code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase : Optional[Any] = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def A_ ( A__ ) -> Any: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model a__ : Dict = list(s_dict.keys() ) for key in keys: a__ : Dict = R'.*/layers_(\d+)' a__ : Tuple = key if re.match(A__ , A__ ): a__ : Dict = re.sub(R'layers_(\d+)' , R'block/\1/layer' , A__ ) a__ : Tuple = R'(encoder|decoder)\/' if re.match(A__ , A__ ): a__ : List[str] = re.match(A__ , A__ ).groups() if groups[0] == "encoder": a__ : Any = re.sub(R'/mlp/' , R'/1/mlp/' , A__ ) a__ : str = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , A__ ) elif groups[0] == "decoder": a__ : Any = re.sub(R'/mlp/' , R'/2/mlp/' , A__ ) a__ : str = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , A__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a__ : Union[str, Any] = new_key.replace(A__ , A__ ) print(F'{key} -> {new_key}' ) a__ : str = s_dict.pop(A__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ : List[Any] = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a__ : Tuple = s_dict[key].shape[0] a__ : Optional[Any] = s_dict[key] for idx in range(A__ ): a__ : List[str] = expert_weihts[idx] print(F'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(A__ ) return s_dict lowercase : Any = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def A_ ( A__ , A__ ) -> int: # Convert a google style config to the hugging face fromat import regex as re with open(A__ , 'r' ) as f: a__ : Union[str, Any] = f.read() a__ : Any = re.findall(R'(.*) = ([0-9.]*)' , A__ ) a__ : Any = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a__ : Any = float(A__ ) if '.' in value else int(A__ ) a__ : List[str] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , A__ )[0] a__ : str = str(activation[1] ) a__ : List[str] = num_experts a__ : Optional[Any] = SwitchTransformersConfig(**A__ ) return config def A_ ( A__ , A__ , A__=None , A__="./" , A__=8 ) -> Tuple: # Initialise PyTorch model print(F'Loading flax weights from : {flax_checkpoint_path}' ) a__ : Union[str, Any] = checkpoints.load_tax_checkpoint(A__ ) if gin_file is not None: a__ : Union[str, Any] = convert_gin_to_config(A__ , A__ ) else: a__ : Union[str, Any] = SwitchTransformersConfig.from_pretrained(A__ ) a__ : int = SwitchTransformersForConditionalGeneration(A__ ) a__ : Any = flax_params['target'] a__ : Any = flatten_dict(A__ , sep='/' ) a__ : List[str] = rename_keys(A__ ) a__ : Optional[Any] = unflatten_dict(A__ , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(A__ , A__ ) print(F'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(A__ ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowercase : Optional[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
99
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : Union[str, Any] ): """simple docstring""" stooge(snake_case__ , 0 , len(snake_case__ ) - 1 ) return arr def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: _snake_case , _snake_case : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: _snake_case : Dict = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case__ , i + t , (snake_case__) ) # Recursively sort first 2/3 elements stooge(snake_case__ , snake_case__ , (h - t) ) if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
64
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Optional[int] = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } lowercase__ : List[str] = { '''google/fnet-base''': 5_12, '''google/fnet-large''': 5_12, } lowercase__ : Optional[Any] = '''▁''' class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[str] = VOCAB_FILES_NAMES _lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Optional[Any] = ["""input_ids""", """token_type_ids"""] _lowerCAmelCase : Tuple = FNetTokenizer def __init__( self : List[str] , lowercase_ : str=None , lowercase_ : str=None , lowercase_ : Any=False , lowercase_ : Optional[int]=True , lowercase_ : List[Any]=True , lowercase_ : int="<unk>" , lowercase_ : Dict="[SEP]" , lowercase_ : List[str]="<pad>" , lowercase_ : Optional[int]="[CLS]" , lowercase_ : int="[MASK]" , **lowercase_ : str , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case_ : Optional[int] = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = do_lower_case snake_case_ : Optional[int] = remove_space snake_case_ : int = keep_accents snake_case_ : Dict = vocab_file snake_case_ : List[str] = False if not self.vocab_file else True def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Dict = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ : str = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
371
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase__ : str = get_logger(__name__) lowercase__ : List[str] = Path(__file__).parent / '''model_card_template.md''' lowercase__ : Union[str, Any] = uuida().hex lowercase__ : Tuple = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[int] = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES lowercase__ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowercase ( _a = None ): snake_case_ : List[str] = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"; torch/{_torch_version}" if is_flax_available(): ua += f"; jax/{_jax_version}" ua += f"; flax/{_flax_version}" if is_onnx_available(): ua += f"; onnxruntime/{_onnxruntime_version}" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_a , _a ): ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items() ) elif isinstance(_a , _a ): ua += "; " + user_agent return ua def __lowercase ( _a , _a = None , _a = None ): if token is None: snake_case_ : Union[str, Any] = HfFolder.get_token() if organization is None: snake_case_ : int = whoami(_a )['''name'''] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def __lowercase ( _a , _a ): if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_a , '''local_rank''' ) and args.local_rank not in [-1, 0]: return snake_case_ : Union[str, Any] = args.hub_token if hasattr(_a , '''hub_token''' ) else None snake_case_ : Dict = get_full_repo_name(_a , token=_a ) snake_case_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_a , model_name=_a , repo_name=_a , dataset_name=args.dataset_name if hasattr(_a , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_a , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_a , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_a , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_a , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_a , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_a , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_a , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_a , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_a , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) snake_case_ : Tuple = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_a ) def __lowercase ( _a , _a = None ): if resolved_file is None or commit_hash is not None: return commit_hash snake_case_ : Tuple = str(Path(_a ).as_posix() ) snake_case_ : int = re.search(r'''snapshots/([^/]+)/''' , _a ) if search is None: return None snake_case_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_a ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase__ : str = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) lowercase__ : List[Any] = os.path.join(hf_cache_home, '''diffusers''') def __lowercase ( _a = None , _a = None ): if new_cache_dir is None: snake_case_ : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: snake_case_ : List[str] = old_diffusers_cache snake_case_ : Union[str, Any] = Path(_a ).expanduser() snake_case_ : str = Path(_a ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): snake_case_ : List[Any] = new_cache_dir / old_blob_path.relative_to(_a ) new_blob_path.parent.mkdir(parents=_a , exist_ok=_a ) os.replace(_a , _a ) try: os.symlink(_a , _a ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase__ : Optional[Any] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): lowercase__ : Optional[int] = 0 else: with open(cache_version_file) as f: try: lowercase__ : Optional[Any] = int(f.read()) except ValueError: lowercase__ : Optional[Any] = 0 if cache_version < 1: lowercase__ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: lowercase__ : Optional[Any] = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' '''the directory exists and can be written to.''' ) def __lowercase ( _a , _a = None ): if variant is not None: snake_case_ : str = weights_name.split('''.''' ) snake_case_ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] snake_case_ : List[Any] = '''.'''.join(_a ) return weights_name def __lowercase ( _a , *, _a , _a , _a , _a , _a , _a , _a , _a , _a , _a , _a=None , ): snake_case_ : Dict = str(_a ) if os.path.isfile(_a ): return pretrained_model_name_or_path elif os.path.isdir(_a ): if os.path.isfile(os.path.join(_a , _a ) ): # Load from a PyTorch checkpoint snake_case_ : Dict = os.path.join(_a , _a ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_a , _a , _a ) ): snake_case_ : List[Any] = os.path.join(_a , _a , _a ) return model_file else: raise EnvironmentError( f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_a ).base_version ) >= version.parse('''0.20.0''' ) ): try: snake_case_ : str = hf_hub_download( _a , filename=_add_variant(_a , _a ) , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) warnings.warn( f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead." , _a , ) return model_file except: # noqa: E722 warnings.warn( f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_a , _a )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(_a , _a )}' so that the correct variant file can be added." , _a , ) try: # 2. Load model file as usual snake_case_ : Tuple = hf_hub_download( _a , filename=_a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , use_auth_token=_a , user_agent=_a , subfolder=_a , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier " '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for " '''this model name. Check the model page at ''' f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}." ) except HTTPError as err: raise EnvironmentError( f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a file named {weights_name} or" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a file named {weights_name}" )
155
0
def lowercase_ ( _A : Dict , _A : int ): """simple docstring""" lowerCamelCase__ : Dict = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase__ : int = [] for i in range(len(_SCREAMING_SNAKE_CASE ) - pat_len + 1 ): lowerCamelCase__ : int = True for j in range(_SCREAMING_SNAKE_CASE ): if s[i + j] != pattern[j]: lowerCamelCase__ : List[Any] = False break if match_found: position.append(_SCREAMING_SNAKE_CASE ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
184
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
0
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : int = BarthezTokenizer __lowercase : Tuple = BarthezTokenizerFast __lowercase : int = True __lowercase : Optional[int] = True def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""") tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """<pad>""" __SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(lowerCAmelCase__) , 1_0_1_1_2_2) def snake_case_ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2) @require_torch def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __SCREAMING_SNAKE_CASE = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def snake_case_ ( self): # fmt: off __SCREAMING_SNAKE_CASE = {"""input_ids""": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __SCREAMING_SNAKE_CASE = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=lowerCAmelCase__ , )
255
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __SCREAMING_SNAKE_CASE = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCamelCase_ , 1 ): if n < _p: # then we have our last prime to check __SCREAMING_SNAKE_CASE = primes[:idx] break __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __SCREAMING_SNAKE_CASE = False for r in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = pow(UpperCamelCase_ , d * 2**r , UpperCamelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __SCREAMING_SNAKE_CASE = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
255
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'autoformer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , a : Optional[int] = None , a : Optional[int] = None , a : str = "student_t" , a : str = "nll" , a : int = 1 , a : List[int] = [1, 2, 3, 4, 5, 6, 7] , a : bool = True , a : int = 0 , a : int = 0 , a : int = 0 , a : int = 0 , a : Optional[List[int]] = None , a : Optional[List[int]] = None , a : int = 64 , a : int = 2 , a : int = 2 , a : int = 2 , a : int = 2 , a : int = 32 , a : int = 32 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : int = 100 , a : float = 0.0_2 , a : bool = True , a : Union[str, Any]=True , a : int = 10 , a : int = 25 , a : int = 3 , **a : Optional[Any] , ): '''simple docstring''' lowerCAmelCase__ : List[str] = prediction_length lowerCAmelCase__ : Any = context_length if context_length is not None else prediction_length lowerCAmelCase__ : List[str] = distribution_output lowerCAmelCase__ : int = loss lowerCAmelCase__ : Dict = input_size lowerCAmelCase__ : Optional[Any] = num_time_features lowerCAmelCase__ : str = lags_sequence lowerCAmelCase__ : Optional[int] = scaling lowerCAmelCase__ : str = num_dynamic_real_features lowerCAmelCase__ : List[str] = num_static_real_features lowerCAmelCase__ : List[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : Optional[int] = cardinality else: lowerCAmelCase__ : int = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : List[str] = embedding_dimension else: lowerCAmelCase__ : Tuple = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase__ : Any = d_model lowerCAmelCase__ : int = encoder_attention_heads lowerCAmelCase__ : str = decoder_attention_heads lowerCAmelCase__ : Dict = encoder_ffn_dim lowerCAmelCase__ : Tuple = decoder_ffn_dim lowerCAmelCase__ : Optional[Any] = encoder_layers lowerCAmelCase__ : Optional[Any] = decoder_layers lowerCAmelCase__ : str = dropout lowerCAmelCase__ : List[str] = attention_dropout lowerCAmelCase__ : Tuple = activation_dropout lowerCAmelCase__ : str = encoder_layerdrop lowerCAmelCase__ : List[str] = decoder_layerdrop lowerCAmelCase__ : List[Any] = activation_function lowerCAmelCase__ : Any = init_std lowerCAmelCase__ : Dict = use_cache # Autoformer lowerCAmelCase__ : List[Any] = label_length lowerCAmelCase__ : str = moving_average lowerCAmelCase__ : Union[str, Any] = autocorrelation_factor super().__init__(is_encoder_decoder=a , **a ) @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
212
from __future__ import annotations lowerCamelCase__ = list[list[int]] # assigning initial values to the grid lowerCamelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCamelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Matrix | None: if location := find_empty_location(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ , lowerCAmelCase__ : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = digit if sudoku(SCREAMING_SNAKE_CASE_ ) is not None: return grid lowerCAmelCase__ : List[Any] = 0 return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE_ , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") lowerCamelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
212
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase : Optional[int] ={ "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] =[ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase : Tuple =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : str =logging.getLogger(__name__) @dataclass class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "Whether to SortishSamler or not."} ) __lowerCAmelCase :bool = field( default=A__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __lowerCAmelCase :bool = field(default=A__ , metadata={"help": "whether to use adafactor"} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field(default=A__ , metadata={"help": "Dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[float] = field( default=A__ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __lowerCAmelCase :Optional[str] = field( default="linear" , metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
266
0
'''simple docstring''' _UpperCamelCase : Dict = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
304
'''simple docstring''' _UpperCamelCase : Tuple = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _UpperCamelCase : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] _UpperCamelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
304
1
"""simple docstring""" def A_ ( A__ ) -> Tuple: a__ : Tuple = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) a__ : Optional[Any] = hex_num[0] == '''-''' if is_negative: a__ : Any = hex_num[1:] try: a__ : Optional[int] = int(A__ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) a__ : Any = '''''' while int_num > 0: a__ : str = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
357
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : Union[str, Any] = data_utils.TransfoXLTokenizer lowercase : Optional[int] = data_utils.TransfoXLCorpus lowercase : List[Any] = data_utils lowercase : Tuple = data_utils def A_ ( A__ , A__ , A__ , A__ ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(A__ , 'rb' ) as fp: a__ : int = pickle.load(A__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) a__ : int = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) a__ : List[Any] = corpus.vocab.__dict__ torch.save(A__ , A__ ) a__ : Dict = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , A__ ) a__ : Optional[int] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(A__ , A__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model a__ : Union[str, Any] = os.path.abspath(A__ ) a__ : Optional[Any] = os.path.abspath(A__ ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": a__ : Dict = TransfoXLConfig() else: a__ : Dict = TransfoXLConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) a__ : Optional[int] = TransfoXLLMHeadModel(A__ ) a__ : int = load_tf_weights_in_transfo_xl(A__ , A__ , A__ ) # Save pytorch-model a__ : Any = os.path.join(A__ , A__ ) a__ : Dict = os.path.join(A__ , A__ ) print(F'Save PyTorch model to {os.path.abspath(A__ )}' ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {os.path.abspath(A__ )}' ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) lowercase : Any = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
225
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( A_ ): '''simple docstring''' __UpperCAmelCase : Tuple =(UniPCMultistepScheduler,) __UpperCAmelCase : Dict =(("""num_inference_steps""", 2_5),) def snake_case ( self , **__a ): __lowerCAmelCase = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_lowerCamelCase ) return config def snake_case ( self , __a=0 , **__a ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**_lowerCamelCase ) __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(_lowerCamelCase ) new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase = sample, sample for t in range(_lowerCamelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , __a=0 , **__a ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowerCamelCase ) __lowerCAmelCase = scheduler_class.from_pretrained(_lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample __lowerCAmelCase = new_scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , __a=None , **__a ): if scheduler is None: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**_lowerCamelCase ) __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**_lowerCamelCase ) __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(_lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def snake_case ( self ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , _lowerCamelCase ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(_lowerCamelCase ) elif num_inference_steps is not None and not hasattr(_lowerCamelCase , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] __lowerCAmelCase = scheduler.timesteps[5] __lowerCAmelCase = scheduler.timesteps[6] __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase = self.full_loop(scheduler=_lowerCamelCase ) __lowerCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 __lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = self.full_loop(scheduler=_lowerCamelCase ) __lowerCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case ( self ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def snake_case ( self ): self.check_over_configs(thresholding=_lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def snake_case ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , ) __lowerCAmelCase = self.full_loop( solver_order=_lowerCamelCase , solver_type=_lowerCamelCase , prediction_type=_lowerCamelCase , ) assert not torch.isnan(_lowerCamelCase ).any(), "Samples have nan numbers" def snake_case ( self ): self.check_over_configs(lower_order_final=_lowerCamelCase ) self.check_over_configs(lower_order_final=_lowerCamelCase ) def snake_case ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_lowerCamelCase , time_step=0 ) def snake_case ( self ): __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def snake_case ( self ): __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def snake_case ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(thresholding=_lowerCamelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(_lowerCamelCase , _lowerCamelCase ) __lowerCAmelCase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def snake_case ( self , **__a ): for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**_lowerCamelCase ) __lowerCAmelCase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
57
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCAmelCase__ = 'tiny-wmt19-en-ru' # Build # borrowed from a test UpperCAmelCase__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] UpperCAmelCase__ = dict(zip(vocab, range(len(vocab)))) UpperCAmelCase__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = Path(tmpdirname) UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] UpperCAmelCase__ = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) UpperCAmelCase__ = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCAmelCase__ = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCAmelCase__ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') UpperCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
288
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : Optional[int] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "[PAD]" UpperCAmelCase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowercase_ ) , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = XLMProphetNetTokenizer(lowercase_ , keep_accents=lowercase_ ) UpperCAmelCase_ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = "Hello World!" UpperCAmelCase_ : Optional[Any] = [3_5389, 6672, 49, 2] self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off UpperCAmelCase_ : Union[str, Any] = {"input_ids": [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
23
"""simple docstring""" import datasets _a = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' _a = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' _a = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def __a ( __lowerCamelCase, __lowerCamelCase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" return {"accuracy": simple_accuracy(lowercase_ , lowercase_ )}
23
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,) -> List[str]: if config_name_or_path is None: lowerCamelCase : Any = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase : Any = question_encoder_name_or_path lowerCamelCase : str = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase : List[Any] = RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = gen_config lowerCamelCase : Optional[Any] = question_encoder_config lowerCamelCase : List[Any] = model_class.from_pretrained_question_encoder_generator( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,config=_SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizers. lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase : int = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
48
from math import sqrt def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int: lowerCamelCase : int = 0 lowerCamelCase : int = 0 lowerCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
48
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : List[Any] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys snake_case : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Optional[Any] = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } snake_case : str = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } snake_case : List[Any] = { '''vinai/phobert-base''': 2_56, '''vinai/phobert-large''': 2_56, } def __lowerCamelCase ( UpperCAmelCase_ : List[str] ): """simple docstring""" a :Union[str, Any] = set() a :str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a :Optional[int] = char a :Optional[int] = set(UpperCAmelCase_ ) return pairs class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , **_lowerCamelCase , ): super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[Any] = vocab_file a :Optional[Any] = merges_file a :Any = {} a :Any = 0 a :int = 1 a :Union[str, Any] = 2 a :List[Any] = 3 self.add_from_file(_lowerCamelCase ) a :List[str] = {v: k for k, v in self.encoder.items()} with open(_lowerCamelCase , encoding='''utf-8''' ) as merges_handle: a :List[str] = merges_handle.read().split('''\n''' )[:-1] a :Any = [tuple(merge.split()[:-1] ) for merge in merges] a :str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) a :str = {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :Union[str, Any] = [self.cls_token_id] a :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Optional[int] = [self.sep_token_id] a :Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.encoder ) def SCREAMING_SNAKE_CASE__ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.cache: return self.cache[token] a :Optional[int] = tuple(_lowerCamelCase ) a :List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) a :Union[str, Any] = get_pairs(_lowerCamelCase ) if not pairs: return token while True: a :Optional[Any] = min(_lowerCamelCase , key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break a , a :Dict = bigram a :Union[str, Any] = [] a :int = 0 while i < len(_lowerCamelCase ): try: a :Optional[Any] = word.index(_lowerCamelCase , _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a :Union[str, Any] = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a :Union[str, Any] = tuple(_lowerCamelCase ) a :int = new_word if len(_lowerCamelCase ) == 1: break else: a :List[str] = get_pairs(_lowerCamelCase ) a :Union[str, Any] = '''@@ '''.join(_lowerCamelCase ) a :Dict = word[:-4] a :Any = word return word def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Union[str, Any] = [] a :str = re.findall(R'''\S+\n?''' , _lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase , self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[int] = ''' '''.join(_lowerCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :Tuple = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.merges_file , _lowerCamelCase ) return out_vocab_file, out_merge_file def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , _lowerCamelCase ): try: with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return a :str = f.readlines() for lineTmp in lines: a :Tuple = lineTmp.strip() a :int = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) a :Tuple = line[:idx] a :Tuple = len(self.encoder )
281
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KT''') lowerCAmelCase__ = TypeVar('''VT''') class lowercase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase__ : KT | str = "root" ,lowercase__ : VT | None = None ): __lowercase = key __lowercase = value __lowercase = [] def __repr__( self : Tuple ): return F"Node({self.key}: {self.value})" @property def SCREAMING_SNAKE_CASE ( self : int ): return len(self.forward ) class lowercase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self : int ,lowercase__ : float = 0.5 ,lowercase__ : int = 1_6 ): __lowercase = Node[KT, VT]() __lowercase = 0 __lowercase = p __lowercase = max_level def __str__( self : List[str] ): __lowercase = list(self ) if len(lowercase__ ) == 0: return F"SkipList(level={self.level})" __lowercase = max((len(str(lowercase__ ) ) for item in items) ,default=4 ) __lowercase = max(lowercase__ ,4 ) + 4 __lowercase = self.head __lowercase = [] __lowercase = node.forward.copy() lines.append(F"[{node.key}]".ljust(lowercase__ ,'''-''' ) + '''* ''' * len(lowercase__ ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) while len(node.forward ) != 0: __lowercase = node.forward[0] lines.append( F"[{node.key}]".ljust(lowercase__ ,'''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(lowercase__ ) ) __lowercase = node.forward lines.append('''None'''.ljust(lowercase__ ) + '''* ''' * len(lowercase__ ) ) return F"SkipList(level={self.level})\n" + "\n".join(lowercase__ ) def __iter__( self : List[str] ): __lowercase = self.head while len(node.forward ) != 0: yield node.forward[0].key __lowercase = node.forward[0] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = 1 while random() < self.p and level < self.max_level: level += 1 return level def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : str ): __lowercase = [] __lowercase = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __lowercase = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(lowercase__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : KT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: for i, update_node in enumerate(lowercase__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __lowercase = node.forward[i] else: __lowercase = update_node.forward[:i] def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : KT ,lowercase__ : VT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: __lowercase = value else: __lowercase = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 ,lowercase__ ): update_vector.append(self.head ) __lowercase = level __lowercase = Node(lowercase__ ,lowercase__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(lowercase__ ) else: __lowercase = new_node def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : VT ): __lowercase , __lowercase = self._locate_node(lowercase__ ) if node is not None: return node.value return None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 12 ) skip_list.insert('''Key3''' , 41 ) skip_list.insert('''Key4''' , -19 ) __lowercase = skip_list.head __lowercase = {} while node.level != 0: __lowercase = node.forward[0] __lowercase = node.value assert len(A__ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 10 ) skip_list.insert('''Key1''' , 12 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 10 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 10 ) __lowercase = skip_list.head __lowercase = {} while node.level != 0: __lowercase = node.forward[0] __lowercase = node.value if len(A__ ) != 4: print() assert len(A__ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _A ( ): """simple docstring""" __lowercase = SkipList() assert skip_list.find('''Some key''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key2''' , 20 ) assert skip_list.find('''Key2''' ) == 20 skip_list.insert('''Some Key''' , 10 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 13 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 10 assert skip_list.find('''V''' ) == 13 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 14 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 14 assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 12 assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 15 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert('''Key1''' , 12 ) skip_list.insert('''V''' , 13 ) skip_list.insert('''X''' , 142 ) skip_list.insert('''Key2''' , 15 ) skip_list.delete('''X''' ) def traverse_keys(A__ ): yield node.key for forward_node in node.forward: yield from traverse_keys(A__ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _A ( ): """simple docstring""" def is_sorted(A__ ): return all(next_item >= item for item, next_item in zip(A__ , lst[1:] ) ) __lowercase = SkipList() for i in range(10 ): skip_list.insert(A__ , A__ ) assert is_sorted(list(A__ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(A__ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(A__ ) ) def _A ( ): """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _A ( ): """simple docstring""" __lowercase = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
104
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 'convnextv2' def __init__( self : Tuple ,lowercase__ : Dict=3 ,lowercase__ : int=4 ,lowercase__ : Optional[int]=4 ,lowercase__ : Optional[Any]=None ,lowercase__ : List[str]=None ,lowercase__ : Tuple="gelu" ,lowercase__ : Dict=0.0_2 ,lowercase__ : List[Any]=1e-1_2 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : int=2_2_4 ,lowercase__ : int=None ,lowercase__ : Tuple=None ,**lowercase__ : List[str] ,): super().__init__(**lowercase__ ) __lowercase = num_channels __lowercase = patch_size __lowercase = num_stages __lowercase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes __lowercase = [3, 3, 9, 3] if depths is None else depths __lowercase = hidden_act __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = drop_path_rate __lowercase = image_size __lowercase = ['''stem'''] + [F"stage{idx}" for idx in range(1 ,len(self.depths ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowercase__ ,out_indices=lowercase__ ,stage_names=self.stage_names )
104
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__a ) class __snake_case ( __a ): """simple docstring""" _lowerCamelCase = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _lowerCamelCase = Features({"""text""": Value("""string""" )} ) _lowerCamelCase = Features({"""summary""": Value("""string""" )} ) _lowerCamelCase = "text" _lowerCamelCase = "summary" @property def UpperCamelCase__( self ): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
360
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = MgpstrTokenizer _lowerCamelCase = False _lowerCamelCase = {} _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' super().setUp() # fmt: off __A : int = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __A : Dict = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '''\n''' ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : List[str] = '''tester''' __A : Dict = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : Union[str, Any] = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) __A : Optional[Any] = tokenizer.encode([special_token] , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __A : List[Any] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A , __A : str = self.get_input_output_texts(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) __A : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertNotEqual(len(__lowerCamelCase ) , 0 ) __A : Union[str, Any] = tokenizer.decode(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , __lowerCamelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCamelCase__( self ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCamelCase__( self ): '''simple docstring''' pass
291
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self, lowerCAmelCase__, lowerCAmelCase__=7, lowerCAmelCase__=3, lowerCAmelCase__=30, lowerCAmelCase__=400, lowerCAmelCase__=True, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=[0.5, 0.5, 0.5], lowerCAmelCase__=[0.5, 0.5, 0.5], lowerCAmelCase__=True, lowerCAmelCase__=1 / 255, lowerCAmelCase__=True, ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_pad def a_ ( self) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False) -> List[Any]: if not batched: snake_case_ = image_inputs[0] if isinstance(lowerCAmelCase__, Image.Image): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) snake_case_ = max(lowerCAmelCase__, key=lambda lowerCAmelCase__: item[0])[0] snake_case_ = max(lowerCAmelCase__, key=lambda lowerCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = YolosImageProcessor if is_vision_available() else None def a_ ( self) -> Optional[Any]: snake_case_ = YolosImageProcessingTester(self) @property def a_ ( self) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self) -> Dict: snake_case_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__, 'image_mean')) self.assertTrue(hasattr(lowerCAmelCase__, 'image_std')) self.assertTrue(hasattr(lowerCAmelCase__, 'do_normalize')) self.assertTrue(hasattr(lowerCAmelCase__, 'do_resize')) self.assertTrue(hasattr(lowerCAmelCase__, 'size')) def a_ ( self) -> int: snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad, lowerCAmelCase__) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=lowerCAmelCase__) self.assertEqual(image_processor.size, {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad, lowerCAmelCase__) def a_ ( self) -> List[str]: pass def a_ ( self) -> Union[str, Any]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, Image.Image) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__, batched=lowerCAmelCase__) snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a_ ( self) -> int: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, np.ndarray) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__, batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a_ ( self) -> Union[str, Any]: # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, torch.Tensor) # Test not batched input snake_case_ = image_processing(image_inputs[0], return_tensors='pt').pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case_ = image_processing(lowerCAmelCase__, return_tensors='pt').pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(lowerCAmelCase__, batched=lowerCAmelCase__) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def a_ ( self) -> Optional[int]: # Initialize image_processings snake_case_ = self.image_processing_class(**self.image_processor_dict) snake_case_ = self.image_processing_class(do_resize=lowerCAmelCase__, do_normalize=lowerCAmelCase__, do_rescale=lowerCAmelCase__) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowerCAmelCase__, torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__, torch.Tensor) # Test whether the method "pad" and calling the image processor return the same tensors snake_case_ = image_processing_a.pad(lowerCAmelCase__, return_tensors='pt') snake_case_ = image_processing_a(lowerCAmelCase__, return_tensors='pt') self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'], encoded_images['pixel_values'], atol=1e-4)) @slow def a_ ( self) -> Union[str, Any]: # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt', 'r') as f: snake_case_ = json.loads(f.read()) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = YolosImageProcessor.from_pretrained('hustvl/yolos-small') snake_case_ = image_processing(images=lowerCAmelCase__, annotations=lowerCAmelCase__, return_tensors='pt') # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape, lowerCAmelCase__) snake_case_ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCAmelCase__, atol=1e-4)) # verify area snake_case_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCAmelCase__)) # verify boxes snake_case_ = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCAmelCase__) snake_case_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCAmelCase__, atol=1e-3)) # verify image_id snake_case_ = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCAmelCase__)) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCAmelCase__)) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCAmelCase__)) # verify orig_size snake_case_ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCAmelCase__)) # verify size snake_case_ = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCAmelCase__)) @slow def a_ ( self) -> List[Any]: # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt', 'r') as f: snake_case_ = json.loads(f.read()) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them snake_case_ = YolosImageProcessor(format='coco_panoptic') snake_case_ = image_processing(images=lowerCAmelCase__, annotations=lowerCAmelCase__, masks_path=lowerCAmelCase__, return_tensors='pt') # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape, lowerCAmelCase__) snake_case_ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3], lowerCAmelCase__, atol=1e-4)) # verify area snake_case_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'], lowerCAmelCase__)) # verify boxes snake_case_ = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape, lowerCAmelCase__) snake_case_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0], lowerCAmelCase__, atol=1e-3)) # verify image_id snake_case_ = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'], lowerCAmelCase__)) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'], lowerCAmelCase__)) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'], lowerCAmelCase__)) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item(), lowerCAmelCase__) # verify orig_size snake_case_ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'], lowerCAmelCase__)) # verify size snake_case_ = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'], lowerCAmelCase__))
69
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __a : Optional[int] = img __a : Any = img.shape[1] __a : Optional[int] = img.shape[0] __a : Tuple = dst_width __a : List[Any] = dst_height __a : Optional[int] = self.src_w / self.dst_w __a : Tuple = self.src_h / self.dst_h __a : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): __a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )] def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_x * x ) def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": A , A = 800, 600 A = imread('''image_data/lena.jpg''', 1) A = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
160
0
def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : int = len(__lowercase ) A_ : int = len(__lowercase ) A_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) A_ : list = [] for char_count in range(__lowercase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__lowercase ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
192
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : str = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Tuple = "nllb-moe" UpperCamelCase : Dict = ["past_key_values"] UpperCamelCase : List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A=12_81_12 , A=10_24 , A=12 , A=40_96 , A=16 , A=12 , A=40_96 , A=16 , A=0.05 , A=0.05 , A=True , A=True , A="relu" , A=10_24 , A=0.1 , A=0.1 , A=0.0 , A=0.02 , A=2 , A=True , A=False , A="float32" , A=False , A=1_28 , A=64 , A=4 , A=4 , A=0.001 , A=0.001 , A="all" , A=False , A=False , A=1.0 , A=0.2 , A=1 , A=0 , A=2 , A=False , **A , ) -> List[Any]: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = d_model lowerCamelCase = encoder_ffn_dim lowerCamelCase = encoder_layers lowerCamelCase = encoder_attention_heads lowerCamelCase = decoder_ffn_dim lowerCamelCase = decoder_layers lowerCamelCase = decoder_attention_heads lowerCamelCase = dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = activation_function lowerCamelCase = init_std lowerCamelCase = encoder_layerdrop lowerCamelCase = decoder_layerdrop lowerCamelCase = use_cache lowerCamelCase = encoder_layers lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase = router_z_loss_coef lowerCamelCase = router_aux_loss_coef lowerCamelCase = decoder_sparse_step lowerCamelCase = encoder_sparse_step lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = batch_prioritized_routing lowerCamelCase = second_expert_policy lowerCamelCase = normalize_router_prob_before_dropping lowerCamelCase = moe_eval_capacity_token_fraction lowerCamelCase = moe_token_dropout lowerCamelCase = output_router_logits super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , **A , )
252
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": lowerCamelCase = GPTaConfig() else: lowerCamelCase = GPTaConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase = GPTaModel(lowerCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __SCREAMING_SNAKE_CASE : List[str] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase_( lowercase_ : Tuple ) -> Optional[Any]: _lowerCamelCase = torch.load(lowercase_ , map_location='''cpu''' ) return sd def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Optional[Any]=rename_keys_prefix ) -> List[str]: _lowerCamelCase = OrderedDict() _lowerCamelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowerCamelCase = key for name_pair in rename_keys_prefix: _lowerCamelCase = new_key.replace(name_pair[0] , name_pair[1] ) _lowerCamelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowerCamelCase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowerCAmelCase_( lowercase_ : Any , lowercase_ : Tuple ) -> Tuple: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _lowerCamelCase = '''pretraining''' if "vcr" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 5_12} _lowerCamelCase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 20_48} _lowerCamelCase = '''vqa_advanced''' elif "vqa" in checkpoint_path: _lowerCamelCase = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} _lowerCamelCase = '''vqa''' elif "nlvr" in checkpoint_path: _lowerCamelCase = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } _lowerCamelCase = '''nlvr''' _lowerCamelCase = VisualBertConfig(**lowercase_ ) # Load State Dict _lowerCamelCase = load_state_dict(lowercase_ ) _lowerCamelCase = get_new_dict(lowercase_ , lowercase_ ) if model_type == "pretraining": _lowerCamelCase = VisualBertForPreTraining(lowercase_ ) elif model_type == "vqa": _lowerCamelCase = VisualBertForQuestionAnswering(lowercase_ ) elif model_type == "nlvr": _lowerCamelCase = VisualBertForVisualReasoning(lowercase_ ) elif model_type == "multichoice": _lowerCamelCase = VisualBertForMultipleChoice(lowercase_ ) model.load_state_dict(lowercase_ ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
73
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def lowerCAmelCase_( lowercase_ : NDArray[floataa] , lowercase_ : NDArray[floataa] , lowercase_ : float = 10**-1 ) -> bool: _lowerCamelCase = cross(lowercase_ , lowercase_ ) _lowerCamelCase = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works __SCREAMING_SNAKE_CASE : Union[str, Any] = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) __SCREAMING_SNAKE_CASE : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __SCREAMING_SNAKE_CASE : Optional[int] = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __SCREAMING_SNAKE_CASE : str = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) __SCREAMING_SNAKE_CASE : str = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
73
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase__ ( ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase : List[Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(_UpperCAmelCase ) # Let's go lowercase : int = parser.parse_args() if not hasattr(_UpperCAmelCase , 'func' ): parser.print_help() exit(1 ) # Run lowercase : int = args.func(_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
255
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCamelCase: List[Any] = logging.getLogger(__name__) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether tp freeze the encoder.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _lowerCamelCase = field( default='summarization', metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'}, ) _lowerCamelCase = field( default=1_024, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=128, metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) }, ) _lowerCamelCase = field( default=142, metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) _lowerCamelCase = field(default=-1, metadata={'help': '# training examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# validation examples. -1 means use all.'} ) _lowerCamelCase = field(default=-1, metadata={'help': '# test examples. -1 means use all.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Source language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Target language id for translation.'} ) _lowerCamelCase = field(default=SCREAMING_SNAKE_CASE__, metadata={'help': '# num_beams to use for evaluation.'} ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'}, ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' logger.info(f'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(f''' {key} = {metrics[key]}''' ) save_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , f'''{split}_results.json''' ) ) def lowercase__ ( ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(_UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : int = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): assert hasattr(_UpperCAmelCase , _UpperCAmelCase ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(_UpperCAmelCase , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCAmelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCAmelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Optional[Any] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCAmelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase : Dict = SeqaSeqDataset # Get datasets lowercase : int = ( dataset_class( _UpperCAmelCase , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) lowercase : str = ( dataset_class( _UpperCAmelCase , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase : Optional[Any] = ( dataset_class( _UpperCAmelCase , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task , _UpperCAmelCase ) if training_args.predict_with_generate else None ) lowercase : List[Any] = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_args=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , data_collator=SeqaSeqDataCollator( _UpperCAmelCase , _UpperCAmelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) lowercase : List[Any] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) lowercase : Union[str, Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase : List[str] = train_result.metrics lowercase : Dict = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase : Tuple = trainer.evaluate(metric_key_prefix='val' ) lowercase : Dict = data_args.n_val lowercase : Tuple = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) lowercase : List[Any] = trainer.predict(test_dataset=_UpperCAmelCase , metric_key_prefix='test' ) lowercase : str = test_output.metrics lowercase : Dict = data_args.n_test if trainer.is_world_process_zero(): lowercase : Tuple = round(metrics['test_loss'] , 4 ) handle_metrics('test' , _UpperCAmelCase , training_args.output_dir ) all_metrics.update(_UpperCAmelCase ) if training_args.predict_with_generate: lowercase : str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) lowercase : Tuple = lmap(str.strip , _UpperCAmelCase ) write_txt_file(_UpperCAmelCase , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(_UpperCAmelCase , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
255
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """swin2sr""" __snake_case = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self: Dict , a: Any=64 , a: List[Any]=1 , a: Tuple=3 , a: Union[str, Any]=180 , a: Dict=[6, 6, 6, 6, 6, 6] , a: int=[6, 6, 6, 6, 6, 6] , a: List[Any]=8 , a: Any=2.0 , a: Union[str, Any]=True , a: Tuple=0.0 , a: Any=0.0 , a: Any=0.1 , a: Optional[int]="gelu" , a: Dict=False , a: Optional[int]=0.0_2 , a: str=1e-5 , a: List[str]=2 , a: int=1.0 , a: Dict="1conv" , a: Tuple="pixelshuffle" , **a: Optional[Any] , ): super().__init__(**a ) __lowerCamelCase : Any = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Any = embed_dim __lowerCamelCase : Any = depths __lowerCamelCase : Union[str, Any] = len(a ) __lowerCamelCase : int = num_heads __lowerCamelCase : List[str] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : int = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : Dict = drop_path_rate __lowerCamelCase : Dict = hidden_act __lowerCamelCase : Tuple = use_absolute_embeddings __lowerCamelCase : Dict = layer_norm_eps __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : str = upscale __lowerCamelCase : str = img_range __lowerCamelCase : Optional[Any] = resi_connection __lowerCamelCase : Optional[int] = upsampler
194
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): __lowerCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCamelCase : Optional[int] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) __lowerCamelCase : str = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 __lowerCamelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase : Union[str, Any] = 2.0 * image - 1.0 __lowerCamelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase : str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9_995 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCamelCase : List[str] = True __lowerCamelCase : str = va.device __lowerCamelCase : int = va.cpu().numpy() __lowerCamelCase : List[str] = va.cpu().numpy() __lowerCamelCase : str = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: __lowerCamelCase : Union[str, Any] = (1 - t) * va + t * va else: __lowerCamelCase : List[Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = theta_a * t __lowerCamelCase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = np.sin(theta_a - theta_t ) / sin_theta_a __lowerCamelCase : List[Any] = sin_theta_t / sin_theta_a __lowerCamelCase : Union[str, Any] = sa * va + sa * va if inputs_are_torch: __lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) __lowerCamelCase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for param in model.parameters(): __lowerCamelCase : Any = value class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Any , a: AutoencoderKL , a: CLIPTextModel , a: CLIPModel , a: CLIPTokenizer , a: UNetaDConditionModel , a: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , a: CLIPFeatureExtractor , a: Union[str, Any]=None , a: Union[str, Any]=None , a: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) __lowerCamelCase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) __lowerCamelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _snake_case ( self: Optional[Any] , a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _snake_case ( self: Dict ): self.enable_attention_slicing(a ) def _snake_case ( self: Optional[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: List[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: Optional[Any] , a: Union[str, Any] , a: List[str] , a: List[Any] ): # get the original timestep using init_timestep __lowerCamelCase : List[Any] = min(int(num_inference_steps * strength ) , a ) __lowerCamelCase : str = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self: Union[str, Any] , a: Optional[Any] , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , a: List[str]=None ): if not isinstance(a , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(a )}' ) __lowerCamelCase : Union[str, Any] = image.to(device=a , dtype=a ) if isinstance(a , a ): __lowerCamelCase : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] __lowerCamelCase : Tuple = torch.cat(a , dim=0 ) else: __lowerCamelCase : List[Any] = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[str] = 0.1_8_2_1_5 * init_latents __lowerCamelCase : Union[str, Any] = init_latents.repeat_interleave(a , dim=0 ) __lowerCamelCase : Optional[int] = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents __lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(a , a , a ) __lowerCamelCase : int = init_latents return latents def _snake_case ( self: Optional[int] , a: Any ): __lowerCamelCase : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowerCamelCase : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowerCamelCase : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _snake_case ( self: Any , a: Tuple , a: Tuple ): __lowerCamelCase : Dict = self.feature_extractor.preprocess(a ) __lowerCamelCase : Dict = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __lowerCamelCase : List[str] = self.clip_model.get_image_features(a ) __lowerCamelCase : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : Tuple = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self: str , a: str , a: int , a: List[Any] , a: str , a: List[Any] , a: Dict , a: int , ): __lowerCamelCase : Optional[Any] = latents.detach().requires_grad_() __lowerCamelCase : str = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowerCamelCase : str = self.scheduler.alphas_cumprod[timestep] __lowerCamelCase : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowerCamelCase : Optional[int] = torch.sqrt(a ) __lowerCamelCase : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): __lowerCamelCase : str = self.scheduler.sigmas[index] __lowerCamelCase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : Optional[int] = 1 / 0.1_8_2_1_5 * sample __lowerCamelCase : Optional[Any] = self.vae.decode(a ).sample __lowerCamelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = transforms.Resize(self.feature_extractor_size )(a ) __lowerCamelCase : Union[str, Any] = self.normalize(a ).to(latents.dtype ) __lowerCamelCase : Tuple = self.clip_model.get_image_features(a ) __lowerCamelCase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : List[str] = spherical_dist_loss(a , a ).mean() * clip_guidance_scale __lowerCamelCase : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): __lowerCamelCase : Optional[int] = latents.detach() + grads * (sigma**2) __lowerCamelCase : List[Any] = noise_pred_original else: __lowerCamelCase : str = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Any , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Optional[str] = None , a: Optional[str] = None , a: Optional[int] = 512 , a: Optional[int] = 512 , a: float = 0.6 , a: Optional[int] = 50 , a: Optional[float] = 7.5 , a: Optional[int] = 1 , a: float = 0.0 , a: Optional[float] = 100 , a: Optional[torch.Generator] = None , a: Optional[str] = "pil" , a: bool = True , a: float = 0.8 , a: float = 0.1 , a: float = 0.1 , ): if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(a )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(a , torch.Generator ) and batch_size > 1: __lowerCamelCase : List[Any] = [generator] + [None] * (batch_size - 1) __lowerCamelCase : Dict = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __lowerCamelCase : Any = [x[0] for x in coca_is_none if x[1]] __lowerCamelCase : str = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Any = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Tuple = self.get_image_description(a ) # get prompt text embeddings for content and style __lowerCamelCase : int = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : Union[str, Any] = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : List[Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt __lowerCamelCase : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps __lowerCamelCase : List[Any] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowerCamelCase : Union[str, Any] = {} if accepts_offset: __lowerCamelCase : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowerCamelCase , __lowerCamelCase : Dict = self.get_timesteps(a , a , self.device ) __lowerCamelCase : Tuple = timesteps[:1].repeat(a ) # Preprocess image __lowerCamelCase : Any = preprocess(a , a , a ) __lowerCamelCase : str = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : Dict = preprocess(a , a , a ) __lowerCamelCase : Optional[int] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : int = slerp(a , a , a ) if clip_guidance_scale > 0: __lowerCamelCase : List[str] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : Optional[int] = content_text_input.input_ids.shape[-1] __lowerCamelCase : int = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) __lowerCamelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowerCamelCase : List[Any] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowerCamelCase : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: __lowerCamelCase : List[Any] = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : Dict = {} if accepts_eta: __lowerCamelCase : List[str] = eta # check if the scheduler accepts generator __lowerCamelCase : Optional[int] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowerCamelCase : Optional[Any] = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Tuple = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowerCamelCase : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowerCamelCase , __lowerCamelCase : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : Union[str, Any] = self.vae.decode(a ).sample __lowerCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
194
1
"""simple docstring""" import os def UpperCAmelCase ( ) -> Union[str, Any]: with open(os.path.dirname(UpperCAmelCase ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(UpperCAmelCase ): for letter in name: name_score += ord(UpperCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
69
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
import argparse import os import re _UpperCAmelCase : Union[str, Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _UpperCAmelCase : Tuple = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings _UpperCAmelCase : Dict = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def A ( lowercase , lowercase = False ) -> List[Any]: '''simple docstring''' with open(lowercase , 'r' , encoding='utf-8' ) as f: UpperCamelCase = f.read() UpperCamelCase = content.split('\n' ) UpperCamelCase = [] UpperCamelCase = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase = sorted(lowercase , key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def A ( lowercase = False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = [os.path.join(lowercase , lowercase ) for f in os.listdir(lowercase ) if f.endswith('.py' )] UpperCamelCase = [sort_auto_mapping(lowercase , overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): UpperCamelCase = [f for f, d in zip(lowercase , lowercase ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(lowercase )}. Run `make style` to fix''' ' this.' ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") _UpperCAmelCase : Union[str, Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
110
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
110
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[str] = '''vivit''' def __init__( self ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=[2, 16, 16] ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu_fast" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-06 ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :Any = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[int] = image_size __SCREAMING_SNAKE_CASE :List[str] = num_frames __SCREAMING_SNAKE_CASE :Any = tubelet_size __SCREAMING_SNAKE_CASE :str = num_channels __SCREAMING_SNAKE_CASE :Any = qkv_bias super().__init__(**SCREAMING_SNAKE_CASE__ )
191
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase : List[Any] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = ["""CLIPFeatureExtractor"""] __lowerCamelCase : List[Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger("""transformers.models.speecht5""") def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: hf_model.apply_weight_norm() UpperCamelCase : int = checkpoint["input_conv.weight_g"] UpperCamelCase : Dict = checkpoint["input_conv.weight_v"] UpperCamelCase : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCamelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCamelCase : List[Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_g"] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] UpperCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> Tuple: if config_path is not None: UpperCamelCase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowerCAmelCase ) else: UpperCamelCase : Optional[int] = SpeechTaHifiGanConfig() UpperCamelCase : List[str] = SpeechTaHifiGan(_lowerCAmelCase ) UpperCamelCase : str = torch.load(_lowerCAmelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[Any] = np.load(_lowerCAmelCase ) UpperCamelCase : List[str] = stats[0].reshape(-1 ) UpperCamelCase : Tuple = stats[1].reshape(-1 ) UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
140
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case_ ( _lowerCAmelCase : int ) -> bool: UpperCAmelCase : int = int(number**0.5 ) return number == sq * sq def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> tuple[int, int]: UpperCAmelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase : int = x_den * y_den * z_den UpperCAmelCase : int = gcd(_lowerCAmelCase , _lowerCAmelCase ) top //= hcf bottom //= hcf return top, bottom def snake_case_ ( _lowerCAmelCase : int = 35 ) -> int: UpperCAmelCase : set = set() UpperCAmelCase : int UpperCAmelCase : Fraction = Fraction(0 ) UpperCAmelCase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase : Optional[int] = x_num * y_den + x_den * y_num UpperCAmelCase : Tuple = x_den * y_den UpperCAmelCase : Optional[Any] = gcd(_lowerCAmelCase , _lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : Optional[int] = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) unique_s.add(_lowerCAmelCase ) # n=2 UpperCAmelCase : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(_lowerCAmelCase ) and is_sq(_lowerCAmelCase ): UpperCAmelCase : Optional[Any] = int(sqrt(_lowerCAmelCase ) ) UpperCAmelCase : Dict = int(sqrt(_lowerCAmelCase ) ) UpperCAmelCase : Any = gcd(_lowerCAmelCase , _lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : str = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) unique_s.add(_lowerCAmelCase ) # n=-1 UpperCAmelCase : List[str] = x_num * y_num UpperCAmelCase : Tuple = x_den * y_num + x_num * y_den UpperCAmelCase : Optional[int] = gcd(_lowerCAmelCase , _lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : str = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) unique_s.add(_lowerCAmelCase ) # n=2 UpperCAmelCase : Dict = x_num * x_num * y_num * y_num UpperCAmelCase : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_lowerCAmelCase ) and is_sq(_lowerCAmelCase ): UpperCAmelCase : Any = int(sqrt(_lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = int(sqrt(_lowerCAmelCase ) ) UpperCAmelCase : Optional[Any] = gcd(_lowerCAmelCase , _lowerCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase : Tuple = add_three( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) unique_s.add(_lowerCAmelCase ) for num, den in unique_s: total += Fraction(_lowerCAmelCase , _lowerCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
23
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase : Optional[Any] = False, False, False @dataclass class __lowerCAmelCase : lowercase = None lowercase = True lowercase = True lowercase = None # Automatically constructed lowercase = "dict" lowercase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase = field(default="Audio" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): '''simple docstring''' return self.pa_type def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCamelCase = BytesIO() sf.write(__UpperCAmelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCamelCase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __UpperCamelCase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 3_2767 __UpperCamelCase = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __UpperCamelCase , __UpperCamelCase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __UpperCamelCase = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __UpperCamelCase = token_per_repo_id or {} __UpperCamelCase = path.split('::' )[-1] try: __UpperCamelCase = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] __UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCamelCase = None with xopen(__UpperCAmelCase , 'rb' , use_auth_token=__UpperCAmelCase ) as f: __UpperCamelCase , __UpperCamelCase = sf.read(__UpperCAmelCase ) else: __UpperCamelCase , __UpperCamelCase = sf.read(__UpperCAmelCase ) __UpperCamelCase = array.T if self.mono: __UpperCamelCase = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCamelCase = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) __UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __UpperCamelCase = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __UpperCamelCase = storage.field('bytes' ) else: __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __UpperCamelCase = storage.field('path' ) else: __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase ): with xopen(__UpperCAmelCase , 'rb' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
367
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = str(id_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = [] __UpperCamelCase = {} # {vertex:distance} def __lt__( self , __UpperCAmelCase ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.neighbors.append(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = weight def A ( snake_case :List[Any] , snake_case :Dict , snake_case :Any , snake_case :str ) -> List[str]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , snake_case ) graph[b - 1].add_edge(graph[a - 1] , snake_case ) def A ( snake_case :list , snake_case :Vertex ) -> list: __UpperCamelCase = [] for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = graph[:] while q: __UpperCamelCase = min(snake_case ) q.remove(snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] for i in range(1 , len(snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( snake_case :list , snake_case :Vertex ) -> Iterator[tuple]: for u in graph: __UpperCamelCase = math.inf __UpperCamelCase = None __UpperCamelCase = 0 __UpperCamelCase = list(snake_case ) hq.heapify(snake_case ) while h: __UpperCamelCase = hq.heappop(snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __UpperCamelCase = u __UpperCamelCase = u.edges[v.id] hq.heapify(snake_case ) for i in range(1 , len(snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
263
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a : Tuple = random.Random() def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : List[str]=1.0 , _lowercase : Dict=None , _lowercase : Dict=None ) ->Any: '''simple docstring''' if rng is None: a : Dict = global_rng a : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=400 , lowerCAmelCase__=2000 , lowerCAmelCase__=10 , lowerCAmelCase__=160 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=4000 , lowerCAmelCase__=False , lowerCAmelCase__=True , ) -> str: a : Union[str, Any] = parent a : Tuple = batch_size a : Optional[int] = min_seq_length a : Optional[Any] = max_seq_length a : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a : List[Any] = padding_value a : Dict = sampling_rate a : List[str] = return_attention_mask a : Union[str, Any] = do_normalize a : Dict = feature_size a : Tuple = chunk_length a : int = hop_length def __a ( self ) -> List[Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __a ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Tuple: def _flatten(lowerCAmelCase__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: a : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a : List[Any] = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : Tuple =WhisperFeatureExtractor if is_speech_available() else None def __a ( self ) -> Tuple: a : List[str] = WhisperFeatureExtractionTester(self ) def __a ( self ) -> Any: a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a : str = feat_extract_first.save_pretrained(lowerCAmelCase__ )[0] check_json_file_has_correct_format(lowerCAmelCase__ ) a : Tuple = self.feature_extraction_class.from_pretrained(lowerCAmelCase__ ) a : Union[str, Any] = feat_extract_first.to_dict() a : Tuple = feat_extract_second.to_dict() a : Optional[int] = feat_extract_first.mel_filters a : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Union[str, Any]: a : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a : List[Any] = os.path.join(lowerCAmelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase__ ) a : str = self.feature_extraction_class.from_json_file(lowerCAmelCase__ ) a : int = feat_extract_first.to_dict() a : Tuple = feat_extract_second.to_dict() a : Any = feat_extract_first.mel_filters a : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a : Union[str, Any] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size a : List[str] = feature_extractor(lowerCAmelCase__ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a : Tuple = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features a : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a : Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a : str = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] a : str = np.asarray(lowerCAmelCase__ ) a : Optional[int] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a : List[Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test truncation required a : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] a : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] a : List[str] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs_truncated] a : List[str] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a : Any = feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __a ( self ) -> int: import torch a : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : Dict = np.random.rand(100 , 32 ).astype(np.floataa ) a : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a : Any = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: a : str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a : Dict = ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: # fmt: off a : Any = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a : Tuple = self._load_datasamples(1 ) a : Any = WhisperFeatureExtractor() a : List[str] = feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1E-4 ) ) def __a ( self ) -> str: a : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a : int = self._load_datasamples(1 )[0] a : Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCAmelCase__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ ) - 1 ) < 1E-3 ) )
105
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(_UpperCAmelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(_UpperCAmelCase , '''observations''' ) snake_case_ = obs[None].repeat(_UpperCAmelCase , axis=0 ) snake_case_ = {0: self.to_torch(_UpperCAmelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(_UpperCAmelCase , device=self.unet.device ) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=_UpperCAmelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , _UpperCAmelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
267
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(_UpperCAmelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(_UpperCAmelCase , '''observations''' ) snake_case_ = obs[None].repeat(_UpperCAmelCase , axis=0 ) snake_case_ = {0: self.to_torch(_UpperCAmelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(_UpperCAmelCase , device=self.unet.device ) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=_UpperCAmelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , _UpperCAmelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
267
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict =logging.get_logger(__name__) _UpperCAmelCase : Any ={ """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = """audio-spectrogram-transformer""" def __init__( self , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase=3_0_7_2 , __lowercase="gelu" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=1e-12 , __lowercase=1_6 , __lowercase=True , __lowercase=1_0 , __lowercase=1_0 , __lowercase=1_0_2_4 , __lowercase=1_2_8 , **__lowercase , ) -> List[str]: super().__init__(**__lowercase ) lowerCAmelCase_ : int = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Dict = qkv_bias lowerCAmelCase_ : Optional[int] = frequency_stride lowerCAmelCase_ : str = time_stride lowerCAmelCase_ : Optional[Any] = max_length lowerCAmelCase_ : Optional[Any] = num_mel_bins
262
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _UpperCAmelCase : Optional[Any] =NewType("""DataClass""", Any) _UpperCAmelCase : Dict =NewType("""DataClassType""", Any) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCAmelCase ( lowerCAmelCase_ )-> Callable[[str], Any]: lowerCAmelCase_ : str = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( *, lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = dataclasses.MISSING , lowerCAmelCase_ = None , **lowerCAmelCase_ , )-> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCAmelCase_ : Dict = {} if aliases is not None: lowerCAmelCase_ : str = aliases if help is not None: lowerCAmelCase_ : Tuple = help return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ ) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Iterable[DataClassType] def __init__( self , __lowercase , **__lowercase ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: lowerCAmelCase_ : Optional[int] = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): lowerCAmelCase_ : Union[str, Any] = [dataclass_types] lowerCAmelCase_ : List[Any] = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def lowercase_ ( __lowercase , __lowercase ) -> Union[str, Any]: lowerCAmelCase_ : Optional[Any] = f"""--{field.name}""" lowerCAmelCase_ : Tuple = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) lowerCAmelCase_ : List[str] = kwargs.pop('''aliases''' , [] ) if isinstance(__lowercase , __lowercase ): lowerCAmelCase_ : Optional[Any] = [aliases] lowerCAmelCase_ : Any = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__lowercase , '''UnionType''' ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union lowerCAmelCase_ : List[Any] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCAmelCase_ : Dict = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCAmelCase_ : str = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCAmelCase_ : List[Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCAmelCase_ : Dict = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: lowerCAmelCase_ : Optional[Any] = field.type.__args__ else: lowerCAmelCase_ : int = [x.value for x in field.type] lowerCAmelCase_ : str = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: lowerCAmelCase_ : str = field.default else: lowerCAmelCase_ : Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCAmelCase_ : Tuple = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. lowerCAmelCase_ : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCAmelCase_ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCAmelCase_ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name lowerCAmelCase_ : int = '''?''' # This is the value that will get picked if we do --field_name (without value) lowerCAmelCase_ : List[Any] = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): lowerCAmelCase_ : Union[str, Any] = field.type.__args__[0] lowerCAmelCase_ : Dict = '''+''' if field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : Any = field.default_factory() elif field.default is dataclasses.MISSING: lowerCAmelCase_ : Optional[int] = True else: lowerCAmelCase_ : List[Any] = field.type if field.default is not dataclasses.MISSING: lowerCAmelCase_ : Dict = field.default elif field.default_factory is not dataclasses.MISSING: lowerCAmelCase_ : List[Any] = field.default_factory() else: lowerCAmelCase_ : int = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCAmelCase_ : Any = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__lowercase ) def lowercase_ ( self , __lowercase ) -> List[Any]: if hasattr(__lowercase , '''_argument_group_name''' ): lowerCAmelCase_ : str = self.add_argument_group(dtype._argument_group_name ) else: lowerCAmelCase_ : Dict = self try: lowerCAmelCase_ : Dict[str, type] = get_type_hints(__lowercase ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ): lowerCAmelCase_ : Any = '''.'''.join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue lowerCAmelCase_ : Optional[int] = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def lowercase_ ( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCAmelCase_ : str = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCAmelCase_ : str = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = args_file_parser.parse_known_args(args=__lowercase ) lowerCAmelCase_ : int = vars(__lowercase ).get(args_file_flag.lstrip('''-''' ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) lowerCAmelCase_ : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCAmelCase_ : Any = file_args + args if args is not None else file_args + sys.argv[1:] lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.parse_known_args(args=__lowercase ) lowerCAmelCase_ : Any = [] for dtype in self.dataclass_types: lowerCAmelCase_ : str = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : str = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) lowerCAmelCase_ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : int = set(args.keys() ) lowerCAmelCase_ : str = [] for dtype in self.dataclass_types: lowerCAmelCase_ : int = {f.name for f in dataclasses.fields(__lowercase ) if f.init} lowerCAmelCase_ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCAmelCase_ : List[str] = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}""" ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: with open(Path(__lowercase ) , encoding='''utf-8''' ) as open_json_file: lowerCAmelCase_ : Dict = json.loads(open_json_file.read() ) lowerCAmelCase_ : str = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def lowercase_ ( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: lowerCAmelCase_ : Optional[Any] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
262
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCamelCase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCamelCase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE_ ( __A : Vector , __A : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(__A ) - np.asarray(__A )) ** 2 ) ) def SCREAMING_SNAKE_CASE_ ( __A : Vector , __A : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(__A , __A ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( ) -> None: from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) benchmark()
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: if len(__A ) <= 1: return lst _SCREAMING_SNAKE_CASE = 1 while i < len(__A ): if lst[i - 1] <= lst[i]: i += 1 else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = lst[i], lst[i - 1] i -= 1 if i == 0: _SCREAMING_SNAKE_CASE = 1 return lst if __name__ == "__main__": lowerCamelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
111
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase_ = get_tests_dir("fixtures/dummy-config.json") class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = 0 def __UpperCAmelCase ( self ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): __a = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(_a , _a ) def __UpperCAmelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __a = os.path.join(_a , '''fake-roberta''' ) os.makedirs(_a , exist_ok=_a ) with open(os.path.join(_a , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __a = AutoConfig.from_pretrained(_a ) self.assertEqual(type(_a ) , _a ) def __UpperCAmelCase ( self ): try: AutoConfig.register('''custom''' , _a ) # Wrong model type will raise an error with self.assertRaises(_a ): AutoConfig.register('''model''' , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoConfig.register('''bert''' , _a ) # Now that the config is registered, it can be used as any other config with the auto-API __a = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) __a = AutoConfig.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''bert-base is not a local folder and is not a valid model identifier''' ): __a = AutoConfig.from_pretrained('''bert-base''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __a = AutoConfig.from_pretrained(_a , revision='''aaaaaa''' ) def __UpperCAmelCase ( self ): with self.assertRaisesRegex( _a , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __a = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def __UpperCAmelCase ( self ): with self.assertRaises(_a ): __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) __a = AutoConfig.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def __UpperCAmelCase ( self ): class __lowerCAmelCase ( lowercase__ ): '''simple docstring''' __UpperCAmelCase : str = "new-model" try: AutoConfig.register('''new-model''' , _a ) # If remote code is not set, the default is to use local __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __a = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=_a ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
45
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings( __lowerCAmelCase , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : GenericTensor ): """simple docstring""" if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCamelCase_ ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowerCamelCase_ ( self : Any , lowerCamelCase_ : GenericTensor ): """simple docstring""" UpperCamelCase = self.get_masked_index(lowerCamelCase_ ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : GenericTensor ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : List[str] ): """simple docstring""" if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.ensure_exactly_one_mask_token(lowerCamelCase_ ) return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.model(**lowerCamelCase_ ) UpperCamelCase = model_inputs["""input_ids"""] return model_outputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Dict , lowerCamelCase_ : str=5 , lowerCamelCase_ : Optional[int]=None ): """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs["""input_ids"""][0] UpperCamelCase = model_outputs["""logits"""] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(lowerCamelCase_ , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(lowerCamelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(lowerCamelCase_ , 0 ) UpperCamelCase = tf.math.top_k(lowerCamelCase_ , k=lowerCamelCase_ ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCamelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(lowerCamelCase_ ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(lowerCamelCase_ ) result.append(lowerCamelCase_ ) if single_mask: return result[0] return result def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=None ): """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(lowerCamelCase_ , lowerCamelCase_ ) if id_ is None: UpperCamelCase = self.tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , max_length=1 , truncation=lowerCamelCase_ , )["""input_ids"""] if len(lowerCamelCase_ ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCamelCase = list(set(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCamelCase = np.array(lowerCamelCase_ ) return target_ids def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Any=None ): """simple docstring""" UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : Tuple , lowerCamelCase_ : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCamelCase = super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) == 1: return outputs[0] return outputs
165
def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(matrix[0] ) UpperCamelCase = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase = matrix[i], matrix[row] UpperCamelCase = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
165
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class __snake_case ( lowerCAmelCase__ ): __lowerCamelCase : List[str] = '''transfo-xl''' __lowerCamelCase : Any = ['''mems'''] __lowerCamelCase : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , snake_case__=26_7735 , snake_case__=[2_0000, 4_0000, 20_0000] , snake_case__=1024 , snake_case__=1024 , snake_case__=16 , snake_case__=64 , snake_case__=4096 , snake_case__=4 , snake_case__=False , snake_case__=18 , snake_case__=1600 , snake_case__=1000 , snake_case__=True , snake_case__=True , snake_case__=0 , snake_case__=-1 , snake_case__=True , snake_case__=0.1 , snake_case__=0.0 , snake_case__=True , snake_case__="normal" , snake_case__=0.01 , snake_case__=0.01 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=0 , **snake_case__ , ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : List[Any] =[] self.cutoffs.extend(__lowerCAmelCase ) if proj_share_all_but_first: UpperCAmelCase : List[Any] =[False] + [True] * len(self.cutoffs ) else: UpperCAmelCase : Optional[int] =[False] + [False] * len(self.cutoffs ) UpperCAmelCase : Union[str, Any] =d_model UpperCAmelCase : Tuple =d_embed UpperCAmelCase : Union[str, Any] =d_head UpperCAmelCase : Dict =d_inner UpperCAmelCase : int =div_val UpperCAmelCase : Union[str, Any] =pre_lnorm UpperCAmelCase : str =n_layer UpperCAmelCase : Optional[int] =n_head UpperCAmelCase : Optional[int] =mem_len UpperCAmelCase : Optional[int] =same_length UpperCAmelCase : Dict =attn_type UpperCAmelCase : List[str] =clamp_len UpperCAmelCase : str =sample_softmax UpperCAmelCase : str =adaptive UpperCAmelCase : Union[str, Any] =dropout UpperCAmelCase : List[Any] =dropatt UpperCAmelCase : List[str] =untie_r UpperCAmelCase : List[Any] =init UpperCAmelCase : Dict =init_range UpperCAmelCase : int =proj_init_std UpperCAmelCase : Optional[Any] =init_std UpperCAmelCase : Dict =layer_norm_epsilon super().__init__(eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
348
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class a__( unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Dict = ViTImageProcessor if is_vision_available() else None @property def a_ ( self): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a_ ( self): """simple docstring""" lowerCAmelCase = (3, 32, 128) lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase)))) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp: fp.write(json.dumps(__lowerCAmelCase) + """\n""") lowerCAmelCase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowerCAmelCase = os.path.join(self.tmpdirname , __lowerCAmelCase) with open(self.image_processor_file , """w""" , encoding="""utf-8""") as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self , **__lowerCAmelCase): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase) def a_ ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) lowerCAmelCase = Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1)) return image_input def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowerCAmelCase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0) lowerCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , __lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(__lowerCAmelCase , return_tensors="""np""") lowerCAmelCase = processor(images=__lowerCAmelCase , return_tensors="""np""") for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = processor(text=__lowerCAmelCase) lowerCAmelCase = tokenizer(__lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = """test""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ["""pixel_values""", """labels"""]) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase): processor() def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.char_decode(__lowerCAmelCase) lowerCAmelCase = tokenizer.batch_decode(__lowerCAmelCase) lowerCAmelCase = [seq.replace(""" """ , """""") for seq in decoded_tok] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = None lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def a_ ( self): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = MgpstrProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase) lowerCAmelCase = torch.randn(1 , 27 , 38) lowerCAmelCase = torch.randn(1 , 27 , 50257) lowerCAmelCase = torch.randn(1 , 27 , 30522) lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""])
272
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a_ ( a_ ): '''simple docstring''' __a: torch.FloatTensor class a_ ( a_ , a_ ): '''simple docstring''' @register_to_config def __init__( self , lowercase_ = 3 , lowercase_ = 3 , lowercase_ = ("DownEncoderBlock2D",) , lowercase_ = ("UpDecoderBlock2D",) , lowercase_ = (6_4,) , lowercase_ = 1 , lowercase_ = "silu" , lowercase_ = 3 , lowercase_ = 3_2 , lowercase_ = 2_5_6 , lowercase_ = 3_2 , lowercase_ = None , lowercase_ = 0.1_82_15 , lowercase_ = "group" , ) -> Any: '''simple docstring''' super().__init__() # pass init params to Encoder lowerCAmelCase_ = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) lowerCAmelCase_ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 ) lowerCAmelCase_ = VectorQuantizer(lowercase_ , lowercase_ , beta=0.25 , remap=lowercase_ , sane_index_shape=lowercase_ ) lowerCAmelCase_ = nn.Convad(lowercase_ , lowercase_ , 1 ) # pass init params to Decoder lowerCAmelCase_ = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , norm_type=lowercase_ , ) @apply_forward_hook def _lowercase ( self , lowercase_ , lowercase_ = True ) -> VQEncoderOutput: '''simple docstring''' lowerCAmelCase_ = self.encoder(lowercase_ ) lowerCAmelCase_ = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowercase ( self , lowercase_ , lowercase_ = False , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.quantize(lowercase_ ) else: lowerCAmelCase_ = h lowerCAmelCase_ = self.post_quant_conv(lowercase_ ) lowerCAmelCase_ = self.decoder(lowercase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowercase ( self , lowercase_ , lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' lowerCAmelCase_ = sample lowerCAmelCase_ = self.encode(lowercase_ ).latents lowerCAmelCase_ = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
14
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCamelCase_ = """pytorch_model.bin""" lowerCamelCase_ = """pytorch_model.bin.index.json""" lowerCamelCase_ = """adapter_config.json""" lowerCamelCase_ = """adapter_model.bin""" lowerCamelCase_ = """adapter_model.safetensors""" lowerCamelCase_ = """tf_model.h5""" lowerCamelCase_ = """tf_model.h5.index.json""" lowerCamelCase_ = """model.ckpt""" lowerCamelCase_ = """flax_model.msgpack""" lowerCamelCase_ = """flax_model.msgpack.index.json""" lowerCamelCase_ = """model.safetensors""" lowerCamelCase_ = """model.safetensors.index.json""" lowerCamelCase_ = """config.json""" lowerCamelCase_ = """preprocessor_config.json""" lowerCamelCase_ = FEATURE_EXTRACTOR_NAME lowerCamelCase_ = """generation_config.json""" lowerCamelCase_ = """modelcard.json""" lowerCamelCase_ = """▁""" lowerCamelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCamelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCamelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCamelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase ( a_ ) -> Dict: if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: lowerCAmelCase_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: lowerCAmelCase_ = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
14
1
from math import sqrt def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for i in range(1, int(sqrt(snake_case__ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case__ ): total += i + n // i elif i == sqrt(snake_case__ ): total += i return total - n def _UpperCamelCase ( snake_case__ = 1_0000 ) -> int: __UpperCAmelCase : Tuple = sum( i for i in range(1, snake_case__ ) if sum_of_divisors(sum_of_divisors(snake_case__ ) ) == i and sum_of_divisors(snake_case__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
'''simple docstring''' import argparse import os import re lowerCAmelCase_ : Any = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase_ : List[str] = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings lowerCAmelCase_ : Tuple = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _lowerCamelCase ( lowercase : Any , lowercase : bool = False ) -> Optional[Any]: with open(lowercase , "r" , encoding="utf-8" ) as f: _a = f.read() _a = content.split("\n" ) _a = [] _a = 0 while line_idx < len(lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _a = len(re.search(r"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 _a = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _a = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _a = sorted(lowercase , key=lambda lowercase : _re_identifier.search(lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase , "w" , encoding="utf-8" ) as f: f.write("\n".join(lowercase ) ) elif "\n".join(lowercase ) != content: return True def _lowerCamelCase ( lowercase : bool = False ) -> List[str]: _a = [os.path.join(lowercase , lowercase ) for f in os.listdir(lowercase ) if f.endswith(".py" )] _a = [sort_auto_mapping(lowercase , overwrite=lowercase ) for fname in fnames] if not overwrite and any(lowercase ): _a = [f for f, d in zip(lowercase , lowercase ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(lowercase )}. Run `make style` to fix' " this." ) if __name__ == "__main__": lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCAmelCase_ : Optional[int] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
63
0
import math import random def snake_case ( snake_case__ :float , snake_case__ :bool = False) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value)) # Initial Value _SCREAMING_SNAKE_CASE = 0.02 def snake_case ( snake_case__ :int , snake_case__ :int) -> float: _A = float(2 * (random.randint(1 , 100)) - 1) for _ in range(snake_case__): # Forward propagation _A = sigmoid_function(INITIAL_VALUE * weight) # How much did we miss? _A = (expected / 100) - layer_a # Error delta _A = layer_1_error * sigmoid_function(snake_case__ , snake_case__) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input('Expected value: ')) _SCREAMING_SNAKE_CASE = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
81
import cva import numpy as np class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: if k in (0.04, 0.06): _A = k _A = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ) -> str: return str(self.k ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> tuple[cva.Mat, list[list[int]]]: _A = cva.imread(lowerCAmelCase_ , 0 ) _A , _A = img.shape _A = [] _A = img.copy() _A = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB ) _A , _A = np.gradient(lowerCAmelCase_ ) _A = dx**2 _A = dy**2 _A = dx * dy _A = 0.04 _A = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset ): for x in range(lowerCAmelCase_ , w - offset ): _A = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _A = (wxx * wyy) - (wxy**2) _A = wxx + wyy _A = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _SCREAMING_SNAKE_CASE = HarrisCorner(0.04, 3) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
81
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) UpperCamelCase__ :int = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCamelCase__ :Any = model(UpperCamelCase_ )['''last_hidden_state'''] UpperCamelCase__ :Any = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice. UpperCamelCase__ :Any = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
97
'''simple docstring''' from collections import defaultdict class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase__ :Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase__ :str = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase__ :Optional[int] = (1 << len(UpperCamelCase_ )) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase__ :str = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase__ :Optional[int] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
97
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase_ ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _UpperCamelCase : str = "audio" _UpperCamelCase : str = "labels" def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Dict ) -> Tuple: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCamelCase_ = copy.deepcopy(self ) UpperCamelCase_ = self.label_schema.copy() UpperCamelCase_ = features[self.label_column] UpperCamelCase_ = label_schema return task_template @property def lowercase ( self: Tuple ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 UpperCamelCase : List[str] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase : List[Any] = get_tests_dir("fixtures/vocab.json") UpperCamelCase : Any = get_tests_dir("fixtures") class __lowerCAmelCase ( unittest.TestCase ): lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig() __UpperCamelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'vocab.json' ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) __UpperCamelCase = WavaVecaProcessor(__UpperCAmelCase , __UpperCAmelCase ) # save in new folder processor.save_pretrained(__UpperCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(__UpperCAmelCase ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaFeatureExtractor() __UpperCamelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) __UpperCamelCase = WavaVecaProcessor(__UpperCAmelCase , __UpperCAmelCase ) # save in new folder processor.save_pretrained(__UpperCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'r' ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write(json.dumps(__UpperCAmelCase ) ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(__UpperCAmelCase ) # copy relevant files copyfile(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' ) as f: f.write('{}' ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCAmelCase ): __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) __UpperCamelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) __UpperCamelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase , use_fast=__UpperCAmelCase ) __UpperCamelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def UpperCAmelCase ( self ): '''simple docstring''' try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCAmelCase ): AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(__UpperCAmelCase , 'vocab.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(__UpperCAmelCase ) __UpperCamelCase = CustomProcessor(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoProcessor.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): '''simple docstring''' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = False class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "AutoFeatureExtractor" lowercase = "AutoTokenizer" lowercase = False try: AutoConfig.register('custom' , __UpperCAmelCase ) AutoFeatureExtractor.register(__UpperCAmelCase , __UpperCAmelCase ) AutoTokenizer.register(__UpperCAmelCase , slow_tokenizer_class=__UpperCAmelCase ) AutoProcessor.register(__UpperCAmelCase , __UpperCAmelCase ) # If remote code is not set, the default is to use local classes. __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __UpperCamelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=__UpperCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def UpperCAmelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = WavaVecaProcessor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__UpperCAmelCase , 'test-processor' ) , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __UpperCamelCase = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(new_processor.feature_extractor , __UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = WavaVecaProcessor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__UpperCAmelCase , 'test-processor-org' ) , push_to_hub=__UpperCAmelCase , use_auth_token=self._token , organization='valid_org' , ) __UpperCamelCase = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(new_processor.feature_extractor , __UpperCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCAmelCase ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(__UpperCAmelCase , 'vocab.txt' ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) __UpperCamelCase = CustomTokenizer(__UpperCAmelCase ) __UpperCamelCase = CustomProcessor(__UpperCAmelCase , __UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) __UpperCamelCase = Repository(__UpperCAmelCase , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(__UpperCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__UpperCAmelCase , 'tokenizer_config.json' ) ) as f: __UpperCamelCase = json.load(__UpperCAmelCase ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(__UpperCAmelCase , 'custom_processing.py' ) ) ) repo.push_to_hub() __UpperCamelCase = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" def lowerCamelCase (a_ :list[int] , a_ :list[int]) -> tuple[float, float]: # Check if the input is valid if not len(a_) == len(a_) == 3: raise ValueError('''Please enter a valid equation.''') if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''') # Extract the coefficients lowercase , lowercase , lowercase :List[Any] = equationa lowercase , lowercase , lowercase :Any = equationa # Calculate the determinants of the matrices lowercase :Any = aa * ba - aa * ba lowercase :str = ca * ba - ca * ba lowercase :Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''') else: raise ValueError('''No solution. (Inconsistent system)''') else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowercase :int = determinant_x / determinant lowercase :Dict = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
172
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str) -> YolosConfig: lowercase :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase :List[str] = 192 lowercase :List[str] = 768 lowercase :int = 12 lowercase :str = 3 lowercase :List[Any] = [800, 1333] lowercase :Any = False elif yolos_name == "yolos_s_dWr": lowercase :List[str] = 330 lowercase :List[Any] = 14 lowercase :int = 6 lowercase :List[Any] = 1320 elif "yolos_s" in yolos_name: lowercase :int = 384 lowercase :Union[str, Any] = 1536 lowercase :int = 12 lowercase :str = 6 elif "yolos_b" in yolos_name: lowercase :Dict = [800, 1344] lowercase :List[str] = 91 lowercase :List[Any] = '''huggingface/label-files''' lowercase :Union[str, Any] = '''coco-detection-id2label.json''' lowercase :int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = idalabel lowercase :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase (a_ :dict , a_ :YolosConfig , a_ :bool = False) -> Optional[int]: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") lowercase :List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :int = in_proj_weight[: config.hidden_size, :] lowercase :List[str] = in_proj_bias[: config.hidden_size] lowercase :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Any = in_proj_weight[-config.hidden_size :, :] lowercase :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase (a_ :str) -> str: if "backbone" in name: lowercase :Optional[int] = name.replace('''backbone''' , '''vit''') if "cls_token" in name: lowercase :List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''') if "det_token" in name: lowercase :int = name.replace('''det_token''' , '''embeddings.detection_tokens''') if "mid_pos_embed" in name: lowercase :List[Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''') if "pos_embed" in name: lowercase :List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''') if "patch_embed.proj" in name: lowercase :Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "blocks" in name: lowercase :Any = name.replace('''blocks''' , '''encoder.layer''') if "attn.proj" in name: lowercase :Dict = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: lowercase :Tuple = name.replace('''attn''' , '''attention.self''') if "norm1" in name: lowercase :List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: lowercase :List[Any] = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: lowercase :Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: lowercase :Dict = name.replace('''mlp.fc2''' , '''output.dense''') if "class_embed" in name: lowercase :Dict = name.replace('''class_embed''' , '''class_labels_classifier''') if "bbox_embed" in name: lowercase :Dict = name.replace('''bbox_embed''' , '''bbox_predictor''') if "vit.norm" in name: lowercase :Dict = name.replace('''vit.norm''' , '''vit.layernorm''') return name def lowerCamelCase (a_ :dict , a_ :YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): lowercase :List[Any] = orig_state_dict.pop(a_) if "qkv" in key: lowercase :str = key.split('''.''') lowercase :List[str] = int(key_split[2]) lowercase :List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase :List[Any] = val[:dim, :] lowercase :Optional[int] = val[ dim : dim * 2, : ] lowercase :Any = val[-dim:, :] else: lowercase :List[str] = val[:dim] lowercase :Union[str, Any] = val[dim : dim * 2] lowercase :List[Any] = val[-dim:] else: lowercase :List[str] = val return orig_state_dict def lowerCamelCase () -> torch.Tensor: lowercase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase :Dict = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :str , a_ :bool = False) -> List[Any]: lowercase :Union[str, Any] = get_yolos_config(a_) # load original state_dict lowercase :List[str] = torch.load(a_ , map_location='''cpu''')['''model'''] # load 🤗 model lowercase :Tuple = YolosForObjectDetection(a_) model.eval() lowercase :Dict = convert_state_dict(a_ , a_) model.load_state_dict(a_) # Check outputs on an image, prepared by YolosImageProcessor lowercase :Tuple = 800 if yolos_name != '''yolos_ti''' else 512 lowercase :Dict = YolosImageProcessor(format='''coco_detection''' , size=a_) lowercase :Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''') lowercase :List[Any] = model(**a_) lowercase , lowercase :Dict = outputs.logits, outputs.pred_boxes lowercase , lowercase :int = None, None if yolos_name == "yolos_ti": lowercase :Dict = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]]) lowercase :Dict = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]]) elif yolos_name == "yolos_s_200_pre": lowercase :Union[str, Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]]) lowercase :List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]]) elif yolos_name == "yolos_s_300_pre": lowercase :int = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]]) lowercase :Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]]) elif yolos_name == "yolos_s_dWr": lowercase :int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]]) lowercase :Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]]) elif yolos_name == "yolos_base": lowercase :Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]]) lowercase :Tuple = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3] , a_ , atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3] , a_ , atol=1E-4) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) if push_to_hub: lowercase :Optional[int] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''') lowercase :Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_ , organization='''hustvl''') model.push_to_hub(a_ , organization='''hustvl''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
172
1
"""simple docstring""" from manim import * class A_ ( A__ ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Tuple =Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : Dict =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase__ : Dict =[mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[Any] =[mem.copy() for i in range(6 )] lowerCamelCase__ : int =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : str =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Any =VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : List[str] =Text('CPU' , font_size=24 ) lowerCamelCase__ : int =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) lowerCamelCase__ : List[str] =[mem.copy() for i in range(4 )] lowerCamelCase__ : List[str] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Dict =Text('GPU' , font_size=24 ) lowerCamelCase__ : str =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) lowerCamelCase__ : str =[mem.copy() for i in range(6 )] lowerCamelCase__ : Any =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Dict =Text('Model' , font_size=24 ) lowerCamelCase__ : Union[str, Any] =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =[] for i, rect in enumerate(lowerCamelCase_ ): rect.set_stroke(lowerCamelCase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCamelCase__ : Tuple =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase_ , buff=0.0 ) self.add(lowerCamelCase_ ) cpu_targs.append(lowerCamelCase_ ) lowerCamelCase__ : int =[mem.copy() for i in range(6 )] lowerCamelCase__ : Optional[int] =VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCamelCase__ : Dict =Text('Loaded Checkpoint' , font_size=24 ) lowerCamelCase__ : int =Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , aligned_edge=lowerCamelCase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCamelCase__ : Any =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : List[str] =MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : List[Any] =MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCamelCase__ : Any =MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.play(Write(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) ) lowerCamelCase__ : str =[] lowerCamelCase__ : List[Any] =[] for i, rect in enumerate(lowerCamelCase_ ): lowerCamelCase__ : Optional[int] =fill.copy().set_fill(lowerCamelCase_ , opacity=0.7 ) target.move_to(lowerCamelCase_ ) first_animations.append(GrowFromCenter(lowerCamelCase_ , run_time=1 ) ) lowerCamelCase__ : str =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
126
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase = TypeVar("""T""") class A_ ( Generic[T] ): """simple docstring""" def __init__( self :Dict , lowerCamelCase_ :bool = True ): """simple docstring""" lowerCamelCase__ : dict[T, list[T]] ={} # dictionary of lists lowerCamelCase__ : int =directed def UpperCAmelCase__ ( self :str , lowerCamelCase_ :T , lowerCamelCase_ :T ): """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) self.adj_list[destination_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Dict =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCamelCase__ : Union[str, Any] =[destination_vertex] lowerCamelCase__ : Any =[source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =[] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCamelCase__ : Tuple =[destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCamelCase__ : str =[destination_vertex] lowerCamelCase__ : Optional[Any] =[] return self def __repr__( self :Optional[Any] ): """simple docstring""" return pformat(self.adj_list )
126
1
import random def lowerCamelCase_ ( _a , _a , _a = False ): """simple docstring""" lowerCAmelCase__ : dict = {i: [] for i in range(UpperCAmelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCAmelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCAmelCase__ ): for j in range(i + 1 , UpperCAmelCase__ ): if random.random() < probability: graph[i].append(UpperCAmelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCAmelCase__ ) return graph def lowerCamelCase_ ( _a ): """simple docstring""" return { i: [j for j in range(UpperCAmelCase__ ) if i != j] for i in range(UpperCAmelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def lowerCamelCase_ ( _a , _a=False ): """simple docstring""" lowerCAmelCase__ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ ( _a , _a , _a=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Dict = '''''' else: lowerCAmelCase__ : List[str] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase__ : Dict = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Any = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" lowerCAmelCase__ : Any = dct.pop(_a ) lowerCAmelCase__ : Optional[Any] = val def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = ViTConfig() lowerCAmelCase__ : Optional[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Any = int(vit_name[-12:-10] ) lowerCAmelCase__ : int = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : str = '''huggingface/label-files''' lowerCAmelCase__ : Dict = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : str = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase__ : Any = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Tuple = int(vit_name[-6:-4] ) lowerCAmelCase__ : Union[str, Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase__ : List[str] = 192 lowerCAmelCase__ : Tuple = 768 lowerCAmelCase__ : Optional[int] = 12 lowerCAmelCase__ : List[Any] = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase__ : Any = 384 lowerCAmelCase__ : Optional[int] = 1_536 lowerCAmelCase__ : List[Any] = 12 lowerCAmelCase__ : Tuple = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase__ : List[str] = 768 lowerCAmelCase__ : Tuple = 2_304 lowerCAmelCase__ : Any = 8 lowerCAmelCase__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : Optional[Any] = 4_096 lowerCAmelCase__ : Optional[int] = 24 lowerCAmelCase__ : Tuple = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase__ : Tuple = 1_280 lowerCAmelCase__ : Tuple = 5_120 lowerCAmelCase__ : Optional[int] = 32 lowerCAmelCase__ : List[Any] = 16 # load original model from timm lowerCAmelCase__ : Tuple = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) lowerCAmelCase__ : List[Any] = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : List[str] = ViTModel(_a ).eval() else: lowerCAmelCase__ : Any = ViTForImageClassification(_a ).eval() model.load_state_dict(_a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : int = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase__ : List[str] = encoding['''pixel_values'''] lowerCAmelCase__ : List[Any] = model(_a ) if base_model: lowerCAmelCase__ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase__ : Union[str, Any] = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
211
0
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = FunnelTokenizer lowercase_ = FunnelTokenizerFast lowercase_ = True lowercase_ = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() SCREAMING_SNAKE_CASE_ = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase_ ( self : Optional[int] , **_lowerCAmelCase : Tuple ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict , **_lowerCAmelCase : Optional[Any] ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 'UNwant\u00E9d,running' SCREAMING_SNAKE_CASE_ = 'unwanted, running' return input_text, output_text def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: SCREAMING_SNAKE_CASE_ = tokenizer('UNwant\u00E9d,running' ) SCREAMING_SNAKE_CASE_ = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) SCREAMING_SNAKE_CASE_ = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
210
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=768 ): super().__init__(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = proj_size SCREAMING_SNAKE_CASE_ = CLIPVisionModel(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = PaintByExampleMapper(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int=False ): SCREAMING_SNAKE_CASE_ = self.model(pixel_values=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = clip_output.pooler_output SCREAMING_SNAKE_CASE_ = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE_ = self.final_layer_norm(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.proj_out(_lowerCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE_ = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE_ = config.hidden_size SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = nn.ModuleList( [ BasicTransformerBlock(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , activation_fn='gelu' , attention_bias=_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ] ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ): for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_lowerCAmelCase ) return hidden_states
210
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : str , A : VQModel , A : UNetaDModel , A : DDIMScheduler ): super().__init__() self.register_modules(vqvae=A , unet=A , scheduler=A ) @torch.no_grad() def __call__( self : int , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[str] = "pil" , A : bool = True , **A : Union[str, Any] , ): _UpperCAmelCase : Optional[int] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) _UpperCAmelCase : Optional[int] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : str = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _UpperCAmelCase : List[Any] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase : Any = {} if accepts_eta: _UpperCAmelCase : List[str] = eta for t in self.progress_bar(self.scheduler.timesteps ): _UpperCAmelCase : Any = self.scheduler.scale_model_input(A , A ) # predict the noise residual _UpperCAmelCase : Dict = self.unet(A , A ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # decode the image latents with the VAE _UpperCAmelCase : Tuple = self.vqvae.decode(A ).sample _UpperCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
31
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Tuple ): '''simple docstring''' if gpta_config_file == "": lowerCamelCase = GPTaConfig() else: lowerCamelCase = GPTaConfig.from_json_file(lowerCamelCase__ ) lowerCamelCase = GPTaModel(lowerCamelCase__ ) # Load weights from numpy load_tf_weights_in_gpta(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowerCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME lowerCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase__ ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) UpperCAmelCase : Tuple = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
252
0
'''simple docstring''' from __future__ import annotations def _snake_case ( A ) -> int: if not nums: return 0 lowerCAmelCase__ = nums[0] lowerCAmelCase__ = 0 for num in nums[1:]: lowerCAmelCase__ , lowerCAmelCase__ = ( max_excluding + num, max(A , A ), ) return max(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( A , A , A ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _snake_case ( A , A , A ) -> Union[str, Any]: lowerCAmelCase__ = to_pil_image(A ) lowerCAmelCase__ , lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(A , lang=A , output_type='''dict''' , config=A ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(A ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(A , A , A , A ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(A ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(A , A , A ) ) assert len(A ) == len(A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a__ ( a__ ): '''simple docstring''' lowercase__ : Any = ["pixel_values"] def __init__( self , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = True , lowerCamelCase_ = 1 / 2_55 , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = None , lowerCamelCase_ = "" , **lowerCamelCase_ , ) -> None: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_value lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = PILImageResampling.BILINEAR , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size['''height'''], size['''width''']) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = ChannelDimension.FIRST , **lowerCamelCase_ , ) -> PIL.Image.Image: lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase_ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ , lowerCAmelCase__ = apply_tesseract(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) words_batch.append(lowerCamelCase_ ) boxes_batch.append(lowerCamelCase_ ) if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCAmelCase__ = BatchFeature(data={'''pixel_values''': images} , tensor_type=lowerCamelCase_ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
228
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[str] = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase__ : Tuple[int] = (64,) , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "silu" , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : float = 0.18215 , UpperCAmelCase__ : str = "group" , ) ->Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , down_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , double_z=UpperCAmelCase__ , ) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1) A__ = VectorQuantizer(UpperCAmelCase__ , UpperCAmelCase__ , beta=0.25 , remap=UpperCAmelCase__ , sane_index_shape=UpperCAmelCase__) A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1) # pass init params to Decoder A__ = Decoder( in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , up_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , norm_type=UpperCAmelCase__ , ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->VQEncoderOutput: '''simple docstring''' A__ = self.encoder(UpperCAmelCase__) A__ = self.quant_conv(UpperCAmelCase__) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase__) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: A__ , A__ , A__ = self.quantize(UpperCAmelCase__) else: A__ = h A__ = self.post_quant_conv(UpperCAmelCase__) A__ = self.decoder(UpperCAmelCase__ , quant if self.config.norm_type == '''spatial''' else None) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ = sample A__ = self.encode(UpperCAmelCase__).latents A__ = self.decode(UpperCAmelCase__).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase__)
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase , lowerCAmelCase ) -> Tuple: UpperCAmelCase__ : int = torch.load(lowerCamelCase__ , map_location="""cpu""" ) UpperCAmelCase__ : Optional[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository UpperCAmelCase__ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase__ : Any = v else: UpperCAmelCase__ : int = v UpperCAmelCase__ : Union[str, Any] = chkpt["""params"""] UpperCAmelCase__ : List[str] = {n: v for n, v in config.items() if not isinstance(lowerCamelCase__ , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase__ : Optional[Any] = chkpt["""dico_word2id"""] UpperCAmelCase__ : Dict = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase__ : int = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + """/""" + CONFIG_NAME UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCamelCase__ , lowerCamelCase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase__ , indent=2 ) + """\n""" ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase__ , indent=2 ) + """\n""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _A = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
350
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) SCREAMING_SNAKE_CASE = (('eta', 0.0), ('num_inference_steps', 5_0)) def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCamelCase ) return config def _a (self , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config(**_lowerCamelCase ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = 10, 0.0 UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(_lowerCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample return sample def _a (self ): """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _a (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCamelCase ) UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def _a (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _a (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _a (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _a (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def _a (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCamelCase ) def _a (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCamelCase ) def _a (self ): """simple docstring""" self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def _a (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCamelCase , num_inference_steps=_lowerCamelCase ) def _a (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCamelCase , eta=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : str = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = 10, 0.0 scheduler.set_timesteps(_lowerCamelCase ) UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter UpperCAmelCase__ : str = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Any = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Tuple = samplea.shape[0] UpperCAmelCase__ : Dict = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : int = torch.arange(_lowerCamelCase )[0:3, None].repeat(1 , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : int = scheduler.batch_step_no_noise(_lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.full_loop() UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : List[str] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=_lowerCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
166
0
import argparse import copy def __magic_name__ ( A : int ): '''simple docstring''' a = {} with open(A ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: a = [] _list.append([line.split()[1], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: a = [] _list.append([line.split()[0], line.split()[2]] ) a = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __magic_name__ ( A : Optional[int], A : Dict ): '''simple docstring''' with open(A ) as f: a = f.read(1 ) a = start_node a = [] a = start_node a = 0 while visiting not in first_solution: a = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(A ) and k[0] not in first_solution: a = k[1] a = k[0] first_solution.append(A ) a = distance_of_first_solution + int(A ) a = best_node first_solution.append(A ) a = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 a = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def __magic_name__ ( A : Tuple, A : List[str] ): '''simple docstring''' a = [] for n in solution[1:-1]: a = solution.index(A ) for kn in solution[1:-1]: a = solution.index(A ) if n == kn: continue a = copy.deepcopy(A ) a = kn a = n a = 0 for k in _tmp[:-1]: a = _tmp[_tmp.index(A ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: a = distance + int(i[1] ) _tmp.append(A ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) a = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda A : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __magic_name__ ( A : Any, A : List[str], A : Optional[int], A : Dict, A : List[Any] ): '''simple docstring''' a = 1 a = first_solution a = [] a = distance_of_first_solution a = solution while count <= iters: a = find_neighborhood(A, A ) a = 0 a = neighborhood[index_of_best_solution] a = len(A ) - 1 a = False while not found: a = 0 while i < len(A ): if best_solution[i] != solution[i]: a = best_solution[i] a = solution[i] break a = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) a = True a = best_solution[:-1] a = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: a = cost a = solution else: a = index_of_best_solution + 1 a = neighborhood[index_of_best_solution] if len(A ) >= size: tabu_list.pop(0 ) a = count + 1 return best_solution_ever, best_cost def __magic_name__ ( A : Optional[Any]=None ): '''simple docstring''' a = generate_neighbours(args.File ) a , a = generate_first_solution( args.File, A ) a , a = tabu_search( A, A, A, args.Iterations, args.Size, ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
107
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case : int = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case : List[Any] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase=8 ): A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCAmelCase ( lowercase_ ): def __init__( self :Any , __UpperCamelCase :UNetaDConditionModel , __UpperCamelCase :DDPMScheduler , __UpperCamelCase :VQModel , ): super().__init__() self.register_modules( unet=__UpperCamelCase , scheduler=__UpperCamelCase , movq=__UpperCamelCase , ) A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Tuple , __UpperCamelCase :Dict , __UpperCamelCase :Dict , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[str] ): if latents is None: A = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) A = latents.to(__UpperCamelCase ) A = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self :Tuple , __UpperCamelCase :Any=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) A = torch.device(f"cuda:{gpu_id}" ) A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Dict , __UpperCamelCase :int=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) A = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A = None for cpu_offloaded_model in [self.unet, self.movq]: A, A = cpu_offload_with_hook(__UpperCamelCase , __UpperCamelCase , prev_module_hook=__UpperCamelCase ) # We'll offload the last model manually. A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase ( self :str ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCamelCase ) def __call__( self :List[Any] , __UpperCamelCase :Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCamelCase :Union[torch.FloatTensor, List[torch.FloatTensor]] , __UpperCamelCase :torch.FloatTensor , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 5_12 , __UpperCamelCase :int = 1_00 , __UpperCamelCase :float = 4.0 , __UpperCamelCase :int = 1 , __UpperCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase :Optional[torch.FloatTensor] = None , __UpperCamelCase :Optional[str] = "pil" , __UpperCamelCase :bool = True , ): A = self._execution_device A = guidance_scale > 1.0 if isinstance(__UpperCamelCase , __UpperCamelCase ): A = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): A = torch.cat(__UpperCamelCase , dim=0 ) if isinstance(__UpperCamelCase , __UpperCamelCase ): A = torch.cat(__UpperCamelCase , dim=0 ) A = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A = image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) A = negative_image_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) A = hint.repeat_interleave(__UpperCamelCase , dim=0 ) A = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) A = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCamelCase ) self.scheduler.set_timesteps(__UpperCamelCase , device=__UpperCamelCase ) A = self.scheduler.timesteps A = self.movq.config.latent_channels A, A = downscale_height_and_width(__UpperCamelCase , __UpperCamelCase , self.movq_scale_factor ) # create initial latent A = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = {"image_embeds": image_embeds, "hint": hint} A = self.unet( sample=__UpperCamelCase , timestep=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , added_cond_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] if do_classifier_free_guidance: A, A = noise_pred.split(latents.shape[1] , dim=1 ) A, A = noise_pred.chunk(2 ) A, A = variance_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A, A = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A = self.scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase , )[0] # post-processing A = self.movq.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A = image * 0.5 + 0.5 A = image.clamp(0 , 1 ) A = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
292
0
"""simple docstring""" from math import factorial SCREAMING_SNAKE_CASE : int = {str(d): factorial(d) for d in range(10)} def lowercase ( _snake_case : int ) ->int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_snake_case ) ) def lowercase ( ) ->int: """simple docstring""" __snake_case : Any = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _snake_case ) if sum_of_digit_factorial(_snake_case ) == i ) if __name__ == "__main__": print(F'{solution() = }')
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
"""simple docstring""" import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } lowerCAmelCase : Optional[int] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } lowerCAmelCase : List[str] = { """jukebox""": 512, } class __magic_name__ ( _lowercase ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_LYRIC_TOKENS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , _a , _a , _a , _a=["v3", "v2", "v2"] , _a=512 , _a=5 , _a="<|endoftext|>" , **_a , ): """simple docstring""" lowerCamelCase = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase , n_genres=__lowerCamelCase , version=__lowerCamelCase , max_n_lyric_tokens=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase = version lowerCamelCase = max_n_lyric_tokens lowerCamelCase = n_genres with open(__lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(__lowerCamelCase ) with open(__lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(__lowerCamelCase ) with open(__lowerCamelCase , encoding="""utf-8""" ) as vocab_handle: lowerCamelCase = json.load(__lowerCamelCase ) lowerCamelCase = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowerCamelCase = oov.replace(r"""\-'""" , r"""\-+'""" ) lowerCamelCase = regex.compile(__lowerCamelCase ) lowerCamelCase = {v: k for k, v in self.artists_encoder.items()} lowerCamelCase = {v: k for k, v in self.genres_encoder.items()} lowerCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _lowerCAmelCase ( self ): """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = [self.artists_encoder.get(__lowerCamelCase , 0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): lowerCamelCase = [self.genres_encoder.get(__lowerCamelCase , 0 ) for genre in list_genres[genres]] lowerCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCamelCase = [[self.lyrics_encoder.get(__lowerCamelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _lowerCAmelCase ( self , _a ): """simple docstring""" return list(__lowerCamelCase ) def _lowerCAmelCase ( self , _a , _a , _a , **_a ): """simple docstring""" lowerCamelCase = self.prepare_for_tokenization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def _lowerCAmelCase ( self , _a , _a , _a , _a = False ): """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCamelCase = artists[idx].lower() lowerCamelCase = [genres[idx].lower()] else: lowerCamelCase = self._normalize(artists[idx] ) + ".v2" lowerCamelCase = [ self._normalize(__lowerCamelCase ) + ".v2" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCamelCase = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) lowerCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" lowerCamelCase = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} lowerCamelCase = 0 lowerCamelCase = len(__lowerCamelCase ) + 1 lowerCamelCase = self.vocab lowerCamelCase = {v: k for k, v in self.vocab.items()} lowerCamelCase = "" else: lowerCamelCase = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) lowerCamelCase = self._run_strip_accents(__lowerCamelCase ) lowerCamelCase = lyrics.replace("""\\""" , """\n""" ) lowerCamelCase = self.out_of_vocab.sub("""""" , __lowerCamelCase ), [], [] return artists, genres, lyrics def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = unicodedata.normalize("""NFD""" , __lowerCamelCase ) lowerCamelCase = [] for char in text: lowerCamelCase = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = ( [chr(__lowerCamelCase ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["."] ) lowerCamelCase = frozenset(__lowerCamelCase ) lowerCamelCase = re.compile(r"""_+""" ) lowerCamelCase = "".join([c if c in accepted else """_""" for c in text.lower()] ) lowerCamelCase = pattern.sub("""_""" , __lowerCamelCase ).strip("""_""" ) return text def _lowerCAmelCase ( self , _a ): """simple docstring""" return " ".join(__lowerCamelCase ) def _lowerCAmelCase ( self , _a , _a = None , _a = False ): """simple docstring""" # Convert to TensorType if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf lowerCamelCase = tf.constant lowerCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch lowerCamelCase = torch.tensor lowerCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 lowerCamelCase = jnp.array lowerCamelCase = _is_jax else: lowerCamelCase = np.asarray lowerCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCamelCase = [inputs] if not is_tensor(__lowerCamelCase ): lowerCamelCase = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , _a , _a , _a="" , _a="pt" ): """simple docstring""" lowerCamelCase = [0, 0, 0] lowerCamelCase = [artist] * len(self.version ) lowerCamelCase = [genres] * len(self.version ) lowerCamelCase = self.tokenize(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase = self._convert_token_to_id(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase = [-INFINITY] * len(full_tokens[-1] ) lowerCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__lowerCamelCase ) ) lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__lowerCamelCase ) ) lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def _lowerCAmelCase ( self , _a , _a , _a ): """simple docstring""" lowerCamelCase = self.artists_decoder.get(__lowerCamelCase ) lowerCamelCase = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] lowerCamelCase = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
291
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Tuple = ["input_features"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=80 , __lowerCamelCase: Optional[Any]=1_60_00 , __lowerCamelCase: Any=1_60 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: List[str]=4_00 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Union[str, Any]=False , **__lowerCamelCase: Dict , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = n_fft __UpperCAmelCase : List[str] = hop_length __UpperCAmelCase : Optional[Any] = chunk_length __UpperCAmelCase : Union[str, Any] = chunk_length * sampling_rate __UpperCAmelCase : Any = self.n_samples // hop_length __UpperCAmelCase : Tuple = sampling_rate __UpperCAmelCase : List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: np.array ) -> np.ndarray: __UpperCAmelCase : List[Any] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __UpperCAmelCase : Union[str, Any] = log_spec[:, :-1] __UpperCAmelCase : List[Any] = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) __UpperCAmelCase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: List[np.ndarray] , __lowerCamelCase: float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: __UpperCAmelCase : Tuple = np.array(__lowerCamelCase , np.intaa ) __UpperCAmelCase : Dict = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): __UpperCAmelCase : Union[str, Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __UpperCAmelCase : Dict = padding_value normed_input_values.append(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: Dict , __lowerCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[str] = "max_length" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : List[Any] = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __UpperCAmelCase : str = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Optional[Any] = [np.asarray([raw_speech] ).T] __UpperCAmelCase : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding __UpperCAmelCase : List[str] = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __UpperCAmelCase : List[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __UpperCAmelCase : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format __UpperCAmelCase : Any = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) __UpperCAmelCase : Dict = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): __UpperCAmelCase : str = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: __UpperCAmelCase : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __UpperCAmelCase : int = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def _lowerCamelCase ( self: str ) -> Dict[str, Any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
157
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file UpperCAmelCase ="Run commands across TPU VMs for initial setup before running `accelerate launch`." def _A ( _a : Any=None ): """simple docstring""" if subparsers is not None: A = subparsers.add_parser("""tpu-config""" , description=_description ) else: A = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments A = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_a , default=_a , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_a , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_a , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) A = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_a , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_a ) return parser def _A ( _a : Tuple ): """simple docstring""" A = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_a ): A = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A = defaults.command_file if not args.command and defaults.commands is not None: A = defaults.commands if not args.tpu_name: A = defaults.tpu_name if not args.tpu_zone: A = defaults.tpu_zone if args.accelerate_version == "dev": A = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": A = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , _a ): A = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: A = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _a ): A = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command A = '''; '''.join(_a ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_a )}' ) return subprocess.run(_a ) print("""Successfully setup pod.""" ) def _A ( ): """simple docstring""" A = tpu_command_parser() A = parser.parse_args() tpu_command_launcher(_a )
366
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''data2vec-vision''' def __init__( self ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1E-12 ,lowerCamelCase_=2_2_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_=3 ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=False ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=True ,lowerCamelCase_=[3, 5, 7, 1_1] ,lowerCamelCase_=[1, 2, 3, 6] ,lowerCamelCase_=True ,lowerCamelCase_=0.4 ,lowerCamelCase_=2_5_6 ,lowerCamelCase_=1 ,lowerCamelCase_=False ,lowerCamelCase_=2_5_5 ,**lowerCamelCase_ ,) -> Optional[Any]: super().__init__(**lowerCamelCase_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = use_mask_token A = use_absolute_position_embeddings A = use_relative_position_bias A = use_shared_relative_position_bias A = layer_scale_init_value A = drop_path_rate A = use_mean_pooling # decode head attributes (semantic segmentation) A = out_indices A = pool_scales # auxiliary head attributes (semantic segmentation) A = use_auxiliary_head A = auxiliary_loss_weight A = auxiliary_channels A = auxiliary_num_convs A = auxiliary_concat_input A = semantic_loss_ignore_index class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4
77
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = get_activation("swish" ) self.assertIsInstance(snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = get_activation("silu" ) self.assertIsInstance(snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = get_activation("mish" ) self.assertIsInstance(snake_case , nn.Mish ) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = get_activation("gelu" ) self.assertIsInstance(snake_case , nn.GELU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
311
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 6_4, 6_4) lowerCAmelCase__ = torch.rand(1) * 9_9_9 lowerCAmelCase__ = torch.randn(2, 7_7, 7_6_8) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 6_6_6 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
130
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase__ : List[str] ='''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> List[Any]: if attention_mask is None: lowerCamelCase =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=99 , UpperCAmelCase_=16 , UpperCAmelCase_=2 , UpperCAmelCase_=4 , UpperCAmelCase_=4 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=32 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=0.0_2 , ): lowerCamelCase =parent lowerCamelCase =batch_size lowerCamelCase =seq_length lowerCamelCase =is_training lowerCamelCase =use_labels lowerCamelCase =vocab_size lowerCamelCase =hidden_size lowerCamelCase =num_hidden_layers lowerCamelCase =num_attention_heads lowerCamelCase =intermediate_size lowerCamelCase =hidden_act lowerCamelCase =hidden_dropout_prob lowerCamelCase =attention_probs_dropout_prob lowerCamelCase =max_position_embeddings lowerCamelCase =eos_token_id lowerCamelCase =pad_token_id lowerCamelCase =bos_token_id lowerCamelCase =initializer_range def _snake_case ( self ): lowerCamelCase =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase =shift_tokens_right(lowercase_ , 1 , 2 ) lowerCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) lowerCamelCase =prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =20 lowerCamelCase =model_class_name(lowercase_ ) lowerCamelCase =model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase , lowerCamelCase =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowerCamelCase =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCamelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase =model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCamelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase =model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) lowerCamelCase =model.decode(lowercase_ , lowercase_ ) lowerCamelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =20 lowerCamelCase =model_class_name(lowercase_ ) lowerCamelCase =model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase , lowerCamelCase =( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowerCamelCase =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase =model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCamelCase =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase =model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) lowerCamelCase =model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) lowerCamelCase =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __A ( unittest.TestCase ): UpperCAmelCase_ = 99 def _snake_case ( self ): lowerCamelCase =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase =input_ids.shape[0] lowerCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_config_and_data() lowerCamelCase =FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowerCamelCase =lm_model(input_ids=lowercase_ ) lowerCamelCase =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowercase_ ) def _snake_case ( self ): lowerCamelCase =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase =FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowerCamelCase =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase =lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) lowerCamelCase =(*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowercase_ ) def _snake_case ( self ): lowerCamelCase =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase =shift_tokens_right(lowercase_ , 1 , 2 ) lowerCamelCase =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() lowerCamelCase =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A ( a , unittest.TestCase , a ): UpperCAmelCase_ = True UpperCAmelCase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self ): lowerCamelCase =FlaxBlenderbotModelTester(self ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase =self._prepare_for_class(lowercase_ , lowercase_ ) lowerCamelCase =model_class(lowercase_ ) @jax.jit def encode_jitted(UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("""JIT Enabled""" ): lowerCamelCase =encode_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase =encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase =model_class(lowercase_ ) lowerCamelCase =model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCamelCase ={ """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("""JIT Enabled""" ): lowerCamelCase =decode_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase =decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self ): for model_class_name in self.all_model_classes: lowerCamelCase =model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase =model(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _snake_case ( self ): lowerCamelCase ={"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} lowerCamelCase ={"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowerCamelCase =FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowercase_ ) lowerCamelCase =BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) lowerCamelCase =["""Sam"""] lowerCamelCase =tokenizer(lowercase_ , return_tensors="""jax""" ) lowerCamelCase =model.generate(**lowercase_ , **lowercase_ ) lowerCamelCase ="""Sam is a great name. It means \"sun\" in Gaelic.""" lowerCamelCase =tokenizer.batch_decode(lowercase_ , **lowercase_ ) assert generated_txt[0].strip() == tgt_text
369
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( a , a , unittest.TestCase ): __A = IFInpaintingSuperResolutionPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __A = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self ): return self._get_superresolution_dummy_components() def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): lowerCamelCase =torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
262
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : str=None , __a : Dict=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=a_ ) @dataclass class __A: """simple docstring""" SCREAMING_SNAKE_CASE__ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) SCREAMING_SNAKE_CASE__ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) SCREAMING_SNAKE_CASE__ = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Use FP16 to accelerate inference."""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Benchmark training of model"""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Verbose memory tracing"""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Trace memory line by line"""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Save result to a CSV file"""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Save all print statements in a log file"""} ) SCREAMING_SNAKE_CASE__ = field(default=__lowerCamelCase , metadata={"""help""": """Whether to print environment information"""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) SCREAMING_SNAKE_CASE__ = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) SCREAMING_SNAKE_CASE__ = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) SCREAMING_SNAKE_CASE__ = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) SCREAMING_SNAKE_CASE__ = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) SCREAMING_SNAKE_CASE__ = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) SCREAMING_SNAKE_CASE__ = field( default=F'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) SCREAMING_SNAKE_CASE__ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) SCREAMING_SNAKE_CASE__ = field( default=__lowerCamelCase , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def UpperCAmelCase_ (self ): warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , lowerCAmelCase__ , ) def UpperCAmelCase_ (self ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase_ (self ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def UpperCAmelCase_ (self ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
244
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
145
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def a ( __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Optional[int] = {} UpperCamelCase__ :List[Any] = tokenizer(example['''content'''] , truncation=__a )['''input_ids'''] UpperCamelCase__ :str = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __snake_case = HfArgumentParser(PretokenizationArguments) __snake_case = parser.parse_args() if args.num_workers is None: __snake_case = multiprocessing.cpu_count() __snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case = time.time() __snake_case = load_dataset(args.dataset_name, split='''train''') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") __snake_case = time.time() __snake_case = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") __snake_case = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
219
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
1
import unittest import numpy as np def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase = None , ): """simple docstring""" __lowercase = np.shape(lowercase ) __lowercase = np.shape(lowercase ) __lowercase = np.shape(lowercase ) if shape_a[0] != shape_b[0]: __lowercase = ( '''Expected the same number of rows for A and B. ''' F"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(lowercase ) if shape_b[1] != shape_c[1]: __lowercase = ( '''Expected the same number of columns for B and C. ''' F"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(lowercase ) __lowercase = pseudo_inv if a_inv is None: try: __lowercase = np.linalg.inv(lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> None: '''simple docstring''' __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) __lowercase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = np.block([[a, b], [b.T, c]] ) __lowercase = np.linalg.det(lowerCAmelCase__ ) __lowercase = np.linalg.det(lowerCAmelCase__ ) __lowercase = np.linalg.det(lowerCAmelCase__ ) self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s ) def _SCREAMING_SNAKE_CASE ( self ) -> None: '''simple docstring''' __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> None: '''simple docstring''' __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase__ ): schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
210
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __a : Tuple = """pt""" elif is_tf_available(): __a : int = """tf""" else: __a : Tuple = """jax""" class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = ByTaTokenizer __a : str = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' super().setUp() __lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ) -> Tuple[str, list]: '''simple docstring''' __lowercase = [] for i in range(len(lowerCAmelCase__ ) ): try: __lowercase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowercase = list(filter(lambda lowerCAmelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase__ ) ) __lowercase = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: __lowercase = ''' ''' + output_txt __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __lowercase = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = '''Unicode €.''' __lowercase = tokenizer(lowerCAmelCase__ ) __lowercase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''Unicode €.</s>''' ) __lowercase = tokenizer('''e è é ê ë''' ) __lowercase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": __lowercase = list(batch.input_ids.numpy()[0] ) else: __lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] __lowercase = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization. </s>'''] __lowercase = ['''Summary of the text. </s>'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowercase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['''input_ids'''][0] ) self.assertEqual(lowerCAmelCase__ , batch['''labels'''][0] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowercase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) __lowercase = [F"<extra_id_{i}>" for i in range(1_25 )] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase__ )] __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __lowercase = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = 0 __lowercase = tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [] ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
210
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase__ ( ) -> Optional[int]: _A: List[Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _A: Dict = Dataset.from_dict(a ) return dataset class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __magic_name__ ( self : int ): """simple docstring""" _A: List[Any] = get_dataset() _A: Tuple = make_duplicate_clusters(lowerCAmelCase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __magic_name__ ( self : str ): """simple docstring""" _A: Optional[Any] = get_dataset() _A , _A: List[str] = deduplicate_dataset(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) print(lowerCAmelCase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowerCAmelCase_ )
301
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCAmelCase__ : str = open # noqa: we just need to have a builtin inside this module to test it properly
301
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _snake_case : int = datasets.utils.logging.get_logger(__name__) _snake_case : List[str] = ["names", "prefix"] _snake_case : str = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] _snake_case : int = ["encoding_errors", "on_bad_lines"] _snake_case : List[str] = ["date_format"] @dataclass class a (datasets.BuilderConfig ): """simple docstring""" __UpperCAmelCase : str = "," __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[Union[int, List[int], str]] = "infer" __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[Union[int, str, List[int], List[str]]] = None __UpperCAmelCase : Optional[Union[List[int], List[str]]] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[Literal["c", "python", "pyarrow"]] = None __UpperCAmelCase : Dict[Union[int, str], Callable[[Any], Any]] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : Optional[list] = None __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[Union[int, List[int]]] = None __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Optional[Union[str, List[str]]] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : bool = True __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = "." __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : str = '"' __UpperCAmelCase : int = 0 __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : bool = True __UpperCAmelCase : bool = True __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = True __UpperCAmelCase : bool = False __UpperCAmelCase : Optional[str] = None __UpperCAmelCase : int = 1_0000 __UpperCAmelCase : Optional[datasets.Features] = None __UpperCAmelCase : Optional[str] = "strict" __UpperCAmelCase : Literal["error", "warn", "skip"] = "error" __UpperCAmelCase : Optional[str] = None def __snake_case ( self : List[str] ) -> Tuple: if self.delimiter is not None: __snake_case : str = self.delimiter if self.column_names is not None: __snake_case : int = self.column_names @property def __snake_case ( self : Any ) -> int: __snake_case : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a (datasets.ArrowBasedBuilder ): """simple docstring""" __UpperCAmelCase : Tuple = CsvConfig def __snake_case ( self : str ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def __snake_case ( self : int , lowerCamelCase : int ) -> Optional[int]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCamelCase , (str, list, tuple) ): __snake_case : Tuple = data_files if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = [files] __snake_case : Optional[int] = [dl_manager.iter_files(lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case : List[str] = [] for split_name, files in data_files.items(): if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = [files] __snake_case : Optional[int] = [dl_manager.iter_files(lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def __snake_case ( self : List[Any] , lowerCamelCase : pa.Table ) -> pa.Table: if self.config.features is not None: __snake_case : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast __snake_case : str = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : Any = table_cast(lowerCamelCase , lowerCamelCase ) return pa_table def __snake_case ( self : List[str] , lowerCamelCase : Dict ) -> Union[str, Any]: __snake_case : List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : str = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCamelCase ) ): __snake_case : List[str] = pd.read_csv(lowerCamelCase , iterator=lowerCamelCase , dtype=lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCamelCase ): __snake_case : Union[str, Any] = pa.Table.from_pandas(lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCamelCase ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(lowerCamelCase )}: {e}' ) raise
123
from __future__ import annotations _snake_case : Any = "Muhammad Umer Farooq" _snake_case : Optional[int] = "MIT" _snake_case : Union[str, Any] = "1.0.0" _snake_case : Optional[Any] = "Muhammad Umer Farooq" _snake_case : List[Any] = "[email protected]" _snake_case : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : str ) -> None: super().__init__() __snake_case : list[str] = [] __snake_case : Any = domain def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : list[tuple[str, str | None]] ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __snake_case : Any = parse.urljoin(self.domain , lowerCamelCase ) self.urls.append(lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): return ".".join(get_sub_domain_name(__lowerCamelCase ).split("." )[-2:] ) def lowerCAmelCase_ ( __lowerCamelCase ): return parse.urlparse(__lowerCamelCase ).netloc def lowerCAmelCase_ ( __lowerCamelCase = "https://github.com" ): __snake_case : Tuple = get_domain_name(__lowerCamelCase ) # Initialize the parser __snake_case : Dict = Parser(__lowerCamelCase ) try: # Open URL __snake_case : Any = requests.get(__lowerCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __snake_case : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __snake_case : List[str] = requests.get(__lowerCamelCase ) # Get the valid email. __snake_case : Any = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowerCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Union[str, Any] = emails_from_url("https://github.com") print(f'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
123
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Dict: '''simple docstring''' lowercase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase = 4 lowercase = 4_8 lowercase = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase = [6, 6, 6, 6] lowercase = 6_0 lowercase = [6, 6, 6, 6] lowercase = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase = 4 lowercase = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase = 1 lowercase = 1 lowercase = 1_2_6 lowercase = 7 lowercase = 255.0 lowercase = """""" return config def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :int ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowercase = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowercase = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowercase = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowercase = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowercase = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowercase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowercase = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowercase = """layernorm.weight""" if name == "norm.bias": lowercase = """layernorm.bias""" if "conv_first" in name: lowercase = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowercase = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowercase = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowercase = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowercase = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowercase = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowercase = """swin2sr.""" + name return name def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[1] ) lowercase = int(key_split[4] ) lowercase = config.embed_dim if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] pass else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] ) -> List[Any]: '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) lowercase = SwinaSRForImageSuperResolution(lowerCAmelCase__ ) model.eval() lowercase = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location="""cpu""" ) lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowerCAmelCase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'Unexpected key {key} in state_dict' ) # verify values lowercase = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("""RGB""" ) lowercase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase = 1_2_6 if """Jpeg""" in checkpoint_url else 2_5_6 lowercase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase = transforms(lowerCAmelCase__ ).unsqueeze(0 ) if config.num_channels == 1: lowercase = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase = model(lowerCAmelCase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowercase = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase = torch.Size([1, 3, 5_1_2, 5_1_2] ) lowercase = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) lowercase = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-3 ) print("""Looks ok!""" ) lowercase = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowercase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: model.push_to_hub(f'caidas/{model_name}' ) processor.push_to_hub(f'caidas/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") __lowerCAmelCase : List[str] =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
32
"""simple docstring""" class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = None lowercase = None lowercase = graph self._normalize_graph(__lowerCAmelCase , __lowerCAmelCase ) lowercase = len(__lowerCAmelCase ) lowercase = None def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if sources is int: lowercase = [sources] if sinks is int: lowercase = [sinks] if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: return lowercase = sources[0] lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(__lowerCAmelCase ) > 1 or len(__lowerCAmelCase ) > 1: lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowercase = max_input_flow lowercase = 0 lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowercase = max_input_flow lowercase = size - 1 def A__ ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = algorithm(self ) class _A : def __init__( self , __lowerCAmelCase ): """simple docstring""" lowercase = flow_network lowercase = flow_network.verticesCount lowercase = flow_network.sourceIndex lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowercase = flow_network.graph lowercase = False def A__ ( self ): """simple docstring""" if not self.executed: self._algorithm() lowercase = True def A__ ( self ): """simple docstring""" pass class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) # use this to save your result lowercase = -1 def A__ ( self ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase ) lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] lowercase = [0] * self.verticies_count lowercase = [0] * self.verticies_count def A__ ( self ): """simple docstring""" lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowercase = 0 while i < len(__lowerCAmelCase ): lowercase = vertices_list[i] lowercase = self.heights[vertex_index] self.process_vertex(__lowerCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__lowerCAmelCase ) ) lowercase = 0 else: i += 1 lowercase = sum(self.preflow[self.source_index] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__lowerCAmelCase , __lowerCAmelCase ) self.relabel(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowercase = self.heights[to_index] if min_height is not None: lowercase = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : int =[0] __lowerCAmelCase : List[Any] =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Optional[int] =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Tuple =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[int] =flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
32
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowerCamelCase : int = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowerCamelCase : Union[str, Any] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def __lowerCamelCase ( A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = SavedModel() UpperCamelCase = [] with open(os.path.join(A__ , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: UpperCamelCase = json.load(A__ )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(A__ )] ) with open(A__ , 'rb' ) as f: saved_model.ParseFromString(f.read() ) UpperCamelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCamelCase = sorted(A__ ) UpperCamelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(A__ ) if strict and len(A__ ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(A__ ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*A__ , sep='\n' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) _lowerCamelCase : List[Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
249
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = load_tool('text-to-speech' ) self.tool.setup() def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
249
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'LayoutLMv2ImageProcessor' SCREAMING_SNAKE_CASE = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[Any]=None , **_SCREAMING_SNAKE_CASE: List[str]) -> Any: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = kwargs.pop("feature_extractor") __lowerCAmelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def __call__( self: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _SCREAMING_SNAKE_CASE: Union[List[List[int]], List[List[List[int]]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[List[int], List[List[int]]]] = None , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[bool, str, PaddingStrategy] = False , _SCREAMING_SNAKE_CASE: Union[bool, str, TruncationStrategy] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: int = 0 , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , **_SCREAMING_SNAKE_CASE: int , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True.") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True.") if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") # first, apply the image processor __lowerCAmelCase : List[Any] = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase : Optional[Any] = features["words"] __lowerCAmelCase : Union[str, Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel values __lowerCAmelCase : Dict = features.pop("pixel_values") if return_overflowing_tokens is True: __lowerCAmelCase : Dict = self.get_overflowing_images(_SCREAMING_SNAKE_CASE , encoded_inputs["overflow_to_sample_mapping"]) __lowerCAmelCase : Union[str, Any] = images return encoded_inputs def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_SCREAMING_SNAKE_CASE) != len(_SCREAMING_SNAKE_CASE): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(_SCREAMING_SNAKE_CASE)} and {len(_SCREAMING_SNAKE_CASE)}""") return images_with_overflow def _SCREAMING_SNAKE_CASE ( self: int , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @property def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor
269
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> str: """simple docstring""" __lowerCAmelCase : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") __lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small") __lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="np").input_ids __lowerCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="np").input_ids __lowerCAmelCase : str = shift_tokens_right(_SCREAMING_SNAKE_CASE , model.config.pad_token_id , model.config.decoder_start_token_id) __lowerCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE).logits __lowerCAmelCase : int = optax.softmax_cross_entropy(_SCREAMING_SNAKE_CASE , onehot(_SCREAMING_SNAKE_CASE , logits.shape[-1])).mean() __lowerCAmelCase : List[str] = -(labels.shape[-1] * loss.item()) __lowerCAmelCase : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
269
1
import re def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Any = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": lowerCamelCase__ = """0094702343221""" print(is_sri_lankan_phone_number(phone))
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def UpperCamelCase_ ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head("""https://huggingface.co""" )
120
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" a = XLMProphetNetTokenizer a = False a = True def A ( self : int): super().setUp() # We have a SentencePiece fixture for testing _A : str = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE) tokenizer.save_pretrained(self.tmpdirname) def A ( self : Tuple): _A : int = '[PAD]' _A : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE) , SCREAMING_SNAKE_CASE) def A ( self : Any): _A : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '[PAD]') self.assertEqual(vocab_keys[1] , '[CLS]') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(SCREAMING_SNAKE_CASE) , 1012) def A ( self : Union[str, Any]): self.assertEqual(self.get_tokenizer().vocab_size , 1012) def A ( self : Optional[int]): _A : Optional[Any] = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE) _A : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _A : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _A : Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) self.assertListEqual( SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _A : Optional[Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE) self.assertListEqual( SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def A ( self : List[Any]): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased') @slow def A ( self : Optional[int]): _A : List[Any] = 'Hello World!' _A : Dict = [35389, 6672, 49, 2] self.assertListEqual(SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE)) @slow def A ( self : Union[str, Any]): # fmt: off _A : Tuple = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
366
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) a = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : Tuple): torch.manual_seed(0) _A : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0) _A : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0) _A : Any = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _A : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) _A : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : Any = CLIPTextModel(SCREAMING_SNAKE_CASE) _A : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _A : Tuple = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = 2 _A : Tuple = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE , device=torch.device(SCREAMING_SNAKE_CASE) , ) _A : Tuple = floats_tensor(control_image.shape , rng=random.Random(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] _A : Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE)).convert('RGB').resize((64, 64)) _A : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def A ( self : str): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A ( self : Tuple): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def A ( self : int): self._test_inference_batch_single_identical(expected_max_diff=2e-3) class __lowerCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A ( self : List[str]): torch.manual_seed(0) _A : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0) def init_weights(SCREAMING_SNAKE_CASE : Union[str, Any]): if isinstance(SCREAMING_SNAKE_CASE , torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) _A : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE) torch.manual_seed(0) _A : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(SCREAMING_SNAKE_CASE) torch.manual_seed(0) _A : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0) _A : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) _A : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : List[Any] = CLIPTextModel(SCREAMING_SNAKE_CASE) _A : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _A : List[str] = MultiControlNetModel([controlneta, controlneta]) _A : List[str] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str]=0): if str(SCREAMING_SNAKE_CASE).startswith('mps'): _A : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _A : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = 2 _A : List[str] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE , device=torch.device(SCREAMING_SNAKE_CASE) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=SCREAMING_SNAKE_CASE , device=torch.device(SCREAMING_SNAKE_CASE) , ), ] _A : str = floats_tensor(control_image[0].shape , rng=random.Random(SCREAMING_SNAKE_CASE)).to(SCREAMING_SNAKE_CASE) _A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1)[0] _A : Optional[int] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE)).convert('RGB').resize((64, 64)) _A : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def A ( self : Tuple): _A : List[str] = self.get_dummy_components() _A : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) _A : int = 10.0 _A : Union[str, Any] = 4 _A : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : List[Any] = steps _A : List[str] = scale _A : int = pipe(**SCREAMING_SNAKE_CASE)[0] _A : Any = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = steps _A : Any = scale _A : Dict = pipe(**SCREAMING_SNAKE_CASE , control_guidance_start=0.1 , control_guidance_end=0.2)[0] _A : Tuple = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : str = steps _A : List[Any] = scale _A : int = pipe(**SCREAMING_SNAKE_CASE , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0] _A : List[str] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _A : Tuple = steps _A : Tuple = scale _A : str = pipe(**SCREAMING_SNAKE_CASE , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def A ( self : Optional[Any]): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A ( self : Any): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def A ( self : Dict): self._test_inference_batch_single_identical(expected_max_diff=2e-3) def A ( self : str): _A : Optional[int] = self.get_dummy_components() _A : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(SCREAMING_SNAKE_CASE) except NotImplementedError: pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[Any]): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any): _A : Dict = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny') _A : List[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=SCREAMING_SNAKE_CASE , controlnet=SCREAMING_SNAKE_CASE) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _A : List[Any] = torch.Generator(device='cpu').manual_seed(0) _A : List[Any] = 'evil space-punk bird' _A : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png').resize((512, 512)) _A : List[str] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png').resize((512, 512)) _A : Dict = pipe( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , control_image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , output_type='np' , num_inference_steps=50 , strength=0.6 , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) _A : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy') assert np.abs(expected_image - image).max() < 9e-2
227
0
import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = botoa.client('''iam''' ) SCREAMING_SNAKE_CASE : Dict = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = botoa.client('''iam''' ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , _A , ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if credentials_configuration == 0: SCREAMING_SNAKE_CASE : Tuple = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) SCREAMING_SNAKE_CASE : int = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) SCREAMING_SNAKE_CASE : List[Any] = _ask_field('''AWS Access Key ID: ''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = aws_access_key_id SCREAMING_SNAKE_CASE : Tuple = _ask_field('''AWS Secret Access Key: ''' ) SCREAMING_SNAKE_CASE : Dict = aws_secret_access_key SCREAMING_SNAKE_CASE : int = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) SCREAMING_SNAKE_CASE : int = aws_region SCREAMING_SNAKE_CASE : str = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , _A , ) if role_management == 0: SCREAMING_SNAKE_CASE : Dict = _ask_field('''Enter your IAM role name: ''' ) else: SCREAMING_SNAKE_CASE : Dict = '''accelerate_sagemaker_execution_role''' print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(_A ) SCREAMING_SNAKE_CASE : List[Any] = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE : List[str] = None if is_custom_docker_image: SCREAMING_SNAKE_CASE : List[str] = _ask_field('''Enter your Docker image: ''' , lambda a__ : str(_A ).lower() ) SCREAMING_SNAKE_CASE : Dict = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE : List[str] = None if is_sagemaker_inputs_enabled: SCREAMING_SNAKE_CASE : List[Any] = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda a__ : str(_A ).lower() , ) SCREAMING_SNAKE_CASE : int = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE : List[str] = None if is_sagemaker_metrics_enabled: SCREAMING_SNAKE_CASE : Dict = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda a__ : str(_A ).lower() , ) SCREAMING_SNAKE_CASE : str = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : List[str] = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) if use_dynamo: SCREAMING_SNAKE_CASE : Dict = '''dynamo_''' SCREAMING_SNAKE_CASE : str = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) SCREAMING_SNAKE_CASE : str = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) if use_custom_options: SCREAMING_SNAKE_CASE : List[str] = _ask_options( '''Which mode do you want to use?''' , _A , lambda a__ : TORCH_DYNAMO_MODES[int(_A )] , default='''default''' , ) SCREAMING_SNAKE_CASE : Dict = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE : Any = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=_A , error_message='''Please enter yes or no.''' , ) SCREAMING_SNAKE_CASE : Optional[int] = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: SCREAMING_SNAKE_CASE : List[Any] = _ask_options( _A , _A , lambda a__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" SCREAMING_SNAKE_CASE : str = _ask_field(_A , lambda a__ : str(_A ).lower() , default='''ml.p3.2xlarge''' ) SCREAMING_SNAKE_CASE : str = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_field( '''How many machines do you want use? [1]: ''' , _A , default=1 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
313
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__( unittest.TestCase ): '''simple docstring''' @property def a_ ( self): """simple docstring""" torch.manual_seed(0) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a_ ( self): """simple docstring""" lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = PNDMScheduler() lowerCAmelCase = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase) pndm.to(__lowerCAmelCase) pndm.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""").images lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=__lowerCAmelCase)[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = """google/ddpm-cifar10-32""" lowerCAmelCase = UNetaDModel.from_pretrained(__lowerCAmelCase) lowerCAmelCase = PNDMScheduler() lowerCAmelCase = PNDMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase) pndm.to(__lowerCAmelCase) pndm.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pndm(generator=__lowerCAmelCase , output_type="""numpy""").images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
272
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :Dict = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowerCAmelCase_ :Tuple = 1_2_8 elif "12-12" in model_name: lowerCAmelCase_ :Optional[Any] = 1_2 lowerCAmelCase_ :Dict = 1_2 elif "14-14" in model_name: lowerCAmelCase_ :Any = 1_4 lowerCAmelCase_ :int = 1_4 elif "16-16" in model_name: lowerCAmelCase_ :Optional[int] = 1_6 lowerCAmelCase_ :str = 1_6 else: raise ValueError("""Model not supported""" ) lowerCAmelCase_ :Optional[Any] = """huggingface/label-files""" if "speech-commands" in model_name: lowerCAmelCase_ :Any = 3_5 lowerCAmelCase_ :str = """speech-commands-v2-id2label.json""" else: lowerCAmelCase_ :Any = 5_2_7 lowerCAmelCase_ :List[Any] = """audioset-id2label.json""" lowerCAmelCase_ :Tuple = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ :int = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ :List[str] = idalabel lowerCAmelCase_ :str = {v: k for k, v in idalabel.items()} return config def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' if "module.v" in name: lowerCAmelCase_ :Optional[int] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: lowerCAmelCase_ :Tuple = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: lowerCAmelCase_ :Tuple = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: lowerCAmelCase_ :Union[str, Any] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCAmelCase_ :List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: lowerCAmelCase_ :List[str] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: lowerCAmelCase_ :Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ :str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ :str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ :Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ :List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ :Tuple = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowerCAmelCase_ :Any = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: lowerCAmelCase_ :Tuple = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: lowerCAmelCase_ :Tuple = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def _snake_case ( lowercase__ : List[str] , lowercase__ : Dict ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ :Dict = orig_state_dict.pop(lowercase__ ) if "qkv" in key: lowerCAmelCase_ :Union[str, Any] = key.split(""".""" ) lowerCAmelCase_ :Union[str, Any] = int(key_split[3] ) lowerCAmelCase_ :Optional[int] = config.hidden_size if "weight" in key: lowerCAmelCase_ :Optional[Any] = val[:dim, :] lowerCAmelCase_ :Optional[Any] = val[dim : dim * 2, :] lowerCAmelCase_ :str = val[-dim:, :] else: lowerCAmelCase_ :str = val[:dim] lowerCAmelCase_ :str = val[dim : dim * 2] lowerCAmelCase_ :Tuple = val[-dim:] else: lowerCAmelCase_ :Any = val return orig_state_dict def _snake_case ( lowercase__ : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Any = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) @torch.no_grad() def _snake_case ( lowercase__ : int , lowercase__ : List[str] , lowercase__ : int=False ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = get_audio_spectrogram_transformer_config(lowercase__ ) lowerCAmelCase_ :str = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict lowerCAmelCase_ :List[Any] = model_name_to_url[model_name] lowerCAmelCase_ :int = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" ) # remove some keys remove_keys(lowercase__ ) # rename some keys lowerCAmelCase_ :List[Any] = convert_state_dict(lowercase__ , lowercase__ ) # load 🤗 model lowerCAmelCase_ :int = ASTForAudioClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowerCAmelCase_ :Dict = -4.2677393 if """speech-commands""" not in model_name else -6.845978 lowerCAmelCase_ :Union[str, Any] = 4.5689974 if """speech-commands""" not in model_name else 5.5654526 lowerCAmelCase_ :Optional[Any] = 1_0_2_4 if """speech-commands""" not in model_name else 1_2_8 lowerCAmelCase_ :str = ASTFeatureExtractor(mean=lowercase__ , std=lowercase__ , max_length=lowercase__ ) if "speech-commands" in model_name: lowerCAmelCase_ :Any = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) lowerCAmelCase_ :List[str] = dataset[0]["""audio"""]["""array"""] else: lowerCAmelCase_ :Any = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) lowerCAmelCase_ :Tuple = torchaudio.load(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = waveform.squeeze().numpy() lowerCAmelCase_ :List[str] = feature_extractor(lowercase__ , sampling_rate=1_6_0_0_0 , return_tensors="""pt""" ) # forward pass lowerCAmelCase_ :str = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowerCAmelCase_ :Dict = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowerCAmelCase_ :Optional[int] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowerCAmelCase_ :Optional[int] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowerCAmelCase_ :Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowerCAmelCase_ :List[Any] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowerCAmelCase_ :List[str] = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowerCAmelCase_ :int = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowerCAmelCase_ :Any = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(lowercase__ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f"""MIT/{model_name}""" ) feature_extractor.push_to_hub(f"""MIT/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
1
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } snake_case__ : Union[str, Any] = { '''Salesforce/codegen-350M-mono''': 2_048, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = CodeGenTokenizer def __init__( self : Optional[int] , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple="<|endoftext|>" , UpperCamelCase_ : int="<|endoftext|>" , UpperCamelCase_ : Tuple="<|endoftext|>" , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : Dict , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop('''add_bos_token''' , UpperCamelCase_ ): lowerCAmelCase : str = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowerCAmelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowerCAmelCase : List[str] = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowerCAmelCase : Optional[Any] = add_prefix_space lowerCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) lowerCAmelCase : Optional[int] = add_prefix_space def lowerCamelCase__ ( self : int , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ): lowerCAmelCase : Dict = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : int ): lowerCAmelCase : List[str] = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : Tuple = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[List[str]] = None , **UpperCamelCase_ : Tuple , ): lowerCAmelCase : List[str] = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: lowerCAmelCase : str = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): def find_re(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ): lowerCAmelCase : Dict = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 lowerCAmelCase : Union[str, Any] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] lowerCAmelCase : Optional[Any] = list(re.finditer('''^print''' , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: lowerCAmelCase : int = completion[: prints[1].start()] lowerCAmelCase : List[str] = list(re.finditer('''^def''' , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: lowerCAmelCase : Union[str, Any] = completion[: defs[1].start()] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
60
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , ) -> Dict: '''simple docstring''' __lowerCamelCase = size if size is not None else {'shortest_edge': 20} __lowerCamelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size def lowercase_ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = MobileNetVaImageProcessingTester(self ) @property def lowercase_ ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'do_center_crop' ) ) self.assertTrue(hasattr(_A , 'crop_size' ) ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCamelCase = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
357
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Dict = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
91
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
59
0
'''simple docstring''' def __UpperCamelCase ( ): lowercase__ : Any = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase__ : Any = 6 lowercase__ : Optional[Any] = 1 lowercase__ : int = 1901 lowercase__ : List[str] = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase__ : Any = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase__ : List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 lowercase__ : Dict = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
367
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def _lowerCAmelCase( self ) -> int: lowercase__ : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) lowercase__ : Optional[Any] = load_dataset('''ashraq/esc50''' ) lowercase__ : Tuple = dataset['''train''']['''audio'''][-1]['''array'''] lowercase__ : Optional[Any] = audio_classifier(__lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''score''': 0.5_0_1, '''label''': '''Sound of a dog'''}, {'''score''': 0.4_9_9, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def _lowerCAmelCase( self ) -> str: pass @slow @require_torch def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[str] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog lowercase__ : int = load_dataset('''ashraq/esc50''' ) lowercase__ : str = dataset['''train''']['''audio'''][-1]['''array'''] lowercase__ : Any = audio_classifier(__lowerCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ] , ) lowercase__ : Dict = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) lowercase__ : Any = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {'''score''': 0.9_9_9, '''label''': '''Sound of a dog'''}, {'''score''': 0.0_0_1, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def _lowerCAmelCase( self ) -> Union[str, Any]: pass
214
0
'''simple docstring''' import os def __snake_case( ) -> Optional[Any]: with open(os.path.dirname(_lowerCAmelCase ) + """/p022_names.txt""" ) as file: snake_case__ : int = str(file.readlines()[0] ) snake_case__ : Tuple = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 0 for i, name in enumerate(_lowerCAmelCase ): for letter in name: name_score += ord(_lowerCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case__ : List[Any] = 0 return total_score if __name__ == "__main__": print(solution())
35
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowerCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase = logging.getLogger() def __lowerCAmelCase ( ): __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) __UpperCamelCase : Optional[Any] = parser.parse_args() return args.f def __lowerCAmelCase ( snake_case__ , snake_case__="eval" ): __UpperCamelCase : List[str] = os.path.join(snake_case__ , F"{split}_results.json" ) if os.path.exists(snake_case__ ): with open(snake_case__ , "r" ) as f: return json.load(snake_case__ ) raise ValueError(F"can't find {path}" ) _lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_glue.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def a_ (self ) -> Tuple: __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_clm_flax.main() __UpperCamelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def a_ (self ) -> str: __UpperCamelCase : Any = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_summarization_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def a_ (self ) -> int: __UpperCamelCase : int = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_mlm_flax.main() __UpperCamelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_ta_mlm_flax.main() __UpperCamelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def a_ (self ) -> Union[str, Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Optional[Any] = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_flax_ner.main() __UpperCamelCase : int = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def a_ (self ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , "argv" , _UpperCAmelCase ): run_qa.main() __UpperCamelCase : List[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
298
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : NestedDataStructureLike[PathLike] , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Tuple , ) -> Any: '''simple docstring''' super().__init__( lowerCamelCase__ , split=lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ : Optional[Any] = path_or_paths if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else {self.split: path_or_paths} UpperCamelCase__ : Optional[Any] = Text( cache_dir=lowerCamelCase__ , data_files=lowerCamelCase__ , features=lowerCamelCase__ , **lowerCamelCase__ , ) def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' if self.streaming: UpperCamelCase__ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : List[str] = None UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Tuple = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , ) UpperCamelCase__ : Tuple = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset
51
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowerCamelCase__ : WhisperForConditionalGeneration , lowerCamelCase__ : WhisperProcessor , lowerCamelCase__ : AutoencoderKL , lowerCamelCase__ : CLIPTextModel , lowerCamelCase__ : CLIPTokenizer , lowerCamelCase__ : UNetaDConditionModel , lowerCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase__ : StableDiffusionSafetyChecker , lowerCamelCase__ : CLIPImageProcessor , ) -> List[str]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCamelCase__ , speech_processor=lowerCamelCase__ , vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[Union[str, int]] = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": UpperCamelCase__ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def __call__( self : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=16000 , lowerCamelCase__ : int = 512 , lowerCamelCase__ : int = 512 , lowerCamelCase__ : int = 50 , lowerCamelCase__ : float = 7.5 , lowerCamelCase__ : Optional[Union[str, List[str]]] = None , lowerCamelCase__ : Optional[int] = 1 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : Optional[torch.Generator] = None , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase__ : int = 1 , **lowerCamelCase__ : List[str] , ) -> Tuple: '''simple docstring''' UpperCamelCase__ : int = self.speech_processor.feature_extractor( lowerCamelCase__ , return_tensors='''pt''' , sampling_rate=lowerCamelCase__ ).input_features.to(self.device ) UpperCamelCase__ : str = self.speech_model.generate(lowerCamelCase__ , max_length=480000 ) UpperCamelCase__ : Dict = self.speech_processor.tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , normalize=lowerCamelCase__ )[ 0 ] if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Optional[Any] = 1 elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Union[str, Any] = len(lowerCamelCase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowerCamelCase__ )}." ) # get prompt text embeddings UpperCamelCase__ : int = self.tokenizer( lowerCamelCase__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCamelCase__ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase__ : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = text_embeddings.shape UpperCamelCase__ : List[Any] = text_embeddings.repeat(1 , lowerCamelCase__ , 1 ) UpperCamelCase__ : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowerCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ : List[str] if negative_prompt is None: UpperCamelCase__ : Tuple = [''''''] * batch_size elif type(lowerCamelCase__ ) is not type(lowerCamelCase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase__ )} !=" F" {type(lowerCamelCase__ )}." ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : str = [negative_prompt] elif batch_size != len(lowerCamelCase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: UpperCamelCase__ : Any = negative_prompt UpperCamelCase__ : Any = text_input_ids.shape[-1] UpperCamelCase__ : Optional[int] = self.tokenizer( lowerCamelCase__ , padding='''max_length''' , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''pt''' , ) UpperCamelCase__ : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ : List[str] = uncond_embeddings.shape[1] UpperCamelCase__ : Optional[int] = uncond_embeddings.repeat(1 , lowerCamelCase__ , 1 ) UpperCamelCase__ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase__ : Union[str, Any] = torch.randn(lowerCamelCase__ , generator=lowerCamelCase__ , device='''cpu''' , dtype=lowerCamelCase__ ).to( self.device ) else: UpperCamelCase__ : int = torch.randn(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase__ : Dict = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase__ : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Optional[int] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ : Tuple = {} if accepts_eta: UpperCamelCase__ : List[Any] = eta for i, t in enumerate(self.progress_bar(lowerCamelCase__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : int = self.scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) # predict the noise residual UpperCamelCase__ : Optional[Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ : List[Any] = noise_pred.chunk(2 ) UpperCamelCase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : List[Any] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : str = 1 / 0.1_8215 * latents UpperCamelCase__ : Optional[int] = self.vae.decode(lowerCamelCase__ ).sample UpperCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ : int = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCamelCase__ , nsfw_content_detected=lowerCamelCase__ )
51
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase : Dict = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase : int = "https://storage.googleapis.com/cvdf-datasets/mnist/" def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_UpperCamelCase )[0] @deprecated(_UpperCamelCase , 'Please use tf.data to implement this functionality.' ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_UpperCamelCase ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =bytestream.read(rows * cols * num_images ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(_UpperCamelCase , dtype=numpy.uinta ) _SCREAMING_SNAKE_CASE =data.reshape(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , 1 ) return data @deprecated(_UpperCamelCase , 'Please use tf.one_hot on tensors.' ) def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =labels_dense.shape[0] _SCREAMING_SNAKE_CASE =numpy.arange(_UpperCamelCase ) * num_classes _SCREAMING_SNAKE_CASE =numpy.zeros((num_labels, num_classes) ) _SCREAMING_SNAKE_CASE =1 return labels_one_hot @deprecated(_UpperCamelCase , 'Please use tf.data to implement this functionality.' ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple=False , _UpperCamelCase : Tuple=10 ) -> str: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_UpperCamelCase ) as bytestream: _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) _SCREAMING_SNAKE_CASE =_readaa(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =bytestream.read(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =numpy.frombuffer(_UpperCamelCase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCamelCase , _UpperCamelCase ) return labels class A__ : @deprecated( _a , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , _a : Union[str, Any] , _a : Optional[int] , _a : Dict=False , _a : Tuple=False , _a : List[Any]=dtypes.floataa , _a : Optional[int]=True , _a : List[Any]=None , ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =random_seed.get_seed(_a ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _SCREAMING_SNAKE_CASE =dtypes.as_dtype(_a ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: _SCREAMING_SNAKE_CASE =1_0000 _SCREAMING_SNAKE_CASE =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" _SCREAMING_SNAKE_CASE =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _SCREAMING_SNAKE_CASE =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _SCREAMING_SNAKE_CASE =images.astype(numpy.floataa ) _SCREAMING_SNAKE_CASE =numpy.multiply(_a , 1.0 / 2_55.0 ) _SCREAMING_SNAKE_CASE =images _SCREAMING_SNAKE_CASE =labels _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 @property def A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return self._images @property def A ( self : str ) -> List[str]: '''simple docstring''' return self._labels @property def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self._num_examples @property def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self._epochs_completed def A ( self : Dict , _a : Dict , _a : Dict=False , _a : Tuple=True ) -> Optional[Any]: '''simple docstring''' if fake_data: _SCREAMING_SNAKE_CASE =[1] * 784 _SCREAMING_SNAKE_CASE =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_a )], [fake_label for _ in range(_a )], ) _SCREAMING_SNAKE_CASE =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) _SCREAMING_SNAKE_CASE =self.images[perma] _SCREAMING_SNAKE_CASE =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _SCREAMING_SNAKE_CASE =self._num_examples - start _SCREAMING_SNAKE_CASE =self._images[start : self._num_examples] _SCREAMING_SNAKE_CASE =self._labels[start : self._num_examples] # Shuffle the data if shuffle: _SCREAMING_SNAKE_CASE =numpy.arange(self._num_examples ) numpy.random.shuffle(_a ) _SCREAMING_SNAKE_CASE =self.images[perm] _SCREAMING_SNAKE_CASE =self.labels[perm] # Start next epoch _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =batch_size - rest_num_examples _SCREAMING_SNAKE_CASE =self._index_in_epoch _SCREAMING_SNAKE_CASE =self._images[start:end] _SCREAMING_SNAKE_CASE =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _SCREAMING_SNAKE_CASE =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCamelCase , 'Please write your own downloading logic.' ) def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> int: """simple docstring""" if not gfile.Exists(_UpperCamelCase ): gfile.MakeDirs(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , _UpperCamelCase ) if not gfile.Exists(_UpperCamelCase ): urllib.request.urlretrieve(_UpperCamelCase , _UpperCamelCase ) # noqa: S310 with gfile.GFile(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.size() print('Successfully downloaded' , _UpperCamelCase , _UpperCamelCase , 'bytes.' ) return filepath @deprecated( _UpperCamelCase , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : str=False , _UpperCamelCase : str=False , _UpperCamelCase : Any=dtypes.floataa , _UpperCamelCase : Any=True , _UpperCamelCase : Any=50_00 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[Any]=DEFAULT_SOURCE_URL , ) -> Optional[Any]: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_UpperCamelCase , one_hot=_UpperCamelCase , dtype=_UpperCamelCase , seed=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() _SCREAMING_SNAKE_CASE =fake() return _Datasets(train=_UpperCamelCase , validation=_UpperCamelCase , test=_UpperCamelCase ) if not source_url: # empty string check _SCREAMING_SNAKE_CASE =DEFAULT_SOURCE_URL _SCREAMING_SNAKE_CASE ='train-images-idx3-ubyte.gz' _SCREAMING_SNAKE_CASE ='train-labels-idx1-ubyte.gz' _SCREAMING_SNAKE_CASE ='t10k-images-idx3-ubyte.gz' _SCREAMING_SNAKE_CASE ='t10k-labels-idx1-ubyte.gz' _SCREAMING_SNAKE_CASE =_maybe_download( _UpperCamelCase , _UpperCamelCase , source_url + train_images_file ) with gfile.Open(_UpperCamelCase , 'rb' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_maybe_download( _UpperCamelCase , _UpperCamelCase , source_url + train_labels_file ) with gfile.Open(_UpperCamelCase , 'rb' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(_UpperCamelCase , one_hot=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_maybe_download( _UpperCamelCase , _UpperCamelCase , source_url + test_images_file ) with gfile.Open(_UpperCamelCase , 'rb' ) as f: _SCREAMING_SNAKE_CASE =_extract_images(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_maybe_download( _UpperCamelCase , _UpperCamelCase , source_url + test_labels_file ) with gfile.Open(_UpperCamelCase , 'rb' ) as f: _SCREAMING_SNAKE_CASE =_extract_labels(_UpperCamelCase , one_hot=_UpperCamelCase ) if not 0 <= validation_size <= len(_UpperCamelCase ): _SCREAMING_SNAKE_CASE =( 'Validation size should be between 0 and ' f"{len(_UpperCamelCase )}. Received: {validation_size}." ) raise ValueError(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =train_images[:validation_size] _SCREAMING_SNAKE_CASE =train_labels[:validation_size] _SCREAMING_SNAKE_CASE =train_images[validation_size:] _SCREAMING_SNAKE_CASE =train_labels[validation_size:] _SCREAMING_SNAKE_CASE ={'dtype': dtype, 'reshape': reshape, 'seed': seed} _SCREAMING_SNAKE_CASE =_DataSet(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_DataSet(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_DataSet(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) return _Datasets(train=_UpperCamelCase , validation=_UpperCamelCase , test=_UpperCamelCase )
47
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
47
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "decision_transformer" a = ["past_key_values"] a = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=17 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=5_0256 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : Tuple , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = state_dim SCREAMING_SNAKE_CASE__ = act_dim SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = max_ep_len SCREAMING_SNAKE_CASE__ = action_tanh SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
371
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) _SCREAMING_SNAKE_CASE : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCAmelCase_ ( _A ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE__ = model_type_to_module_name(_A ) SCREAMING_SNAKE_CASE__ = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_A , '''__name__''' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE__ = importlib.import_module('''transformers''' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def UpperCAmelCase_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(_A , encoding='''utf-8''' ) as reader: return json.load(_A ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : List[Any] ) -> int: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def lowercase_ ( cls : Optional[int] , __lowerCamelCase : Any , **__lowerCamelCase : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ = kwargs.pop('''config''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = config_dict.get('''image_processor_type''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: SCREAMING_SNAKE_CASE__ = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) SCREAMING_SNAKE_CASE__ = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ = config_dict['''auto_map''']['''AutoFeatureExtractor'''] SCREAMING_SNAKE_CASE__ = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` SCREAMING_SNAKE_CASE__ = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: SCREAMING_SNAKE_CASE__ = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: SCREAMING_SNAKE_CASE__ = image_processor_class_from_name(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = image_processor_auto_map is not None SCREAMING_SNAKE_CASE__ = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING SCREAMING_SNAKE_CASE__ = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE__ = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: SCREAMING_SNAKE_CASE__ = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowercase_ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ) -> str: IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
218
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''Salesforce/blip-image-captioning-base''' __snake_case = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) __snake_case = '''image_captioner''' __snake_case = AutoModelForVisionaSeq __snake_case = ['''image'''] __snake_case = ['''text'''] def __init__( self : Optional[int] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : "Image" ) ->Union[str, Any]: """simple docstring""" return self.pre_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str ) ->List[str]: """simple docstring""" return self.model.generate(**__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] ) ->int: """simple docstring""" return self.pre_processor.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )[0].strip()
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): __magic_name__ : Union[str, Any] = np.full((len(_snake_case ), sequence_length, 2) , _snake_case ) else: __magic_name__ : List[Any] = np.full((len(_snake_case ), sequence_length) , _snake_case ) for i, tensor in enumerate(_snake_case ): if padding_side == "right": if isinstance(_snake_case , _snake_case ): __magic_name__ : Optional[Any] = tensor[:sequence_length] else: __magic_name__ : Union[str, Any] = tensor[:sequence_length] else: if isinstance(_snake_case , _snake_case ): __magic_name__ : List[Any] = tensor[:sequence_length] else: __magic_name__ : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = ord(_snake_case ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __magic_name__ : Any = unicodedata.category(_snake_case ) if cat.startswith("P" ): return True return False @dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = -100 UpperCamelCase__ = "pt" def SCREAMING_SNAKE_CASE ( self , _a ): import torch __magic_name__ : List[str] = "label" if "label" in features[0].keys() else "labels" __magic_name__ : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __magic_name__ : Optional[int] = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __magic_name__ : Dict = torch.tensor(batch["entity_ids"] ).shape[1] __magic_name__ : List[Any] = self.tokenizer.padding_side if padding_side == "right": __magic_name__ : str = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: __magic_name__ : int = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] __magic_name__ : Dict = [feature["ner_tags"] for feature in features] __magic_name__ : List[Any] = padding_tensor(_a , -1 , _a , _a ) __magic_name__ : Any = [feature["original_entity_spans"] for feature in features] __magic_name__ : Any = padding_tensor(_a , (-1, -1) , _a , _a ) __magic_name__ : List[Any] = {k: torch.tensor(_a , dtype=torch.intaa ) for k, v in batch.items()} return batch
281
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowercase ( a__ : int ) -> int: _UpperCamelCase = SwinConfig() _UpperCamelCase = swin_name.split('''_''' ) _UpperCamelCase = name_split[1] _UpperCamelCase = int(name_split[4] ) _UpperCamelCase = int(name_split[3][-1] ) if model_size == "tiny": _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 6, 2) _UpperCamelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCamelCase = 128 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (4, 8, 16, 32) else: _UpperCamelCase = 192 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (6, 12, 24, 48) if "in22k" in swin_name: _UpperCamelCase = 21841 else: _UpperCamelCase = 1000 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''imagenet-1k-id2label.json''' _UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = img_size _UpperCamelCase = num_classes _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = num_heads _UpperCamelCase = window_size return config def lowercase ( a__ : List[Any] ) -> Union[str, Any]: if "patch_embed.proj" in name: _UpperCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _UpperCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _UpperCamelCase = '''encoder.''' + name if "attn.proj" in name: _UpperCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _UpperCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _UpperCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _UpperCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _UpperCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": _UpperCamelCase = '''layernorm.weight''' if name == "norm.bias": _UpperCamelCase = '''layernorm.bias''' if "head" in name: _UpperCamelCase = name.replace('''head''' , '''classifier''' ) else: _UpperCamelCase = '''swin.''' + name return name def lowercase ( a__ : Optional[int] , a__ : List[str] ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(a__ ) if "mask" in key: continue elif "qkv" in key: _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[1] ) _UpperCamelCase = int(key_split[3] ) _UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[ dim : dim * 2, : ] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[ :dim ] _UpperCamelCase = val[ dim : dim * 2 ] _UpperCamelCase = val[ -dim: ] else: _UpperCamelCase = val return orig_state_dict def lowercase ( a__ : List[Any] , a__ : int ) -> Tuple: _UpperCamelCase = timm.create_model(a__ , pretrained=a__ ) timm_model.eval() _UpperCamelCase = get_swin_config(a__ ) _UpperCamelCase = SwinForImageClassification(a__ ) model.eval() _UpperCamelCase = convert_state_dict(timm_model.state_dict() , a__ ) model.load_state_dict(a__ ) _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) _UpperCamelCase = image_processor(images=a__ , return_tensors='''pt''' ) _UpperCamelCase = timm_model(inputs['''pixel_values'''] ) _UpperCamelCase = model(**a__ ).logits assert torch.allclose(a__ , a__ , atol=1e-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
54
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( _lowercase , _lowercase): @register_to_config def __init__( self : Tuple , __UpperCamelCase : bool , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None ) -> int: super().__init__() _UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCamelCase = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: _UpperCamelCase = None _UpperCamelCase = torch.nn.Parameter(__UpperCamelCase ) class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self : List[str] , __UpperCamelCase : VQModel , __UpperCamelCase : CLIPTextModel , __UpperCamelCase : CLIPTokenizer , __UpperCamelCase : TransformeraDModel , __UpperCamelCase : VQDiffusionScheduler , __UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings , ) -> Optional[int]: super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) -> str: _UpperCamelCase = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] _UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt _UpperCamelCase = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings _UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: _UpperCamelCase = [''''''] * batch_size _UpperCamelCase = text_input_ids.shape[-1] _UpperCamelCase = self.tokenizer( __UpperCamelCase , padding='''max_length''' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='''pt''' , ) _UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCamelCase = negative_prompt_embeds.shape[1] _UpperCamelCase = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) _UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str]] , __UpperCamelCase : int = 100 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : float = 1.0 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCamelCase : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCamelCase = len(__UpperCamelCase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) _UpperCamelCase = batch_size * num_images_per_prompt _UpperCamelCase = guidance_scale > 1.0 _UpperCamelCase = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCamelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCamelCase = self.transformer.num_vector_embeds - 1 _UpperCamelCase = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCamelCase = self.scheduler.timesteps.to(self.device ) _UpperCamelCase = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance _UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCamelCase = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: _UpperCamelCase , _UpperCamelCase = model_output.chunk(2 ) _UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) _UpperCamelCase = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) _UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCamelCase = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.vqvae.config.vq_embed_dim _UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCamelCase = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) _UpperCamelCase = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample _UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCamelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float ) -> torch.FloatTensor: _UpperCamelCase , _UpperCamelCase = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) _UpperCamelCase = torch.exp(__UpperCamelCase ) _UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) _UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) _UpperCamelCase = keep_mask[:, :-1, :] _UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) _UpperCamelCase = log_p_x_0.clone() _UpperCamelCase = -torch.inf # -inf = log(0) return rv
54
1
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _lowercase = logging.getLogger(__name__) def _snake_case ( ): A = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=snake_case__ , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=snake_case__ , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=snake_case__ , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=snake_case__ , default='data/dump' , help='The dump file prefix.' ) A = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": A = BertTokenizer.from_pretrained(args.tokenizer_name ) A = tokenizer.special_tokens_map['cls_token'] # `[CLS]` A = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": A = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A = tokenizer.special_tokens_map['cls_token'] # `<s>` A = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": A = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` A = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: A = fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(snake_case__ )} examples to process.' ) A = [] A = 0 A = 1_0000 A = time.time() for text in data: A = F'{bos} {text.strip()} {sep}' A = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) rslt.append(snake_case__ ) iter += 1 if iter % interval == 0: A = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) A = time.time() logger.info('Finished binarization' ) logger.info(F'{len(snake_case__ )} examples processed.' ) A = F'{args.dump_file}.{args.tokenizer_name}.pickle' A = tokenizer.vocab_size if vocab_size < (1 << 16): A = [np.uintaa(snake_case__ ) for d in rslt] else: A = [np.intaa(snake_case__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(snake_case__ , 'wb' ) as handle: pickle.dump(rslt_ , snake_case__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
74
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( __lowerCamelCase : str ) ->Optional[int]: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += [key] setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator def lowerCamelCase ( *__lowerCamelCase : List[str] ) ->Dict: def decorator(__lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , """handle_key""" , [] ) handle += keys setattr(__lowerCamelCase , """handle_key""" , __lowerCamelCase ) return func return decorator class a_ ( snake_case_ ): '''simple docstring''' def __new__( cls , A , A , A ) -> int: _SCREAMING_SNAKE_CASE = super().__new__(cls , A , A , A ) if not hasattr(A , """key_handler""" ): setattr(A , """key_handler""" , {} ) setattr(A , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE = getattr(A , """handle_key""" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE = value return new_cls @staticmethod def snake_case_( cls ) -> str: _SCREAMING_SNAKE_CASE = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE = ord(A ) _SCREAMING_SNAKE_CASE = cls.key_handler.get(A ) if handler: _SCREAMING_SNAKE_CASE = char return handler(cls ) else: return None def lowerCamelCase ( cls : Any ) ->Dict: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
58
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase__ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , **lowerCAmelCase_ : List[Any] ): """simple docstring""" super().__init__(**__lowerCamelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(__lowerCamelCase ) def __magic_name__ ( self : List[str] , **lowerCAmelCase_ : List[str] ): """simple docstring""" _A: Union[str, Any] = {} _A: int = {} _A: int = {} # preprocess args if "points_per_batch" in kwargs: _A: List[str] = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: _A: Tuple = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: _A: Dict = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: _A: Dict = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: _A: Any = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: _A: Optional[Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: _A: int = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: _A: int = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: _A: int = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: _A: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: _A: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: _A: List[Any] = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , lowerCAmelCase_ : List[Any] , *lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return super().__call__(__lowerCamelCase , *__lowerCamelCase , num_workers=__lowerCamelCase , batch_size=__lowerCamelCase , **__lowerCamelCase ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=6_4 , lowerCAmelCase_ : Any = 0 , lowerCAmelCase_ : Any = 5_1_2 / 1_5_0_0 , lowerCAmelCase_ : Optional[int] = 3_2 , lowerCAmelCase_ : List[Any] = 1 , ): """simple docstring""" _A: Optional[int] = load_image(__lowerCamelCase ) _A: str = self.image_processor.size['''longest_edge'''] _A , _A , _A , _A: int = self.image_processor.generate_crop_boxes( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _A: Optional[int] = self.image_processor(images=__lowerCamelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": _A: Any = self.get_inference_context() with inference_context(): _A: Any = self._ensure_tensor_on_device(__lowerCamelCase , device=self.device ) _A: List[Any] = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) _A: Optional[int] = image_embeddings _A: Dict = grid_points.shape[1] _A: Optional[int] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __lowerCamelCase , __lowerCamelCase ): _A: Dict = grid_points[:, i : i + points_per_batch, :, :] _A: Tuple = input_labels[:, i : i + points_per_batch] _A: List[Any] = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=0.88 , lowerCAmelCase_ : int=0.95 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Dict=1 , ): """simple docstring""" _A: Tuple = model_inputs.pop('''input_boxes''' ) _A: List[Any] = model_inputs.pop('''is_last''' ) _A: Optional[int] = model_inputs.pop('''original_sizes''' ).tolist() _A: Any = model_inputs.pop('''reshaped_input_sizes''' ).tolist() _A: List[Any] = self.model(**__lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _A: Union[str, Any] = model_outputs['''pred_masks'''] _A: List[Any] = self.image_processor.post_process_masks( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , binarize=__lowerCamelCase ) _A: str = model_outputs['''iou_scores'''] _A , _A , _A: str = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def __magic_name__ ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=0.7 , ): """simple docstring""" _A: List[str] = [] _A: int = [] _A: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) _A: Any = torch.cat(__lowerCamelCase ) _A: Union[str, Any] = torch.cat(__lowerCamelCase ) _A , _A , _A , _A: List[Any] = self.image_processor.post_process_for_mask_generation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _A: List[Any] = defaultdict(__lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowerCamelCase ) _A: Dict = {} if output_rle_mask: _A: List[str] = rle_mask if output_bboxes_mask: _A: Dict = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
367
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Any = (DDPMParallelScheduler,) def __magic_name__ ( self : Optional[int] , **lowerCAmelCase_ : Any ): """simple docstring""" _A: Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCAmelCase_ ) return config def __magic_name__ ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase_ ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def __magic_name__ ( self : List[str] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , ) def __magic_name__ ( self : Dict ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config() _A: Optional[Any] = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = self.scheduler_classes[0] _A: List[str] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: List[Any] = len(lowerCAmelCase_ ) _A: Union[str, Any] = self.dummy_model() _A: Dict = self.dummy_sample_deter _A: Dict = self.dummy_sample_deter + 0.1 _A: str = self.dummy_sample_deter - 0.1 _A: str = samplea.shape[0] _A: Optional[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _A: List[str] = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ ) _A: List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _A: Optional[int] = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _A: Dict = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: List[str] = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[Any] = self.scheduler_classes[0] _A: List[Any] = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Optional[int] = self.dummy_sample_deter _A: List[str] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Optional[int] = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: Optional[int] = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: List[Any] = pred_prev_sample _A: Optional[int] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: Any = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __magic_name__ ( self : Tuple ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _A: List[str] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = len(lowerCAmelCase_ ) _A: Any = self.dummy_model() _A: Any = self.dummy_sample_deter _A: str = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase_ ) ): # 1. predict noise residual _A: Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _A: int = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample _A: Tuple = pred_prev_sample _A: List[Any] = torch.sum(torch.abs(lowerCAmelCase_ ) ) _A: str = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Optional[int] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Dict = scheduler_class(**lowerCAmelCase_ ) _A: Any = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) _A: Tuple = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase_ ): if i == len(lowerCAmelCase_ ) - 1: _A: Dict = -1 else: _A: int = timesteps[i + 1] _A: List[str] = scheduler.previous_timestep(lowerCAmelCase_ ) _A: str = prev_t.item() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: Any = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: List[str] = self.scheduler_classes[0] _A: Optional[Any] = self.get_scheduler_config() _A: Union[str, Any] = scheduler_class(**lowerCAmelCase_ ) _A: Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _A: Dict = len(lowerCAmelCase_ ) with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = self.scheduler_classes[0] _A: int = self.get_scheduler_config() _A: str = scheduler_class(**lowerCAmelCase_ ) _A: Any = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
301
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : str =StableDiffusionPanoramaPipeline UpperCamelCase_ : str =TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Any =TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : int =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Optional[int] =TEXT_TO_IMAGE_IMAGE_PARAMS def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowercase= DDIMScheduler() torch.manual_seed(0 ) __lowercase= AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowercase= CLIPTextModel(lowerCAmelCase ) __lowercase= CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowercase= { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): __lowercase= torch.manual_seed(lowerCAmelCase ) __lowercase= { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= StableDiffusionPanoramaPipeline(**lowerCAmelCase ) __lowercase= sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= sd_pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A (self ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= StableDiffusionPanoramaPipeline(**lowerCAmelCase ) __lowercase= sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 'french fries' __lowercase= sd_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= StableDiffusionPanoramaPipeline(**lowerCAmelCase ) __lowercase= sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= sd_pipe(**lowerCAmelCase , view_batch_size=2 ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) __lowercase= StableDiffusionPanoramaPipeline(**lowerCAmelCase ) __lowercase= sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= sd_pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=lowerCAmelCase ) __lowercase= StableDiffusionPanoramaPipeline(**lowerCAmelCase ) __lowercase= sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= sd_pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self , lowerCAmelCase=0 ): __lowercase= torch.manual_seed(lowerCAmelCase ) __lowercase= { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _A (self ): __lowercase= 'stabilityai/stable-diffusion-2-base' __lowercase= DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='scheduler' ) __lowercase= StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() __lowercase= self.get_inputs() __lowercase= pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) __lowercase= np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def _A (self ): __lowercase= StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowerCAmelCase ) __lowercase= LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() __lowercase= self.get_inputs() __lowercase= pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 2_0_4_8, 3) __lowercase= np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _A (self ): __lowercase= 0 def callback_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> None: __lowercase= True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowercase= latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) __lowercase= latents[0, -3:, -3:, -1] __lowercase= np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __lowercase= latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 2_5_6) __lowercase= latents[0, -3:, -3:, -1] __lowercase= np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __lowercase= False __lowercase= 'stabilityai/stable-diffusion-2-base' __lowercase= DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='scheduler' ) __lowercase= StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() __lowercase= self.get_inputs() pipe(**lowerCAmelCase , callback=lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _A (self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase= 'stabilityai/stable-diffusion-2-base' __lowercase= DDIMScheduler.from_pretrained(lowerCAmelCase , subfolder='scheduler' ) __lowercase= StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase ) __lowercase= pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase= self.get_inputs() __lowercase= pipe(**lowerCAmelCase ) __lowercase= torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 1_0**9
295
from __future__ import annotations def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= 2 __lowercase= [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase__ ) if n > 1: factors.append(lowercase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
295
1
"""simple docstring""" import numpy as np from transformers import Pipeline def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = np.max(_snake_case , axis=-1 , keepdims=_snake_case ) UpperCAmelCase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_snake_case ) class lowerCamelCase__ ( snake_case ): def _UpperCamelCase ( self ,**A ): UpperCAmelCase = {} if "second_text" in kwargs: UpperCAmelCase = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _UpperCamelCase ( self ,A ,A=None ): return self.tokenizer(A ,text_pair=A ,return_tensors=self.framework ) def _UpperCamelCase ( self ,A ): return self.model(**A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = model_outputs.logits[0].numpy() UpperCAmelCase = softmax(A ) UpperCAmelCase = np.argmax(A ) UpperCAmelCase = self.model.config.idalabel[best_class] UpperCAmelCase = probabilities[best_class].item() UpperCAmelCase = logits.tolist() return {"label": label, "score": score, "logits": logits}
234
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _UpperCamelCase = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _UpperCamelCase = dataset.iloc[:, 1:2].values _UpperCamelCase = dataset.iloc[:, 2].values _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split(X, y, test_size=0.2, random_state=0) _UpperCamelCase = PolynomialFeatures(degree=4) _UpperCamelCase = poly_reg.fit_transform(X) _UpperCamelCase = LinearRegression() pol_reg.fit(X_poly, y) def _a ( ): """simple docstring""" plt.scatter(_snake_case , _snake_case , color="""red""" ) plt.plot(_snake_case , pol_reg.predict(poly_reg.fit_transform(_snake_case ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
234
1
import math import flax.linen as nn import jax.numpy as jnp def UpperCamelCase ( __magic_name__ : jnp.ndarray , __magic_name__ : int , __magic_name__ : float = 1 , __magic_name__ : float = 1 , __magic_name__ : float = 1.0E4 , __magic_name__ : bool = False , __magic_name__ : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowercase__ = float(embedding_dim // 2 ) lowercase__ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase__ = min_timescale * jnp.exp(jnp.arange(snake_case_ , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase__ = jnp.expand_dims(snake_case_ , 1 ) * jnp.expand_dims(snake_case_ , 0 ) # scale embeddings lowercase__ = scale * emb if flip_sin_to_cos: lowercase__ = jnp.concatenate([jnp.cos(snake_case_ ), jnp.sin(snake_case_ )] , axis=1 ) else: lowercase__ = jnp.concatenate([jnp.sin(snake_case_ ), jnp.cos(snake_case_ )] , axis=1 ) lowercase__ = jnp.reshape(snake_case_ , [jnp.shape(snake_case_ )[0], embedding_dim] ) return signal class A ( nn.Module ): '''simple docstring''' A__ = 32 A__ = jnp.floataa @nn.compact def __call__(self : Dict , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" lowercase__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(__a ) lowercase__ = nn.silu(__a ) lowercase__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(__a ) return temb class A ( nn.Module ): '''simple docstring''' A__ = 32 A__ = False A__ = 1 @nn.compact def __call__(self : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" return get_sinusoidal_embeddings( __a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
305
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any]=0.999 , snake_case_ : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __snake_case = [] for i in range(lowerCAmelCase__ ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase__ ) / alpha_bar_fn(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) return torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A_ : Tuple = [e.name for e in KarrasDiffusionSchedulers] A_ : str = 2 @register_to_config def __init__(self : Tuple , a__ : Tuple = 1000 , a__ : List[str] = 0.0_0_0_8_5 , a__ : Optional[Any] = 0.0_1_2 , a__ : Union[str, Any] = "linear" , a__ : Dict = None , a__ : Optional[int] = "epsilon" , a__ : Union[str, Any] = "linspace" , a__ : Optional[int] = 0 , ): """simple docstring""" if trained_betas is not None: __snake_case = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(_a ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def a (self : Tuple , a__ : Optional[int] , a__ : str=None ): """simple docstring""" if schedule_timesteps is None: __snake_case = self.timesteps __snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case = 1 if len(_a ) > 1 else 0 else: __snake_case = timestep.cpu().item() if torch.is_tensor(_a ) else timestep __snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def a (self : Optional[Any] ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a (self : Any , a__ : Dict , a__ : Dict , ): """simple docstring""" __snake_case = self.index_for_timestep(_a ) if self.state_in_first_order: __snake_case = self.sigmas[step_index] else: __snake_case = self.sigmas_interpol[step_index] __snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def a (self : Tuple , a__ : List[Any] , a__ : str = None , a__ : Tuple = None , ): """simple docstring""" __snake_case = num_inference_steps __snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.""" ) __snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case = torch.from_numpy(np.log(_a ) ).to(_a ) __snake_case = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) __snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case = torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas __snake_case = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __snake_case = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 __snake_case = torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: __snake_case = torch.from_numpy(_a ).to(_a ) # interpolate timesteps __snake_case = self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) __snake_case = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __snake_case = torch.cat([timesteps[:1], interleaved_timesteps] ) __snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case = defaultdict(_a ) def a (self : int , a__ : Optional[int] ): """simple docstring""" __snake_case = sigma.log() # get distribution __snake_case = log_sigma - self.log_sigmas[:, None] # get sigmas range __snake_case = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __snake_case = low_idx + 1 __snake_case = self.log_sigmas[low_idx] __snake_case = self.log_sigmas[high_idx] # interpolate sigmas __snake_case = (low - log_sigma) / (low - high) __snake_case = w.clamp(0 , 1 ) # transform interpolation to time range __snake_case = (1 - w) * low_idx + w * high_idx __snake_case = t.view(sigma.shape ) return t @property def a (self : int ): """simple docstring""" return self.sample is None def a (self : List[Any] , a__ : List[Any] , a__ : str , a__ : Tuple , a__ : Dict = True , ): """simple docstring""" __snake_case = self.index_for_timestep(_a ) # advance index counter by 1 __snake_case = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case = self.sigmas[step_index] __snake_case = self.sigmas_interpol[step_index + 1] __snake_case = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __snake_case = self.sigmas[step_index - 1] __snake_case = self.sigmas_interpol[step_index] __snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case = 0 __snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case = sigma_interpol - sigma_hat # store for 2nd order step __snake_case = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __snake_case = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __snake_case = sigma_next - sigma_hat __snake_case = self.sample __snake_case = None __snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def a (self : List[Any] , a__ : Optional[Any] , a__ : int , a__ : str , ): """simple docstring""" __snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 __snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case = self.timesteps.to(original_samples.device ) __snake_case = timesteps.to(original_samples.device ) __snake_case = [self.index_for_timestep(_a , _a ) for t in timesteps] __snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case = sigma.unsqueeze(-1 ) __snake_case = original_samples + noise * sigma return noisy_samples def __len__(self : int ): """simple docstring""" return self.config.num_train_timesteps
361
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Tuple = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
167
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Union[str, Any] = """bart""" __lowerCAmelCase : Optional[int] = ["""past_key_values"""] __lowerCAmelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , _lowerCamelCase : List[Any]=5_02_65 , _lowerCamelCase : Optional[Any]=10_24 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Dict=40_96 , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Optional[Any]=12 , _lowerCamelCase : Tuple=40_96 , _lowerCamelCase : List[str]=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : int="gelu" , _lowerCamelCase : Any=10_24 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Optional[int]=0.02 , _lowerCamelCase : int=0.0 , _lowerCamelCase : Any=False , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=3 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : int=0 , _lowerCamelCase : Optional[int]=2 , _lowerCamelCase : Any=True , _lowerCamelCase : str=2 , _lowerCamelCase : str=2 , **_lowerCamelCase : str , ): """simple docstring""" A_ : Dict = vocab_size A_ : Union[str, Any] = max_position_embeddings A_ : Union[str, Any] = d_model A_ : Optional[int] = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : Union[str, Any] = encoder_attention_heads A_ : List[str] = decoder_ffn_dim A_ : List[str] = decoder_layers A_ : Any = decoder_attention_heads A_ : List[Any] = dropout A_ : Optional[int] = attention_dropout A_ : List[Any] = activation_dropout A_ : Tuple = activation_function A_ : Any = init_std A_ : Union[str, Any] = encoder_layerdrop A_ : Optional[Any] = decoder_layerdrop A_ : Tuple = classifier_dropout A_ : Tuple = use_cache A_ : List[str] = encoder_layers A_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCamelCase ): A_ : int = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class lowercase ( __UpperCAmelCase): @property def a_ ( self : Optional[Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ : Tuple = {0: '''batch'''} A_ : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: A_ , A_ : Any = self.num_layers for i in range(_lowerCamelCase ): A_ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: A_ : List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a_ ( self : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Optional[Any] = super().outputs else: A_ : List[Any] = super(_lowerCamelCase , self ).outputs if self.use_past: A_ , A_ : int = self.num_layers for i in range(_lowerCamelCase ): A_ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} A_ : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a_ ( self : Union[str, Any] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs A_ : Tuple = seq_length if not self.use_past else 1 A_ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : Dict = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} A_ : Dict = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Union[str, Any] = common_inputs['''input_ids'''].shape A_ : Any = common_inputs['''decoder_input_ids'''].shape[1] A_ , A_ : Optional[Any] = self.num_attention_heads A_ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : Optional[Any] = decoder_seq_length + 3 A_ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A_ : Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) A_ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A_ , A_ : Optional[Any] = self.num_layers A_ : Optional[Any] = min(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers A_ : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. A_ : List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def a_ ( self : Optional[int] , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ , A_ : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ : Union[str, Any] = seqlen + 2 A_ , A_ : Tuple = self.num_layers A_ , A_ : Optional[int] = self.num_attention_heads A_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A_ : str = common_inputs['''attention_mask'''].dtype A_ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) A_ : int = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def a_ ( self : str , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" A_ : List[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ : Dict = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) A_ : int = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence A_ : List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size A_ : List[str] = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def a_ ( self : Tuple , _lowerCamelCase : PreTrainedTokenizer , _lowerCamelCase : int = -1 , _lowerCamelCase : int = -1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": A_ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: A_ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def a_ ( self : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: A_ : Tuple = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: A_ : List[Any] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
167
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = "utf-8" UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = True # deprecated UpperCAmelCase_ = None # deprecated UpperCAmelCase_ = 10 << 20 # 10MB UpperCAmelCase_ = None class a_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase_ = JsonConfig def __snake_case ( self : List[Any]): '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') lowerCAmelCase__ = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def __snake_case ( self : Any , lowercase__ : Tuple): '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") lowerCAmelCase__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCamelCase_ , (str, list, tuple)): lowerCAmelCase__ = data_files if isinstance(UpperCamelCase_ , UpperCamelCase_): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(UpperCamelCase_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] lowerCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_): lowerCAmelCase__ = [files] lowerCAmelCase__ = [dl_manager.iter_files(UpperCamelCase_) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'files': files})) return splits def __snake_case ( self : Optional[Any] , lowercase__ : pa.Table): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): lowerCAmelCase__ = self.config.features.arrow_schema.field(UpperCamelCase_).type lowerCAmelCase__ = pa_table.append_column(UpperCamelCase_ , pa.array([None] * len(UpperCamelCase_) , type=UpperCamelCase_)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase__ = table_cast(UpperCamelCase_ , self.config.features.arrow_schema) return pa_table def __snake_case ( self : Optional[Any] , lowercase__ : Optional[Any]): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCamelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: lowerCAmelCase__ = json.load(UpperCamelCase_) # We keep only the field we are interested in lowerCAmelCase__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCamelCase_ , (list, tuple)): lowerCAmelCase__ = set().union(*[row.keys() for row in dataset]) lowerCAmelCase__ = {col: [row.get(UpperCamelCase_) for row in dataset] for col in keys} else: lowerCAmelCase__ = dataset lowerCAmelCase__ = pa.Table.from_pydict(UpperCamelCase_) yield file_idx, self._cast_table(UpperCamelCase_) # If the file has one json object per line else: with open(UpperCamelCase_ , 'rb') as f: lowerCAmelCase__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowerCAmelCase__ = max(self.config.chunksize // 32 , 16 << 10) lowerCAmelCase__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: lowerCAmelCase__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCamelCase_) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowerCAmelCase__ = batch.decode(self.config.encoding , errors=UpperCamelCase_).encode('utf-8') try: while True: try: lowerCAmelCase__ = paj.read_json( io.BytesIO(UpperCamelCase_) , read_options=paj.ReadOptions(block_size=UpperCamelCase_)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCamelCase_ , pa.ArrowInvalid) and "straddling" not in str(UpperCamelCase_) or block_size > len(UpperCamelCase_) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(UpperCamelCase_)} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCamelCase_ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: lowerCAmelCase__ = json.load(UpperCamelCase_) except json.JSONDecodeError: logger.error(F"""Failed to read file \'{file}\' with error {type(UpperCamelCase_)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCamelCase_ , UpperCamelCase_): # list is the only sequence type supported in JSON try: lowerCAmelCase__ = set().union(*[row.keys() for row in dataset]) lowerCAmelCase__ = {col: [row.get(UpperCamelCase_) for row in dataset] for col in keys} lowerCAmelCase__ = pa.Table.from_pydict(UpperCamelCase_) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file \'{file}\' with error {type(UpperCamelCase_)}: {e}""") raise ValueError(F"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCamelCase_) break else: logger.error(F"""Failed to read file \'{file}\' with error {type(UpperCamelCase_)}: {e}""") raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ F"""Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCamelCase_) batch_idx += 1
355
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , lowercase__ : pyspark.sql.DataFrame , lowercase__ : Optional[NamedSplit] = None , lowercase__ : Optional[Features] = None , lowercase__ : bool = True , lowercase__ : str = None , lowercase__ : bool = False , lowercase__ : str = None , lowercase__ : bool = True , lowercase__ : str = "arrow" , **lowercase__ : Any , ): '''simple docstring''' super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = load_from_cache_file lowerCAmelCase__ = file_format lowerCAmelCase__ = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def __snake_case ( self : Tuple): '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split) lowerCAmelCase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
119
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class A__ ( lowerCAmelCase__ ): """simple docstring""" @require_torch def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ : Any = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ : Dict = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ : List[str] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase__) BertModel.from_pretrained(lowerCAmelCase__) BertTokenizer.from_pretrained(lowerCAmelCase__) pipeline(task='fill-mask' , model=lowerCAmelCase__) # baseline - just load from_pretrained with normal network a__ : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed a__ : Optional[int] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : List[str] = '1' a__ : List[str] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' a__ : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' a__ : Dict = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache a__ : List[str] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowerCAmelCase__) BertModel.from_pretrained(lowerCAmelCase__) BertTokenizer.from_pretrained(lowerCAmelCase__) pipeline(task='fill-mask' , model=lowerCAmelCase__) # baseline - just load from_pretrained with normal network a__ : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed a__ : Union[str, Any] = self.get_env() a__ : List[str] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' a__ : Union[str, Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' a__ : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network a__ : str = [sys.executable, '-c', '\n'.join([load, run])] # should succeed a__ : Optional[int] = self.get_env() a__ : Any = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # next emulate no network a__ : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : Tuple = '1' a__ : Optional[Any] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = '\nfrom transformers import pipeline\n ' a__ : Any = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' a__ : Any = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' a__ : Dict = self.get_env() a__ : Union[str, Any] = '1' a__ : Any = [sys.executable, '-c', '\n'.join([load, mock, run])] a__ : Union[str, Any] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '') , ) @require_torch def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[Any] = '\nfrom transformers import AutoModel\n ' a__ : int = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network a__ : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed a__ : Optional[Any] = self.get_env() a__ : int = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files a__ : Any = '1' a__ : List[str] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode())
99
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCAmelCase ) ): if valid_connection(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # Insert current vertex into path as next transition snake_case_ = next_ver # Validate created path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , curr_ind + 1 ): return True # Backtrack snake_case_ = -1 return False def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 0 ) -> list[int]: snake_case_ = [-1] * (len(UpperCAmelCase ) + 1) # initialize start and end of path with starting index snake_case_ = snake_case_ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCAmelCase , UpperCAmelCase , 1 ) else []
69
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: Dict ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[Any] =['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys SCREAMING_SNAKE_CASE_: str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __A ( unittest.TestCase , UpperCamelCase__ ): def _lowercase (self : Tuple ): UpperCAmelCase_ = load_tool("text-to-speech" ) self.tool.setup() def _lowercase (self : Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def _lowercase (self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
106
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class _snake_case ( lowercase_ ): def __init__( self , *a__ , **a__ ) -> None: '''simple docstring''' warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , a__ , ) super().__init__(*a__ , **a__ )
85
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase_( snake_case : Optional[int] ): '''simple docstring''' return EnvironmentCommand() class _snake_case ( lowercase_ ): @staticmethod def lowerCAmelCase__ ( a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = parser.add_parser("env" ) download_parser.set_defaults(func=a__ ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = huggingface_hub.__version__ snake_case_ = "not installed" snake_case_ = "NA" if is_torch_available(): import torch snake_case_ = torch.__version__ snake_case_ = torch.cuda.is_available() snake_case_ = "not installed" if is_transformers_available(): import transformers snake_case_ = transformers.__version__ snake_case_ = "not installed" if is_accelerate_available(): import accelerate snake_case_ = accelerate.__version__ snake_case_ = "not installed" if is_xformers_available(): import xformers snake_case_ = xformers.__version__ snake_case_ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a__ ) ) return info @staticmethod def lowerCAmelCase__ ( a__ ) -> str: '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
85
1
import math class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 UpperCamelCase : List[str] = n UpperCamelCase : Tuple = [ [math.inf for j in range(0, SCREAMING_SNAKE_CASE_ )] for i in range(0, SCREAMING_SNAKE_CASE_ ) ] # adjacency matrix for weight UpperCamelCase : Dict = [ [math.inf for j in range(0, SCREAMING_SNAKE_CASE_ )] for i in range(0, SCREAMING_SNAKE_CASE_ ) ] # dp[i][j] stores minimum distance from i to j def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase : int = w def snake_case_ ( self ) -> Union[str, Any]: for k in range(0, self.n ): for i in range(0, self.n ): for j in range(0, self.n ): UpperCamelCase : Tuple = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j] ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
350
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = ["input_values", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_ = 1, SCREAMING_SNAKE_CASE_ = 1_6000, SCREAMING_SNAKE_CASE_ = 0.0, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = 80, SCREAMING_SNAKE_CASE_ = 16, SCREAMING_SNAKE_CASE_ = 64, SCREAMING_SNAKE_CASE_ = "hann_window", SCREAMING_SNAKE_CASE_ = 1.0, SCREAMING_SNAKE_CASE_ = 80, SCREAMING_SNAKE_CASE_ = 7600, SCREAMING_SNAKE_CASE_ = 1e-10, SCREAMING_SNAKE_CASE_ = 2, SCREAMING_SNAKE_CASE_ = True, **SCREAMING_SNAKE_CASE_, ) -> Union[str, Any]: super().__init__(feature_size=SCREAMING_SNAKE_CASE_, sampling_rate=SCREAMING_SNAKE_CASE_, padding_value=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = do_normalize UpperCamelCase : Optional[Any] = return_attention_mask UpperCamelCase : Union[str, Any] = num_mel_bins UpperCamelCase : int = hop_length UpperCamelCase : Any = win_length UpperCamelCase : Dict = win_function UpperCamelCase : Any = frame_signal_scale UpperCamelCase : str = fmin UpperCamelCase : int = fmax UpperCamelCase : Dict = mel_floor UpperCamelCase : Any = reduction_factor UpperCamelCase : List[str] = win_length * sampling_rate // 1000 UpperCamelCase : Union[str, Any] = hop_length * sampling_rate // 1000 UpperCamelCase : Tuple = optimal_fft_length(self.sample_size ) UpperCamelCase : int = (self.n_fft // 2) + 1 UpperCamelCase : Any = window_function(window_length=self.sample_size, name=self.win_function, periodic=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.num_mel_bins, min_frequency=self.fmin, max_frequency=self.fmax, sampling_rate=self.sampling_rate, norm='slaney', mel_scale='slaney', ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers', SCREAMING_SNAKE_CASE_, ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers', SCREAMING_SNAKE_CASE_, ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def snake_case_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: UpperCamelCase : Dict = np.array(SCREAMING_SNAKE_CASE_, np.intaa ) UpperCamelCase : int = [] for vector, length in zip(SCREAMING_SNAKE_CASE_, attention_mask.sum(-1 ) ): UpperCamelCase : Any = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[Any] = padding_value normed_input_values.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def snake_case_ ( self, SCREAMING_SNAKE_CASE_, ) -> np.ndarray: UpperCamelCase : int = spectrogram( SCREAMING_SNAKE_CASE_, window=self.window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, mel_filters=self.mel_filters, mel_floor=self.mel_floor, log_mel='log10', ) return log_mel_spec.T def __call__( self, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: UpperCamelCase : Dict = self._process_audio( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) else: UpperCamelCase : str = None if audio_target is not None: UpperCamelCase : str = self._process_audio( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) if inputs is None: return inputs_target else: UpperCamelCase : Dict = inputs_target['input_values'] UpperCamelCase : str = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: UpperCamelCase : str = decoder_attention_mask return inputs def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> BatchFeature: UpperCamelCase : Any = isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Any = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_, (list, tuple) ) and (isinstance(speech[0], (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ): UpperCamelCase : int = np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Any = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : str = [speech] # needed to make pad() work on spectrogram inputs UpperCamelCase : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: UpperCamelCase : Optional[int] = [self._extract_mel_features(SCREAMING_SNAKE_CASE_ ) for waveform in speech] UpperCamelCase : Union[str, Any] = BatchFeature({'input_values': features} ) UpperCamelCase : List[str] = self.num_mel_bins else: UpperCamelCase : Dict = BatchFeature({'input_values': speech} ) UpperCamelCase : Tuple = self.pad( SCREAMING_SNAKE_CASE_, padding=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_, pad_to_multiple_of=SCREAMING_SNAKE_CASE_, return_attention_mask=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : int = feature_size_hack # convert input values to correct format UpperCamelCase : Optional[int] = padded_inputs['input_values'] if not isinstance(input_values[0], np.ndarray ): UpperCamelCase : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.floataa ) for array in input_values] elif ( not isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and isinstance(input_values[0], np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCamelCase : Optional[int] = [array.astype(np.floataa ) for array in input_values] elif isinstance(SCREAMING_SNAKE_CASE_, np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCamelCase : Dict = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCamelCase : Dict = padded_inputs.get('attention_mask' ) if attention_mask is not None: UpperCamelCase : int = [np.asarray(SCREAMING_SNAKE_CASE_, dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCamelCase : Dict = ( attention_mask if self._get_padding_strategies(SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCamelCase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['input_values'], attention_mask=SCREAMING_SNAKE_CASE_, padding_value=self.padding_value ) if return_tensors is not None: UpperCamelCase : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs def snake_case_ ( self ) -> Dict[str, Any]: UpperCamelCase : Any = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCamelCase : Any = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
103
0
from __future__ import annotations def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None ) -> None: '''simple docstring''' if start is None: UpperCamelCase = 0 if end is None: UpperCamelCase = len(__A ) - 1 if start >= end: return UpperCamelCase = (start + end) // 2 slowsort(__A , __A , __A ) slowsort(__A , mid + 1 , __A ) if sequence[end] < sequence[mid]: UpperCamelCase , UpperCamelCase = sequence[mid], sequence[end] slowsort(__A , __A , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
343
'''simple docstring''' from __future__ import annotations import math def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) UpperCamelCase__ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _UpperCamelCase ( __A , __A ) -> str: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def _UpperCamelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def _UpperCamelCase ( __A ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) UpperCamelCase__ = len(__A ) UpperCamelCase__ = matrix_length // 2 UpperCamelCase__ = [[a[i][j] for j in range(__A , __A )] for i in range(__A )] UpperCamelCase__ = [ [a[i][j] for j in range(__A , __A )] for i in range(__A , __A ) ] UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A )] UpperCamelCase__ = [[a[i][j] for j in range(__A )] for i in range(__A , __A )] return top_left, top_right, bot_left, bot_right def _UpperCamelCase ( __A ) -> tuple[int, int]: '''simple docstring''' return len(__A ), len(matrix[0] ) def _UpperCamelCase ( __A ) -> None: '''simple docstring''' print("\n".join(str(__A ) for line in matrix ) ) def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if matrix_dimensions(__A ) == (2, 2): return default_matrix_multiplication(__A , __A ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = split_matrix(__A ) UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , __A ) UpperCamelCase__ = actual_strassen(__A , matrix_subtraction(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) UpperCamelCase__ = matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) UpperCamelCase__ = matrix_addition(__A , __A ) UpperCamelCase__ = matrix_addition(__A , __A ) UpperCamelCase__ = matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) # construct the new matrix from our 4 quadrants UpperCamelCase__ = [] for i in range(len(__A ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__A ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _UpperCamelCase ( __A , __A ) -> list: '''simple docstring''' if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]: UpperCamelCase__ = ( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__A ) UpperCamelCase__ = matrix_dimensions(__A ) UpperCamelCase__ = matrix_dimensions(__A ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCamelCase__ = max(*__A , *__A ) UpperCamelCase__ = int(math.pow(2 , math.ceil(math.loga(__A ) ) ) ) UpperCamelCase__ = matrixa UpperCamelCase__ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCamelCase__ = actual_strassen(__A , __A ) # Removing the additional zeros for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a__ : int = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a__ : str = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
80
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : List[str] = '''char''' UpperCamelCase__ : Optional[int] = '''bpe''' UpperCamelCase__ : List[Any] = '''wp''' lowerCAmelCase__ : str =(DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = ['''image_processor''', '''char_tokenizer'''] UpperCamelCase__ : Optional[int] = '''ViTImageProcessor''' UpperCamelCase__ : Optional[Any] = '''MgpstrTokenizer''' def __init__( self , _A=None , _A=None , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _A , ) __SCREAMING_SNAKE_CASE = kwargs.pop('feature_extractor' ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('gpt2' ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(_A , _A ) def __call__( self , _A=None , _A=None , _A=None , **_A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.char_tokenizer(_A , return_tensors=_A , **_A ) if text is None: return inputs elif images is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sequences __SCREAMING_SNAKE_CASE = char_preds.size(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._decode_helper(_A , 'char' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._decode_helper(_A , 'bpe' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._decode_helper(_A , 'wp' ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for i in range(_A ): __SCREAMING_SNAKE_CASE = [char_scores[i], bpe_scores[i], wp_scores[i]] __SCREAMING_SNAKE_CASE = [char_strs[i], bpe_strs[i], wp_strs[i]] __SCREAMING_SNAKE_CASE = scores.index(max(_A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = final_strs __SCREAMING_SNAKE_CASE = final_scores __SCREAMING_SNAKE_CASE = char_strs __SCREAMING_SNAKE_CASE = bpe_strs __SCREAMING_SNAKE_CASE = wp_strs return out def _A ( self , _A , _A ): '''simple docstring''' if format == DecodeType.CHARACTER: __SCREAMING_SNAKE_CASE = self.char_decode __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = '[s]' elif format == DecodeType.BPE: __SCREAMING_SNAKE_CASE = self.bpe_decode __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = '#' elif format == DecodeType.WORDPIECE: __SCREAMING_SNAKE_CASE = self.wp_decode __SCREAMING_SNAKE_CASE = 102 __SCREAMING_SNAKE_CASE = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [], [] __SCREAMING_SNAKE_CASE = pred_logits.size(0 ) __SCREAMING_SNAKE_CASE = pred_logits.size(1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = pred_logits.topk(1 , dim=-1 , largest=_A , sorted=_A ) __SCREAMING_SNAKE_CASE = preds_index.view(-1 , _A )[:, 1:] __SCREAMING_SNAKE_CASE = decoder(_A ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.nn.functional.softmax(_A , dim=2 ).max(dim=2 ) __SCREAMING_SNAKE_CASE = preds_max_prob[:, 1:] for index in range(_A ): __SCREAMING_SNAKE_CASE = preds_str[index].find(_A ) __SCREAMING_SNAKE_CASE = preds_str[index][:pred_eos] __SCREAMING_SNAKE_CASE = preds_index[index].cpu().tolist() __SCREAMING_SNAKE_CASE = pred_index.index(_A ) if eos_token in pred_index else -1 __SCREAMING_SNAKE_CASE = preds_max_prob[index][: pred_eos_index + 1] __SCREAMING_SNAKE_CASE = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_A ) conf_scores.append(_A ) return dec_strs, conf_scores def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(_A )] return decode_strs def _A ( self , _A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(_A )] return decode_strs
118
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = '''Wav2Vec2FeatureExtractor''' UpperCamelCase__ : Union[str, Any] = '''AutoTokenizer''' def __init__( self , _A , _A ): '''simple docstring''' super().__init__(_A , _A ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False @classmethod def _A ( cls , _A , **_A ): '''simple docstring''' try: return super().from_pretrained(_A , **_A ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , _A , ) __SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer.from_pretrained(_A , **_A ) return cls(feature_extractor=_A , tokenizer=_A ) def __call__( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __SCREAMING_SNAKE_CASE = kwargs.pop('raw_speech' ) else: __SCREAMING_SNAKE_CASE = kwargs.pop('audio' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('sampling_rate' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('text' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings['input_ids'] return inputs def _A ( self , *_A , **_A ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*_A , **_A ) __SCREAMING_SNAKE_CASE = kwargs.pop('input_features' , _A ) __SCREAMING_SNAKE_CASE = kwargs.pop('labels' , _A ) if len(_A ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if input_features is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor.pad(_A , *_A , **_A ) if labels is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.pad(_A , **_A ) if labels is None: return input_features elif input_features is None: return labels else: __SCREAMING_SNAKE_CASE = labels['input_ids'] return input_features def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.batch_decode(*_A , **_A ) def _A ( self , *_A , **_A ): '''simple docstring''' return self.tokenizer.decode(*_A , **_A ) @contextmanager def _A ( self ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False
118
1
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder SCREAMING_SNAKE_CASE__:Optional[Any] = """__DUMMY_TRANSFORMERS_USER__""" SCREAMING_SNAKE_CASE__:Tuple = """Dummy User""" SCREAMING_SNAKE_CASE__:List[str] = """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""" SCREAMING_SNAKE_CASE__:Optional[Any] = """https://hub-ci.huggingface.co""" SCREAMING_SNAKE_CASE__:Dict = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" SCREAMING_SNAKE_CASE__:Any = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" SCREAMING_SNAKE_CASE__:Any = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def _lowerCamelCase( a ): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , a ) @pytest.fixture def _lowerCamelCase( a ): monkeypatch.setattr("datasets.config.HF_ENDPOINT" , a ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , a ) @pytest.fixture def _lowerCamelCase( a ): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , a ) @pytest.fixture def _lowerCamelCase( a , a ): HfFolder.save_token(a ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def _lowerCamelCase( ): return HfApi(endpoint=a ) @pytest.fixture(scope="session" ) def _lowerCamelCase( a ): __a = HfFolder.get_token() HfFolder.save_token(a ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(a ) @pytest.fixture def _lowerCamelCase( a ): def _cleanup_repo(a ): hf_api.delete_repo(a , token=a , repo_type="dataset" ) return _cleanup_repo @pytest.fixture def _lowerCamelCase( a ): @contextmanager def _temporary_repo(a ): try: yield repo_id finally: cleanup_repo(a ) return _temporary_repo @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = F"repo_txt_data-{int(time.time() * 1_0E3 )}" __a = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(a , token=a , repo_type="dataset" , private=a ) hf_api.upload_file( token=a , path_or_fileobj=str(a ) , path_in_repo="data/text_data.txt" , repo_id=a , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(a , token=a , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase( a , a , a ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = F"repo_zipped_txt_data-{int(time.time() * 1_0E3 )}" __a = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(a , token=a , repo_type="dataset" , private=a ) hf_api.upload_file( token=a , path_or_fileobj=str(a ) , path_in_repo="data.zip" , repo_id=a , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(a , token=a , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase( a , a , a ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def _lowerCamelCase( a , a , a ): __a = F"repo_zipped_img_data-{int(time.time() * 1_0E3 )}" __a = F"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(a , token=a , repo_type="dataset" , private=a ) hf_api.upload_file( token=a , path_or_fileobj=str(a ) , path_in_repo="data.zip" , repo_id=a , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(a , token=a , repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase( a , a , a ): return hf_private_dataset_repo_zipped_img_data_
261
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
261
1
"""simple docstring""" from typing import Any def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: list , lowerCAmelCase: dict , lowerCAmelCase: dict , lowerCAmelCase: dict , )-> list: _validation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # Creates data structures and fill initial step _snake_case : dict = {} _snake_case : dict = {} for state in states_space: _snake_case : List[str] = observations_space[0] _snake_case : Tuple = ( initial_probabilities[state] * emission_probabilities[state][observation] ) _snake_case : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase ) ): _snake_case : Optional[Any] = observations_space[o] _snake_case : List[str] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function _snake_case : List[Any] = '' _snake_case : Optional[int] = -1 for k_state in states_space: _snake_case : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: _snake_case : List[Any] = probability _snake_case : str = k_state # Update probabilities and pointers dicts _snake_case : Optional[int] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) _snake_case : str = arg_max # The final observation _snake_case : Dict = observations_space[len(lowerCAmelCase ) - 1] # argmax for given final observation _snake_case : List[str] = '' _snake_case : Optional[int] = -1 for k_state in states_space: _snake_case : Tuple = probabilities[(k_state, final_observation)] if probability > max_probability: _snake_case : Tuple = probability _snake_case : Optional[Any] = k_state _snake_case : int = arg_max # Process pointers backwards _snake_case : int = last_state _snake_case : Any = [] for o in range(len(lowerCAmelCase ) - 1 , -1 , -1 ): result.append(lowerCAmelCase ) _snake_case : Any = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , )-> None: _validate_not_empty( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _validate_lists(lowerCAmelCase , lowerCAmelCase ) _validate_dicts( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , )-> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any )-> None: _validate_list(lowerCAmelCase , 'observations_space' ) _validate_list(lowerCAmelCase , 'states_space' ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str )-> None: if not isinstance(_object , lowerCAmelCase ): _snake_case : Any = F"""{var_name} must be a list""" raise ValueError(lowerCAmelCase ) else: for x in _object: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = F"""{var_name} must be a list of strings""" raise ValueError(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Any , lowerCAmelCase: Any , )-> None: _validate_dict(lowerCAmelCase , 'initial_probabilities' , lowerCAmelCase ) _validate_nested_dict(lowerCAmelCase , 'transition_probabilities' ) _validate_nested_dict(lowerCAmelCase , 'emission_probabilities' ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str )-> None: _validate_dict(_object , lowerCAmelCase , lowerCAmelCase ) for x in _object.values(): _validate_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str , lowerCAmelCase: type , lowerCAmelCase: bool = False )-> None: if not isinstance(_object , lowerCAmelCase ): _snake_case : int = F"""{var_name} must be a dict""" raise ValueError(lowerCAmelCase ) if not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for x in _object ): _snake_case : str = F"""{var_name} all keys must be strings""" raise ValueError(lowerCAmelCase ) if not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for x in _object.values() ): _snake_case : str = 'nested dictionary ' if nested else '' _snake_case : Any = F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(lowerCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
368
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int | None = None , lowerCAmelCase: int | None = None )-> None: if start is None: _snake_case : int = 0 if end is None: _snake_case : Optional[int] = len(lowerCAmelCase ) - 1 if start >= end: return _snake_case : int = (start + end) // 2 slowsort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) slowsort(lowerCAmelCase , mid + 1 , lowerCAmelCase ) if sequence[end] < sequence[mid]: _snake_case , _snake_case : str = sequence[mid], sequence[end] slowsort(lowerCAmelCase , lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
260
0
import torch from torch import nn class lowercase__( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : Optional[int]=False ) -> Any: super().__init__() lowercase_ = n_token lowercase_ = d_embed lowercase_ = d_proj lowercase_ = cutoffs + [n_token] lowercase_ = [0] + self.cutoffs lowercase_ = div_val lowercase_ = self.cutoffs[0] lowercase_ = len(self.cutoffs ) - 1 lowercase_ = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowercase_ = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowercase_ = nn.Parameter(torch.zeros(self.n_clusters ) ) lowercase_ = nn.ModuleList() lowercase_ = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) else: self.out_projs.append(SCREAMING_SNAKE_CASE_ ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) else: for i in range(len(self.cutoffs ) ): lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE_ , r_idx - l_idx ) ) lowercase_ = keep_order def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: if proj is None: lowercase_ = nn.functional.linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowercase_ = nn.functional.linear(SCREAMING_SNAKE_CASE_ , proj.t().contiguous() ) lowercase_ = nn.functional.linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=False ) -> Optional[Any]: if labels is not None: # Shift so that tokens < n predict n lowercase_ = hidden[..., :-1, :].contiguous() lowercase_ = labels[..., 1:].contiguous() lowercase_ = hidden.view(-1 , hidden.size(-1 ) ) lowercase_ = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: lowercase_ = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowercase_ = labels != -1_0_0 lowercase_ = torch.zeros_like(SCREAMING_SNAKE_CASE_ , dtype=hidden.dtype , device=hidden.device ) lowercase_ = ( -nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowercase_ = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) else: # construct weights and biases lowercase_ , lowercase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE_ ) biases.append(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=1 ) if labels is None: lowercase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowercase_ = torch.zeros_like(SCREAMING_SNAKE_CASE_ , dtype=hidden.dtype , device=hidden.device ) lowercase_ = 0 lowercase_ = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): lowercase_ , lowercase_ = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowercase_ = (labels >= l_idx) & (labels < r_idx) lowercase_ = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowercase_ = labels.index_select(0 , SCREAMING_SNAKE_CASE_ ) - l_idx lowercase_ = head_logprob.index_select(0 , SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden.index_select(0 , SCREAMING_SNAKE_CASE_ ) else: lowercase_ = hidden if i == 0: if labels is not None: lowercase_ = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ , lowercase_ , lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=1 ) lowercase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowercase_ = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowercase_ = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowercase_ = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , SCREAMING_SNAKE_CASE_ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: if self.n_clusters == 0: lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) else: # construct weights and biases lowercase_ , lowercase_ = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowercase_ , lowercase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowercase_ = self.out_layers[0].weight[l_idx:r_idx] lowercase_ = self.out_layers[0].bias[l_idx:r_idx] else: lowercase_ = self.out_layers[i].weight lowercase_ = self.out_layers[i].bias if i == 0: lowercase_ = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowercase_ = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE_ ) biases.append(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ , lowercase_ = weights[0], biases[0], self.out_projs[0] lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowercase_ = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=1 ) lowercase_ = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): lowercase_ , lowercase_ = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowercase_ = head_logprob[:, : self.cutoffs[0]] else: lowercase_ , lowercase_ , lowercase_ = weights[i], biases[i], self.out_projs[i] lowercase_ = self._compute_logit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=1 ) lowercase_ = head_logprob[:, -i] + tail_logprob_i lowercase_ = logprob_i return out
30
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Check if the input is valid if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients _a , _a , _a : Any = equationa _a , _a , _a : Tuple = equationa # Calculate the determinants of the matrices _a : int = aa * ba - aa * ba _a : str = ca * ba - ca * ba _a : str = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _a : Dict = determinant_x / determinant _a : str = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
294
0
import random def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = a[left_index] lowerCAmelCase__ = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase__ ): if a[j] < pivot: lowerCAmelCase__ , lowerCAmelCase__ = a[i], a[j] i += 1 lowerCAmelCase__ , lowerCAmelCase__ = a[i - 1], a[left_index] return i - 1 def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> List[str]: """simple docstring""" if left < right: lowerCAmelCase__ = random.randint(lowerCAmelCase__ , right - 1 ) lowerCAmelCase__ , lowerCAmelCase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowerCAmelCase__ = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) quick_sort_random( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase__ , pivot_index + 1 , lowerCAmelCase__ ) # recursive quicksort to the right of the pivot point def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = input('Enter numbers separated by a comma:\n' ).strip() lowerCAmelCase__ = [int(lowerCAmelCase__ ) for item in user_input.split(',' )] quick_sort_random(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) if __name__ == "__main__": main()
366
def _UpperCamelCase ( UpperCamelCase_ : str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
122
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): __UpperCamelCase :List[Any] = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , snake_case__ , ) is not None ): __UpperCamelCase :List[str] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __UpperCamelCase :int = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __UpperCamelCase :Any = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] __UpperCamelCase :Optional[Any] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed __UpperCamelCase :Union[str, Any] = True if not attribute_used: __UpperCamelCase :int = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __UpperCamelCase :Optional[Any] = True elif attribute in ["tie_word_embeddings"] and default_value is False: __UpperCamelCase :List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __UpperCamelCase :Union[str, Any] = True elif attribute.endswith('''_token_id''' ): __UpperCamelCase :int = True # configuration class specific cases if not case_allowed: __UpperCamelCase :Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __UpperCamelCase :Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) __UpperCamelCase :Any = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] __UpperCamelCase :Union[str, Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __UpperCamelCase :int = {} if len(config_class.attribute_map ) > 0: __UpperCamelCase :Any = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __UpperCamelCase :Tuple = inspect.getsourcefile(snake_case__ ) __UpperCamelCase :Union[str, Any] = os.path.dirname(snake_case__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __UpperCamelCase :List[str] = [os.path.join(snake_case__ , snake_case__ ) for fn in os.listdir(snake_case__ ) if fn.startswith('''modeling_''' )] # Get the source code strings __UpperCamelCase :List[Any] = [] for path in modeling_paths: if os.path.isfile(snake_case__ ): with open(snake_case__ ) as fp: modeling_sources.append(fp.read() ) __UpperCamelCase :Union[str, Any] = [] for config_param, default_value in zip(snake_case__ , snake_case__ ): # `attributes` here is all the variant names for `config_param` __UpperCamelCase :Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): unused_attributes.append(attributes[0] ) return sorted(snake_case__ ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __UpperCamelCase :List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE : inspect.isclass(snake_case__ ) and issubclass(snake_case__ , snake_case__ ) and inspect.getmodule(snake_case__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __UpperCamelCase :Tuple = check_config_attributes_being_used(snake_case__ ) if len(snake_case__ ) > 0: __UpperCamelCase :List[Any] = unused_attributes if len(snake_case__ ) > 0: __UpperCamelCase :int = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(snake_case__ ) if __name__ == "__main__": check_config_attributes()
43
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __a = logging.get_logger(__name__) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Union[str, Any] = 'upernet' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : str=5_1_2 , SCREAMING_SNAKE_CASE_ : Tuple=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_8_4 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : str=2_5_5 , **SCREAMING_SNAKE_CASE_ : str , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = backbone_config.get('''model_type''' ) lowercase_ = CONFIG_MAPPING[backbone_model_type] lowercase_ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) lowercase_ = backbone_config lowercase_ = hidden_size lowercase_ = initializer_range lowercase_ = pool_scales lowercase_ = use_auxiliary_head lowercase_ = auxiliary_loss_weight lowercase_ = auxiliary_in_channels lowercase_ = auxiliary_channels lowercase_ = auxiliary_num_convs lowercase_ = auxiliary_concat_input lowercase_ = loss_ignore_index def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.backbone_config.to_dict() lowercase_ = self.__class__.model_type return output
30
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( snake_case : int | str )-> bool: _lowerCamelCase = str(snake_case ) return n == n[::-1] def SCREAMING_SNAKE_CASE_ ( snake_case : int = 1_000_000 )-> Dict: _lowerCamelCase = 0 for i in range(1 , snake_case ): if is_palindrome(snake_case ) and is_palindrome(bin(snake_case ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
80
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE_ ( )-> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _lowerCamelCase = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: assert _test_patching.open is open _lowerCamelCase = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: # pandas.read_csv is not present in _test_patching _lowerCamelCase = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , snake_case ): pass def SCREAMING_SNAKE_CASE_ ( )-> Any: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point _lowerCamelCase = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , snake_case ) is None with patch_submodule(_test_patching , 'len' , snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE_ ( )-> Any: _lowerCamelCase = '__test_patch_submodule_start_and_stop_mock__' _lowerCamelCase = patch_submodule(_test_patching , 'open' , snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( )-> Tuple: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _lowerCamelCase = '__test_patch_submodule_successive_join__' _lowerCamelCase = '__test_patch_submodule_successive_dirname__' _lowerCamelCase = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , snake_case ): with patch_submodule(_test_patching , 'os.path.join' , snake_case ): with patch_submodule(_test_patching , 'os.path.dirname' , snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: _lowerCamelCase = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , snake_case ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , snake_case ): pass
80
1