_text
154
0
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class __lowerCAmelCase ( lowerCAmelCase): _a = '''xlm-prophetnet''' _a = ['''past_key_values'''] _a = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self: Any , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[Union[str, Callable]] = "gelu" , _lowerCAmelCase: Optional[int] = 3_05_22 , _lowerCAmelCase: Optional[int] = 10_24 , _lowerCAmelCase: Optional[int] = 40_96 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[int] = 40_96 , _lowerCAmelCase: Optional[int] = 12 , _lowerCAmelCase: Optional[int] = 16 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[float] = 0.1 , _lowerCAmelCase: Optional[int] = 5_12 , _lowerCAmelCase: Optional[float] = 0.02 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 2 , _lowerCAmelCase: Optional[int] = 32 , _lowerCAmelCase: Optional[int] = 1_28 , _lowerCAmelCase: Optional[bool] = False , _lowerCAmelCase: Optional[float] = 0.0 , _lowerCAmelCase: Optional[bool] = True , _lowerCAmelCase: Optional[int] = 0 , _lowerCAmelCase: Optional[int] = 1 , _lowerCAmelCase: Optional[int] = 2 , **_lowerCAmelCase: List[str] , ): lowercase :Tuple = vocab_size lowercase :Any = hidden_size lowercase :Dict = encoder_ffn_dim lowercase :List[str] = num_encoder_layers lowercase :Union[str, Any] = num_encoder_attention_heads lowercase :Union[str, Any] = decoder_ffn_dim lowercase :Optional[Any] = num_decoder_layers lowercase :Optional[int] = num_decoder_attention_heads lowercase :Union[str, Any] = max_position_embeddings lowercase :Tuple = init_std # Normal(0, this parameter) lowercase :Dict = activation_function # parameters for xlmprophetnet lowercase :Tuple = ngram lowercase :List[Any] = num_buckets lowercase :Tuple = relative_max_distance lowercase :List[Any] = disable_ngram_loss lowercase :Any = eps # 3 Types of Dropout lowercase :str = attention_dropout lowercase :Optional[Any] = activation_dropout lowercase :List[Any] = dropout lowercase :Optional[Any] = use_cache super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , add_cross_attention=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) @property def SCREAMING_SNAKE_CASE ( self: Dict ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: Tuple ): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
236
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase :Tuple = 1024 lowercase :Tuple = 4096 lowercase :Union[str, Any] = 24 lowercase :Tuple = 16 lowercase :Optional[Any] = [5, 11, 17, 23] lowercase :Optional[Any] = [256, 512, 1024, 1024] lowercase :Tuple = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowercase :Any = 768 lowercase :Optional[int] = [1, 1, 1, 0.5] lowercase :int = [256, 512, 768, 768] lowercase :str = 150 lowercase :Tuple = 16 lowercase :List[str] = (1, 384, 384) lowercase :Any = False lowercase :Optional[int] = "project" if "ade" in checkpoint_url: lowercase :Dict = True lowercase :str = 768 lowercase :Tuple = [1, 1, 1, 0.5] lowercase :Dict = 150 lowercase :Any = 16 lowercase :List[Any] = "huggingface/label-files" lowercase :Union[str, Any] = "ade20k-id2label.json" lowercase :List[str] = json.load(open(cached_download(hf_hub_url(lowerCamelCase, lowerCamelCase, repo_type="dataset" ) ), "r" ) ) lowercase :Optional[Any] = {int(lowerCamelCase ): v for k, v in idalabel.items()} lowercase :Union[str, Any] = idalabel lowercase :Optional[Any] = {v: k for k, v in idalabel.items()} lowercase :List[str] = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase :Any = name.replace("pretrained.model", "dpt.encoder" ) if "pretrained.model" in name: lowercase :int = name.replace("pretrained.model", "dpt.embeddings" ) if "patch_embed" in name: lowercase :Any = name.replace("patch_embed", "" ) if "pos_embed" in name: lowercase :Optional[Any] = name.replace("pos_embed", "position_embeddings" ) if "attn.proj" in name: lowercase :List[str] = name.replace("attn.proj", "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase :str = name.replace("proj", "projection" ) if "blocks" in name: lowercase :List[Any] = name.replace("blocks", "layer" ) if "mlp.fc1" in name: lowercase :str = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: lowercase :Any = name.replace("mlp.fc2", "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase :Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase :Any = name.replace("norm2", "layernorm_after" ) if "scratch.output_conv" in name: lowercase :Optional[Any] = name.replace("scratch.output_conv", "head" ) if "scratch" in name: lowercase :Union[str, Any] = name.replace("scratch", "neck" ) if "layer1_rn" in name: lowercase :str = name.replace("layer1_rn", "convs.0" ) if "layer2_rn" in name: lowercase :Dict = name.replace("layer2_rn", "convs.1" ) if "layer3_rn" in name: lowercase :Tuple = name.replace("layer3_rn", "convs.2" ) if "layer4_rn" in name: lowercase :Optional[int] = name.replace("layer4_rn", "convs.3" ) if "refinenet" in name: lowercase :Any = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase :Any = name.replace(F"refinenet{layer_idx}", F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowercase :str = name.replace("out_conv", "projection" ) if "resConfUnit1" in name: lowercase :Optional[Any] = name.replace("resConfUnit1", "residual_layer1" ) if "resConfUnit2" in name: lowercase :int = name.replace("resConfUnit2", "residual_layer2" ) if "conv1" in name: lowercase :Optional[int] = name.replace("conv1", "convolution1" ) if "conv2" in name: lowercase :List[str] = name.replace("conv2", "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase :Tuple = name.replace("pretrained.act_postprocess1.0.project.0", "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase :Dict = name.replace("pretrained.act_postprocess2.0.project.0", "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase :Any = name.replace("pretrained.act_postprocess3.0.project.0", "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase :Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0", "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase :Dict = name.replace("pretrained.act_postprocess1.3", "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess1.4", "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess2.3", "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase :str = name.replace("pretrained.act_postprocess2.4", "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase :str = name.replace("pretrained.act_postprocess3.3", "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase :List[Any] = name.replace("pretrained.act_postprocess4.3", "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase :Any = name.replace("pretrained.act_postprocess4.4", "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase :Any = name.replace("pretrained", "dpt" ) if "bn" in name: lowercase :Optional[int] = name.replace("bn", "batch_norm" ) if "head" in name: lowercase :Union[str, Any] = name.replace("head", "head.head" ) if "encoder.norm" in name: lowercase :Optional[Any] = name.replace("encoder.norm", "layernorm" ) if "auxlayer" in name: lowercase :str = name.replace("auxlayer", "auxiliary_head.head" ) if "backbone" in name: lowercase :List[str] = name.replace("backbone", "backbone.bit.encoder" ) if ".." in name: lowercase :Optional[int] = name.replace("..", "." ) if "stem.conv" in name: lowercase :Union[str, Any] = name.replace("stem.conv", "bit.embedder.convolution" ) if "blocks" in name: lowercase :List[str] = name.replace("blocks", "layers" ) if "convolution" in name and "backbone" in name: lowercase :int = name.replace("convolution", "conv" ) if "layer" in name and "backbone" in name: lowercase :List[str] = name.replace("layer", "layers" ) if "backbone.bit.encoder.bit" in name: lowercase :Dict = name.replace("backbone.bit.encoder.bit", "backbone.bit" ) if "embedder.conv" in name: lowercase :Dict = name.replace("embedder.conv", "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase :str = name.replace("backbone.bit.encoder.stem.norm", "backbone.bit.embedder.norm" ) return name def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowercase :str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowercase :List[str] = in_proj_weight[: config.hidden_size, :] lowercase :int = in_proj_bias[: config.hidden_size] lowercase :Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Dict = in_proj_weight[ -config.hidden_size :, : ] lowercase :List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( ): lowercase :List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase :Any = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase , lowercase :Optional[int] = get_dpt_config(lowerCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase :List[str] = torch.load(lowerCamelCase, map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCamelCase ) # rename keys for key in state_dict.copy().keys(): lowercase :int = state_dict.pop(lowerCamelCase ) lowercase :Dict = val # read in qkv matrices read_in_q_k_v(lowerCamelCase, lowerCamelCase ) # load HuggingFace model lowercase :int = DPTForSemanticSegmentation(lowerCamelCase ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # Check outputs on an image lowercase :Union[str, Any] = 480 if "ade" in checkpoint_url else 384 lowercase :Optional[int] = DPTImageProcessor(size=lowerCamelCase ) lowercase :Dict = prepare_img() lowercase :Optional[Any] = image_processor(lowerCamelCase, return_tensors="pt" ) # forward pass lowercase :Any = model(**lowerCamelCase ).logits if "ade" in checkpoint_url else model(**lowerCamelCase ).predicted_depth if show_prediction: lowercase :List[Any] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="bicubic", align_corners=lowerCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
236
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[int] ={ 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =XLMProphetNetTokenizer snake_case_ =False snake_case_ =True def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = '''[PAD]''' lowerCAmelCase__ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''[PAD]''' ) self.assertEqual(vocab_keys[1] ,'''[CLS]''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(__lowerCamelCase ) ,10_12 ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = XLMProphetNetTokenizer(__lowerCamelCase ,keep_accents=__lowerCamelCase ) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase__ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] ,) @cached_property def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = '''Hello World!''' lowerCAmelCase__ : str = [3_53_89, 66_72, 49, 2] self.assertListEqual(__lowerCamelCase ,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase ,model_name='''microsoft/xprophetnet-large-wiki100-cased''' ,revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' ,)
94
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A_ ( unittest.TestCase ): @property def lowerCAmelCase ( self : str): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = ort.SessionOptions() __lowerCamelCase : str = False return options def lowerCAmelCase ( self : Dict): __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png') __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png') __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy') # using the PNDM scheduler by default __lowerCamelCase : Tuple = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=SCREAMING_SNAKE_CASE__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = 'A red cat sitting on a park bench' __lowerCamelCase : Union[str, Any] = np.random.RandomState(0) __lowerCamelCase : Any = pipe( prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=1_5 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1E-2
73
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __lowerCamelCase : int = quote(lowerCamelCase__ ) return hfh.hf_hub_url(lowerCamelCase__ , lowerCamelCase__ , repo_type='dataset' , revision=lowerCamelCase__ )
73
1
'''simple docstring''' import argparse import struct import unittest class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , __a : List[Any] ): _a = data # Initialize hash values _a = [ 0X6A_09_E6_67, 0XBB_67_AE_85, 0X3C_6E_F3_72, 0XA5_4F_F5_3A, 0X51_0E_52_7F, 0X9B_05_68_8C, 0X1F_83_D9_AB, 0X5B_E0_CD_19, ] # Initialize round constants _a = [ 0X42_8A_2F_98, 0X71_37_44_91, 0XB5_C0_FB_CF, 0XE9_B5_DB_A5, 0X39_56_C2_5B, 0X59_F1_11_F1, 0X92_3F_82_A4, 0XAB_1C_5E_D5, 0XD8_07_AA_98, 0X12_83_5B_01, 0X24_31_85_BE, 0X55_0C_7D_C3, 0X72_BE_5D_74, 0X80_DE_B1_FE, 0X9B_DC_06_A7, 0XC1_9B_F1_74, 0XE4_9B_69_C1, 0XEF_BE_47_86, 0X0F_C1_9D_C6, 0X24_0C_A1_CC, 0X2D_E9_2C_6F, 0X4A_74_84_AA, 0X5C_B0_A9_DC, 0X76_F9_88_DA, 0X98_3E_51_52, 0XA8_31_C6_6D, 0XB0_03_27_C8, 0XBF_59_7F_C7, 0XC6_E0_0B_F3, 0XD5_A7_91_47, 0X06_CA_63_51, 0X14_29_29_67, 0X27_B7_0A_85, 0X2E_1B_21_38, 0X4D_2C_6D_FC, 0X53_38_0D_13, 0X65_0A_73_54, 0X76_6A_0A_BB, 0X81_C2_C9_2E, 0X92_72_2C_85, 0XA2_BF_E8_A1, 0XA8_1A_66_4B, 0XC2_4B_8B_70, 0XC7_6C_51_A3, 0XD1_92_E8_19, 0XD6_99_06_24, 0XF4_0E_35_85, 0X10_6A_A0_70, 0X19_A4_C1_16, 0X1E_37_6C_08, 0X27_48_77_4C, 0X34_B0_BC_B5, 0X39_1C_0C_B3, 0X4E_D8_AA_4A, 0X5B_9C_CA_4F, 0X68_2E_6F_F3, 0X74_8F_82_EE, 0X78_A5_63_6F, 0X84_C8_78_14, 0X8C_C7_02_08, 0X90_BE_FF_FA, 0XA4_50_6C_EB, 0XBE_F9_A3_F7, 0XC6_71_78_F2, ] _a = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCamelCase__ ( __a : Tuple ): _a = B"\x80" + (B"\x00" * (63 - (len(_SCREAMING_SNAKE_CASE ) + 8) % 64)) _a = struct.pack(">Q" , (len(_SCREAMING_SNAKE_CASE ) * 8) ) return data + padding + big_endian_integer def UpperCamelCase__ ( self : Optional[Any] ): # Convert into blocks of 64 bytes _a = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _a = list(struct.unpack(">16L" , _SCREAMING_SNAKE_CASE ) ) # add 48 0-ed integers words += [0] * 48 _a , _a , _a , _a , _a , _a , _a , _a = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _a = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _a = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _a = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression _a = self.ror(_SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 25 ) _a = (e & f) ^ ((~e & 0XFF_FF_FF_FF) & g) _a = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 _a = self.ror(_SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 22 ) _a = (a & b) ^ (a & c) ^ (b & c) _a = (sa + maj) % 0X1_00_00_00_00 _a , _a , _a , _a , _a , _a , _a , _a = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) _a = [a, b, c, d, e, f, g, h] # Modify final values _a = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] _a = "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] ) def UpperCamelCase__ ( self : int , __a : int , __a : Dict ): return 0XFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): import hashlib _a = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() ) def _lowerCamelCase ( ) -> None: import doctest doctest.testmod() _a = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) _a = parser.parse_args() _a = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: _a = f.read() else: _a = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
355
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _lowerCamelCase ( ) -> str: _a = HfArgumentParser(lowercase ) _a = parser.parse_args_into_dataclasses()[0] _a = TensorFlowBenchmark(args=lowercase ) try: _a = parser.parse_args_into_dataclasses()[0] except ValueError as e: _a = "Arg --no_{0} is no longer used, please use --no-{0} instead." _a = " ".join(str(lowercase ).split(" " )[:-1] ) _a = "" _a = eval(str(lowercase ).split(" " )[-1] ) _a = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase ) if len(lowercase ) > 0: _a = full_error_msg + begin_error_msg + str(lowercase ) raise ValueError(lowercase ) benchmark.run() if __name__ == "__main__": main()
346
0
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self , _A , _A , _A ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(_A ) , len(_A ) ) for a, b in zip(_A , _A ): self.assertAlmostEqual(_A , _A , delta=_A ) def __snake_case ( self ) -> Dict: '''simple docstring''' _UpperCAmelCase : str = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_A ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : int = None ops.enable_eager_execution_internal() _UpperCAmelCase : Any = tf.config.list_physical_devices("""CPU""" ) if len(_A ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _UpperCAmelCase : Union[str, Any] = tf.config.list_logical_devices(device_type="""CPU""" ) _UpperCAmelCase : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _UpperCAmelCase : Union[str, Any] = GradientAccumulator() _UpperCAmelCase : str = tf.Variable([4.0, 3.0] ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = create_optimizer(5e-5 , 10 , 5 ) _UpperCAmelCase : Optional[int] = tf.Variable([0.0, 0.0] , trainable=_A ) def accumulate_on_replica(_A ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_A , _A ): with strategy.scope(): _UpperCAmelCase : Dict = strategy.experimental_local_results(_A ) local_variables[0].assign(_A ) local_variables[1].assign(_A ) strategy.run(_A , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_A ) def _check_local_values(_A , _A ): _UpperCAmelCase : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _A , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _A , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
246
"""simple docstring""" import random class _UpperCAmelCase : @staticmethod def __snake_case ( _A ) -> tuple[list[int], list[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = [ord(_A ) for i in text] _UpperCAmelCase : str = [] _UpperCAmelCase : int = [] for i in plain: _UpperCAmelCase : List[str] = random.randint(1 , 3_00 ) _UpperCAmelCase : Any = (i + k) * k cipher.append(_A ) key.append(_A ) return cipher, key @staticmethod def __snake_case ( _A , _A ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] for i in range(len(_A ) ): _UpperCAmelCase : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_A ) ) return "".join(_A ) if __name__ == "__main__": lowerCamelCase__ , lowerCamelCase__ : List[Any] = Onepad().encrypt('''Hello''') print(c, k) print(Onepad().decrypt(c, k))
246
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , _a : Tuple , _a : Union[str, Any]=1_3 , _a : Optional[int]=7 , _a : List[Any]=True , _a : List[str]=True , _a : Dict=True , _a : List[Any]=True , _a : Union[str, Any]=9_9 , _a : Optional[Any]=3_2 , _a : Optional[Any]=5 , _a : str=4 , _a : Dict=3_7 , _a : Optional[int]="gelu" , _a : Tuple=0.1 , _a : str=0.1 , _a : List[Any]=5_1_2 , _a : List[Any]=1_6 , _a : List[str]=2 , _a : Dict=0.0_2 , _a : List[str]=4 , ): a__: Dict =parent a__: List[str] =batch_size a__: Any =seq_length a__: Tuple =is_training a__: Tuple =use_attention_mask a__: Union[str, Any] =use_token_type_ids a__: str =use_labels a__: Union[str, Any] =vocab_size a__: Optional[int] =hidden_size a__: Tuple =num_hidden_layers a__: Dict =num_attention_heads a__: str =intermediate_size a__: Dict =hidden_act a__: List[Any] =hidden_dropout_prob a__: List[Any] =attention_probs_dropout_prob a__: Optional[Any] =max_position_embeddings a__: Dict =type_vocab_size a__: Dict =type_sequence_label_size a__: Union[str, Any] =initializer_range a__: Optional[Any] =num_choices def _lowerCamelCase ( self : Dict ): a__: str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__: str =None if self.use_attention_mask: a__: Tuple =random_attention_mask([self.batch_size, self.seq_length] ) a__: str =None if self.use_token_type_ids: a__: int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__: int =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self : int ): a__: Any =self.prepare_config_and_inputs() a__ , a__ , a__ , a__: Optional[Any] =config_and_inputs a__: Union[str, Any] ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCamelCase ( self : Optional[Any] ): a__: Tuple =self.prepare_config_and_inputs() a__ , a__ , a__ , a__: List[str] =config_and_inputs a__: List[Any] =True a__: Any =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a__: Tuple =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase__ ( _a , unittest.TestCase ): _lowerCAmelCase = True _lowerCAmelCase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self : Dict ): a__: Union[str, Any] =FlaxBertModelTester(self ) @slow def _lowerCamelCase ( self : List[str] ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. a__: List[Any] =FlaxBertModel.from_pretrained("bert-base-cased" ) a__: str =model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
42
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
42
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : List[Any]=17 , _UpperCAmelCase : Any=23 , _UpperCAmelCase : str=11 , _UpperCAmelCase : List[str]=True , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = act_dim UpperCAmelCase__ = state_dim UpperCAmelCase__ = hidden_size UpperCAmelCase__ = max_length UpperCAmelCase__ = is_training def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) UpperCAmelCase__ = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = DecisionTransformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCAmelCase__ = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) = config_and_inputs UpperCAmelCase__ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase_ : List[Any] = () lowerCAmelCase_ : List[str] = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase_ : str = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = DecisionTransformerModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = DecisionTransformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_lowerCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ = 10 # defined by the RL environment, may be normalized UpperCAmelCase__ = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) UpperCAmelCase__ = model.to(_lowerCAmelCase ) UpperCAmelCase__ = model.config torch.manual_seed(0 ) UpperCAmelCase__ = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=_lowerCAmelCase ) UpperCAmelCase__ = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ = state UpperCAmelCase__ = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa ) UpperCAmelCase__ = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa ) UpperCAmelCase__ = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCAmelCase ): UpperCAmelCase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase )] , dim=1 ) UpperCAmelCase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase )] , dim=1 ) UpperCAmelCase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) UpperCAmelCase__ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ = action_pred[0, -1] UpperCAmelCase__ = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ = returns_to_go[0, -1] - reward UpperCAmelCase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
346
import numpy # List of input, output pairs _UpperCAmelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Optional[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Union[str, Any] = len(train_data) _UpperCAmelCase : Dict = 0.0_0_9 def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase="train" ): return calculate_hypothesis_value(lowerCamelCase, lowerCamelCase ) - output( lowerCamelCase, lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase ): lowercase :str = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=m ): lowercase :Union[str, Any] = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( lowerCamelCase ): lowercase :int = summation_of_cost_derivative(lowerCamelCase, lowerCamelCase ) / m return cost_derivative_value def UpperCAmelCase__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase :str = 0.000_002 lowercase :Tuple = 0 lowercase :Optional[int] = 0 while True: j += 1 lowercase :Union[str, Any] = [0, 0, 0, 0] for i in range(0, len(lowerCamelCase ) ): lowercase :Dict = get_cost_derivative(i - 1 ) lowercase :Optional[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase, lowerCamelCase, atol=lowerCamelCase, rtol=lowerCamelCase, ): break lowercase :Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def UpperCAmelCase__ ( ): for i in range(len(lowerCamelCase ) ): print(("Actual output value:", output(lowerCamelCase, "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase, "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
236
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : UpperCAmelCase__ : str = LEDConfig UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Any = """gelu""" def __init__(self : Tuple , _A : Union[str, Any] , _A : List[str]=1_3 , _A : Union[str, Any]=7 , _A : Optional[int]=True , _A : Dict=False , _A : Dict=9_9 , _A : List[str]=3_2 , _A : List[Any]=2 , _A : Any=4 , _A : Any=3_7 , _A : int=0.1 , _A : Tuple=0.1 , _A : Optional[int]=2_0 , _A : str=2 , _A : Union[str, Any]=1 , _A : Dict=0 , _A : Optional[int]=4 , ) -> Any: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = eos_token_id snake_case = pad_token_id snake_case = bos_token_id snake_case = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase(self : Any ) -> List[Any]: snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case = prepare_led_inputs_dict(__a , __a , __a ) snake_case = tf.concat( [tf.zeros_like(__a )[:, :-1], tf.ones_like(__a )[:, -1:]] , axis=-1 , ) snake_case = global_attention_mask return config, inputs_dict def UpperCAmelCase(self : List[str] , _A : str , _A : Optional[int] ) -> List[Any]: snake_case = TFLEDModel(config=__a ).get_decoder() snake_case = inputs_dict["input_ids"] snake_case = input_ids[:1, :] snake_case = inputs_dict["attention_mask"][:1, :] snake_case = 1 # first forward pass snake_case = model(__a , attention_mask=__a , use_cache=__a ) snake_case , snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case = model(__a , attention_mask=__a )[0] snake_case = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case = output_from_no_past[:, -3:, random_slice_idx] snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1E-3 ) def lowercase_ ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , ) -> str: """simple docstring""" if attention_mask is None: snake_case = tf.cast(tf.math.not_equal(snake_case_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCAmelCase__ : Any = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ : Dict = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ : Any = True UpperCAmelCase__ : str = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : int = False def UpperCAmelCase(self : Union[str, Any] ) -> Tuple: snake_case = TFLEDModelTester(self ) snake_case = ConfigTester(self , config_class=__a ) def UpperCAmelCase(self : str ) -> Any: self.config_tester.run_common_tests() def UpperCAmelCase(self : Union[str, Any] ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def UpperCAmelCase(self : Optional[int] ) -> Any: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = tf.zeros_like(inputs_dict["attention_mask"] ) snake_case = 2 snake_case = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) snake_case = True snake_case = self.model_tester.seq_length snake_case = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_A : Optional[int] ): snake_case = outputs.decoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_A : Dict ): snake_case = [t.numpy() for t in outputs.encoder_attentions] snake_case = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case = True snake_case = False snake_case = False snake_case = model_class(__a ) snake_case = model(self._prepare_for_class(__a , __a ) ) snake_case = len(__a ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) if self.is_encoder_decoder: snake_case = model_class(__a ) snake_case = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_decoder_attentions_output(__a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case = True snake_case = model_class(__a ) snake_case = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) # Check attention is always last and order is fine snake_case = True snake_case = True snake_case = model_class(__a ) snake_case = model(self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__a ) ) self.assertEqual(model.config.output_hidden_states , __a ) check_encoder_attentions_output(__a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def UpperCAmelCase(self : str ) -> Tuple: pass def UpperCAmelCase(self : Union[str, Any] ) -> List[str]: # TODO: Head-masking not yet implement pass def lowercase_ ( A__ ) -> str: """simple docstring""" return tf.constant(snake_case_ , dtype=tf.intaa ) _A = 1e-4 @slow @require_tf class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : str ) -> Optional[Any]: snake_case = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here snake_case = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) snake_case = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) snake_case = prepare_led_inputs_dict(model.config , __a , __a ) snake_case = model(**__a )[0] snake_case = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , __a ) # change to expected output here snake_case = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 ) def UpperCAmelCase(self : Any ) -> int: snake_case = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here snake_case = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) snake_case = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) snake_case = prepare_led_inputs_dict(model.config , __a , __a ) snake_case = model(**__a )[0] snake_case = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , __a ) # change to expected output here snake_case = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-3 , rtol=1E-3 )
368
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
137
0
import tensorflow as tf from ...tf_utils import shape_list class _UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self :int , lowerCamelCase :Dict , lowerCamelCase :Dict , lowerCamelCase :str , lowerCamelCase :List[str] , lowerCamelCase :Any=1 , lowerCamelCase :Optional[int]=False , **lowerCamelCase :Optional[Any] ) -> Tuple: super().__init__(**lowerCamelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = d_embed UpperCAmelCase__ = d_proj UpperCAmelCase__ = cutoffs + [vocab_size] UpperCAmelCase__ = [0] + self.cutoffs UpperCAmelCase__ = div_val UpperCAmelCase__ = self.cutoffs[0] UpperCAmelCase__ = len(self.cutoffs ) - 1 UpperCAmelCase__ = self.shortlist_size + self.n_clusters UpperCAmelCase__ = keep_order UpperCAmelCase__ = [] UpperCAmelCase__ = [] def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Optional[Any] ) -> int: if self.n_clusters > 0: UpperCAmelCase__ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=lowerCamelCase , name="cluster_weight" ) UpperCAmelCase__ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=lowerCamelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase__ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(lowerCamelCase ) else: self.out_projs.append(lowerCamelCase ) UpperCAmelCase__ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCAmelCase__ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase__ = self.d_embed // (self.div_val**i) UpperCAmelCase__ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(lowerCamelCase ) UpperCAmelCase__ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_layers_._{i}_._weight''' , ) UpperCAmelCase__ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=lowerCamelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase ) @staticmethod def UpperCAmelCase_ ( lowerCamelCase :Tuple , lowerCamelCase :int , lowerCamelCase :Dict , lowerCamelCase :Dict=None ) -> Dict: UpperCAmelCase__ = x if proj is not None: UpperCAmelCase__ = tf.einsum("ibd,ed->ibe" , lowerCamelCase , lowerCamelCase ) return tf.einsum("ibd,nd->ibn" , lowerCamelCase , lowerCamelCase ) + b @staticmethod def UpperCAmelCase_ ( lowerCamelCase :Optional[int] , lowerCamelCase :Dict ) -> str: UpperCAmelCase__ = shape_list(lowerCamelCase ) UpperCAmelCase__ = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase__ = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Optional[Any] , lowerCamelCase :str=True , lowerCamelCase :Optional[Any]=False ) -> Any: UpperCAmelCase__ = 0 if self.n_clusters == 0: UpperCAmelCase__ = self._logit(lowerCamelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase__ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase , logits=lowerCamelCase ) UpperCAmelCase__ = tf.nn.log_softmax(lowerCamelCase , axis=-1 ) else: UpperCAmelCase__ = shape_list(lowerCamelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase__ , UpperCAmelCase__ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase__ = (target >= l_idx) & (target < r_idx) UpperCAmelCase__ = tf.where(lowerCamelCase ) UpperCAmelCase__ = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) - l_idx if self.div_val == 1: UpperCAmelCase__ = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase__ = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase__ = self.out_layers[i][0] UpperCAmelCase__ = self.out_layers[i][1] if i == 0: UpperCAmelCase__ = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase__ = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase__ = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[0] ) UpperCAmelCase__ = tf.nn.log_softmax(lowerCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase__ = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self._gather_logprob(lowerCamelCase , lowerCamelCase ) else: UpperCAmelCase__ = self._logit(lowerCamelCase , lowerCamelCase , lowerCamelCase , self.out_projs[i] ) UpperCAmelCase__ = tf.nn.log_softmax(lowerCamelCase ) UpperCAmelCase__ = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase__ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase ) if target is not None: UpperCAmelCase__ = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = tf.boolean_mask(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self._gather_logprob(lowerCamelCase , lowerCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase , -cur_logprob , shape_list(lowerCamelCase ) ) UpperCAmelCase__ = tf.concat(lowerCamelCase , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase__ = tf.reduce_mean(lowerCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
169
def lowerCAmelCase ( _lowerCAmelCase : list[int] ): """simple docstring""" if not numbers: return 0 if not isinstance(_lowerCAmelCase , (list, tuple) ) or not all( isinstance(_lowerCAmelCase , _lowerCAmelCase ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) UpperCAmelCase__ = UpperCAmelCase__ = UpperCAmelCase__ = numbers[0] for i in range(1 , len(_lowerCAmelCase ) ): # update the maximum and minimum subarray products UpperCAmelCase__ = numbers[i] if number < 0: UpperCAmelCase__ , UpperCAmelCase__ = min_till_now, max_till_now UpperCAmelCase__ = max(_lowerCAmelCase , max_till_now * number ) UpperCAmelCase__ = min(_lowerCAmelCase , min_till_now * number ) # update the maximum product found till now UpperCAmelCase__ = max(_lowerCAmelCase , _lowerCAmelCase ) return max_prod
169
1
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case , ) super().__init__(args=snake_case , **snake_case )
296
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
1
"""simple docstring""" import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _a = logging.getLogger(__name__) _a = tf.data.AUTOTUNE def __a ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config", type=__lowerCamelCase, default="roberta-base", help="The model config to use. Note that we don't copy the model's weights, only the config!", ) parser.add_argument( "--tokenizer", type=__lowerCamelCase, default="unigram-tokenizer-wikitext", help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.", ) parser.add_argument( "--per_replica_batch_size", type=__lowerCamelCase, default=8, help="Batch size per TPU core.", ) parser.add_argument( "--no_tpu", action="store_true", help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.", ) parser.add_argument( "--tpu_name", type=__lowerCamelCase, help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.", default="local", ) parser.add_argument( "--tpu_zone", type=__lowerCamelCase, help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.", ) parser.add_argument( "--gcp_project", type=__lowerCamelCase, help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16", action="store_true", help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.", ) parser.add_argument( "--train_dataset", type=__lowerCamelCase, help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--shuffle_buffer_size", type=__lowerCamelCase, default=2**18, help="Size of the shuffle buffer (in samples)", ) parser.add_argument( "--eval_dataset", type=__lowerCamelCase, help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--num_epochs", type=__lowerCamelCase, default=1, help="Number of epochs to train for.", ) parser.add_argument( "--learning_rate", type=__lowerCamelCase, default=1E-4, help="Learning rate to use for training.", ) parser.add_argument( "--weight_decay_rate", type=__lowerCamelCase, default=1E-3, help="Weight decay rate to use for training.", ) parser.add_argument( "--max_length", type=__lowerCamelCase, default=512, help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py", ) parser.add_argument( "--mlm_probability", type=__lowerCamelCase, default=0.15, help="Fraction of tokens to mask during training.", ) parser.add_argument("--output_dir", type=__lowerCamelCase, required=__lowerCamelCase, help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id", type=__lowerCamelCase, help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ : Dict = parser.parse_args() return args def __a ( __lowerCamelCase ): try: if args.tpu_name: UpperCAmelCase_ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: UpperCAmelCase_ : Dict = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(__lowerCamelCase ) tf.tpu.experimental.initialize_tpu_system(__lowerCamelCase ) return tpu def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = 0 for file in file_list: UpperCAmelCase_ : Union[str, Any] = file.split("/" )[-1] UpperCAmelCase_ : Union[str, Any] = re.search(r"-\d+-(\d+)\.tfrecord", __lowerCamelCase ).group(1 ) UpperCAmelCase_ : List[Any] = int(__lowerCamelCase ) num_samples += sample_count return num_samples def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): UpperCAmelCase_ : Optional[int] = count_samples(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = tf.data.Dataset.from_tensor_slices(__lowerCamelCase ) if shuffle: UpperCAmelCase_ : Dict = dataset.shuffle(len(__lowerCamelCase ) ) UpperCAmelCase_ : Any = tf.data.TFRecordDataset(__lowerCamelCase, num_parallel_reads=__lowerCamelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ : str = dataset.apply(tf.data.experimental.assert_cardinality(__lowerCamelCase ) ) UpperCAmelCase_ : Any = dataset.map(__lowerCamelCase, num_parallel_calls=__lowerCamelCase ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ : Optional[int] = dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ : Tuple = dataset.batch(__lowerCamelCase, drop_remainder=__lowerCamelCase ) UpperCAmelCase_ : Tuple = dataset.map(__lowerCamelCase, num_parallel_calls=__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = dataset.prefetch(__lowerCamelCase ) return dataset def __a ( __lowerCamelCase ): if not args.no_tpu: UpperCAmelCase_ : List[str] = initialize_tpu(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = tf.distribute.TPUStrategy(__lowerCamelCase ) else: UpperCAmelCase_ : Dict = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ : Any = tokenizer.vocab_size UpperCAmelCase_ : Dict = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord" ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) UpperCAmelCase_ : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord" ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) UpperCAmelCase_ : Union[str, Any] = count_samples(__lowerCamelCase ) UpperCAmelCase_ : Any = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ : Any = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ : Dict = TFAutoModelForMaskedLM.from_config(__lowerCamelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ : int = create_optimizer( num_train_steps=__lowerCamelCase, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__lowerCamelCase, metrics=["accuracy"] ) def decode_fn(__lowerCamelCase ): UpperCAmelCase_ : Dict = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__lowerCamelCase, __lowerCamelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=__lowerCamelCase, mlm_probability=args.mlm_probability, mlm=__lowerCamelCase, return_tensors="tf" ) def mask_with_collator(__lowerCamelCase ): # TF really needs an isin() function UpperCAmelCase_ : List[Any] = ( ~tf.cast(batch["attention_mask"], tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = data_collator.tf_mask_tokens( batch["input_ids"], vocab_size=len(__lowerCamelCase ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__lowerCamelCase, ) return batch UpperCAmelCase_ : List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ : List[str] = prepare_dataset( __lowerCamelCase, decode_fn=__lowerCamelCase, mask_fn=__lowerCamelCase, batch_size=__lowerCamelCase, shuffle=__lowerCamelCase, shuffle_buffer_size=args.shuffle_buffer_size, ) UpperCAmelCase_ : int = prepare_dataset( __lowerCamelCase, decode_fn=__lowerCamelCase, mask_fn=__lowerCamelCase, batch_size=__lowerCamelCase, shuffle=__lowerCamelCase, ) UpperCAmelCase_ : str = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__lowerCamelCase ) ) model.fit( __lowerCamelCase, validation_data=__lowerCamelCase, epochs=args.num_epochs, callbacks=__lowerCamelCase, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _a = parse_args() main(args)
61
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a : str = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a : int = """main""" # Default branch name a : Any = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) a : str = """aaaaaaa""" # This commit does not exist, so we should 404. a : int = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes a : Any = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowerCamelCase ( ) -> List[str]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Optional[int]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class UpperCamelCase_ ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Tuple: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Dict: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase( self , A ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _lowercase( self ) -> Optional[int]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def _lowercase( self ) -> int: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def _lowercase( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class UpperCamelCase_ ( __magic_name__ ): pass self.assertEqual(find_labels(A ) , [] )
265
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Union[str, Any] = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Any = { "gpt-neox-20b": 2048, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ["input_ids", "attention_mask"] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = add_prefix_space UpperCamelCase : Optional[int] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = add_prefix_space def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
315
from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ): """simple docstring""" UpperCamelCase : Any = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase : Tuple = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go UpperCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase : str = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
315
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :str ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): A_ : Dict = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : str = "sshleifer/tiny-gpt2" A_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case , multi_process=snake_case , ) A_ : str = TensorFlowBenchmark(snake_case ) A_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Dict = "sgugger/tiny-distilbert-classification" A_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , only_pretrain_model=snake_case , ) A_ : List[str] = TensorFlowBenchmark(snake_case ) A_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Union[str, Any] = "sshleifer/tiny-gpt2" A_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) A_ : Any = TensorFlowBenchmark(snake_case ) A_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Dict = "sshleifer/tiny-gpt2" A_ : Optional[Any] = AutoConfig.from_pretrained(snake_case ) A_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case , multi_process=snake_case , ) A_ : List[str] = TensorFlowBenchmark(snake_case , [config] ) A_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[Any] = "sshleifer/tiny-gpt2" A_ : Any = AutoConfig.from_pretrained(snake_case ) A_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) A_ : List[Any] = TensorFlowBenchmark(snake_case , [config] ) A_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = "sshleifer/tiny-gpt2" A_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) A_ : Optional[int] = TensorFlowBenchmark(snake_case ) A_ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : int = "sshleifer/tiny-gpt2" A_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case ) A_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) A_ : Any = TensorFlowBenchmark(snake_case , [config] ) A_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : List[Any] = "patrickvonplaten/t5-tiny-random" A_ : Tuple = AutoConfig.from_pretrained(snake_case ) A_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case , ) A_ : Union[str, Any] = TensorFlowBenchmark(snake_case , configs=[config] ) A_ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : int = "sshleifer/tiny-gpt2" A_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , use_xla=snake_case , multi_process=snake_case , ) A_ : List[str] = TensorFlowBenchmark(snake_case ) A_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Union[str, Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: A_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case , save_to_csv=snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(snake_case , "inf_mem.csv" ) , env_info_csv_file=os.path.join(snake_case , "env.csv" ) , multi_process=snake_case , ) A_ : Any = TensorFlowBenchmark(snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case , "env.csv" ) ).exists() ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(snake_case :Dict ): self.assertTrue(hasattr(snake_case , "sequential" ) ) self.assertTrue(hasattr(snake_case , "cumulative" ) ) self.assertTrue(hasattr(snake_case , "current" ) ) self.assertTrue(hasattr(snake_case , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case , "log.txt" ) , log_print=snake_case , trace_memory_line_by_line=snake_case , eager_mode=snake_case , multi_process=snake_case , ) A_ : int = TensorFlowBenchmark(snake_case ) A_ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(snake_case , "log.txt" ) ).exists() )
300
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , **snake_case :str ): '''simple docstring''' A_ : Dict = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case ) return config def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : List[str] = scheduler_class(**snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : int = self.scheduler_classes[0] A_ : List[str] = self.get_scheduler_config() A_ : int = scheduler_class(**snake_case ) A_ : Tuple = len(snake_case ) A_ : List[str] = self.dummy_model() A_ : Optional[Any] = self.dummy_sample_deter A_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Tuple = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : Optional[int] = pred_prev_sample A_ : Tuple = torch.sum(torch.abs(snake_case ) ) A_ : str = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Optional[int] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config(prediction_type="v_prediction" ) A_ : List[str] = scheduler_class(**snake_case ) A_ : int = len(snake_case ) A_ : Dict = self.dummy_model() A_ : str = self.dummy_sample_deter A_ : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case ) ): # 1. predict noise residual A_ : Optional[int] = model(snake_case , snake_case ) # 2. predict previous mean of sample x_t-1 A_ : Tuple = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A_ : List[str] = pred_prev_sample A_ : Optional[Any] = torch.sum(torch.abs(snake_case ) ) A_ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Dict = scheduler_class(**snake_case ) A_ : Optional[int] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case ) A_ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(snake_case ): if i == len(snake_case ) - 1: A_ : str = -1 else: A_ : List[str] = timesteps[i + 1] A_ : Optional[int] = scheduler.previous_timestep(snake_case ) A_ : List[str] = prev_t.item() self.assertEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Optional[Any] = self.scheduler_classes[0] A_ : int = self.get_scheduler_config() A_ : Tuple = scheduler_class(**snake_case ) A_ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Any = self.scheduler_classes[0] A_ : Union[str, Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Union[str, Any] = [100, 87, 50, 1, 0] A_ : Optional[int] = len(snake_case ) with self.assertRaises(snake_case , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=snake_case , timesteps=snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Union[str, Any] = self.scheduler_classes[0] A_ : Optional[Any] = self.get_scheduler_config() A_ : Optional[int] = scheduler_class(**snake_case ) A_ : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=snake_case )
300
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def _UpperCAmelCase ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Any): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase : int = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_) lowercase_ = INVOICE_URL lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) lowercase_ = """What is the placebo?""" lowercase_ = [ { """image""": load_image(lowerCAmelCase_), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = dqa_pipeline(lowerCAmelCase_ , top_k=2) self.assertEqual( lowerCAmelCase_ , [ [ {"""score""": ANY(lowerCAmelCase_), """answer""": ANY(lowerCAmelCase_), """start""": ANY(lowerCAmelCase_), """end""": ANY(lowerCAmelCase_)}, {"""score""": ANY(lowerCAmelCase_), """answer""": ANY(lowerCAmelCase_), """start""": ANY(lowerCAmelCase_), """end""": ANY(lowerCAmelCase_)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""") lowercase_ = INVOICE_URL lowercase_ = """How many cats are there?""" lowercase_ = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 3_8, """end""": 3_9}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 3_8, """end""": 4_0}, ] lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , lowerCAmelCase_) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , lowerCAmelCase_) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(lowerCAmelCase_ , []) # We can optionnally pass directly the words and bounding boxes lowercase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase_ = [] lowercase_ = [] lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2) self.assertEqual(lowerCAmelCase_ , []) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=5_0 , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase_) lowercase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase_ , revision="""3dc6de3""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] ] * 2 , ) lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) # This model should also work if `image` is set to None lowercase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase_) lowercase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase_ , revision="""3dc6de3""" , max_seq_len=5_0 , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) # This model should also work if `image` is set to None lowercase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) @slow @require_torch def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""") , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , [{"""answer""": """us-001"""}]) @require_tf @unittest.skip("""Document question answering not implemented in TF""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" pass
313
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): _lowerCAmelCase = True from torch.cuda.amp import autocast _lowerCAmelCase = logging.getLogger(__name__) def __lowerCAmelCase ( snake_case__=None , snake_case__=None ): return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class A : '''simple docstring''' A = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) A = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) A = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) A = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) A = field( default=0.0_5 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) A = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class A : '''simple docstring''' A = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={"help": "The number of processes to use for the preprocessing."} , ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A = field( default=SCREAMING_SNAKE_CASE__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) A = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "\'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class A : '''simple docstring''' A = 4_2 A = True A = None A = None A = None A = None def __call__(self , _UpperCAmelCase ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __UpperCamelCase : List[str] = [{'input_values': feature['input_values']} for feature in features] __UpperCamelCase : Any = [{'input_ids': feature['labels']} for feature in features] __UpperCamelCase : Tuple = self.processor.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __UpperCamelCase : Optional[int] = self.processor.pad( labels=_UpperCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly __UpperCamelCase : int = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __UpperCamelCase : Tuple = labels return batch class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> torch.Tensor: model.train() __UpperCamelCase : Dict = self._prepare_inputs(_UpperCAmelCase ) if self.use_amp: with autocast(): __UpperCamelCase : str = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) else: __UpperCamelCase : Union[str, Any] = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __UpperCamelCase : List[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __UpperCamelCase : List[Any] = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']" ) if self.args.gradient_accumulation_steps > 1: __UpperCamelCase : Tuple = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase ) else: loss.backward() return loss.detach() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase : List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCamelCase : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __UpperCamelCase : Any = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) __UpperCamelCase : Dict = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer __UpperCamelCase : Optional[Any] = F"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(snake_case__ ): __UpperCamelCase : Union[str, Any] = re.sub(_UpperCAmelCase , "" , batch["sentence"] ).lower() + ' ' return batch __UpperCamelCase : Dict = train_dataset.map(_UpperCAmelCase , remove_columns=["sentence"] ) __UpperCamelCase : Union[str, Any] = eval_dataset.map(_UpperCAmelCase , remove_columns=["sentence"] ) def extract_all_chars(snake_case__ ): __UpperCamelCase : Tuple = ' '.join(batch["text"] ) __UpperCamelCase : int = list(set(_UpperCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} __UpperCamelCase : List[str] = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , batch_size=-1 , keep_in_memory=_UpperCAmelCase , remove_columns=train_dataset.column_names , ) __UpperCamelCase : Union[str, Any] = train_dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , batch_size=-1 , keep_in_memory=_UpperCAmelCase , remove_columns=eval_dataset.column_names , ) __UpperCamelCase : List[Any] = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) __UpperCamelCase : str = {v: k for k, v in enumerate(_UpperCAmelCase )} __UpperCamelCase : int = vocab_dict[' '] del vocab_dict[" "] __UpperCamelCase : Union[str, Any] = len(_UpperCAmelCase ) __UpperCamelCase : List[Any] = len(_UpperCAmelCase ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase : Optional[int] = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) __UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) __UpperCamelCase : Dict = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __UpperCamelCase : Any = min(len(_UpperCAmelCase ) , data_args.max_train_samples ) __UpperCamelCase : Dict = train_dataset.select(range(_UpperCAmelCase ) ) if data_args.max_val_samples is not None: __UpperCamelCase : int = eval_dataset.select(range(data_args.max_val_samples ) ) __UpperCamelCase : List[str] = torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(snake_case__ ): __UpperCamelCase : Union[str, Any] = torchaudio.load(batch["path"] ) __UpperCamelCase : Optional[int] = resampler(_UpperCAmelCase ).squeeze().numpy() __UpperCamelCase : int = 16_000 __UpperCamelCase : Dict = batch['text'] return batch __UpperCamelCase : Tuple = train_dataset.map( _UpperCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase : int = eval_dataset.map( _UpperCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(snake_case__ ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), F"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." __UpperCamelCase : Union[str, Any] = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_UpperCAmelCase ) return batch __UpperCamelCase : Dict = train_dataset.map( _UpperCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) __UpperCamelCase : Tuple = eval_dataset.map( _UpperCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric __UpperCamelCase : Optional[Any] = datasets.load_metric("wer" ) def compute_metrics(snake_case__ ): __UpperCamelCase : List[Any] = pred.predictions __UpperCamelCase : Dict = np.argmax(_UpperCAmelCase , axis=-1 ) __UpperCamelCase : Dict = processor.tokenizer.pad_token_id __UpperCamelCase : Dict = processor.batch_decode(_UpperCAmelCase ) # we do not want to group tokens when computing the metrics __UpperCamelCase : int = processor.batch_decode(pred.label_ids , group_tokens=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = wer_metric.compute(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __UpperCamelCase : List[str] = DataCollatorCTCWithPadding(processor=_UpperCAmelCase , padding=_UpperCAmelCase ) # Initialize our Trainer __UpperCamelCase : List[Any] = CTCTrainer( model=_UpperCAmelCase , data_collator=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCamelCase : Optional[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __UpperCamelCase : str = model_args.model_name_or_path else: __UpperCamelCase : Optional[int] = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __UpperCamelCase : List[Any] = trainer.train(resume_from_checkpoint=_UpperCAmelCase ) trainer.save_model() __UpperCamelCase : Optional[int] = train_result.metrics __UpperCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCAmelCase ) ) __UpperCamelCase : str = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("train" , _UpperCAmelCase ) trainer.save_metrics("train" , _UpperCAmelCase ) trainer.save_state() # Evaluation __UpperCamelCase : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCamelCase : List[Any] = trainer.evaluate() __UpperCamelCase : str = data_args.max_val_samples if data_args.max_val_samples is not None else len(_UpperCAmelCase ) __UpperCamelCase : Dict = min(_UpperCAmelCase , len(_UpperCAmelCase ) ) trainer.log_metrics("eval" , _UpperCAmelCase ) trainer.save_metrics("eval" , _UpperCAmelCase ) return results if __name__ == "__main__": main()
298
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase__ ( A__ ): """simple docstring""" a = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) a = "CIDAS/clipseg-rd64-refined" a = "image_segmenter" a = CLIPSegForImageSegmentation a = ["image", "text"] a = ["image"] def __init__( self : Union[str, Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ) -> Optional[int]: requires_backends(self , ['''vision'''] ) super().__init__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : "Image" , __lowerCamelCase : str ) -> List[Any]: return self.pre_processor(text=[label] , images=[image] , padding=__lowerCamelCase , return_tensors='''pt''' ) def lowercase_ ( self : Dict , __lowerCamelCase : Any ) -> Optional[Any]: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = self.model(**__lowerCamelCase ).logits return logits def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
350
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "decision_transformer" a = ["past_key_values"] a = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=17 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=5_0256 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : Tuple , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = state_dim SCREAMING_SNAKE_CASE__ = act_dim SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = max_ep_len SCREAMING_SNAKE_CASE__ = action_tanh SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
218
0
'''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ={ '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) SCREAMING_SNAKE_CASE_: Any ={ '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : str , snake_case_ : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = from_type.lower().strip("s" ) UpperCAmelCase_ = to_type.lower().strip("s" ) UpperCAmelCase_ = UNIT_SYMBOL.get(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase_ = UNIT_SYMBOL.get(__lowerCamelCase , __lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ = ( f"""Invalid \'from_type\' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: UpperCAmelCase_ = ( f"""Invalid \'to_type\' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) UpperCAmelCase_ = METRIC_CONVERSION[from_sanitized] UpperCAmelCase_ = METRIC_CONVERSION[to_sanitized] UpperCAmelCase_ = 1 if from_exponent > to_exponent: UpperCAmelCase_ = from_exponent - to_exponent else: UpperCAmelCase_ = -(to_exponent - from_exponent) return value * pow(10 , __lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
1
'''simple docstring''' import math def UpperCAmelCase_ ( __lowerCamelCase : int ): lowercase_ :Dict = [] lowercase_ :List[Any] = 2 lowercase_ :Optional[Any] = int(math.sqrt(__lowerCamelCase ) ) # Size of every segment lowercase_ :Optional[Any] = [True] * (end + 1) lowercase_ :Dict = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCamelCase ) for i in range(start * start ,end + 1 ,__lowerCamelCase ): lowercase_ :List[str] = False start += 1 prime += in_prime lowercase_ :Dict = end + 1 lowercase_ :Dict = min(2 * end ,__lowerCamelCase ) while low <= n: lowercase_ :Any = [True] * (high - low + 1) for each in in_prime: lowercase_ :List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCamelCase ,high + 1 ,__lowerCamelCase ): lowercase_ :str = False for j in range(len(__lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowercase_ :Dict = high + 1 lowercase_ :Dict = min(high + end ,__lowerCamelCase ) return prime print(sieve(10**6))
223
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) lowercase_ = parser.parse_args() lowercase_ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
282
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__( self : Any,lowercase_ : Optional[int],lowercase_ : Optional[int]=1_3,lowercase_ : int=7,lowercase_ : List[str]=True,lowercase_ : str=True,lowercase_ : List[str]=True,lowercase_ : Optional[Any]=True,lowercase_ : Dict=9_9,lowercase_ : Dict=2_4,lowercase_ : Union[str, Any]=2,lowercase_ : str=6,lowercase_ : Dict=3_7,lowercase_ : Optional[Any]="gelu",lowercase_ : Any=0.1,lowercase_ : Any=0.1,lowercase_ : Any=5_1_2,lowercase_ : Dict=1_6,lowercase_ : List[str]=2,lowercase_ : Dict=0.02,lowercase_ : Any=3,lowercase_ : Dict=None,lowercase_ : List[str]=1_0_0_0,)-> Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4],self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length],vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self : Dict )-> int: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,) def snake_case__ ( self : Optional[Any],lowercase_ : Tuple,lowercase_ : str,lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : List[str],lowercase_ : Tuple,)-> Optional[Any]: '''simple docstring''' A__ = LiltModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model(lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,bbox=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.hidden_size) ) def snake_case__ ( self : Any,lowercase_ : Dict,lowercase_ : List[Any],lowercase_ : List[str],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : Optional[int],lowercase_ : List[Any],)-> List[str]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,labels=lowercase_ ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int,lowercase_ : Union[str, Any],lowercase_ : int,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Optional[int],lowercase_ : Tuple,lowercase_ : List[str],)-> Any: '''simple docstring''' A__ = LiltForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() A__ = model( lowercase_,bbox=lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_,start_positions=lowercase_,end_positions=lowercase_,) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : List[str],lowercase_ : int,lowercase_ : List[str],lowercase_ : str,lowercase_ : Optional[Any],lowercase_ : Optional[Any] )-> Any: '''simple docstring''' return True def snake_case__ ( self : int )-> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Dict )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*lowercase_ ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def snake_case__ ( self : List[Any] )-> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @slow def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @slow class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(lowercase_ ) A__ = torch.tensor([[1, 2]],device=lowercase_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]],device=lowercase_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=lowercase_,bbox=lowercase_ ) A__ = torch.Size([1, 2, 7_6_8] ) A__ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]],device=lowercase_,) self.assertTrue(outputs.last_hidden_state.shape,lowercase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3],lowercase_,atol=1E-3 ) )
282
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """char""" __lowercase = """bpe""" __lowercase = """wp""" __lowerCAmelCase : Union[str, Any] =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """char_tokenizer"""] __lowercase = """ViTImageProcessor""" __lowercase = """MgpstrTokenizer""" def __init__( self :int , lowercase_ :int=None , lowercase_ :List[str]=None , **lowercase_ :List[Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) A__ = tokenizer A__ = AutoTokenizer.from_pretrained("gpt2" ) A__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Any=None , lowercase_ :Tuple=None , lowercase_ :List[str]=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None: A__ = self.char_tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: A__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowercase_ :int )-> int: A__, A__, A__ = sequences A__ = char_preds.size(0 ) A__, A__ = self._decode_helper(lowercase_ , "char" ) A__, A__ = self._decode_helper(lowercase_ , "bpe" ) A__, A__ = self._decode_helper(lowercase_ , "wp" ) A__ = [] A__ = [] for i in range(lowercase_ ): A__ = [char_scores[i], bpe_scores[i], wp_scores[i]] A__ = [char_strs[i], bpe_strs[i], wp_strs[i]] A__ = scores.index(max(lowercase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) A__ = {} A__ = final_strs A__ = final_scores A__ = char_strs A__ = bpe_strs A__ = wp_strs return out def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :List[str] , lowercase_ :str )-> Optional[Any]: if format == DecodeType.CHARACTER: A__ = self.char_decode A__ = 1 A__ = "[s]" elif format == DecodeType.BPE: A__ = self.bpe_decode A__ = 2 A__ = "#" elif format == DecodeType.WORDPIECE: A__ = self.wp_decode A__ = 1_02 A__ = "[SEP]" else: raise ValueError(F"Format {format} is not supported." ) A__, A__ = [], [] A__ = pred_logits.size(0 ) A__ = pred_logits.size(1 ) A__, A__ = pred_logits.topk(1 , dim=-1 , largest=lowercase_ , sorted=lowercase_ ) A__ = preds_index.view(-1 , lowercase_ )[:, 1:] A__ = decoder(lowercase_ ) A__, A__ = torch.nn.functional.softmax(lowercase_ , dim=2 ).max(dim=2 ) A__ = preds_max_prob[:, 1:] for index in range(lowercase_ ): A__ = preds_str[index].find(lowercase_ ) A__ = preds_str[index][:pred_eos] A__ = preds_index[index].cpu().tolist() A__ = pred_index.index(lowercase_ ) if eos_token in pred_index else -1 A__ = preds_max_prob[index][: pred_eos_index + 1] A__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowercase_ ) conf_scores.append(lowercase_ ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Dict , lowercase_ :Optional[Any] )-> int: A__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowercase_ )] return decode_strs def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Any] )-> List[str]: return self.bpe_tokenizer.batch_decode(lowercase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :List[str] )-> Union[str, Any]: A__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowercase_ )] return decode_strs
237
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = (DPMSolverSDEScheduler,) __lowercase = 10 def UpperCAmelCase_ ( self :List[Any] , **lowercase_ :Optional[int] )-> str: A__ = { "num_train_timesteps": 11_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowercase_ ) return config def UpperCAmelCase_ ( self :int )-> Dict: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Tuple: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase_ ( self :Any )-> Optional[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase_ ( self :List[Any] )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type="v_prediction" ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def UpperCAmelCase_ ( self :Optional[int] )-> List[str]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCAmelCase_ ( self :Tuple )-> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_ , lowercase_ ) A__ = model(lowercase_ , lowercase_ ) A__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
237
1
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : list[int] ) -> list[int]: SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
38
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if len(lowerCAmelCase__ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = degree def __add__( self , lowerCAmelCase__ ) -> Polynomial: if self.degree > polynomial_a.degree: SCREAMING_SNAKE_CASE = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase__ ) def __sub__( self , lowerCAmelCase__ ) -> Polynomial: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> Polynomial: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase__ ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> int | float: SCREAMING_SNAKE_CASE = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: SCREAMING_SNAKE_CASE = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase__ ) return polynomial def __repr__( self ) -> str: return self.__str__() def __A ( self ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * self.degree for i in range(self.degree ): SCREAMING_SNAKE_CASE = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ = 0 ) -> Polynomial: SCREAMING_SNAKE_CASE = [0] * (self.degree + 2) SCREAMING_SNAKE_CASE = constant for i in range(self.degree + 1 ): SCREAMING_SNAKE_CASE = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase__ ) def __eq__( self , lowerCAmelCase__ ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase__ ) -> bool: return not self.__eq__(lowerCAmelCase__ )
38
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = CodeGenTokenizer SCREAMING_SNAKE_CASE__ = CodeGenTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {'add_prefix_space': True} SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] a :Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] a :Dict = {'''unk_token''': '''<unk>'''} a :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[Any] = '''lower newer''' a :Union[str, Any] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a :Dict = '''lower newer''' a :List[Any] = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] a :int = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) a :Any = tokens + [tokenizer.unk_token] a :int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): if not self.test_rust_tokenizer: return a :List[Any] = self.get_tokenizer() a :Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) a :Tuple = '''lower newer''' # Testing tokenization a :Optional[Any] = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) a :int = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids without special tokens a :List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) a :Any = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids with special tokens a :Any = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) a :str = tokenizer.encode(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) a :List[str] = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing the unknown token a :List[Any] = tokens + [rust_tokenizer.unk_token] a :List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a :Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input a :Optional[Any] = '''This is a simple input''' a :List[str] = ['''This is a simple input 1''', '''This is a simple input 2'''] a :str = ('''This is a simple input''', '''This is a pair''') a :Dict = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input a :List[Any] = '''This is a simple input''' a :Optional[int] = ['''This is a simple input looooooooong''', '''This is a simple input'''] a :Dict = ('''This is a simple input''', '''This is a pair''') a :int = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] a :Optional[Any] = tokenizer.pad_token_id a :List[Any] = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) a :Dict = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors='''np''' ) a :Tuple = tokenizer(*_lowerCamelCase , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) a :Any = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = '''$$$''' a :Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCamelCase , add_bos_token=_lowerCamelCase ) a :Optional[int] = '''This is a simple input''' a :int = ['''This is a simple input 1''', '''This is a simple input 2'''] a :Union[str, Any] = tokenizer.bos_token_id a :List[str] = tokenizer(_lowerCamelCase ) a :str = tokenizer(_lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a :str = tokenizer.decode(out_s.input_ids ) a :Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) a :Optional[int] = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' a :Dict = '''\nif len_a > len_b: result = a\nelse: result = b''' a :str = tokenizer.encode(_lowerCamelCase ) a :List[str] = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] a :Optional[Any] = tokenizer.decode(_lowerCamelCase , truncate_before_pattern=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): pass
94
'''simple docstring''' import math class a : def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: _a = 0.0 _a = 0.0 for i in range(len(__magic_name__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> list[list[int | float]]: for i in range(len(__magic_name__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A () -> None: '''simple docstring''' _a = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _a = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _a = SelfOrganizingMap() _a = 3 _a = 0.5 for _ in range(lowerCAmelCase__ ): for j in range(len(lowerCAmelCase__ ) ): # training sample _a = training_samples[j] # Compute the winning vector _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # Update the winning vector _a = self_organizing_map.update(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # classify test sample _a = [0, 0, 0, 1] _a = self_organizing_map.get_winner(lowerCAmelCase__ , lowerCAmelCase__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
168
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = 8 # DPR tok UpperCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCamelCase = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCamelCase = os.path.join(lowerCamelCase_ , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) UpperCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase = {"""unk_token""": """<unk>"""} UpperCamelCase = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) UpperCamelCase = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def lowerCamelCase_ ( self : int ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = os.path.join(self.tmpdirname , """rag_tokenizer""" ) UpperCamelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCamelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase_ ) rag_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = RagTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) UpperCamelCase = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCamelCase = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) UpperCamelCase = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCamelCase = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
165
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = 48 UpperCamelCase = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = 60 UpperCamelCase = [6, 6, 6, 6] UpperCamelCase = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = 4 UpperCamelCase = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 126 UpperCamelCase = 7 UpperCamelCase = 2_5_5.0 UpperCamelCase = """""" return config def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCamelCase = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: UpperCamelCase = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: UpperCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: UpperCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: UpperCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: UpperCamelCase = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: UpperCamelCase = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: UpperCamelCase = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: UpperCamelCase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCamelCase = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": UpperCamelCase = """layernorm.weight""" if name == "norm.bias": UpperCamelCase = """layernorm.bias""" if "conv_first" in name: UpperCamelCase = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCamelCase = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCamelCase = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: UpperCamelCase = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: UpperCamelCase = name.replace("""upsample.2""" , """upsample.convolution_1""" ) UpperCamelCase = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCamelCase = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) UpperCamelCase = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: UpperCamelCase = """swin2sr.""" + name return name def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: UpperCamelCase = key.split(""".""" ) UpperCamelCase = int(key_split[1] ) UpperCamelCase = int(key_split[4] ) UpperCamelCase = config.embed_dim if "weight" in key: UpperCamelCase = val[:dim, :] UpperCamelCase = val[dim : dim * 2, :] UpperCamelCase = val[-dim:, :] else: UpperCamelCase = val[:dim] UpperCamelCase = val[dim : dim * 2] UpperCamelCase = val[-dim:] pass else: UpperCamelCase = val return orig_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_config(UpperCamelCase_ ) UpperCamelCase = SwinaSRForImageSuperResolution(UpperCamelCase_ ) model.eval() UpperCamelCase = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) UpperCamelCase = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(UpperCamelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"""Unexpected key {key} in state_dict""" ) # verify values UpperCamelCase = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ).convert("""RGB""" ) UpperCamelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCamelCase = 126 if """Jpeg""" in checkpoint_url else 256 UpperCamelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCamelCase = transforms(UpperCamelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCamelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCamelCase = model(UpperCamelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 512, 512] ) UpperCamelCase = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCamelCase = torch.Size([1, 3, 1024, 1024] ) UpperCamelCase = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) print("""Looks ok!""" ) UpperCamelCase = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCamelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: model.push_to_hub(f"""caidas/{model_name}""" ) processor.push_to_hub(f"""caidas/{model_name}""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
165
1
def UpperCAmelCase_ ( _A ): '''simple docstring''' assert isinstance(_A , _A ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE__ = F'''The input value of [n={number}] has to be > 0''' raise ValueError(_A ) else: SCREAMING_SNAKE_CASE__ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE__ = num - 1 SCREAMING_SNAKE_CASE__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
314
from ...configuration_utils import PretrainedConfig _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "tapas" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_0522 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : Union[str, Any]=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str=1024 , __lowerCamelCase : Union[str, Any]=[3, 256, 256, 2, 256, 256, 10] , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : List[str]=1e-12 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[Any]=10.0 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=1.0 , __lowerCamelCase : Dict=1.0 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : List[str]="ratio" , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[Any]=64 , __lowerCamelCase : Any=32 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : str , ) -> str: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_sizes SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE__ = positive_label_weight SCREAMING_SNAKE_CASE__ = num_aggregation_labels SCREAMING_SNAKE_CASE__ = aggregation_loss_weight SCREAMING_SNAKE_CASE__ = use_answer_as_supervision SCREAMING_SNAKE_CASE__ = answer_loss_importance SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss SCREAMING_SNAKE_CASE__ = huber_loss_delta SCREAMING_SNAKE_CASE__ = temperature SCREAMING_SNAKE_CASE__ = aggregation_temperature SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE__ = average_approximation_function SCREAMING_SNAKE_CASE__ = cell_selection_preference SCREAMING_SNAKE_CASE__ = answer_loss_cutoff SCREAMING_SNAKE_CASE__ = max_num_rows SCREAMING_SNAKE_CASE__ = max_num_columns SCREAMING_SNAKE_CASE__ = average_logits_per_cell SCREAMING_SNAKE_CASE__ = select_one_column SCREAMING_SNAKE_CASE__ = allow_empty_column_selection SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell SCREAMING_SNAKE_CASE__ = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE__ = aggregation_labels SCREAMING_SNAKE_CASE__ = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
314
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=64 , lowercase=5 , lowercase=4 , lowercase=64 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = scope def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: lowerCamelCase_ = MPNetModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , lowercase ) lowerCamelCase_ = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCamelCase_ = MPNetForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: lowerCamelCase_ = self.num_labels lowerCamelCase_ = MPNetForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = self.num_choices lowerCamelCase_ = MPNetForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCamelCase_ = self.num_labels lowerCamelCase_ = MPNetForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.prepare_config_and_inputs() ((lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_) , (lowerCamelCase_)) = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = MPNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = MPNetModel.from_pretrained("microsoft/mpnet-base" ) lowerCamelCase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ = model(lowercase )[0] lowerCamelCase_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCamelCase_ = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
47
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ = OmegaConf.load(lowerCamelCase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowerCamelCase__ ) ) ) return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): if conf_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.yaml" lowerCamelCase_ = load_config(lowerCamelCase__ , display=lowerCamelCase__ ) lowerCamelCase_ = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ = "./model_checkpoints/vqgan_only.pt" lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) if ".ckpt" in ckpt_path: lowerCamelCase_ = sd["state_dict"] model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.to(lowerCamelCase__ ) del sd return model def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.encode(lowerCamelCase__ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) lowerCamelCase_ = model.decode(lowerCamelCase__ ) return xrec def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=False ): lowerCamelCase_ , lowerCamelCase_ = string.rsplit("." , 1 ) if reload: lowerCamelCase_ = importlib.import_module(lowerCamelCase__ ) importlib.reload(lowerCamelCase__ ) return getattr(importlib.import_module(lowerCamelCase__ , package=lowerCamelCase__ ) , cls ) def lowerCamelCase_ ( lowerCamelCase__ ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=True ): lowerCamelCase_ = instantiate_from_config(lowerCamelCase__ ) if sd is not None: model.load_state_dict(lowerCamelCase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): # load the specified checkpoint if ckpt: lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" ) lowerCamelCase_ = pl_sd["global_step"] print(F'loaded model from global step {global_step}.' ) else: lowerCamelCase_ = {"state_dict": None} lowerCamelCase_ = None lowerCamelCase_ = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=lowerCamelCase__ , eval_mode=lowerCamelCase__ )["model"] return model, global_step
47
1
"""simple docstring""" import numpy as np from transformers import Pipeline def __lowercase ( snake_case_ : Union[str, Any] ) ->Any: '''simple docstring''' __A : Any = np.max(_SCREAMING_SNAKE_CASE ,axis=-1 ,keepdims=_SCREAMING_SNAKE_CASE ) __A : Any = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 ,keepdims=_SCREAMING_SNAKE_CASE ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' __A : List[Any] = {} if "second_text" in kwargs: __A : List[Any] = kwargs['second_text'] return preprocess_kwargs, {}, {} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=None ): '''simple docstring''' return self.tokenizer(__UpperCAmelCase , text_pair=__UpperCAmelCase , return_tensors=self.framework ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.model(**__UpperCAmelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Any = model_outputs.logits[0].numpy() __A : Dict = softmax(__UpperCAmelCase ) __A : str = np.argmax(__UpperCAmelCase ) __A : int = self.model.config.idalabel[best_class] __A : Tuple = probabilities[best_class].item() __A : int = logits.tolist() return {"label": label, "score": score, "logits": logits}
179
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def snake_case ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __magic_name__ :str = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = pipeline( 'document-question-answering' , model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :Dict = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) lowerCAmelCase__ :List[Any] = 'What is the placebo?' lowerCAmelCase__ :Dict = [ { 'image': load_image(__UpperCAmelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = dqa_pipeline(__UpperCAmelCase , top_k=2 ) self.assertEqual( __UpperCAmelCase , [ [ {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, {'score': ANY(__UpperCAmelCase ), 'answer': ANY(__UpperCAmelCase ), 'start': ANY(__UpperCAmelCase ), 'end': ANY(__UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) lowerCAmelCase__ :Union[str, Any] = INVOICE_URL lowerCAmelCase__ :Tuple = 'How many cats are there?' lowerCAmelCase__ :List[str] = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] lowerCAmelCase__ :Any = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) lowerCAmelCase__ :Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , __UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase__ :List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :List[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase__ :Dict = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCAmelCase__ :List[str] = [] lowerCAmelCase__ :int = [] lowerCAmelCase__ :List[str] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , words=__UpperCAmelCase , boxes=__UpperCAmelCase , top_k=2 ) self.assertEqual(__UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) lowerCAmelCase__ :str = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :Tuple = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :Dict = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) lowerCAmelCase__ :List[Any] = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :Optional[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , ) lowerCAmelCase__ :List[str] = INVOICE_URL lowerCAmelCase__ :Any = 'What is the invoice number?' lowerCAmelCase__ :List[Any] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) lowerCAmelCase__ :Dict = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :Tuple = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=__UpperCAmelCase , revision='3dc6de3' , max_seq_len=5_0 , ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :List[Any] = 'What is the invoice number?' lowerCAmelCase__ :List[str] = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) lowerCAmelCase__ :List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) lowerCAmelCase__ :Optional[Any] = list(zip(*apply_tesseract(load_image(__UpperCAmelCase ) , __UpperCAmelCase , '' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase__ :List[str] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) lowerCAmelCase__ :Dict = INVOICE_URL lowerCAmelCase__ :str = 'What is the invoice number?' lowerCAmelCase__ :Tuple = dqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def snake_case ( self ): '''simple docstring''' pass
293
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( __UpperCamelCase ): '''simple docstring''' def UpperCamelCase_ ( self, A ): '''simple docstring''' with open(A, encoding='utf-8' ) as input_file: SCREAMING_SNAKE_CASE : int = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) SCREAMING_SNAKE_CASE : List[Any] = input_file.read() SCREAMING_SNAKE_CASE : Optional[Any] = regexp.search(A ) return match def UpperCamelCase_ ( self, A ): '''simple docstring''' with open(A, encoding='utf-8' ) as input_file: SCREAMING_SNAKE_CASE : List[str] = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()', re.DOTALL ) SCREAMING_SNAKE_CASE : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE : Tuple = regexp.finditer(A ) SCREAMING_SNAKE_CASE : str = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = Path('./datasets' ) SCREAMING_SNAKE_CASE : Optional[int] = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Path('./datasets' ) SCREAMING_SNAKE_CASE : Dict = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(A ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
356
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase_ = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" UpperCamelCase_ = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" UpperCamelCase_ = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'], reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ], ) def UpperCamelCase_ ( self, A, A, A=None, A=True, A=False ): '''simple docstring''' if rouge_types is None: SCREAMING_SNAKE_CASE : List[Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE : int = rouge_scorer.RougeScorer(rouge_types=A, use_stemmer=A ) if use_aggregator: SCREAMING_SNAKE_CASE : Tuple = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for ref, pred in zip(A, A ): SCREAMING_SNAKE_CASE : Tuple = scorer.score(A, A ) if use_aggregator: aggregator.add_scores(A ) else: scores.append(A ) if use_aggregator: SCREAMING_SNAKE_CASE : Union[str, Any] = aggregator.aggregate() else: SCREAMING_SNAKE_CASE : int = {} for key in scores[0]: SCREAMING_SNAKE_CASE : List[str] = [score[key] for score in scores] return result
246
0
"""simple docstring""" import operator as op def lowercase ( A_ )-> Any: '''simple docstring''' a : Tuple = [] a : int = lambda A_ , A_ : int(x / y ) # noqa: E731 integer division operation a : Tuple = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(A_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) else: a : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) a : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " ) stack.append( str(opr[x](int(A_ ) , int(A_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(A_ ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __lowercase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
40
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
1
'''simple docstring''' from __future__ import annotations a : Optional[int] = tuple[int, int, int] a : Optional[int] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a : Optional[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- a : List[Any] = """EGZWVONAHDCLFQMSIPJBYUKXTR""" a : str = """FOBHMDKEXQNRAULPGSJVTYICZW""" a : List[Any] = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- a : List[Any] = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- a : Any = """RMDJXFUWGISLHVTCQNKYPBEZOA""" a : Dict = """SGLCPQWZHKXAREONTFBVIYJUDM""" a : Optional[int] = """HVSICLTYKQUBXDWAJZOMFGPREN""" a : Optional[int] = """RZWQHFMVDBKICJLNTUXAGYPSOE""" a : str = """LFKIJODBEGAMQPXVUHYSTCZRWN""" a : Union[str, Any] = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_lowercase ) )) < 3: UpperCAmelCase : Tuple = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_lowercase ) # Checks if rotor positions are valid UpperCAmelCase : Union[str, Any] = rotpos if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Union[str, Any] = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Any = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) if not 0 < rotorposa <= len(_lowercase ): UpperCAmelCase : Dict = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_lowercase ) # Validates string and returns dict UpperCAmelCase : Tuple = _plugboard(_lowercase ) return rotpos, rotsel, pbdict def __lowerCamelCase ( _lowercase ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_lowercase , _lowercase ): UpperCAmelCase : Any = F'''Plugboard setting isn\'t type string ({type(_lowercase )})''' raise TypeError(_lowercase ) elif len(_lowercase ) % 2 != 0: UpperCAmelCase : str = F'''Odd number of symbols ({len(_lowercase )})''' raise Exception(_lowercase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique UpperCAmelCase : Any = set() for i in pbstring: if i not in abc: UpperCAmelCase : str = F'''\'{i}\' not in list of symbols''' raise Exception(_lowercase ) elif i in tmppbl: UpperCAmelCase : Dict = F'''Duplicate symbol ({i})''' raise Exception(_lowercase ) else: tmppbl.add(_lowercase ) del tmppbl # Created the dictionary UpperCAmelCase : List[str] = {} for j in range(0 , len(_lowercase ) - 1 , 2 ): UpperCAmelCase : Any = pbstring[j + 1] UpperCAmelCase : List[Any] = pbstring[j] return pb def __lowerCamelCase ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ) -> str: UpperCAmelCase : Optional[int] = text.upper() UpperCAmelCase : Tuple = _validator( _lowercase , _lowercase , plugb.upper() ) UpperCAmelCase : Union[str, Any] = rotor_position UpperCAmelCase : Optional[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 UpperCAmelCase : str = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: UpperCAmelCase : Tuple = plugboard[symbol] # rotor ra -------------------------- UpperCAmelCase : Tuple = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Union[str, Any] = rotora[index % len(_lowercase )] # rotor rb -------------------------- UpperCAmelCase : Optional[int] = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Dict = rotora[index % len(_lowercase )] # rotor rc -------------------------- UpperCAmelCase : str = abc.index(_lowercase ) + rotorposa UpperCAmelCase : Optional[int] = rotora[index % len(_lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher UpperCAmelCase : List[Any] = reflector[symbol] # 2nd rotors UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : str = abc[rotora.index(_lowercase ) - rotorposa] UpperCAmelCase : Optional[int] = abc[rotora.index(_lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: UpperCAmelCase : List[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : str = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : int = 0 rotorposa += 1 if rotorposa >= len(_lowercase ): UpperCAmelCase : Dict = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": a : Union[str, Any] = """This is my Python script that emulates the Enigma machine from WWII.""" a : List[str] = (1, 1, 1) a : int = """pictures""" a : Union[str, Any] = (rotora, rotora, rotora) a : List[Any] = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
368
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : List[str] = """Hello, World!""" a : List[Any] = """en_XX""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : Dict = Path("""data_bin""" ) UpperCAmelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowercase ).parent ) , checkpoint_file=Path(_lowercase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowercase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowercase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(_lowercase ) UpperCAmelCase : List[str] = xmod.model.encoder.sentence_encoder UpperCAmelCase : Tuple = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase : List[str] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , _lowercase ) UpperCAmelCase : str = XmodForSequenceClassification(_lowercase ) if classification_head else XmodForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase : int = xmod_sent_encoder.embed_positions.weight UpperCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase : Union[str, Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase : List[str] = model.roberta.encoder.layer[i] UpperCAmelCase : Optional[Any] = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase : Optional[Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) UpperCAmelCase : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.q_proj.bias UpperCAmelCase : Any = xmod_layer.self_attn.k_proj.weight UpperCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.bias UpperCAmelCase : int = xmod_layer.self_attn.v_proj.weight UpperCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) UpperCAmelCase : Any = xmod_layer.self_attn.out_proj.weight UpperCAmelCase : List[str] = xmod_layer.self_attn.out_proj.bias UpperCAmelCase : int = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase : str = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase : Tuple = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) UpperCAmelCase : List[str] = xmod_layer.fca.weight UpperCAmelCase : str = xmod_layer.fca.bias # output UpperCAmelCase : Any = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) UpperCAmelCase : Dict = xmod_layer.fca.weight UpperCAmelCase : Dict = xmod_layer.fca.bias UpperCAmelCase : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase : Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase : str = xmod_layer.adapter_layer_norm.weight UpperCAmelCase : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase : List[Any] = bert_output.adapter_modules[lang_code] UpperCAmelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase : Any = from_adapter.fca.weight UpperCAmelCase : int = from_adapter.fca.bias UpperCAmelCase : Dict = from_adapter.fca.weight UpperCAmelCase : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase : Tuple = xmod_sent_encoder.layer_norm.weight UpperCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].dense.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].dense.bias UpperCAmelCase : str = xmod.model.classification_heads["""mnli"""].out_proj.weight UpperCAmelCase : Tuple = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head UpperCAmelCase : Dict = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase : str = xmod.model.encoder.lm_head.weight UpperCAmelCase : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase : Any = xmod.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_lowercase ) UpperCAmelCase : Optional[int] = model(_lowercase )[0] if classification_head: UpperCAmelCase : List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(_lowercase ) ) else: UpperCAmelCase : Optional[Any] = xmod.model(_lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase : Dict = torch.allclose(_lowercase , _lowercase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(_lowercase ).mkdir(parents=_lowercase , exist_ok=_lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) a : List[str] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
338
0
"""simple docstring""" import os import string import sys _a : List[str]= 1 << 8 _a : int= { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } _a : List[Any]= KEYMAP["up"] _a : Any= KEYMAP["left"] if sys.platform == "win32": _a : List[Any]= [] _a : List[str]= { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): _a : int= ord(str(i)) def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' if os.name == "nt": import msvcrt __snake_case : Tuple = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase_ ) == 0: # Read the keystroke __snake_case : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __snake_case : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __snake_case : Union[str, Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(UpperCAmelCase_ ) if ord(UpperCAmelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) __snake_case : Any = chr(KEYMAP['esc'] ) except KeyError: __snake_case : Tuple = cha[1] else: __snake_case : Optional[int] = ch.decode(UpperCAmelCase_ ) else: __snake_case : Optional[int] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __snake_case : Union[str, Any] = sys.stdin.fileno() __snake_case : int = termios.tcgetattr(UpperCAmelCase_ ) try: tty.setraw(UpperCAmelCase_ ) __snake_case : List[str] = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase_ , termios.TCSADRAIN , UpperCAmelCase_ ) return ch def __UpperCAmelCase ( ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = get_raw_chars() if ord(UpperCAmelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase_ ) == KEYMAP["esc"]: __snake_case : List[str] = get_raw_chars() if ord(UpperCAmelCase_ ) == KEYMAP["mod_int"]: __snake_case : List[Any] = get_raw_chars() if ord(UpperCAmelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
172
"""simple docstring""" _a : Tuple= 8.3_1_4_4_5_9_8 def __UpperCAmelCase ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: '''simple docstring''' if temperature < 0: raise Exception('Temperature cannot be less than 0 K' ) if molar_mass <= 0: raise Exception('Molar mass cannot be less than or equal to 0 kg/mol' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a : Any= 300 _a : Optional[Any]= 28 _a : Optional[int]= rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
172
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Any = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class __magic_name__ ( __lowerCAmelCase): A: List[str] = '''xlm-roberta''' def __init__( self : List[Any] , lowerCamelCase__ : Tuple=30522 , lowerCamelCase__ : Union[str, Any]=768 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Tuple=12 , lowerCamelCase__ : Any=3072 , lowerCamelCase__ : Dict="gelu" , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Tuple=0.1 , lowerCamelCase__ : Union[str, Any]=512 , lowerCamelCase__ : Optional[int]=2 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : str=1E-1_2 , lowerCamelCase__ : str=1 , lowerCamelCase__ : Tuple=0 , lowerCamelCase__ : Any=2 , lowerCamelCase__ : int="absolute" , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : List[Any] = max_position_embeddings UpperCamelCase__ : Tuple = type_vocab_size UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Union[str, Any] = position_embedding_type UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : Union[str, Any] = classifier_dropout class __magic_name__ ( __lowerCAmelCase): @property def UpperCAmelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase__ : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
364
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
0